tick/sched: Preserve number of idle sleeps across CPU hotplug events
[platform/kernel/linux-starfive.git] / kernel / rcu / tree_nocb.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <mingo@elte.hu>
12  *         Paul E. McKenney <paulmck@linux.ibm.com>
13  *         Frederic Weisbecker <frederic@kernel.org>
14  */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21         return lockdep_is_held(&rdp->nocb_lock);
22 }
23
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26         /* Race on early boot between thread creation and assignment */
27         if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28                 return true;
29
30         if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31                 if (in_task())
32                         return true;
33         return false;
34 }
35
36 /*
37  * Offload callback processing from the boot-time-specified set of CPUs
38  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39  * created that pull the callbacks from the corresponding CPU, wait for
40  * a grace period to elapse, and invoke the callbacks.  These kthreads
41  * are organized into GP kthreads, which manage incoming callbacks, wait for
42  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44  * do a wake_up() on their GP kthread when they insert a callback into any
45  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46  * in which case each kthread actively polls its CPU.  (Which isn't so great
47  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48  *
49  * This is intended to be used in conjunction with Frederic Weisbecker's
50  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51  * running CPU-bound user-mode computations.
52  *
53  * Offloading of callbacks can also be used as an energy-efficiency
54  * measure because CPUs with no RCU callbacks queued are more aggressive
55  * about entering dyntick-idle mode.
56  */
57
58
59 /*
60  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62  */
63 static int __init rcu_nocb_setup(char *str)
64 {
65         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66         if (*str == '=') {
67                 if (cpulist_parse(++str, rcu_nocb_mask)) {
68                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69                         cpumask_setall(rcu_nocb_mask);
70                 }
71         }
72         rcu_state.nocb_is_setup = true;
73         return 1;
74 }
75 __setup("rcu_nocbs", rcu_nocb_setup);
76
77 static int __init parse_rcu_nocb_poll(char *arg)
78 {
79         rcu_nocb_poll = true;
80         return 1;
81 }
82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
83
84 /*
85  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86  * After all, the main point of bypassing is to avoid lock contention
87  * on ->nocb_lock, which only can happen at high call_rcu() rates.
88  */
89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91
92 /*
93  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
94  * lock isn't immediately available, increment ->nocb_lock_contended to
95  * flag the contention.
96  */
97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
98         __acquires(&rdp->nocb_bypass_lock)
99 {
100         lockdep_assert_irqs_disabled();
101         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
102                 return;
103         atomic_inc(&rdp->nocb_lock_contended);
104         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
105         smp_mb__after_atomic(); /* atomic_inc() before lock. */
106         raw_spin_lock(&rdp->nocb_bypass_lock);
107         smp_mb__before_atomic(); /* atomic_dec() after lock. */
108         atomic_dec(&rdp->nocb_lock_contended);
109 }
110
111 /*
112  * Spinwait until the specified rcu_data structure's ->nocb_lock is
113  * not contended.  Please note that this is extremely special-purpose,
114  * relying on the fact that at most two kthreads and one CPU contend for
115  * this lock, and also that the two kthreads are guaranteed to have frequent
116  * grace-period-duration time intervals between successive acquisitions
117  * of the lock.  This allows us to use an extremely simple throttling
118  * mechanism, and further to apply it only to the CPU doing floods of
119  * call_rcu() invocations.  Don't try this at home!
120  */
121 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
122 {
123         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
124         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
125                 cpu_relax();
126 }
127
128 /*
129  * Conditionally acquire the specified rcu_data structure's
130  * ->nocb_bypass_lock.
131  */
132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
133 {
134         lockdep_assert_irqs_disabled();
135         return raw_spin_trylock(&rdp->nocb_bypass_lock);
136 }
137
138 /*
139  * Release the specified rcu_data structure's ->nocb_bypass_lock.
140  */
141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
142         __releases(&rdp->nocb_bypass_lock)
143 {
144         lockdep_assert_irqs_disabled();
145         raw_spin_unlock(&rdp->nocb_bypass_lock);
146 }
147
148 /*
149  * Acquire the specified rcu_data structure's ->nocb_lock, but only
150  * if it corresponds to a no-CBs CPU.
151  */
152 static void rcu_nocb_lock(struct rcu_data *rdp)
153 {
154         lockdep_assert_irqs_disabled();
155         if (!rcu_rdp_is_offloaded(rdp))
156                 return;
157         raw_spin_lock(&rdp->nocb_lock);
158 }
159
160 /*
161  * Release the specified rcu_data structure's ->nocb_lock, but only
162  * if it corresponds to a no-CBs CPU.
163  */
164 static void rcu_nocb_unlock(struct rcu_data *rdp)
165 {
166         if (rcu_rdp_is_offloaded(rdp)) {
167                 lockdep_assert_irqs_disabled();
168                 raw_spin_unlock(&rdp->nocb_lock);
169         }
170 }
171
172 /*
173  * Release the specified rcu_data structure's ->nocb_lock and restore
174  * interrupts, but only if it corresponds to a no-CBs CPU.
175  */
176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
177                                        unsigned long flags)
178 {
179         if (rcu_rdp_is_offloaded(rdp)) {
180                 lockdep_assert_irqs_disabled();
181                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
182         } else {
183                 local_irq_restore(flags);
184         }
185 }
186
187 /* Lockdep check that ->cblist may be safely accessed. */
188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
189 {
190         lockdep_assert_irqs_disabled();
191         if (rcu_rdp_is_offloaded(rdp))
192                 lockdep_assert_held(&rdp->nocb_lock);
193 }
194
195 /*
196  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
197  * grace period.
198  */
199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
200 {
201         swake_up_all(sq);
202 }
203
204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
205 {
206         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
207 }
208
209 static void rcu_init_one_nocb(struct rcu_node *rnp)
210 {
211         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
212         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
213 }
214
215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
216                            struct rcu_data *rdp,
217                            bool force, unsigned long flags)
218         __releases(rdp_gp->nocb_gp_lock)
219 {
220         bool needwake = false;
221
222         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
223                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
224                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
225                                     TPS("AlreadyAwake"));
226                 return false;
227         }
228
229         if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
230                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
231                 del_timer(&rdp_gp->nocb_timer);
232         }
233
234         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
235                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
236                 needwake = true;
237         }
238         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
239         if (needwake) {
240                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
241                 wake_up_process(rdp_gp->nocb_gp_kthread);
242         }
243
244         return needwake;
245 }
246
247 /*
248  * Kick the GP kthread for this NOCB group.
249  */
250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
251 {
252         unsigned long flags;
253         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
254
255         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
256         return __wake_nocb_gp(rdp_gp, rdp, force, flags);
257 }
258
259 /*
260  * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
261  * can elapse before lazy callbacks are flushed. Lazy callbacks
262  * could be flushed much earlier for a number of other reasons
263  * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
264  * left unsubmitted to RCU after those many jiffies.
265  */
266 #define LAZY_FLUSH_JIFFIES (10 * HZ)
267 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
268
269 #ifdef CONFIG_RCU_LAZY
270 // To be called only from test code.
271 void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
272 {
273         jiffies_till_flush = jif;
274 }
275 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
276
277 unsigned long rcu_lazy_get_jiffies_till_flush(void)
278 {
279         return jiffies_till_flush;
280 }
281 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
282 #endif
283
284 /*
285  * Arrange to wake the GP kthread for this NOCB group at some future
286  * time when it is safe to do so.
287  */
288 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
289                                const char *reason)
290 {
291         unsigned long flags;
292         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
293
294         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
295
296         /*
297          * Bypass wakeup overrides previous deferments. In case of
298          * callback storms, no need to wake up too early.
299          */
300         if (waketype == RCU_NOCB_WAKE_LAZY &&
301             rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
302                 mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush);
303                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
304         } else if (waketype == RCU_NOCB_WAKE_BYPASS) {
305                 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
306                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
307         } else {
308                 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
309                         mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
310                 if (rdp_gp->nocb_defer_wakeup < waketype)
311                         WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
312         }
313
314         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
315
316         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
317 }
318
319 /*
320  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
321  * However, if there is a callback to be enqueued and if ->nocb_bypass
322  * proves to be initially empty, just return false because the no-CB GP
323  * kthread may need to be awakened in this case.
324  *
325  * Return true if there was something to be flushed and it succeeded, otherwise
326  * false.
327  *
328  * Note that this function always returns true if rhp is NULL.
329  */
330 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
331                                      unsigned long j, bool lazy)
332 {
333         struct rcu_cblist rcl;
334         struct rcu_head *rhp = rhp_in;
335
336         WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
337         rcu_lockdep_assert_cblist_protected(rdp);
338         lockdep_assert_held(&rdp->nocb_bypass_lock);
339         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
340                 raw_spin_unlock(&rdp->nocb_bypass_lock);
341                 return false;
342         }
343         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
344         if (rhp)
345                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
346
347         /*
348          * If the new CB requested was a lazy one, queue it onto the main
349          * ->cblist so that we can take advantage of the grace-period that will
350          * happen regardless. But queue it onto the bypass list first so that
351          * the lazy CB is ordered with the existing CBs in the bypass list.
352          */
353         if (lazy && rhp) {
354                 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
355                 rhp = NULL;
356         }
357         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
358         WRITE_ONCE(rdp->lazy_len, 0);
359
360         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
361         WRITE_ONCE(rdp->nocb_bypass_first, j);
362         rcu_nocb_bypass_unlock(rdp);
363         return true;
364 }
365
366 /*
367  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
368  * However, if there is a callback to be enqueued and if ->nocb_bypass
369  * proves to be initially empty, just return false because the no-CB GP
370  * kthread may need to be awakened in this case.
371  *
372  * Note that this function always returns true if rhp is NULL.
373  */
374 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
375                                   unsigned long j, bool lazy)
376 {
377         if (!rcu_rdp_is_offloaded(rdp))
378                 return true;
379         rcu_lockdep_assert_cblist_protected(rdp);
380         rcu_nocb_bypass_lock(rdp);
381         return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
382 }
383
384 /*
385  * If the ->nocb_bypass_lock is immediately available, flush the
386  * ->nocb_bypass queue into ->cblist.
387  */
388 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
389 {
390         rcu_lockdep_assert_cblist_protected(rdp);
391         if (!rcu_rdp_is_offloaded(rdp) ||
392             !rcu_nocb_bypass_trylock(rdp))
393                 return;
394         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
395 }
396
397 /*
398  * See whether it is appropriate to use the ->nocb_bypass list in order
399  * to control contention on ->nocb_lock.  A limited number of direct
400  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
401  * is non-empty, further callbacks must be placed into ->nocb_bypass,
402  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
403  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
404  * used if ->cblist is empty, because otherwise callbacks can be stranded
405  * on ->nocb_bypass because we cannot count on the current CPU ever again
406  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
407  * non-empty, the corresponding no-CBs grace-period kthread must not be
408  * in an indefinite sleep state.
409  *
410  * Finally, it is not permitted to use the bypass during early boot,
411  * as doing so would confuse the auto-initialization code.  Besides
412  * which, there is no point in worrying about lock contention while
413  * there is only one CPU in operation.
414  */
415 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
416                                 bool *was_alldone, unsigned long flags,
417                                 bool lazy)
418 {
419         unsigned long c;
420         unsigned long cur_gp_seq;
421         unsigned long j = jiffies;
422         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
423         bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
424
425         lockdep_assert_irqs_disabled();
426
427         // Pure softirq/rcuc based processing: no bypassing, no
428         // locking.
429         if (!rcu_rdp_is_offloaded(rdp)) {
430                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
431                 return false;
432         }
433
434         // In the process of (de-)offloading: no bypassing, but
435         // locking.
436         if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
437                 rcu_nocb_lock(rdp);
438                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
439                 return false; /* Not offloaded, no bypassing. */
440         }
441
442         // Don't use ->nocb_bypass during early boot.
443         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
444                 rcu_nocb_lock(rdp);
445                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
446                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
447                 return false;
448         }
449
450         // If we have advanced to a new jiffy, reset counts to allow
451         // moving back from ->nocb_bypass to ->cblist.
452         if (j == rdp->nocb_nobypass_last) {
453                 c = rdp->nocb_nobypass_count + 1;
454         } else {
455                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
456                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
457                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
458                                  nocb_nobypass_lim_per_jiffy))
459                         c = 0;
460                 else if (c > nocb_nobypass_lim_per_jiffy)
461                         c = nocb_nobypass_lim_per_jiffy;
462         }
463         WRITE_ONCE(rdp->nocb_nobypass_count, c);
464
465         // If there hasn't yet been all that many ->cblist enqueues
466         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
467         // ->nocb_bypass first.
468         // Lazy CBs throttle this back and do immediate bypass queuing.
469         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
470                 rcu_nocb_lock(rdp);
471                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
472                 if (*was_alldone)
473                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
474                                             TPS("FirstQ"));
475
476                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
477                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
478                 return false; // Caller must enqueue the callback.
479         }
480
481         // If ->nocb_bypass has been used too long or is too full,
482         // flush ->nocb_bypass to ->cblist.
483         if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
484             (ncbs &&  bypass_is_lazy &&
485              (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
486             ncbs >= qhimark) {
487                 rcu_nocb_lock(rdp);
488                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
489
490                 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
491                         if (*was_alldone)
492                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
493                                                     TPS("FirstQ"));
494                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
495                         return false; // Caller must enqueue the callback.
496                 }
497                 if (j != rdp->nocb_gp_adv_time &&
498                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
499                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
500                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
501                         rdp->nocb_gp_adv_time = j;
502                 }
503
504                 // The flush succeeded and we moved CBs into the regular list.
505                 // Don't wait for the wake up timer as it may be too far ahead.
506                 // Wake up the GP thread now instead, if the cblist was empty.
507                 __call_rcu_nocb_wake(rdp, *was_alldone, flags);
508
509                 return true; // Callback already enqueued.
510         }
511
512         // We need to use the bypass.
513         rcu_nocb_wait_contended(rdp);
514         rcu_nocb_bypass_lock(rdp);
515         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
516         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
517         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
518
519         if (lazy)
520                 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
521
522         if (!ncbs) {
523                 WRITE_ONCE(rdp->nocb_bypass_first, j);
524                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
525         }
526         rcu_nocb_bypass_unlock(rdp);
527         smp_mb(); /* Order enqueue before wake. */
528         // A wake up of the grace period kthread or timer adjustment
529         // needs to be done only if:
530         // 1. Bypass list was fully empty before (this is the first
531         //    bypass list entry), or:
532         // 2. Both of these conditions are met:
533         //    a. The bypass list previously had only lazy CBs, and:
534         //    b. The new CB is non-lazy.
535         if (ncbs && (!bypass_is_lazy || lazy)) {
536                 local_irq_restore(flags);
537         } else {
538                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
539                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
540                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
541                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
542                                             TPS("FirstBQwake"));
543                         __call_rcu_nocb_wake(rdp, true, flags);
544                 } else {
545                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
546                                             TPS("FirstBQnoWake"));
547                         rcu_nocb_unlock_irqrestore(rdp, flags);
548                 }
549         }
550         return true; // Callback already enqueued.
551 }
552
553 /*
554  * Awaken the no-CBs grace-period kthread if needed, either due to it
555  * legitimately being asleep or due to overload conditions.
556  *
557  * If warranted, also wake up the kthread servicing this CPUs queues.
558  */
559 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
560                                  unsigned long flags)
561                                  __releases(rdp->nocb_lock)
562 {
563         long bypass_len;
564         unsigned long cur_gp_seq;
565         unsigned long j;
566         long lazy_len;
567         long len;
568         struct task_struct *t;
569
570         // If we are being polled or there is no kthread, just leave.
571         t = READ_ONCE(rdp->nocb_gp_kthread);
572         if (rcu_nocb_poll || !t) {
573                 rcu_nocb_unlock_irqrestore(rdp, flags);
574                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
575                                     TPS("WakeNotPoll"));
576                 return;
577         }
578         // Need to actually to a wakeup.
579         len = rcu_segcblist_n_cbs(&rdp->cblist);
580         bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
581         lazy_len = READ_ONCE(rdp->lazy_len);
582         if (was_alldone) {
583                 rdp->qlen_last_fqs_check = len;
584                 // Only lazy CBs in bypass list
585                 if (lazy_len && bypass_len == lazy_len) {
586                         rcu_nocb_unlock_irqrestore(rdp, flags);
587                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
588                                            TPS("WakeLazy"));
589                 } else if (!irqs_disabled_flags(flags)) {
590                         /* ... if queue was empty ... */
591                         rcu_nocb_unlock_irqrestore(rdp, flags);
592                         wake_nocb_gp(rdp, false);
593                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
594                                             TPS("WakeEmpty"));
595                 } else {
596                         rcu_nocb_unlock_irqrestore(rdp, flags);
597                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
598                                            TPS("WakeEmptyIsDeferred"));
599                 }
600         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
601                 /* ... or if many callbacks queued. */
602                 rdp->qlen_last_fqs_check = len;
603                 j = jiffies;
604                 if (j != rdp->nocb_gp_adv_time &&
605                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
606                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
607                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
608                         rdp->nocb_gp_adv_time = j;
609                 }
610                 smp_mb(); /* Enqueue before timer_pending(). */
611                 if ((rdp->nocb_cb_sleep ||
612                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
613                     !timer_pending(&rdp->nocb_timer)) {
614                         rcu_nocb_unlock_irqrestore(rdp, flags);
615                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
616                                            TPS("WakeOvfIsDeferred"));
617                 } else {
618                         rcu_nocb_unlock_irqrestore(rdp, flags);
619                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
620                 }
621         } else {
622                 rcu_nocb_unlock_irqrestore(rdp, flags);
623                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
624         }
625 }
626
627 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
628                                bool *wake_state)
629 {
630         struct rcu_segcblist *cblist = &rdp->cblist;
631         unsigned long flags;
632         int ret;
633
634         rcu_nocb_lock_irqsave(rdp, flags);
635         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
636             !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
637                 /*
638                  * Offloading. Set our flag and notify the offload worker.
639                  * We will handle this rdp until it ever gets de-offloaded.
640                  */
641                 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
642                 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
643                         *wake_state = true;
644                 ret = 1;
645         } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
646                    rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
647                 /*
648                  * De-offloading. Clear our flag and notify the de-offload worker.
649                  * We will ignore this rdp until it ever gets re-offloaded.
650                  */
651                 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
652                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
653                         *wake_state = true;
654                 ret = 0;
655         } else {
656                 WARN_ON_ONCE(1);
657                 ret = -1;
658         }
659
660         rcu_nocb_unlock_irqrestore(rdp, flags);
661
662         return ret;
663 }
664
665 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
666 {
667         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
668         swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
669                                         !READ_ONCE(my_rdp->nocb_gp_sleep));
670         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
671 }
672
673 /*
674  * No-CBs GP kthreads come here to wait for additional callbacks to show up
675  * or for grace periods to end.
676  */
677 static void nocb_gp_wait(struct rcu_data *my_rdp)
678 {
679         bool bypass = false;
680         int __maybe_unused cpu = my_rdp->cpu;
681         unsigned long cur_gp_seq;
682         unsigned long flags;
683         bool gotcbs = false;
684         unsigned long j = jiffies;
685         bool lazy = false;
686         bool needwait_gp = false; // This prevents actual uninitialized use.
687         bool needwake;
688         bool needwake_gp;
689         struct rcu_data *rdp, *rdp_toggling = NULL;
690         struct rcu_node *rnp;
691         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
692         bool wasempty = false;
693
694         /*
695          * Each pass through the following loop checks for CBs and for the
696          * nearest grace period (if any) to wait for next.  The CB kthreads
697          * and the global grace-period kthread are awakened if needed.
698          */
699         WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
700         /*
701          * An rcu_data structure is removed from the list after its
702          * CPU is de-offloaded and added to the list before that CPU is
703          * (re-)offloaded.  If the following loop happens to be referencing
704          * that rcu_data structure during the time that the corresponding
705          * CPU is de-offloaded and then immediately re-offloaded, this
706          * loop's rdp pointer will be carried to the end of the list by
707          * the resulting pair of list operations.  This can cause the loop
708          * to skip over some of the rcu_data structures that were supposed
709          * to have been scanned.  Fortunately a new iteration through the
710          * entire loop is forced after a given CPU's rcu_data structure
711          * is added to the list, so the skipped-over rcu_data structures
712          * won't be ignored for long.
713          */
714         list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
715                 long bypass_ncbs;
716                 bool flush_bypass = false;
717                 long lazy_ncbs;
718
719                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
720                 rcu_nocb_lock_irqsave(rdp, flags);
721                 lockdep_assert_held(&rdp->nocb_lock);
722                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
723                 lazy_ncbs = READ_ONCE(rdp->lazy_len);
724
725                 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
726                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
727                      bypass_ncbs > 2 * qhimark)) {
728                         flush_bypass = true;
729                 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
730                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
731                      bypass_ncbs > 2 * qhimark)) {
732                         flush_bypass = true;
733                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
734                         rcu_nocb_unlock_irqrestore(rdp, flags);
735                         continue; /* No callbacks here, try next. */
736                 }
737
738                 if (flush_bypass) {
739                         // Bypass full or old, so flush it.
740                         (void)rcu_nocb_try_flush_bypass(rdp, j);
741                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
742                         lazy_ncbs = READ_ONCE(rdp->lazy_len);
743                 }
744
745                 if (bypass_ncbs) {
746                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
747                                             bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
748                         if (bypass_ncbs == lazy_ncbs)
749                                 lazy = true;
750                         else
751                                 bypass = true;
752                 }
753                 rnp = rdp->mynode;
754
755                 // Advance callbacks if helpful and low contention.
756                 needwake_gp = false;
757                 if (!rcu_segcblist_restempty(&rdp->cblist,
758                                              RCU_NEXT_READY_TAIL) ||
759                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
760                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
761                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
762                         needwake_gp = rcu_advance_cbs(rnp, rdp);
763                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
764                                                            RCU_NEXT_READY_TAIL);
765                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
766                 }
767                 // Need to wait on some grace period?
768                 WARN_ON_ONCE(wasempty &&
769                              !rcu_segcblist_restempty(&rdp->cblist,
770                                                       RCU_NEXT_READY_TAIL));
771                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
772                         if (!needwait_gp ||
773                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
774                                 wait_gp_seq = cur_gp_seq;
775                         needwait_gp = true;
776                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
777                                             TPS("NeedWaitGP"));
778                 }
779                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
780                         needwake = rdp->nocb_cb_sleep;
781                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
782                         smp_mb(); /* CB invocation -after- GP end. */
783                 } else {
784                         needwake = false;
785                 }
786                 rcu_nocb_unlock_irqrestore(rdp, flags);
787                 if (needwake) {
788                         swake_up_one(&rdp->nocb_cb_wq);
789                         gotcbs = true;
790                 }
791                 if (needwake_gp)
792                         rcu_gp_kthread_wake();
793         }
794
795         my_rdp->nocb_gp_bypass = bypass;
796         my_rdp->nocb_gp_gp = needwait_gp;
797         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
798
799         // At least one child with non-empty ->nocb_bypass, so set
800         // timer in order to avoid stranding its callbacks.
801         if (!rcu_nocb_poll) {
802                 // If bypass list only has lazy CBs. Add a deferred lazy wake up.
803                 if (lazy && !bypass) {
804                         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
805                                         TPS("WakeLazyIsDeferred"));
806                 // Otherwise add a deferred bypass wake up.
807                 } else if (bypass) {
808                         wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
809                                         TPS("WakeBypassIsDeferred"));
810                 }
811         }
812
813         if (rcu_nocb_poll) {
814                 /* Polling, so trace if first poll in the series. */
815                 if (gotcbs)
816                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
817                 if (list_empty(&my_rdp->nocb_head_rdp)) {
818                         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
819                         if (!my_rdp->nocb_toggling_rdp)
820                                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
821                         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
822                         /* Wait for any offloading rdp */
823                         nocb_gp_sleep(my_rdp, cpu);
824                 } else {
825                         schedule_timeout_idle(1);
826                 }
827         } else if (!needwait_gp) {
828                 /* Wait for callbacks to appear. */
829                 nocb_gp_sleep(my_rdp, cpu);
830         } else {
831                 rnp = my_rdp->mynode;
832                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
833                 swait_event_interruptible_exclusive(
834                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
835                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
836                         !READ_ONCE(my_rdp->nocb_gp_sleep));
837                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
838         }
839
840         if (!rcu_nocb_poll) {
841                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
842                 // (De-)queue an rdp to/from the group if its nocb state is changing
843                 rdp_toggling = my_rdp->nocb_toggling_rdp;
844                 if (rdp_toggling)
845                         my_rdp->nocb_toggling_rdp = NULL;
846
847                 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
848                         WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
849                         del_timer(&my_rdp->nocb_timer);
850                 }
851                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
852                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
853         } else {
854                 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
855                 if (rdp_toggling) {
856                         /*
857                          * Paranoid locking to make sure nocb_toggling_rdp is well
858                          * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
859                          * race with another round of nocb toggling for this rdp.
860                          * Nocb locking should prevent from that already but we stick
861                          * to paranoia, especially in rare path.
862                          */
863                         raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
864                         my_rdp->nocb_toggling_rdp = NULL;
865                         raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
866                 }
867         }
868
869         if (rdp_toggling) {
870                 bool wake_state = false;
871                 int ret;
872
873                 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
874                 if (ret == 1)
875                         list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
876                 else if (ret == 0)
877                         list_del(&rdp_toggling->nocb_entry_rdp);
878                 if (wake_state)
879                         swake_up_one(&rdp_toggling->nocb_state_wq);
880         }
881
882         my_rdp->nocb_gp_seq = -1;
883         WARN_ON(signal_pending(current));
884 }
885
886 /*
887  * No-CBs grace-period-wait kthread.  There is one of these per group
888  * of CPUs, but only once at least one CPU in that group has come online
889  * at least once since boot.  This kthread checks for newly posted
890  * callbacks from any of the CPUs it is responsible for, waits for a
891  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
892  * that then have callback-invocation work to do.
893  */
894 static int rcu_nocb_gp_kthread(void *arg)
895 {
896         struct rcu_data *rdp = arg;
897
898         for (;;) {
899                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
900                 nocb_gp_wait(rdp);
901                 cond_resched_tasks_rcu_qs();
902         }
903         return 0;
904 }
905
906 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
907 {
908         u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
909
910         return rcu_segcblist_test_flags(&rdp->cblist, flags);
911 }
912
913 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
914 {
915         return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
916 }
917
918 /*
919  * Invoke any ready callbacks from the corresponding no-CBs CPU,
920  * then, if there are no more, wait for more to appear.
921  */
922 static void nocb_cb_wait(struct rcu_data *rdp)
923 {
924         struct rcu_segcblist *cblist = &rdp->cblist;
925         unsigned long cur_gp_seq;
926         unsigned long flags;
927         bool needwake_state = false;
928         bool needwake_gp = false;
929         bool can_sleep = true;
930         struct rcu_node *rnp = rdp->mynode;
931
932         do {
933                 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
934                                                     nocb_cb_wait_cond(rdp));
935
936                 // VVV Ensure CB invocation follows _sleep test.
937                 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
938                         WARN_ON(signal_pending(current));
939                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
940                 }
941         } while (!nocb_cb_can_run(rdp));
942
943
944         local_irq_save(flags);
945         rcu_momentary_dyntick_idle();
946         local_irq_restore(flags);
947         /*
948          * Disable BH to provide the expected environment.  Also, when
949          * transitioning to/from NOCB mode, a self-requeuing callback might
950          * be invoked from softirq.  A short grace period could cause both
951          * instances of this callback would execute concurrently.
952          */
953         local_bh_disable();
954         rcu_do_batch(rdp);
955         local_bh_enable();
956         lockdep_assert_irqs_enabled();
957         rcu_nocb_lock_irqsave(rdp, flags);
958         if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
959             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
960             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
961                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
962                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
963         }
964
965         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
966                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
967                         rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
968                         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
969                                 needwake_state = true;
970                 }
971                 if (rcu_segcblist_ready_cbs(cblist))
972                         can_sleep = false;
973         } else {
974                 /*
975                  * De-offloading. Clear our flag and notify the de-offload worker.
976                  * We won't touch the callbacks and keep sleeping until we ever
977                  * get re-offloaded.
978                  */
979                 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
980                 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
981                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
982                         needwake_state = true;
983         }
984
985         WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
986
987         if (rdp->nocb_cb_sleep)
988                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
989
990         rcu_nocb_unlock_irqrestore(rdp, flags);
991         if (needwake_gp)
992                 rcu_gp_kthread_wake();
993
994         if (needwake_state)
995                 swake_up_one(&rdp->nocb_state_wq);
996 }
997
998 /*
999  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
1000  * nocb_cb_wait() to do the dirty work.
1001  */
1002 static int rcu_nocb_cb_kthread(void *arg)
1003 {
1004         struct rcu_data *rdp = arg;
1005
1006         // Each pass through this loop does one callback batch, and,
1007         // if there are no more ready callbacks, waits for them.
1008         for (;;) {
1009                 nocb_cb_wait(rdp);
1010                 cond_resched_tasks_rcu_qs();
1011         }
1012         return 0;
1013 }
1014
1015 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
1016 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1017 {
1018         return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
1019 }
1020
1021 /* Do a deferred wakeup of rcu_nocb_kthread(). */
1022 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
1023                                            struct rcu_data *rdp, int level,
1024                                            unsigned long flags)
1025         __releases(rdp_gp->nocb_gp_lock)
1026 {
1027         int ndw;
1028         int ret;
1029
1030         if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
1031                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1032                 return false;
1033         }
1034
1035         ndw = rdp_gp->nocb_defer_wakeup;
1036         ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
1037         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
1038
1039         return ret;
1040 }
1041
1042 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
1043 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
1044 {
1045         unsigned long flags;
1046         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1047
1048         WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
1049         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1050
1051         raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1052         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1053         do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1054 }
1055
1056 /*
1057  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1058  * This means we do an inexact common-case check.  Note that if
1059  * we miss, ->nocb_timer will eventually clean things up.
1060  */
1061 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1062 {
1063         unsigned long flags;
1064         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1065
1066         if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1067                 return false;
1068
1069         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1070         return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1071 }
1072
1073 void rcu_nocb_flush_deferred_wakeup(void)
1074 {
1075         do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1076 }
1077 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1078
1079 static int rdp_offload_toggle(struct rcu_data *rdp,
1080                                bool offload, unsigned long flags)
1081         __releases(rdp->nocb_lock)
1082 {
1083         struct rcu_segcblist *cblist = &rdp->cblist;
1084         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1085         bool wake_gp = false;
1086
1087         rcu_segcblist_offload(cblist, offload);
1088
1089         if (rdp->nocb_cb_sleep)
1090                 rdp->nocb_cb_sleep = false;
1091         rcu_nocb_unlock_irqrestore(rdp, flags);
1092
1093         /*
1094          * Ignore former value of nocb_cb_sleep and force wake up as it could
1095          * have been spuriously set to false already.
1096          */
1097         swake_up_one(&rdp->nocb_cb_wq);
1098
1099         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1100         // Queue this rdp for add/del to/from the list to iterate on rcuog
1101         WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1102         if (rdp_gp->nocb_gp_sleep) {
1103                 rdp_gp->nocb_gp_sleep = false;
1104                 wake_gp = true;
1105         }
1106         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1107
1108         return wake_gp;
1109 }
1110
1111 static long rcu_nocb_rdp_deoffload(void *arg)
1112 {
1113         struct rcu_data *rdp = arg;
1114         struct rcu_segcblist *cblist = &rdp->cblist;
1115         unsigned long flags;
1116         int wake_gp;
1117         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1118
1119         /*
1120          * rcu_nocb_rdp_deoffload() may be called directly if
1121          * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1122          * is not online yet.
1123          */
1124         WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1125
1126         pr_info("De-offloading %d\n", rdp->cpu);
1127
1128         rcu_nocb_lock_irqsave(rdp, flags);
1129         /*
1130          * Flush once and for all now. This suffices because we are
1131          * running on the target CPU holding ->nocb_lock (thus having
1132          * interrupts disabled), and because rdp_offload_toggle()
1133          * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1134          * Thus future calls to rcu_segcblist_completely_offloaded() will
1135          * return false, which means that future calls to rcu_nocb_try_bypass()
1136          * will refuse to put anything into the bypass.
1137          */
1138         WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1139         /*
1140          * Start with invoking rcu_core() early. This way if the current thread
1141          * happens to preempt an ongoing call to rcu_core() in the middle,
1142          * leaving some work dismissed because rcu_core() still thinks the rdp is
1143          * completely offloaded, we are guaranteed a nearby future instance of
1144          * rcu_core() to catch up.
1145          */
1146         rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1147         invoke_rcu_core();
1148         wake_gp = rdp_offload_toggle(rdp, false, flags);
1149
1150         mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1151         if (rdp_gp->nocb_gp_kthread) {
1152                 if (wake_gp)
1153                         wake_up_process(rdp_gp->nocb_gp_kthread);
1154
1155                 /*
1156                  * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1157                  * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1158                  */
1159                 if (!rdp->nocb_cb_kthread) {
1160                         rcu_nocb_lock_irqsave(rdp, flags);
1161                         rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1162                         rcu_nocb_unlock_irqrestore(rdp, flags);
1163                 }
1164
1165                 swait_event_exclusive(rdp->nocb_state_wq,
1166                                         !rcu_segcblist_test_flags(cblist,
1167                                           SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1168         } else {
1169                 /*
1170                  * No kthread to clear the flags for us or remove the rdp from the nocb list
1171                  * to iterate. Do it here instead. Locking doesn't look stricly necessary
1172                  * but we stick to paranoia in this rare path.
1173                  */
1174                 rcu_nocb_lock_irqsave(rdp, flags);
1175                 rcu_segcblist_clear_flags(&rdp->cblist,
1176                                 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1177                 rcu_nocb_unlock_irqrestore(rdp, flags);
1178
1179                 list_del(&rdp->nocb_entry_rdp);
1180         }
1181         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1182
1183         /*
1184          * Lock one last time to acquire latest callback updates from kthreads
1185          * so we can later handle callbacks locally without locking.
1186          */
1187         rcu_nocb_lock_irqsave(rdp, flags);
1188         /*
1189          * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1190          * lock is released but how about being paranoid for once?
1191          */
1192         rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1193         /*
1194          * Without SEGCBLIST_LOCKING, we can't use
1195          * rcu_nocb_unlock_irqrestore() anymore.
1196          */
1197         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1198
1199         /* Sanity check */
1200         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1201
1202
1203         return 0;
1204 }
1205
1206 int rcu_nocb_cpu_deoffload(int cpu)
1207 {
1208         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1209         int ret = 0;
1210
1211         cpus_read_lock();
1212         mutex_lock(&rcu_state.barrier_mutex);
1213         if (rcu_rdp_is_offloaded(rdp)) {
1214                 if (cpu_online(cpu)) {
1215                         ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1216                         if (!ret)
1217                                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1218                 } else {
1219                         pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1220                         ret = -EINVAL;
1221                 }
1222         }
1223         mutex_unlock(&rcu_state.barrier_mutex);
1224         cpus_read_unlock();
1225
1226         return ret;
1227 }
1228 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1229
1230 static long rcu_nocb_rdp_offload(void *arg)
1231 {
1232         struct rcu_data *rdp = arg;
1233         struct rcu_segcblist *cblist = &rdp->cblist;
1234         unsigned long flags;
1235         int wake_gp;
1236         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1237
1238         WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1239         /*
1240          * For now we only support re-offload, ie: the rdp must have been
1241          * offloaded on boot first.
1242          */
1243         if (!rdp->nocb_gp_rdp)
1244                 return -EINVAL;
1245
1246         if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1247                 return -EINVAL;
1248
1249         pr_info("Offloading %d\n", rdp->cpu);
1250
1251         /*
1252          * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1253          * is set.
1254          */
1255         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1256
1257         /*
1258          * We didn't take the nocb lock while working on the
1259          * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1260          * Every modifications that have been done previously on
1261          * rdp->cblist must be visible remotely by the nocb kthreads
1262          * upon wake up after reading the cblist flags.
1263          *
1264          * The layout against nocb_lock enforces that ordering:
1265          *
1266          *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1267          * -------------------------   ----------------------------
1268          *      WRITE callbacks           rcu_nocb_lock()
1269          *      rcu_nocb_lock()           READ flags
1270          *      WRITE flags               READ callbacks
1271          *      rcu_nocb_unlock()         rcu_nocb_unlock()
1272          */
1273         wake_gp = rdp_offload_toggle(rdp, true, flags);
1274         if (wake_gp)
1275                 wake_up_process(rdp_gp->nocb_gp_kthread);
1276         swait_event_exclusive(rdp->nocb_state_wq,
1277                               rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1278                               rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1279
1280         /*
1281          * All kthreads are ready to work, we can finally relieve rcu_core() and
1282          * enable nocb bypass.
1283          */
1284         rcu_nocb_lock_irqsave(rdp, flags);
1285         rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1286         rcu_nocb_unlock_irqrestore(rdp, flags);
1287
1288         return 0;
1289 }
1290
1291 int rcu_nocb_cpu_offload(int cpu)
1292 {
1293         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1294         int ret = 0;
1295
1296         cpus_read_lock();
1297         mutex_lock(&rcu_state.barrier_mutex);
1298         if (!rcu_rdp_is_offloaded(rdp)) {
1299                 if (cpu_online(cpu)) {
1300                         ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1301                         if (!ret)
1302                                 cpumask_set_cpu(cpu, rcu_nocb_mask);
1303                 } else {
1304                         pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1305                         ret = -EINVAL;
1306                 }
1307         }
1308         mutex_unlock(&rcu_state.barrier_mutex);
1309         cpus_read_unlock();
1310
1311         return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1314
1315 #ifdef CONFIG_RCU_LAZY
1316 static unsigned long
1317 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1318 {
1319         int cpu;
1320         unsigned long count = 0;
1321
1322         if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1323                 return 0;
1324
1325         /*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1326         if (!mutex_trylock(&rcu_state.barrier_mutex))
1327                 return 0;
1328
1329         /* Snapshot count of all CPUs */
1330         for_each_cpu(cpu, rcu_nocb_mask) {
1331                 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1332
1333                 count +=  READ_ONCE(rdp->lazy_len);
1334         }
1335
1336         mutex_unlock(&rcu_state.barrier_mutex);
1337
1338         return count ? count : SHRINK_EMPTY;
1339 }
1340
1341 static unsigned long
1342 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1343 {
1344         int cpu;
1345         unsigned long flags;
1346         unsigned long count = 0;
1347
1348         if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1349                 return 0;
1350         /*
1351          * Protect against concurrent (de-)offloading. Otherwise nocb locking
1352          * may be ignored or imbalanced.
1353          */
1354         if (!mutex_trylock(&rcu_state.barrier_mutex)) {
1355                 /*
1356                  * But really don't insist if barrier_mutex is contended since we
1357                  * can't guarantee that it will never engage in a dependency
1358                  * chain involving memory allocation. The lock is seldom contended
1359                  * anyway.
1360                  */
1361                 return 0;
1362         }
1363
1364         /* Snapshot count of all CPUs */
1365         for_each_cpu(cpu, rcu_nocb_mask) {
1366                 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1367                 int _count;
1368
1369                 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1370                         continue;
1371
1372                 if (!READ_ONCE(rdp->lazy_len))
1373                         continue;
1374
1375                 rcu_nocb_lock_irqsave(rdp, flags);
1376                 /*
1377                  * Recheck under the nocb lock. Since we are not holding the bypass
1378                  * lock we may still race with increments from the enqueuer but still
1379                  * we know for sure if there is at least one lazy callback.
1380                  */
1381                 _count = READ_ONCE(rdp->lazy_len);
1382                 if (!_count) {
1383                         rcu_nocb_unlock_irqrestore(rdp, flags);
1384                         continue;
1385                 }
1386                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1387                 rcu_nocb_unlock_irqrestore(rdp, flags);
1388                 wake_nocb_gp(rdp, false);
1389                 sc->nr_to_scan -= _count;
1390                 count += _count;
1391                 if (sc->nr_to_scan <= 0)
1392                         break;
1393         }
1394
1395         mutex_unlock(&rcu_state.barrier_mutex);
1396
1397         return count ? count : SHRINK_STOP;
1398 }
1399
1400 static struct shrinker lazy_rcu_shrinker = {
1401         .count_objects = lazy_rcu_shrink_count,
1402         .scan_objects = lazy_rcu_shrink_scan,
1403         .batch = 0,
1404         .seeks = DEFAULT_SEEKS,
1405 };
1406 #endif // #ifdef CONFIG_RCU_LAZY
1407
1408 void __init rcu_init_nohz(void)
1409 {
1410         int cpu;
1411         struct rcu_data *rdp;
1412         const struct cpumask *cpumask = NULL;
1413
1414 #if defined(CONFIG_NO_HZ_FULL)
1415         if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1416                 cpumask = tick_nohz_full_mask;
1417 #endif
1418
1419         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1420             !rcu_state.nocb_is_setup && !cpumask)
1421                 cpumask = cpu_possible_mask;
1422
1423         if (cpumask) {
1424                 if (!cpumask_available(rcu_nocb_mask)) {
1425                         if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1426                                 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1427                                 return;
1428                         }
1429                 }
1430
1431                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1432                 rcu_state.nocb_is_setup = true;
1433         }
1434
1435         if (!rcu_state.nocb_is_setup)
1436                 return;
1437
1438 #ifdef CONFIG_RCU_LAZY
1439         if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy"))
1440                 pr_err("Failed to register lazy_rcu shrinker!\n");
1441 #endif // #ifdef CONFIG_RCU_LAZY
1442
1443         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1444                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1445                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1446                             rcu_nocb_mask);
1447         }
1448         if (cpumask_empty(rcu_nocb_mask))
1449                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1450         else
1451                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1452                         cpumask_pr_args(rcu_nocb_mask));
1453         if (rcu_nocb_poll)
1454                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1455
1456         for_each_cpu(cpu, rcu_nocb_mask) {
1457                 rdp = per_cpu_ptr(&rcu_data, cpu);
1458                 if (rcu_segcblist_empty(&rdp->cblist))
1459                         rcu_segcblist_init(&rdp->cblist);
1460                 rcu_segcblist_offload(&rdp->cblist, true);
1461                 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1462                 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1463         }
1464         rcu_organize_nocb_kthreads();
1465 }
1466
1467 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1468 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1469 {
1470         init_swait_queue_head(&rdp->nocb_cb_wq);
1471         init_swait_queue_head(&rdp->nocb_gp_wq);
1472         init_swait_queue_head(&rdp->nocb_state_wq);
1473         raw_spin_lock_init(&rdp->nocb_lock);
1474         raw_spin_lock_init(&rdp->nocb_bypass_lock);
1475         raw_spin_lock_init(&rdp->nocb_gp_lock);
1476         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1477         rcu_cblist_init(&rdp->nocb_bypass);
1478         WRITE_ONCE(rdp->lazy_len, 0);
1479         mutex_init(&rdp->nocb_gp_kthread_mutex);
1480 }
1481
1482 /*
1483  * If the specified CPU is a no-CBs CPU that does not already have its
1484  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1485  * for this CPU's group has not yet been created, spawn it as well.
1486  */
1487 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1488 {
1489         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1490         struct rcu_data *rdp_gp;
1491         struct task_struct *t;
1492         struct sched_param sp;
1493
1494         if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1495                 return;
1496
1497         /* If there already is an rcuo kthread, then nothing to do. */
1498         if (rdp->nocb_cb_kthread)
1499                 return;
1500
1501         /* If we didn't spawn the GP kthread first, reorganize! */
1502         sp.sched_priority = kthread_prio;
1503         rdp_gp = rdp->nocb_gp_rdp;
1504         mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1505         if (!rdp_gp->nocb_gp_kthread) {
1506                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1507                                 "rcuog/%d", rdp_gp->cpu);
1508                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1509                         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1510                         goto end;
1511                 }
1512                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1513                 if (kthread_prio)
1514                         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1515         }
1516         mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1517
1518         /* Spawn the kthread for this CPU. */
1519         t = kthread_run(rcu_nocb_cb_kthread, rdp,
1520                         "rcuo%c/%d", rcu_state.abbr, cpu);
1521         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1522                 goto end;
1523
1524         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1525                 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1526
1527         WRITE_ONCE(rdp->nocb_cb_kthread, t);
1528         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1529         return;
1530 end:
1531         mutex_lock(&rcu_state.barrier_mutex);
1532         if (rcu_rdp_is_offloaded(rdp)) {
1533                 rcu_nocb_rdp_deoffload(rdp);
1534                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1535         }
1536         mutex_unlock(&rcu_state.barrier_mutex);
1537 }
1538
1539 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1540 static int rcu_nocb_gp_stride = -1;
1541 module_param(rcu_nocb_gp_stride, int, 0444);
1542
1543 /*
1544  * Initialize GP-CB relationships for all no-CBs CPU.
1545  */
1546 static void __init rcu_organize_nocb_kthreads(void)
1547 {
1548         int cpu;
1549         bool firsttime = true;
1550         bool gotnocbs = false;
1551         bool gotnocbscbs = true;
1552         int ls = rcu_nocb_gp_stride;
1553         int nl = 0;  /* Next GP kthread. */
1554         struct rcu_data *rdp;
1555         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1556
1557         if (!cpumask_available(rcu_nocb_mask))
1558                 return;
1559         if (ls == -1) {
1560                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1561                 rcu_nocb_gp_stride = ls;
1562         }
1563
1564         /*
1565          * Each pass through this loop sets up one rcu_data structure.
1566          * Should the corresponding CPU come online in the future, then
1567          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1568          */
1569         for_each_possible_cpu(cpu) {
1570                 rdp = per_cpu_ptr(&rcu_data, cpu);
1571                 if (rdp->cpu >= nl) {
1572                         /* New GP kthread, set up for CBs & next GP. */
1573                         gotnocbs = true;
1574                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1575                         rdp_gp = rdp;
1576                         INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1577                         if (dump_tree) {
1578                                 if (!firsttime)
1579                                         pr_cont("%s\n", gotnocbscbs
1580                                                         ? "" : " (self only)");
1581                                 gotnocbscbs = false;
1582                                 firsttime = false;
1583                                 pr_alert("%s: No-CB GP kthread CPU %d:",
1584                                          __func__, cpu);
1585                         }
1586                 } else {
1587                         /* Another CB kthread, link to previous GP kthread. */
1588                         gotnocbscbs = true;
1589                         if (dump_tree)
1590                                 pr_cont(" %d", cpu);
1591                 }
1592                 rdp->nocb_gp_rdp = rdp_gp;
1593                 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1594                         list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1595         }
1596         if (gotnocbs && dump_tree)
1597                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1598 }
1599
1600 /*
1601  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1602  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1603  */
1604 void rcu_bind_current_to_nocb(void)
1605 {
1606         if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1607                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1608 }
1609 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1610
1611 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1612 #ifdef CONFIG_SMP
1613 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1614 {
1615         return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1616 }
1617 #else // #ifdef CONFIG_SMP
1618 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1619 {
1620         return "";
1621 }
1622 #endif // #else #ifdef CONFIG_SMP
1623
1624 /*
1625  * Dump out nocb grace-period kthread state for the specified rcu_data
1626  * structure.
1627  */
1628 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1629 {
1630         struct rcu_node *rnp = rdp->mynode;
1631
1632         pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1633                 rdp->cpu,
1634                 "kK"[!!rdp->nocb_gp_kthread],
1635                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1636                 "dD"[!!rdp->nocb_defer_wakeup],
1637                 "tT"[timer_pending(&rdp->nocb_timer)],
1638                 "sS"[!!rdp->nocb_gp_sleep],
1639                 ".W"[swait_active(&rdp->nocb_gp_wq)],
1640                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1641                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1642                 ".B"[!!rdp->nocb_gp_bypass],
1643                 ".G"[!!rdp->nocb_gp_gp],
1644                 (long)rdp->nocb_gp_seq,
1645                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1646                 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1647                 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1648                 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1649 }
1650
1651 /* Dump out nocb kthread state for the specified rcu_data structure. */
1652 static void show_rcu_nocb_state(struct rcu_data *rdp)
1653 {
1654         char bufw[20];
1655         char bufr[20];
1656         struct rcu_data *nocb_next_rdp;
1657         struct rcu_segcblist *rsclp = &rdp->cblist;
1658         bool waslocked;
1659         bool wassleep;
1660
1661         if (rdp->nocb_gp_rdp == rdp)
1662                 show_rcu_nocb_gp_state(rdp);
1663
1664         nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1665                                               &rdp->nocb_entry_rdp,
1666                                               typeof(*rdp),
1667                                               nocb_entry_rdp);
1668
1669         sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1670         sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1671         pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1672                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1673                 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1674                 "kK"[!!rdp->nocb_cb_kthread],
1675                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1676                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1677                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1678                 "sS"[!!rdp->nocb_cb_sleep],
1679                 ".W"[swait_active(&rdp->nocb_cb_wq)],
1680                 jiffies - rdp->nocb_bypass_first,
1681                 jiffies - rdp->nocb_nobypass_last,
1682                 rdp->nocb_nobypass_count,
1683                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1684                 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1685                 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1686                 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1687                 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1688                 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1689                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1690                 rcu_segcblist_n_cbs(&rdp->cblist),
1691                 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1692                 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1693                 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1694
1695         /* It is OK for GP kthreads to have GP state. */
1696         if (rdp->nocb_gp_rdp == rdp)
1697                 return;
1698
1699         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1700         wassleep = swait_active(&rdp->nocb_gp_wq);
1701         if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1702                 return;  /* Nothing untoward. */
1703
1704         pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1705                 "lL"[waslocked],
1706                 "dD"[!!rdp->nocb_defer_wakeup],
1707                 "sS"[!!rdp->nocb_gp_sleep],
1708                 ".W"[wassleep]);
1709 }
1710
1711 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1712
1713 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1714 {
1715         return 0;
1716 }
1717
1718 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1719 {
1720         return false;
1721 }
1722
1723 /* No ->nocb_lock to acquire.  */
1724 static void rcu_nocb_lock(struct rcu_data *rdp)
1725 {
1726 }
1727
1728 /* No ->nocb_lock to release.  */
1729 static void rcu_nocb_unlock(struct rcu_data *rdp)
1730 {
1731 }
1732
1733 /* No ->nocb_lock to release.  */
1734 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1735                                        unsigned long flags)
1736 {
1737         local_irq_restore(flags);
1738 }
1739
1740 /* Lockdep check that ->cblist may be safely accessed. */
1741 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1742 {
1743         lockdep_assert_irqs_disabled();
1744 }
1745
1746 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1747 {
1748 }
1749
1750 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1751 {
1752         return NULL;
1753 }
1754
1755 static void rcu_init_one_nocb(struct rcu_node *rnp)
1756 {
1757 }
1758
1759 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1760 {
1761         return false;
1762 }
1763
1764 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1765                                   unsigned long j, bool lazy)
1766 {
1767         return true;
1768 }
1769
1770 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1771                                 bool *was_alldone, unsigned long flags, bool lazy)
1772 {
1773         return false;
1774 }
1775
1776 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1777                                  unsigned long flags)
1778 {
1779         WARN_ON_ONCE(1);  /* Should be dead code! */
1780 }
1781
1782 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1783 {
1784 }
1785
1786 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1787 {
1788         return false;
1789 }
1790
1791 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1792 {
1793         return false;
1794 }
1795
1796 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1797 {
1798 }
1799
1800 static void show_rcu_nocb_state(struct rcu_data *rdp)
1801 {
1802 }
1803
1804 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */