1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
5 * Copyright IBM Corporation, 2008
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
64 #include <linux/kasan.h>
65 #include <linux/context_tracking.h>
66 #include "../time/tick-internal.h"
71 #ifdef MODULE_PARAM_PREFIX
72 #undef MODULE_PARAM_PREFIX
74 #define MODULE_PARAM_PREFIX "rcutree."
76 /* Data structures. */
78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 #ifdef CONFIG_RCU_NOCB_CPU
81 .cblist.flags = SEGCBLIST_RCU_CORE,
84 static struct rcu_state rcu_state = {
85 .level = { &rcu_state.node[0] },
86 .gp_state = RCU_GP_IDLE,
87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
97 /* Dump rcu_node combining tree at boot to verify correct setup. */
98 static bool dump_tree;
99 module_param(dump_tree, bool, 0444);
100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102 #ifndef CONFIG_PREEMPT_RT
103 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
143 static int rcu_scheduler_fully_active __read_mostly;
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
158 * real-time priority(enabling/disabling) is controlled by
159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
161 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
162 module_param(kthread_prio, int, 0444);
164 /* Delay in jiffies for grace-period initialization delays, debug only. */
166 static int gp_preinit_delay;
167 module_param(gp_preinit_delay, int, 0444);
168 static int gp_init_delay;
169 module_param(gp_init_delay, int, 0444);
170 static int gp_cleanup_delay;
171 module_param(gp_cleanup_delay, int, 0444);
173 // Add delay to rcu_read_unlock() for strict grace periods.
174 static int rcu_unlock_delay;
175 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
176 module_param(rcu_unlock_delay, int, 0444);
180 * This rcu parameter is runtime-read-only. It reflects
181 * a minimum allowed number of objects which can be cached
182 * per-CPU. Object size is equal to one page. This value
183 * can be changed at boot time.
185 static int rcu_min_cached_objs = 5;
186 module_param(rcu_min_cached_objs, int, 0444);
188 // A page shrinker can ask for pages to be freed to make them
189 // available for other parts of the system. This usually happens
190 // under low memory conditions, and in that case we should also
191 // defer page-cache filling for a short time period.
193 // The default value is 5 seconds, which is long enough to reduce
194 // interference with the shrinker while it asks other systems to
195 // drain their caches.
196 static int rcu_delay_page_cache_fill_msec = 5000;
197 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
199 /* Retrieve RCU kthreads priority for rcutorture */
200 int rcu_get_gp_kthreads_prio(void)
204 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
207 * Number of grace periods between delays, normalized by the duration of
208 * the delay. The longer the delay, the more the grace periods between
209 * each delay. The reason for this normalization is that it means that,
210 * for non-zero delays, the overall slowdown of grace periods is constant
211 * regardless of the duration of the delay. This arrangement balances
212 * the need for long delays to increase some race probabilities with the
213 * need for fast grace periods to increase other race probabilities.
215 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
218 * Compute the mask of online CPUs for the specified rcu_node structure.
219 * This will not be stable unless the rcu_node structure's ->lock is
220 * held, but the bit corresponding to the current CPU will be stable
223 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
225 return READ_ONCE(rnp->qsmaskinitnext);
229 * Is the CPU corresponding to the specified rcu_data structure online
230 * from RCU's perspective? This perspective is given by that structure's
231 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
233 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
235 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
239 * Return true if an RCU grace period is in progress. The READ_ONCE()s
240 * permit this function to be invoked without holding the root rcu_node
241 * structure's ->lock, but of course results can be subject to change.
243 static int rcu_gp_in_progress(void)
245 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
249 * Return the number of callbacks queued on the specified CPU.
250 * Handles both the nocbs and normal cases.
252 static long rcu_get_n_cbs_cpu(int cpu)
254 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
256 if (rcu_segcblist_is_enabled(&rdp->cblist))
257 return rcu_segcblist_n_cbs(&rdp->cblist);
261 void rcu_softirq_qs(void)
264 rcu_preempt_deferred_qs(current);
265 rcu_tasks_qs(current, false);
269 * Reset the current CPU's ->dynticks counter to indicate that the
270 * newly onlined CPU is no longer in an extended quiescent state.
271 * This will either leave the counter unchanged, or increment it
272 * to the next non-quiescent value.
274 * The non-atomic test/increment sequence works because the upper bits
275 * of the ->dynticks counter are manipulated only by the corresponding CPU,
276 * or when the corresponding CPU is offline.
278 static void rcu_dynticks_eqs_online(void)
280 if (ct_dynticks() & RCU_DYNTICKS_IDX)
282 ct_state_inc(RCU_DYNTICKS_IDX);
286 * Snapshot the ->dynticks counter with full ordering so as to allow
287 * stable comparison of this counter with past and future snapshots.
289 static int rcu_dynticks_snap(int cpu)
291 smp_mb(); // Fundamental RCU ordering guarantee.
292 return ct_dynticks_cpu_acquire(cpu);
296 * Return true if the snapshot returned from rcu_dynticks_snap()
297 * indicates that RCU is in an extended quiescent state.
299 static bool rcu_dynticks_in_eqs(int snap)
301 return !(snap & RCU_DYNTICKS_IDX);
304 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */
305 bool rcu_is_idle_cpu(int cpu)
307 return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu));
311 * Return true if the CPU corresponding to the specified rcu_data
312 * structure has spent some time in an extended quiescent state since
313 * rcu_dynticks_snap() returned the specified snapshot.
315 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
317 return snap != rcu_dynticks_snap(rdp->cpu);
321 * Return true if the referenced integer is zero while the specified
322 * CPU remains within a single extended quiescent state.
324 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
328 // If not quiescent, force back to earlier extended quiescent state.
329 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
330 smp_rmb(); // Order ->dynticks and *vp reads.
332 return false; // Non-zero, so report failure;
333 smp_rmb(); // Order *vp read and ->dynticks re-read.
335 // If still in the same extended quiescent state, we are good!
336 return snap == ct_dynticks_cpu(cpu);
340 * Let the RCU core know that this CPU has gone through the scheduler,
341 * which is a quiescent state. This is called when the need for a
342 * quiescent state is urgent, so we burn an atomic operation and full
343 * memory barriers to let the RCU core know about it, regardless of what
344 * this CPU might (or might not) do in the near future.
346 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
348 * The caller must have disabled interrupts and must not be idle.
350 notrace void rcu_momentary_dyntick_idle(void)
354 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
355 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
356 /* It is illegal to call this from idle state. */
357 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
358 rcu_preempt_deferred_qs(current);
360 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
363 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
365 * If the current CPU is idle and running at a first-level (not nested)
366 * interrupt, or directly, from idle, return true.
368 * The caller must have at least disabled IRQs.
370 static int rcu_is_cpu_rrupt_from_idle(void)
375 * Usually called from the tick; but also used from smp_function_call()
376 * for expedited grace periods. This latter can result in running from
377 * the idle task, instead of an actual IPI.
379 lockdep_assert_irqs_disabled();
381 /* Check for counter underflows */
382 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
383 "RCU dynticks_nesting counter underflow!");
384 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
385 "RCU dynticks_nmi_nesting counter underflow/zero!");
387 /* Are we at first interrupt nesting level? */
388 nesting = ct_dynticks_nmi_nesting();
393 * If we're not in an interrupt, we must be in the idle task!
395 WARN_ON_ONCE(!nesting && !is_idle_task(current));
397 /* Does CPU appear to be idle from an RCU standpoint? */
398 return ct_dynticks_nesting() == 0;
401 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
402 // Maximum callbacks per rcu_do_batch ...
403 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
404 static long blimit = DEFAULT_RCU_BLIMIT;
405 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
406 static long qhimark = DEFAULT_RCU_QHIMARK;
407 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
408 static long qlowmark = DEFAULT_RCU_QLOMARK;
409 #define DEFAULT_RCU_QOVLD_MULT 2
410 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
411 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
412 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
414 module_param(blimit, long, 0444);
415 module_param(qhimark, long, 0444);
416 module_param(qlowmark, long, 0444);
417 module_param(qovld, long, 0444);
419 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
420 static ulong jiffies_till_next_fqs = ULONG_MAX;
421 static bool rcu_kick_kthreads;
422 static int rcu_divisor = 7;
423 module_param(rcu_divisor, int, 0644);
425 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
426 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
427 module_param(rcu_resched_ns, long, 0644);
430 * How long the grace period must be before we start recruiting
431 * quiescent-state help from rcu_note_context_switch().
433 static ulong jiffies_till_sched_qs = ULONG_MAX;
434 module_param(jiffies_till_sched_qs, ulong, 0444);
435 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
436 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
439 * Make sure that we give the grace-period kthread time to detect any
440 * idle CPUs before taking active measures to force quiescent states.
441 * However, don't go below 100 milliseconds, adjusted upwards for really
444 static void adjust_jiffies_till_sched_qs(void)
448 /* If jiffies_till_sched_qs was specified, respect the request. */
449 if (jiffies_till_sched_qs != ULONG_MAX) {
450 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
453 /* Otherwise, set to third fqs scan, but bound below on large system. */
454 j = READ_ONCE(jiffies_till_first_fqs) +
455 2 * READ_ONCE(jiffies_till_next_fqs);
456 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
457 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
458 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
459 WRITE_ONCE(jiffies_to_sched_qs, j);
462 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
465 int ret = kstrtoul(val, 0, &j);
468 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
469 adjust_jiffies_till_sched_qs();
474 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
477 int ret = kstrtoul(val, 0, &j);
480 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
481 adjust_jiffies_till_sched_qs();
486 static const struct kernel_param_ops first_fqs_jiffies_ops = {
487 .set = param_set_first_fqs_jiffies,
488 .get = param_get_ulong,
491 static const struct kernel_param_ops next_fqs_jiffies_ops = {
492 .set = param_set_next_fqs_jiffies,
493 .get = param_get_ulong,
496 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
497 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
498 module_param(rcu_kick_kthreads, bool, 0644);
500 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
501 static int rcu_pending(int user);
504 * Return the number of RCU GPs completed thus far for debug & stats.
506 unsigned long rcu_get_gp_seq(void)
508 return READ_ONCE(rcu_state.gp_seq);
510 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
513 * Return the number of RCU expedited batches completed thus far for
514 * debug & stats. Odd numbers mean that a batch is in progress, even
515 * numbers mean idle. The value returned will thus be roughly double
516 * the cumulative batches since boot.
518 unsigned long rcu_exp_batches_completed(void)
520 return rcu_state.expedited_sequence;
522 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
525 * Return the root node of the rcu_state structure.
527 static struct rcu_node *rcu_get_root(void)
529 return &rcu_state.node[0];
533 * Send along grace-period-related data for rcutorture diagnostics.
535 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
536 unsigned long *gp_seq)
540 *flags = READ_ONCE(rcu_state.gp_flags);
541 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
547 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
549 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
551 * An empty function that will trigger a reschedule on
552 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
554 static void late_wakeup_func(struct irq_work *work)
558 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
559 IRQ_WORK_INIT(late_wakeup_func);
564 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
565 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
567 * In these cases the late RCU wake ups aren't supported in the resched loops and our
568 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
569 * get re-enabled again.
571 noinstr void rcu_irq_work_resched(void)
573 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
575 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
578 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
581 instrumentation_begin();
582 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
583 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
585 instrumentation_end();
587 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
589 #ifdef CONFIG_PROVE_RCU
591 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
593 void rcu_irq_exit_check_preempt(void)
595 lockdep_assert_irqs_disabled();
597 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
598 "RCU dynticks_nesting counter underflow/zero!");
599 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
601 "Bad RCU dynticks_nmi_nesting counter\n");
602 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
603 "RCU in extended quiescent state!");
605 #endif /* #ifdef CONFIG_PROVE_RCU */
607 #ifdef CONFIG_NO_HZ_FULL
609 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
611 * The scheduler tick is not normally enabled when CPUs enter the kernel
612 * from nohz_full userspace execution. After all, nohz_full userspace
613 * execution is an RCU quiescent state and the time executing in the kernel
614 * is quite short. Except of course when it isn't. And it is not hard to
615 * cause a large system to spend tens of seconds or even minutes looping
616 * in the kernel, which can cause a number of problems, include RCU CPU
619 * Therefore, if a nohz_full CPU fails to report a quiescent state
620 * in a timely manner, the RCU grace-period kthread sets that CPU's
621 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
622 * exception will invoke this function, which will turn on the scheduler
623 * tick, which will enable RCU to detect that CPU's quiescent states,
624 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
625 * The tick will be disabled once a quiescent state is reported for
628 * Of course, in carefully tuned systems, there might never be an
629 * interrupt or exception. In that case, the RCU grace-period kthread
630 * will eventually cause one to happen. However, in less carefully
631 * controlled environments, this function allows RCU to get what it
632 * needs without creating otherwise useless interruptions.
634 void __rcu_irq_enter_check_tick(void)
636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
638 // If we're here from NMI there's nothing to do.
642 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
643 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
645 if (!tick_nohz_full_cpu(rdp->cpu) ||
646 !READ_ONCE(rdp->rcu_urgent_qs) ||
647 READ_ONCE(rdp->rcu_forced_tick)) {
648 // RCU doesn't need nohz_full help from this CPU, or it is
649 // already getting that help.
653 // We get here only when not in an extended quiescent state and
654 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
655 // already watching and (2) The fact that we are in an interrupt
656 // handler and that the rcu_node lock is an irq-disabled lock
657 // prevents self-deadlock. So we can safely recheck under the lock.
658 // Note that the nohz_full state currently cannot change.
659 raw_spin_lock_rcu_node(rdp->mynode);
660 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
661 // A nohz_full CPU is in the kernel and RCU needs a
662 // quiescent state. Turn on the tick!
663 WRITE_ONCE(rdp->rcu_forced_tick, true);
664 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
666 raw_spin_unlock_rcu_node(rdp->mynode);
668 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
669 #endif /* CONFIG_NO_HZ_FULL */
672 * Check to see if any future non-offloaded RCU-related work will need
673 * to be done by the current CPU, even if none need be done immediately,
674 * returning 1 if so. This function is part of the RCU implementation;
675 * it is -not- an exported member of the RCU API. This is used by
676 * the idle-entry code to figure out whether it is safe to disable the
677 * scheduler-clock interrupt.
679 * Just check whether or not this CPU has non-offloaded RCU callbacks
682 int rcu_needs_cpu(void)
684 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
685 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
689 * If any sort of urgency was applied to the current CPU (for example,
690 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
691 * to get to a quiescent state, disable it.
693 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
695 raw_lockdep_assert_held_rcu_node(rdp->mynode);
696 WRITE_ONCE(rdp->rcu_urgent_qs, false);
697 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
698 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
699 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
700 WRITE_ONCE(rdp->rcu_forced_tick, false);
705 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
707 * Return true if RCU is watching the running CPU, which means that this
708 * CPU can safely enter RCU read-side critical sections. In other words,
709 * if the current CPU is not in its idle loop or is in an interrupt or
710 * NMI handler, return true.
712 * Make notrace because it can be called by the internal functions of
713 * ftrace, and making this notrace removes unnecessary recursion calls.
715 notrace bool rcu_is_watching(void)
719 preempt_disable_notrace();
720 ret = !rcu_dynticks_curr_cpu_in_eqs();
721 preempt_enable_notrace();
724 EXPORT_SYMBOL_GPL(rcu_is_watching);
727 * If a holdout task is actually running, request an urgent quiescent
728 * state from its CPU. This is unsynchronized, so migrations can cause
729 * the request to go to the wrong CPU. Which is OK, all that will happen
730 * is that the CPU's next context switch will be a bit slower and next
731 * time around this task will generate another request.
733 void rcu_request_urgent_qs_task(struct task_struct *t)
740 return; /* This task is not running on that CPU. */
741 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
744 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
747 * Is the current CPU online as far as RCU is concerned?
749 * Disable preemption to avoid false positives that could otherwise
750 * happen due to the current CPU number being sampled, this task being
751 * preempted, its old CPU being taken offline, resuming on some other CPU,
752 * then determining that its old CPU is now offline.
754 * Disable checking if in an NMI handler because we cannot safely
755 * report errors from NMI handlers anyway. In addition, it is OK to use
756 * RCU on an offline processor during initial boot, hence the check for
757 * rcu_scheduler_fully_active.
759 bool rcu_lockdep_current_cpu_online(void)
761 struct rcu_data *rdp;
764 if (in_nmi() || !rcu_scheduler_fully_active)
766 preempt_disable_notrace();
767 rdp = this_cpu_ptr(&rcu_data);
769 * Strictly, we care here about the case where the current CPU is
770 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
771 * not being up to date. So arch_spin_is_locked() might have a
772 * false positive if it's held by some *other* CPU, but that's
773 * OK because that just means a false *negative* on the warning.
775 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
777 preempt_enable_notrace();
780 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
782 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
785 * When trying to report a quiescent state on behalf of some other CPU,
786 * it is our responsibility to check for and handle potential overflow
787 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
788 * After all, the CPU might be in deep idle state, and thus executing no
791 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
793 raw_lockdep_assert_held_rcu_node(rnp);
794 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
796 WRITE_ONCE(rdp->gpwrap, true);
797 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
798 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
802 * Snapshot the specified CPU's dynticks counter so that we can later
803 * credit them with an implicit quiescent state. Return 1 if this CPU
804 * is in dynticks idle mode, which is an extended quiescent state.
806 static int dyntick_save_progress_counter(struct rcu_data *rdp)
808 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
809 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
810 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
811 rcu_gpnum_ovf(rdp->mynode, rdp);
818 * Return true if the specified CPU has passed through a quiescent
819 * state by virtue of being in or having passed through an dynticks
820 * idle state since the last call to dyntick_save_progress_counter()
821 * for this same CPU, or by virtue of having been offline.
823 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
826 struct rcu_node *rnp = rdp->mynode;
829 * If the CPU passed through or entered a dynticks idle phase with
830 * no active irq/NMI handlers, then we can safely pretend that the CPU
831 * already acknowledged the request to pass through a quiescent
832 * state. Either way, that CPU cannot possibly be in an RCU
833 * read-side critical section that started before the beginning
834 * of the current RCU grace period.
836 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
837 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
838 rcu_gpnum_ovf(rnp, rdp);
843 * Complain if a CPU that is considered to be offline from RCU's
844 * perspective has not yet reported a quiescent state. After all,
845 * the offline CPU should have reported a quiescent state during
846 * the CPU-offline process, or, failing that, by rcu_gp_init()
847 * if it ran concurrently with either the CPU going offline or the
848 * last task on a leaf rcu_node structure exiting its RCU read-side
849 * critical section while all CPUs corresponding to that structure
850 * are offline. This added warning detects bugs in any of these
853 * The rcu_node structure's ->lock is held here, which excludes
854 * the relevant portions the CPU-hotplug code, the grace-period
855 * initialization code, and the rcu_read_unlock() code paths.
857 * For more detail, please refer to the "Hotplug CPU" section
858 * of RCU's Requirements documentation.
860 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
861 struct rcu_node *rnp1;
863 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
864 __func__, rnp->grplo, rnp->grphi, rnp->level,
865 (long)rnp->gp_seq, (long)rnp->completedqs);
866 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
867 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
868 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
869 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
870 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
871 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
872 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
873 return 1; /* Break things loose after complaining. */
877 * A CPU running for an extended time within the kernel can
878 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
879 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
880 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
881 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
882 * variable are safe because the assignments are repeated if this
883 * CPU failed to pass through a quiescent state. This code
884 * also checks .jiffies_resched in case jiffies_to_sched_qs
887 jtsq = READ_ONCE(jiffies_to_sched_qs);
888 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
889 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
890 time_after(jiffies, rcu_state.jiffies_resched) ||
892 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
893 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
894 smp_store_release(&rdp->rcu_urgent_qs, true);
895 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
896 WRITE_ONCE(rdp->rcu_urgent_qs, true);
900 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
901 * The above code handles this, but only for straight cond_resched().
902 * And some in-kernel loops check need_resched() before calling
903 * cond_resched(), which defeats the above code for CPUs that are
904 * running in-kernel with scheduling-clock interrupts disabled.
905 * So hit them over the head with the resched_cpu() hammer!
907 if (tick_nohz_full_cpu(rdp->cpu) &&
908 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
910 WRITE_ONCE(rdp->rcu_urgent_qs, true);
911 resched_cpu(rdp->cpu);
912 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
916 * If more than halfway to RCU CPU stall-warning time, invoke
917 * resched_cpu() more frequently to try to loosen things up a bit.
918 * Also check to see if the CPU is getting hammered with interrupts,
919 * but only once per grace period, just to keep the IPIs down to
922 if (time_after(jiffies, rcu_state.jiffies_resched)) {
923 if (time_after(jiffies,
924 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
925 resched_cpu(rdp->cpu);
926 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
928 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
929 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
930 (rnp->ffmask & rdp->grpmask)) {
931 rdp->rcu_iw_pending = true;
932 rdp->rcu_iw_gp_seq = rnp->gp_seq;
933 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
940 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
941 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
942 unsigned long gp_seq_req, const char *s)
944 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
945 gp_seq_req, rnp->level,
946 rnp->grplo, rnp->grphi, s);
950 * rcu_start_this_gp - Request the start of a particular grace period
951 * @rnp_start: The leaf node of the CPU from which to start.
952 * @rdp: The rcu_data corresponding to the CPU from which to start.
953 * @gp_seq_req: The gp_seq of the grace period to start.
955 * Start the specified grace period, as needed to handle newly arrived
956 * callbacks. The required future grace periods are recorded in each
957 * rcu_node structure's ->gp_seq_needed field. Returns true if there
958 * is reason to awaken the grace-period kthread.
960 * The caller must hold the specified rcu_node structure's ->lock, which
961 * is why the caller is responsible for waking the grace-period kthread.
963 * Returns true if the GP thread needs to be awakened else false.
965 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
966 unsigned long gp_seq_req)
969 struct rcu_node *rnp;
972 * Use funnel locking to either acquire the root rcu_node
973 * structure's lock or bail out if the need for this grace period
974 * has already been recorded -- or if that grace period has in
975 * fact already started. If there is already a grace period in
976 * progress in a non-leaf node, no recording is needed because the
977 * end of the grace period will scan the leaf rcu_node structures.
978 * Note that rnp_start->lock must not be released.
980 raw_lockdep_assert_held_rcu_node(rnp_start);
981 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
982 for (rnp = rnp_start; 1; rnp = rnp->parent) {
983 if (rnp != rnp_start)
984 raw_spin_lock_rcu_node(rnp);
985 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
986 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
988 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
989 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
993 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
994 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
996 * We just marked the leaf or internal node, and a
997 * grace period is in progress, which means that
998 * rcu_gp_cleanup() will see the marking. Bail to
1001 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1002 TPS("Startedleaf"));
1005 if (rnp != rnp_start && rnp->parent != NULL)
1006 raw_spin_unlock_rcu_node(rnp);
1008 break; /* At root, and perhaps also leaf. */
1011 /* If GP already in progress, just leave, otherwise start one. */
1012 if (rcu_gp_in_progress()) {
1013 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1016 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1017 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1018 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1019 if (!READ_ONCE(rcu_state.gp_kthread)) {
1020 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1023 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1024 ret = true; /* Caller must wake GP kthread. */
1026 /* Push furthest requested GP to leaf node and rcu_data structure. */
1027 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1028 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1029 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1031 if (rnp != rnp_start)
1032 raw_spin_unlock_rcu_node(rnp);
1037 * Clean up any old requests for the just-ended grace period. Also return
1038 * whether any additional grace periods have been requested.
1040 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1043 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1045 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1047 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1048 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1049 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1054 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1055 * interrupt or softirq handler, in which case we just might immediately
1056 * sleep upon return, resulting in a grace-period hang), and don't bother
1057 * awakening when there is nothing for the grace-period kthread to do
1058 * (as in several CPUs raced to awaken, we lost), and finally don't try
1059 * to awaken a kthread that has not yet been created. If all those checks
1060 * are passed, track some debug information and awaken.
1062 * So why do the self-wakeup when in an interrupt or softirq handler
1063 * in the grace-period kthread's context? Because the kthread might have
1064 * been interrupted just as it was going to sleep, and just after the final
1065 * pre-sleep check of the awaken condition. In this case, a wakeup really
1066 * is required, and is therefore supplied.
1068 static void rcu_gp_kthread_wake(void)
1070 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1072 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1073 !READ_ONCE(rcu_state.gp_flags) || !t)
1075 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1076 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1077 swake_up_one(&rcu_state.gp_wq);
1081 * If there is room, assign a ->gp_seq number to any callbacks on this
1082 * CPU that have not already been assigned. Also accelerate any callbacks
1083 * that were previously assigned a ->gp_seq number that has since proven
1084 * to be too conservative, which can happen if callbacks get assigned a
1085 * ->gp_seq number while RCU is idle, but with reference to a non-root
1086 * rcu_node structure. This function is idempotent, so it does not hurt
1087 * to call it repeatedly. Returns an flag saying that we should awaken
1088 * the RCU grace-period kthread.
1090 * The caller must hold rnp->lock with interrupts disabled.
1092 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1094 unsigned long gp_seq_req;
1097 rcu_lockdep_assert_cblist_protected(rdp);
1098 raw_lockdep_assert_held_rcu_node(rnp);
1100 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1101 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1104 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1107 * Callbacks are often registered with incomplete grace-period
1108 * information. Something about the fact that getting exact
1109 * information requires acquiring a global lock... RCU therefore
1110 * makes a conservative estimate of the grace period number at which
1111 * a given callback will become ready to invoke. The following
1112 * code checks this estimate and improves it when possible, thus
1113 * accelerating callback invocation to an earlier grace-period
1116 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1117 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1118 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1120 /* Trace depending on how much we were able to accelerate. */
1121 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1122 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1124 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1126 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1132 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1133 * rcu_node structure's ->lock be held. It consults the cached value
1134 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1135 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1136 * while holding the leaf rcu_node structure's ->lock.
1138 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1139 struct rcu_data *rdp)
1144 rcu_lockdep_assert_cblist_protected(rdp);
1145 c = rcu_seq_snap(&rcu_state.gp_seq);
1146 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1147 /* Old request still live, so mark recent callbacks. */
1148 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1151 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1152 needwake = rcu_accelerate_cbs(rnp, rdp);
1153 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1155 rcu_gp_kthread_wake();
1159 * Move any callbacks whose grace period has completed to the
1160 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1161 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1162 * sublist. This function is idempotent, so it does not hurt to
1163 * invoke it repeatedly. As long as it is not invoked -too- often...
1164 * Returns true if the RCU grace-period kthread needs to be awakened.
1166 * The caller must hold rnp->lock with interrupts disabled.
1168 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1170 rcu_lockdep_assert_cblist_protected(rdp);
1171 raw_lockdep_assert_held_rcu_node(rnp);
1173 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1174 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1178 * Find all callbacks whose ->gp_seq numbers indicate that they
1179 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1181 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1183 /* Classify any remaining callbacks. */
1184 return rcu_accelerate_cbs(rnp, rdp);
1188 * Move and classify callbacks, but only if doing so won't require
1189 * that the RCU grace-period kthread be awakened.
1191 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1192 struct rcu_data *rdp)
1194 rcu_lockdep_assert_cblist_protected(rdp);
1195 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1197 // The grace period cannot end while we hold the rcu_node lock.
1198 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1199 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1200 raw_spin_unlock_rcu_node(rnp);
1204 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1205 * quiescent state. This is intended to be invoked when the CPU notices
1206 * a new grace period.
1208 static void rcu_strict_gp_check_qs(void)
1210 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1217 * Update CPU-local rcu_data state to record the beginnings and ends of
1218 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1219 * structure corresponding to the current CPU, and must have irqs disabled.
1220 * Returns true if the grace-period kthread needs to be awakened.
1222 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1226 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1228 raw_lockdep_assert_held_rcu_node(rnp);
1230 if (rdp->gp_seq == rnp->gp_seq)
1231 return false; /* Nothing to do. */
1233 /* Handle the ends of any preceding grace periods first. */
1234 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1235 unlikely(READ_ONCE(rdp->gpwrap))) {
1237 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1238 rdp->core_needs_qs = false;
1239 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1242 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1243 if (rdp->core_needs_qs)
1244 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1247 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1248 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1249 unlikely(READ_ONCE(rdp->gpwrap))) {
1251 * If the current grace period is waiting for this CPU,
1252 * set up to detect a quiescent state, otherwise don't
1253 * go looking for one.
1255 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1256 need_qs = !!(rnp->qsmask & rdp->grpmask);
1257 rdp->cpu_no_qs.b.norm = need_qs;
1258 rdp->core_needs_qs = need_qs;
1259 zero_cpu_stall_ticks(rdp);
1261 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1262 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1263 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1264 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1265 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1266 WRITE_ONCE(rdp->gpwrap, false);
1267 rcu_gpnum_ovf(rnp, rdp);
1271 static void note_gp_changes(struct rcu_data *rdp)
1273 unsigned long flags;
1275 struct rcu_node *rnp;
1277 local_irq_save(flags);
1279 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1280 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1281 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1282 local_irq_restore(flags);
1285 needwake = __note_gp_changes(rnp, rdp);
1286 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1287 rcu_strict_gp_check_qs();
1289 rcu_gp_kthread_wake();
1292 static atomic_t *rcu_gp_slow_suppress;
1294 /* Register a counter to suppress debugging grace-period delays. */
1295 void rcu_gp_slow_register(atomic_t *rgssp)
1297 WARN_ON_ONCE(rcu_gp_slow_suppress);
1299 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1301 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1303 /* Unregister a counter, with NULL for not caring which. */
1304 void rcu_gp_slow_unregister(atomic_t *rgssp)
1306 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1308 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1310 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1312 static bool rcu_gp_slow_is_suppressed(void)
1314 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1316 return rgssp && atomic_read(rgssp);
1319 static void rcu_gp_slow(int delay)
1321 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1322 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1323 schedule_timeout_idle(delay);
1326 static unsigned long sleep_duration;
1328 /* Allow rcutorture to stall the grace-period kthread. */
1329 void rcu_gp_set_torture_wait(int duration)
1331 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1332 WRITE_ONCE(sleep_duration, duration);
1334 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1336 /* Actually implement the aforementioned wait. */
1337 static void rcu_gp_torture_wait(void)
1339 unsigned long duration;
1341 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1343 duration = xchg(&sleep_duration, 0UL);
1345 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1346 schedule_timeout_idle(duration);
1347 pr_alert("%s: Wait complete\n", __func__);
1352 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1355 static void rcu_strict_gp_boundary(void *unused)
1360 // Has rcu_init() been invoked? This is used (for example) to determine
1361 // whether spinlocks may be acquired safely.
1362 static bool rcu_init_invoked(void)
1364 return !!rcu_state.n_online_cpus;
1367 // Make the polled API aware of the beginning of a grace period.
1368 static void rcu_poll_gp_seq_start(unsigned long *snap)
1370 struct rcu_node *rnp = rcu_get_root();
1372 if (rcu_init_invoked())
1373 raw_lockdep_assert_held_rcu_node(rnp);
1375 // If RCU was idle, note beginning of GP.
1376 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1377 rcu_seq_start(&rcu_state.gp_seq_polled);
1379 // Either way, record current state.
1380 *snap = rcu_state.gp_seq_polled;
1383 // Make the polled API aware of the end of a grace period.
1384 static void rcu_poll_gp_seq_end(unsigned long *snap)
1386 struct rcu_node *rnp = rcu_get_root();
1388 if (rcu_init_invoked())
1389 raw_lockdep_assert_held_rcu_node(rnp);
1391 // If the previously noted GP is still in effect, record the
1392 // end of that GP. Either way, zero counter to avoid counter-wrap
1394 if (*snap && *snap == rcu_state.gp_seq_polled) {
1395 rcu_seq_end(&rcu_state.gp_seq_polled);
1396 rcu_state.gp_seq_polled_snap = 0;
1397 rcu_state.gp_seq_polled_exp_snap = 0;
1403 // Make the polled API aware of the beginning of a grace period, but
1404 // where caller does not hold the root rcu_node structure's lock.
1405 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1407 unsigned long flags;
1408 struct rcu_node *rnp = rcu_get_root();
1410 if (rcu_init_invoked()) {
1411 lockdep_assert_irqs_enabled();
1412 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1414 rcu_poll_gp_seq_start(snap);
1415 if (rcu_init_invoked())
1416 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1419 // Make the polled API aware of the end of a grace period, but where
1420 // caller does not hold the root rcu_node structure's lock.
1421 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1423 unsigned long flags;
1424 struct rcu_node *rnp = rcu_get_root();
1426 if (rcu_init_invoked()) {
1427 lockdep_assert_irqs_enabled();
1428 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1430 rcu_poll_gp_seq_end(snap);
1431 if (rcu_init_invoked())
1432 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1436 * Initialize a new grace period. Return false if no grace period required.
1438 static noinline_for_stack bool rcu_gp_init(void)
1440 unsigned long flags;
1441 unsigned long oldmask;
1443 struct rcu_data *rdp;
1444 struct rcu_node *rnp = rcu_get_root();
1446 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1447 raw_spin_lock_irq_rcu_node(rnp);
1448 if (!READ_ONCE(rcu_state.gp_flags)) {
1449 /* Spurious wakeup, tell caller to go back to sleep. */
1450 raw_spin_unlock_irq_rcu_node(rnp);
1453 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1455 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1457 * Grace period already in progress, don't start another.
1458 * Not supposed to be able to happen.
1460 raw_spin_unlock_irq_rcu_node(rnp);
1464 /* Advance to a new grace period and initialize state. */
1465 record_gp_stall_check_time();
1466 /* Record GP times before starting GP, hence rcu_seq_start(). */
1467 rcu_seq_start(&rcu_state.gp_seq);
1468 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1469 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1470 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1471 raw_spin_unlock_irq_rcu_node(rnp);
1474 * Apply per-leaf buffered online and offline operations to
1475 * the rcu_node tree. Note that this new grace period need not
1476 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1477 * offlining path, when combined with checks in this function,
1478 * will handle CPUs that are currently going offline or that will
1479 * go offline later. Please also refer to "Hotplug CPU" section
1480 * of RCU's Requirements documentation.
1482 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1483 /* Exclude CPU hotplug operations. */
1484 rcu_for_each_leaf_node(rnp) {
1485 local_irq_save(flags);
1486 arch_spin_lock(&rcu_state.ofl_lock);
1487 raw_spin_lock_rcu_node(rnp);
1488 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1489 !rnp->wait_blkd_tasks) {
1490 /* Nothing to do on this leaf rcu_node structure. */
1491 raw_spin_unlock_rcu_node(rnp);
1492 arch_spin_unlock(&rcu_state.ofl_lock);
1493 local_irq_restore(flags);
1497 /* Record old state, apply changes to ->qsmaskinit field. */
1498 oldmask = rnp->qsmaskinit;
1499 rnp->qsmaskinit = rnp->qsmaskinitnext;
1501 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1502 if (!oldmask != !rnp->qsmaskinit) {
1503 if (!oldmask) { /* First online CPU for rcu_node. */
1504 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1505 rcu_init_new_rnp(rnp);
1506 } else if (rcu_preempt_has_tasks(rnp)) {
1507 rnp->wait_blkd_tasks = true; /* blocked tasks */
1508 } else { /* Last offline CPU and can propagate. */
1509 rcu_cleanup_dead_rnp(rnp);
1514 * If all waited-on tasks from prior grace period are
1515 * done, and if all this rcu_node structure's CPUs are
1516 * still offline, propagate up the rcu_node tree and
1517 * clear ->wait_blkd_tasks. Otherwise, if one of this
1518 * rcu_node structure's CPUs has since come back online,
1519 * simply clear ->wait_blkd_tasks.
1521 if (rnp->wait_blkd_tasks &&
1522 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1523 rnp->wait_blkd_tasks = false;
1524 if (!rnp->qsmaskinit)
1525 rcu_cleanup_dead_rnp(rnp);
1528 raw_spin_unlock_rcu_node(rnp);
1529 arch_spin_unlock(&rcu_state.ofl_lock);
1530 local_irq_restore(flags);
1532 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1535 * Set the quiescent-state-needed bits in all the rcu_node
1536 * structures for all currently online CPUs in breadth-first
1537 * order, starting from the root rcu_node structure, relying on the
1538 * layout of the tree within the rcu_state.node[] array. Note that
1539 * other CPUs will access only the leaves of the hierarchy, thus
1540 * seeing that no grace period is in progress, at least until the
1541 * corresponding leaf node has been initialized.
1543 * The grace period cannot complete until the initialization
1544 * process finishes, because this kthread handles both.
1546 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1547 rcu_for_each_node_breadth_first(rnp) {
1548 rcu_gp_slow(gp_init_delay);
1549 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1550 rdp = this_cpu_ptr(&rcu_data);
1551 rcu_preempt_check_blocked_tasks(rnp);
1552 rnp->qsmask = rnp->qsmaskinit;
1553 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1554 if (rnp == rdp->mynode)
1555 (void)__note_gp_changes(rnp, rdp);
1556 rcu_preempt_boost_start_gp(rnp);
1557 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1558 rnp->level, rnp->grplo,
1559 rnp->grphi, rnp->qsmask);
1560 /* Quiescent states for tasks on any now-offline CPUs. */
1561 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1562 rnp->rcu_gp_init_mask = mask;
1563 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1564 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1566 raw_spin_unlock_irq_rcu_node(rnp);
1567 cond_resched_tasks_rcu_qs();
1568 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1571 // If strict, make all CPUs aware of new grace period.
1572 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1573 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1579 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1582 static bool rcu_gp_fqs_check_wake(int *gfp)
1584 struct rcu_node *rnp = rcu_get_root();
1586 // If under overload conditions, force an immediate FQS scan.
1587 if (*gfp & RCU_GP_FLAG_OVLD)
1590 // Someone like call_rcu() requested a force-quiescent-state scan.
1591 *gfp = READ_ONCE(rcu_state.gp_flags);
1592 if (*gfp & RCU_GP_FLAG_FQS)
1595 // The current grace period has completed.
1596 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1603 * Do one round of quiescent-state forcing.
1605 static void rcu_gp_fqs(bool first_time)
1607 struct rcu_node *rnp = rcu_get_root();
1609 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1610 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1612 /* Collect dyntick-idle snapshots. */
1613 force_qs_rnp(dyntick_save_progress_counter);
1615 /* Handle dyntick-idle and offline CPUs. */
1616 force_qs_rnp(rcu_implicit_dynticks_qs);
1618 /* Clear flag to prevent immediate re-entry. */
1619 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1620 raw_spin_lock_irq_rcu_node(rnp);
1621 WRITE_ONCE(rcu_state.gp_flags,
1622 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1623 raw_spin_unlock_irq_rcu_node(rnp);
1628 * Loop doing repeated quiescent-state forcing until the grace period ends.
1630 static noinline_for_stack void rcu_gp_fqs_loop(void)
1632 bool first_gp_fqs = true;
1636 struct rcu_node *rnp = rcu_get_root();
1638 j = READ_ONCE(jiffies_till_first_fqs);
1639 if (rcu_state.cbovld)
1640 gf = RCU_GP_FLAG_OVLD;
1643 if (rcu_state.cbovld) {
1648 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1649 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1651 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1652 * update; required for stall checks.
1655 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1656 jiffies + (j ? 3 * j : 2));
1658 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1660 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1661 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1662 rcu_gp_fqs_check_wake(&gf), j);
1663 rcu_gp_torture_wait();
1664 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1665 /* Locking provides needed memory barriers. */
1667 * Exit the loop if the root rcu_node structure indicates that the grace period
1668 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1669 * is required only for single-node rcu_node trees because readers blocking
1670 * the current grace period are queued only on leaf rcu_node structures.
1671 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1672 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1673 * the corresponding leaf nodes have passed through their quiescent state.
1675 if (!READ_ONCE(rnp->qsmask) &&
1676 !rcu_preempt_blocked_readers_cgp(rnp))
1678 /* If time for quiescent-state forcing, do it. */
1679 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1680 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1681 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1683 rcu_gp_fqs(first_gp_fqs);
1686 first_gp_fqs = false;
1687 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1689 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1691 cond_resched_tasks_rcu_qs();
1692 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1693 ret = 0; /* Force full wait till next FQS. */
1694 j = READ_ONCE(jiffies_till_next_fqs);
1696 /* Deal with stray signal. */
1697 cond_resched_tasks_rcu_qs();
1698 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1699 WARN_ON(signal_pending(current));
1700 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1702 ret = 1; /* Keep old FQS timing. */
1704 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1707 j = rcu_state.jiffies_force_qs - j;
1714 * Clean up after the old grace period.
1716 static noinline void rcu_gp_cleanup(void)
1719 bool needgp = false;
1720 unsigned long gp_duration;
1721 unsigned long new_gp_seq;
1723 struct rcu_data *rdp;
1724 struct rcu_node *rnp = rcu_get_root();
1725 struct swait_queue_head *sq;
1727 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1728 raw_spin_lock_irq_rcu_node(rnp);
1729 rcu_state.gp_end = jiffies;
1730 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1731 if (gp_duration > rcu_state.gp_max)
1732 rcu_state.gp_max = gp_duration;
1735 * We know the grace period is complete, but to everyone else
1736 * it appears to still be ongoing. But it is also the case
1737 * that to everyone else it looks like there is nothing that
1738 * they can do to advance the grace period. It is therefore
1739 * safe for us to drop the lock in order to mark the grace
1740 * period as completed in all of the rcu_node structures.
1742 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1743 raw_spin_unlock_irq_rcu_node(rnp);
1746 * Propagate new ->gp_seq value to rcu_node structures so that
1747 * other CPUs don't have to wait until the start of the next grace
1748 * period to process their callbacks. This also avoids some nasty
1749 * RCU grace-period initialization races by forcing the end of
1750 * the current grace period to be completely recorded in all of
1751 * the rcu_node structures before the beginning of the next grace
1752 * period is recorded in any of the rcu_node structures.
1754 new_gp_seq = rcu_state.gp_seq;
1755 rcu_seq_end(&new_gp_seq);
1756 rcu_for_each_node_breadth_first(rnp) {
1757 raw_spin_lock_irq_rcu_node(rnp);
1758 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1759 dump_blkd_tasks(rnp, 10);
1760 WARN_ON_ONCE(rnp->qsmask);
1761 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1763 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1764 rdp = this_cpu_ptr(&rcu_data);
1765 if (rnp == rdp->mynode)
1766 needgp = __note_gp_changes(rnp, rdp) || needgp;
1767 /* smp_mb() provided by prior unlock-lock pair. */
1768 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1769 // Reset overload indication for CPUs no longer overloaded
1770 if (rcu_is_leaf_node(rnp))
1771 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1772 rdp = per_cpu_ptr(&rcu_data, cpu);
1773 check_cb_ovld_locked(rdp, rnp);
1775 sq = rcu_nocb_gp_get(rnp);
1776 raw_spin_unlock_irq_rcu_node(rnp);
1777 rcu_nocb_gp_cleanup(sq);
1778 cond_resched_tasks_rcu_qs();
1779 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1780 rcu_gp_slow(gp_cleanup_delay);
1782 rnp = rcu_get_root();
1783 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1785 /* Declare grace period done, trace first to use old GP number. */
1786 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1787 rcu_seq_end(&rcu_state.gp_seq);
1788 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1789 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1790 /* Check for GP requests since above loop. */
1791 rdp = this_cpu_ptr(&rcu_data);
1792 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1793 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1794 TPS("CleanupMore"));
1797 /* Advance CBs to reduce false positives below. */
1798 offloaded = rcu_rdp_is_offloaded(rdp);
1799 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1801 // We get here if a grace period was needed (“needgp”)
1802 // and the above call to rcu_accelerate_cbs() did not set
1803 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1804 // the need for another grace period). The purpose
1805 // of the “offloaded” check is to avoid invoking
1806 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1807 // hold the ->nocb_lock needed to safely access an offloaded
1808 // ->cblist. We do not want to acquire that lock because
1809 // it can be heavily contended during callback floods.
1811 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1812 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1813 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1816 // We get here either if there is no need for an
1817 // additional grace period or if rcu_accelerate_cbs() has
1818 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags.
1819 // So all we need to do is to clear all of the other
1822 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1824 raw_spin_unlock_irq_rcu_node(rnp);
1826 // If strict, make all CPUs aware of the end of the old grace period.
1827 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1828 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1832 * Body of kthread that handles grace periods.
1834 static int __noreturn rcu_gp_kthread(void *unused)
1836 rcu_bind_gp_kthread();
1839 /* Handle grace-period start. */
1841 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1843 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1844 swait_event_idle_exclusive(rcu_state.gp_wq,
1845 READ_ONCE(rcu_state.gp_flags) &
1847 rcu_gp_torture_wait();
1848 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1849 /* Locking provides needed memory barrier. */
1852 cond_resched_tasks_rcu_qs();
1853 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1854 WARN_ON(signal_pending(current));
1855 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1859 /* Handle quiescent-state forcing. */
1862 /* Handle grace-period end. */
1863 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1865 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1870 * Report a full set of quiescent states to the rcu_state data structure.
1871 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1872 * another grace period is required. Whether we wake the grace-period
1873 * kthread or it awakens itself for the next round of quiescent-state
1874 * forcing, that kthread will clean up after the just-completed grace
1875 * period. Note that the caller must hold rnp->lock, which is released
1878 static void rcu_report_qs_rsp(unsigned long flags)
1879 __releases(rcu_get_root()->lock)
1881 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1882 WARN_ON_ONCE(!rcu_gp_in_progress());
1883 WRITE_ONCE(rcu_state.gp_flags,
1884 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1885 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1886 rcu_gp_kthread_wake();
1890 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1891 * Allows quiescent states for a group of CPUs to be reported at one go
1892 * to the specified rcu_node structure, though all the CPUs in the group
1893 * must be represented by the same rcu_node structure (which need not be a
1894 * leaf rcu_node structure, though it often will be). The gps parameter
1895 * is the grace-period snapshot, which means that the quiescent states
1896 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1897 * must be held upon entry, and it is released before return.
1899 * As a special case, if mask is zero, the bit-already-cleared check is
1900 * disabled. This allows propagating quiescent state due to resumed tasks
1901 * during grace-period initialization.
1903 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1904 unsigned long gps, unsigned long flags)
1905 __releases(rnp->lock)
1907 unsigned long oldmask = 0;
1908 struct rcu_node *rnp_c;
1910 raw_lockdep_assert_held_rcu_node(rnp);
1912 /* Walk up the rcu_node hierarchy. */
1914 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1917 * Our bit has already been cleared, or the
1918 * relevant grace period is already over, so done.
1920 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1923 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1924 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1925 rcu_preempt_blocked_readers_cgp(rnp));
1926 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1927 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1928 mask, rnp->qsmask, rnp->level,
1929 rnp->grplo, rnp->grphi,
1931 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1933 /* Other bits still set at this level, so done. */
1934 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1937 rnp->completedqs = rnp->gp_seq;
1938 mask = rnp->grpmask;
1939 if (rnp->parent == NULL) {
1941 /* No more levels. Exit loop holding root lock. */
1945 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1948 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1949 oldmask = READ_ONCE(rnp_c->qsmask);
1953 * Get here if we are the last CPU to pass through a quiescent
1954 * state for this grace period. Invoke rcu_report_qs_rsp()
1955 * to clean up and start the next grace period if one is needed.
1957 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1961 * Record a quiescent state for all tasks that were previously queued
1962 * on the specified rcu_node structure and that were blocking the current
1963 * RCU grace period. The caller must hold the corresponding rnp->lock with
1964 * irqs disabled, and this lock is released upon return, but irqs remain
1967 static void __maybe_unused
1968 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1969 __releases(rnp->lock)
1973 struct rcu_node *rnp_p;
1975 raw_lockdep_assert_held_rcu_node(rnp);
1976 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1977 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1979 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1980 return; /* Still need more quiescent states! */
1983 rnp->completedqs = rnp->gp_seq;
1984 rnp_p = rnp->parent;
1985 if (rnp_p == NULL) {
1987 * Only one rcu_node structure in the tree, so don't
1988 * try to report up to its nonexistent parent!
1990 rcu_report_qs_rsp(flags);
1994 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1996 mask = rnp->grpmask;
1997 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1998 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1999 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2003 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2004 * structure. This must be called from the specified CPU.
2007 rcu_report_qs_rdp(struct rcu_data *rdp)
2009 unsigned long flags;
2011 bool needwake = false;
2012 bool needacc = false;
2013 struct rcu_node *rnp;
2015 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2017 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2018 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2022 * The grace period in which this quiescent state was
2023 * recorded has ended, so don't report it upwards.
2024 * We will instead need a new quiescent state that lies
2025 * within the current grace period.
2027 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2028 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2031 mask = rdp->grpmask;
2032 rdp->core_needs_qs = false;
2033 if ((rnp->qsmask & mask) == 0) {
2034 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2037 * This GP can't end until cpu checks in, so all of our
2038 * callbacks can be processed during the next GP.
2040 * NOCB kthreads have their own way to deal with that...
2042 if (!rcu_rdp_is_offloaded(rdp)) {
2043 needwake = rcu_accelerate_cbs(rnp, rdp);
2044 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2046 * ...but NOCB kthreads may miss or delay callbacks acceleration
2047 * if in the middle of a (de-)offloading process.
2052 rcu_disable_urgency_upon_qs(rdp);
2053 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2054 /* ^^^ Released rnp->lock */
2056 rcu_gp_kthread_wake();
2059 rcu_nocb_lock_irqsave(rdp, flags);
2060 rcu_accelerate_cbs_unlocked(rnp, rdp);
2061 rcu_nocb_unlock_irqrestore(rdp, flags);
2067 * Check to see if there is a new grace period of which this CPU
2068 * is not yet aware, and if so, set up local rcu_data state for it.
2069 * Otherwise, see if this CPU has just passed through its first
2070 * quiescent state for this grace period, and record that fact if so.
2073 rcu_check_quiescent_state(struct rcu_data *rdp)
2075 /* Check for grace-period ends and beginnings. */
2076 note_gp_changes(rdp);
2079 * Does this CPU still need to do its part for current grace period?
2080 * If no, return and let the other CPUs do their part as well.
2082 if (!rdp->core_needs_qs)
2086 * Was there a quiescent state since the beginning of the grace
2087 * period? If no, then exit and wait for the next call.
2089 if (rdp->cpu_no_qs.b.norm)
2093 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2096 rcu_report_qs_rdp(rdp);
2100 * Near the end of the offline process. Trace the fact that this CPU
2103 int rcutree_dying_cpu(unsigned int cpu)
2106 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2107 struct rcu_node *rnp = rdp->mynode;
2109 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2112 blkd = !!(rnp->qsmask & rdp->grpmask);
2113 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2114 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2119 * All CPUs for the specified rcu_node structure have gone offline,
2120 * and all tasks that were preempted within an RCU read-side critical
2121 * section while running on one of those CPUs have since exited their RCU
2122 * read-side critical section. Some other CPU is reporting this fact with
2123 * the specified rcu_node structure's ->lock held and interrupts disabled.
2124 * This function therefore goes up the tree of rcu_node structures,
2125 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2126 * the leaf rcu_node structure's ->qsmaskinit field has already been
2129 * This function does check that the specified rcu_node structure has
2130 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2131 * prematurely. That said, invoking it after the fact will cost you
2132 * a needless lock acquisition. So once it has done its work, don't
2135 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2138 struct rcu_node *rnp = rnp_leaf;
2140 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2141 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2142 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2143 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2146 mask = rnp->grpmask;
2150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2151 rnp->qsmaskinit &= ~mask;
2152 /* Between grace periods, so better already be zero! */
2153 WARN_ON_ONCE(rnp->qsmask);
2154 if (rnp->qsmaskinit) {
2155 raw_spin_unlock_rcu_node(rnp);
2156 /* irqs remain disabled. */
2159 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2164 * The CPU has been completely removed, and some other CPU is reporting
2165 * this fact from process context. Do the remainder of the cleanup.
2166 * There can only be one CPU hotplug operation at a time, so no need for
2169 int rcutree_dead_cpu(unsigned int cpu)
2171 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2172 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2174 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2177 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2178 /* Adjust any no-longer-needed kthreads. */
2179 rcu_boost_kthread_setaffinity(rnp, -1);
2180 // Stop-machine done, so allow nohz_full to disable tick.
2181 tick_dep_clear(TICK_DEP_BIT_RCU);
2186 * Invoke any RCU callbacks that have made it to the end of their grace
2187 * period. Throttle as specified by rdp->blimit.
2189 static void rcu_do_batch(struct rcu_data *rdp)
2192 bool __maybe_unused empty;
2193 unsigned long flags;
2194 struct rcu_head *rhp;
2195 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2197 long pending, tlimit = 0;
2199 /* If no callbacks are ready, just return. */
2200 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2201 trace_rcu_batch_start(rcu_state.name,
2202 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2203 trace_rcu_batch_end(rcu_state.name, 0,
2204 !rcu_segcblist_empty(&rdp->cblist),
2205 need_resched(), is_idle_task(current),
2206 rcu_is_callbacks_kthread(rdp));
2211 * Extract the list of ready callbacks, disabling IRQs to prevent
2212 * races with call_rcu() from interrupt handlers. Leave the
2213 * callback counts, as rcu_barrier() needs to be conservative.
2215 rcu_nocb_lock_irqsave(rdp, flags);
2216 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2217 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2218 div = READ_ONCE(rcu_divisor);
2219 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2220 bl = max(rdp->blimit, pending >> div);
2221 if (in_serving_softirq() && unlikely(bl > 100)) {
2222 long rrn = READ_ONCE(rcu_resched_ns);
2224 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2225 tlimit = local_clock() + rrn;
2227 trace_rcu_batch_start(rcu_state.name,
2228 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2229 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2230 if (rcu_rdp_is_offloaded(rdp))
2231 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2233 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2234 rcu_nocb_unlock_irqrestore(rdp, flags);
2236 /* Invoke callbacks. */
2237 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2238 rhp = rcu_cblist_dequeue(&rcl);
2240 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2244 debug_rcu_head_unqueue(rhp);
2246 rcu_lock_acquire(&rcu_callback_map);
2247 trace_rcu_invoke_callback(rcu_state.name, rhp);
2250 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2253 rcu_lock_release(&rcu_callback_map);
2256 * Stop only if limit reached and CPU has something to do.
2258 if (in_serving_softirq()) {
2259 if (count >= bl && (need_resched() || !is_idle_task(current)))
2262 * Make sure we don't spend too much time here and deprive other
2263 * softirq vectors of CPU cycles.
2265 if (unlikely(tlimit)) {
2266 /* only call local_clock() every 32 callbacks */
2267 if (likely((count & 31) || local_clock() < tlimit))
2269 /* Exceeded the time limit, so leave. */
2274 lockdep_assert_irqs_enabled();
2275 cond_resched_tasks_rcu_qs();
2276 lockdep_assert_irqs_enabled();
2281 rcu_nocb_lock_irqsave(rdp, flags);
2282 rdp->n_cbs_invoked += count;
2283 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2284 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2286 /* Update counts and requeue any remaining callbacks. */
2287 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2288 rcu_segcblist_add_len(&rdp->cblist, -count);
2290 /* Reinstate batch limit if we have worked down the excess. */
2291 count = rcu_segcblist_n_cbs(&rdp->cblist);
2292 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2293 rdp->blimit = blimit;
2295 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2296 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2297 rdp->qlen_last_fqs_check = 0;
2298 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2299 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2300 rdp->qlen_last_fqs_check = count;
2303 * The following usually indicates a double call_rcu(). To track
2304 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2306 empty = rcu_segcblist_empty(&rdp->cblist);
2307 WARN_ON_ONCE(count == 0 && !empty);
2308 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2309 count != 0 && empty);
2310 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2311 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2313 rcu_nocb_unlock_irqrestore(rdp, flags);
2315 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2319 * This function is invoked from each scheduling-clock interrupt,
2320 * and checks to see if this CPU is in a non-context-switch quiescent
2321 * state, for example, user mode or idle loop. It also schedules RCU
2322 * core processing. If the current grace period has gone on too long,
2323 * it will ask the scheduler to manufacture a context switch for the sole
2324 * purpose of providing the needed quiescent state.
2326 void rcu_sched_clock_irq(int user)
2330 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2332 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2333 __this_cpu_write(rcu_data.last_sched_clock, j);
2335 trace_rcu_utilization(TPS("Start scheduler-tick"));
2336 lockdep_assert_irqs_disabled();
2337 raw_cpu_inc(rcu_data.ticks_this_gp);
2338 /* The load-acquire pairs with the store-release setting to true. */
2339 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2340 /* Idle and userspace execution already are quiescent states. */
2341 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2342 set_tsk_need_resched(current);
2343 set_preempt_need_resched();
2345 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2347 rcu_flavor_sched_clock_irq(user);
2348 if (rcu_pending(user))
2350 if (user || rcu_is_cpu_rrupt_from_idle())
2351 rcu_note_voluntary_context_switch(current);
2352 lockdep_assert_irqs_disabled();
2354 trace_rcu_utilization(TPS("End scheduler-tick"));
2358 * Scan the leaf rcu_node structures. For each structure on which all
2359 * CPUs have reported a quiescent state and on which there are tasks
2360 * blocking the current grace period, initiate RCU priority boosting.
2361 * Otherwise, invoke the specified function to check dyntick state for
2362 * each CPU that has not yet reported a quiescent state.
2364 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2367 unsigned long flags;
2369 struct rcu_data *rdp;
2370 struct rcu_node *rnp;
2372 rcu_state.cbovld = rcu_state.cbovldnext;
2373 rcu_state.cbovldnext = false;
2374 rcu_for_each_leaf_node(rnp) {
2375 cond_resched_tasks_rcu_qs();
2377 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2378 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2379 if (rnp->qsmask == 0) {
2380 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2382 * No point in scanning bits because they
2383 * are all zero. But we might need to
2384 * priority-boost blocked readers.
2386 rcu_initiate_boost(rnp, flags);
2387 /* rcu_initiate_boost() releases rnp->lock */
2390 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2394 rdp = per_cpu_ptr(&rcu_data, cpu);
2396 mask |= rdp->grpmask;
2397 rcu_disable_urgency_upon_qs(rdp);
2401 /* Idle/offline CPUs, report (releases rnp->lock). */
2402 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2404 /* Nothing to do here, so just drop the lock. */
2405 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2411 * Force quiescent states on reluctant CPUs, and also detect which
2412 * CPUs are in dyntick-idle mode.
2414 void rcu_force_quiescent_state(void)
2416 unsigned long flags;
2418 struct rcu_node *rnp;
2419 struct rcu_node *rnp_old = NULL;
2421 /* Funnel through hierarchy to reduce memory contention. */
2422 rnp = raw_cpu_read(rcu_data.mynode);
2423 for (; rnp != NULL; rnp = rnp->parent) {
2424 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2425 !raw_spin_trylock(&rnp->fqslock);
2426 if (rnp_old != NULL)
2427 raw_spin_unlock(&rnp_old->fqslock);
2432 /* rnp_old == rcu_get_root(), rnp == NULL. */
2434 /* Reached the root of the rcu_node tree, acquire lock. */
2435 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2436 raw_spin_unlock(&rnp_old->fqslock);
2437 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2438 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2439 return; /* Someone beat us to it. */
2441 WRITE_ONCE(rcu_state.gp_flags,
2442 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2443 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2444 rcu_gp_kthread_wake();
2446 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2448 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2450 static void strict_work_handler(struct work_struct *work)
2456 /* Perform RCU core processing work for the current CPU. */
2457 static __latent_entropy void rcu_core(void)
2459 unsigned long flags;
2460 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2461 struct rcu_node *rnp = rdp->mynode;
2463 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2464 * Therefore this function can race with concurrent NOCB (de-)offloading
2465 * on this CPU and the below condition must be considered volatile.
2466 * However if we race with:
2468 * _ Offloading: In the worst case we accelerate or process callbacks
2469 * concurrently with NOCB kthreads. We are guaranteed to
2470 * call rcu_nocb_lock() if that happens.
2472 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2473 * processing. This is fine because the early stage
2474 * of deoffloading invokes rcu_core() after setting
2475 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2476 * what could have been dismissed without the need to wait
2477 * for the next rcu_pending() check in the next jiffy.
2479 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2481 if (cpu_is_offline(smp_processor_id()))
2483 trace_rcu_utilization(TPS("Start RCU core"));
2484 WARN_ON_ONCE(!rdp->beenonline);
2486 /* Report any deferred quiescent states if preemption enabled. */
2487 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2488 rcu_preempt_deferred_qs(current);
2489 } else if (rcu_preempt_need_deferred_qs(current)) {
2490 set_tsk_need_resched(current);
2491 set_preempt_need_resched();
2494 /* Update RCU state based on any recent quiescent states. */
2495 rcu_check_quiescent_state(rdp);
2497 /* No grace period and unregistered callbacks? */
2498 if (!rcu_gp_in_progress() &&
2499 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2500 rcu_nocb_lock_irqsave(rdp, flags);
2501 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2502 rcu_accelerate_cbs_unlocked(rnp, rdp);
2503 rcu_nocb_unlock_irqrestore(rdp, flags);
2506 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2508 /* If there are callbacks ready, invoke them. */
2509 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2510 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2512 /* Re-invoke RCU core processing if there are callbacks remaining. */
2513 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2517 /* Do any needed deferred wakeups of rcuo kthreads. */
2518 do_nocb_deferred_wakeup(rdp);
2519 trace_rcu_utilization(TPS("End RCU core"));
2521 // If strict GPs, schedule an RCU reader in a clean environment.
2522 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2523 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2526 static void rcu_core_si(struct softirq_action *h)
2531 static void rcu_wake_cond(struct task_struct *t, int status)
2534 * If the thread is yielding, only wake it when this
2535 * is invoked from idle
2537 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2541 static void invoke_rcu_core_kthread(void)
2543 struct task_struct *t;
2544 unsigned long flags;
2546 local_irq_save(flags);
2547 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2548 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2549 if (t != NULL && t != current)
2550 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2551 local_irq_restore(flags);
2555 * Wake up this CPU's rcuc kthread to do RCU core processing.
2557 static void invoke_rcu_core(void)
2559 if (!cpu_online(smp_processor_id()))
2562 raise_softirq(RCU_SOFTIRQ);
2564 invoke_rcu_core_kthread();
2567 static void rcu_cpu_kthread_park(unsigned int cpu)
2569 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2572 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2574 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2578 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2579 * the RCU softirq used in configurations of RCU that do not support RCU
2580 * priority boosting.
2582 static void rcu_cpu_kthread(unsigned int cpu)
2584 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2585 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2586 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2589 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2590 for (spincnt = 0; spincnt < 10; spincnt++) {
2591 WRITE_ONCE(*j, jiffies);
2593 *statusp = RCU_KTHREAD_RUNNING;
2594 local_irq_disable();
2602 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2603 *statusp = RCU_KTHREAD_WAITING;
2607 *statusp = RCU_KTHREAD_YIELDING;
2608 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2609 schedule_timeout_idle(2);
2610 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2611 *statusp = RCU_KTHREAD_WAITING;
2612 WRITE_ONCE(*j, jiffies);
2615 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2616 .store = &rcu_data.rcu_cpu_kthread_task,
2617 .thread_should_run = rcu_cpu_kthread_should_run,
2618 .thread_fn = rcu_cpu_kthread,
2619 .thread_comm = "rcuc/%u",
2620 .setup = rcu_cpu_kthread_setup,
2621 .park = rcu_cpu_kthread_park,
2625 * Spawn per-CPU RCU core processing kthreads.
2627 static int __init rcu_spawn_core_kthreads(void)
2631 for_each_possible_cpu(cpu)
2632 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2635 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2636 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2641 * Handle any core-RCU processing required by a call_rcu() invocation.
2643 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2644 unsigned long flags)
2647 * If called from an extended quiescent state, invoke the RCU
2648 * core in order to force a re-evaluation of RCU's idleness.
2650 if (!rcu_is_watching())
2653 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2654 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2658 * Force the grace period if too many callbacks or too long waiting.
2659 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2660 * if some other CPU has recently done so. Also, don't bother
2661 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2662 * is the only one waiting for a grace period to complete.
2664 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2665 rdp->qlen_last_fqs_check + qhimark)) {
2667 /* Are we ignoring a completed grace period? */
2668 note_gp_changes(rdp);
2670 /* Start a new grace period if one not already started. */
2671 if (!rcu_gp_in_progress()) {
2672 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2674 /* Give the grace period a kick. */
2675 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2676 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2677 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2678 rcu_force_quiescent_state();
2679 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2680 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2686 * RCU callback function to leak a callback.
2688 static void rcu_leak_callback(struct rcu_head *rhp)
2693 * Check and if necessary update the leaf rcu_node structure's
2694 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2695 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2696 * structure's ->lock.
2698 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2700 raw_lockdep_assert_held_rcu_node(rnp);
2701 if (qovld_calc <= 0)
2702 return; // Early boot and wildcard value set.
2703 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2704 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2706 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2710 * Check and if necessary update the leaf rcu_node structure's
2711 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2712 * number of queued RCU callbacks. No locks need be held, but the
2713 * caller must have disabled interrupts.
2715 * Note that this function ignores the possibility that there are a lot
2716 * of callbacks all of which have already seen the end of their respective
2717 * grace periods. This omission is due to the need for no-CBs CPUs to
2718 * be holding ->nocb_lock to do this check, which is too heavy for a
2719 * common-case operation.
2721 static void check_cb_ovld(struct rcu_data *rdp)
2723 struct rcu_node *const rnp = rdp->mynode;
2725 if (qovld_calc <= 0 ||
2726 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2727 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2728 return; // Early boot wildcard value or already set correctly.
2729 raw_spin_lock_rcu_node(rnp);
2730 check_cb_ovld_locked(rdp, rnp);
2731 raw_spin_unlock_rcu_node(rnp);
2735 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2736 * @head: structure to be used for queueing the RCU updates.
2737 * @func: actual callback function to be invoked after the grace period
2739 * The callback function will be invoked some time after a full grace
2740 * period elapses, in other words after all pre-existing RCU read-side
2741 * critical sections have completed. However, the callback function
2742 * might well execute concurrently with RCU read-side critical sections
2743 * that started after call_rcu() was invoked.
2745 * RCU read-side critical sections are delimited by rcu_read_lock()
2746 * and rcu_read_unlock(), and may be nested. In addition, but only in
2747 * v5.0 and later, regions of code across which interrupts, preemption,
2748 * or softirqs have been disabled also serve as RCU read-side critical
2749 * sections. This includes hardware interrupt handlers, softirq handlers,
2752 * Note that all CPUs must agree that the grace period extended beyond
2753 * all pre-existing RCU read-side critical section. On systems with more
2754 * than one CPU, this means that when "func()" is invoked, each CPU is
2755 * guaranteed to have executed a full memory barrier since the end of its
2756 * last RCU read-side critical section whose beginning preceded the call
2757 * to call_rcu(). It also means that each CPU executing an RCU read-side
2758 * critical section that continues beyond the start of "func()" must have
2759 * executed a memory barrier after the call_rcu() but before the beginning
2760 * of that RCU read-side critical section. Note that these guarantees
2761 * include CPUs that are offline, idle, or executing in user mode, as
2762 * well as CPUs that are executing in the kernel.
2764 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2765 * resulting RCU callback function "func()", then both CPU A and CPU B are
2766 * guaranteed to execute a full memory barrier during the time interval
2767 * between the call to call_rcu() and the invocation of "func()" -- even
2768 * if CPU A and CPU B are the same CPU (but again only if the system has
2769 * more than one CPU).
2771 * Implementation of these memory-ordering guarantees is described here:
2772 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2774 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2776 static atomic_t doublefrees;
2777 unsigned long flags;
2778 struct rcu_data *rdp;
2781 /* Misaligned rcu_head! */
2782 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2784 if (debug_rcu_head_queue(head)) {
2786 * Probable double call_rcu(), so leak the callback.
2787 * Use rcu:rcu_callback trace event to find the previous
2788 * time callback was passed to call_rcu().
2790 if (atomic_inc_return(&doublefrees) < 4) {
2791 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2794 WRITE_ONCE(head->func, rcu_leak_callback);
2799 kasan_record_aux_stack_noalloc(head);
2800 local_irq_save(flags);
2801 rdp = this_cpu_ptr(&rcu_data);
2803 /* Add the callback to our list. */
2804 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2805 // This can trigger due to call_rcu() from offline CPU:
2806 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2807 WARN_ON_ONCE(!rcu_is_watching());
2808 // Very early boot, before rcu_init(). Initialize if needed
2809 // and then drop through to queue the callback.
2810 if (rcu_segcblist_empty(&rdp->cblist))
2811 rcu_segcblist_init(&rdp->cblist);
2815 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2816 return; // Enqueued onto ->nocb_bypass, so just leave.
2817 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2818 rcu_segcblist_enqueue(&rdp->cblist, head);
2819 if (__is_kvfree_rcu_offset((unsigned long)func))
2820 trace_rcu_kvfree_callback(rcu_state.name, head,
2821 (unsigned long)func,
2822 rcu_segcblist_n_cbs(&rdp->cblist));
2824 trace_rcu_callback(rcu_state.name, head,
2825 rcu_segcblist_n_cbs(&rdp->cblist));
2827 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2829 /* Go handle any RCU core processing required. */
2830 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2831 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2833 __call_rcu_core(rdp, head, flags);
2834 local_irq_restore(flags);
2837 EXPORT_SYMBOL_GPL(call_rcu);
2840 /* Maximum number of jiffies to wait before draining a batch. */
2841 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2842 #define KFREE_N_BATCHES 2
2843 #define FREE_N_CHANNELS 2
2846 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2847 * @nr_records: Number of active pointers in the array
2848 * @next: Next bulk object in the block chain
2849 * @records: Array of the kvfree_rcu() pointers
2851 struct kvfree_rcu_bulk_data {
2852 unsigned long nr_records;
2853 struct kvfree_rcu_bulk_data *next;
2858 * This macro defines how many entries the "records" array
2859 * will contain. It is based on the fact that the size of
2860 * kvfree_rcu_bulk_data structure becomes exactly one page.
2862 #define KVFREE_BULK_MAX_ENTR \
2863 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2866 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2867 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2868 * @head_free: List of kfree_rcu() objects waiting for a grace period
2869 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2870 * @krcp: Pointer to @kfree_rcu_cpu structure
2873 struct kfree_rcu_cpu_work {
2874 struct rcu_work rcu_work;
2875 struct rcu_head *head_free;
2876 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
2877 struct kfree_rcu_cpu *krcp;
2881 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2882 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2883 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2884 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2885 * @lock: Synchronize access to this structure
2886 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2887 * @initialized: The @rcu_work fields have been initialized
2888 * @count: Number of objects for which GP not started
2890 * A simple cache list that contains objects for reuse purpose.
2891 * In order to save some per-cpu space the list is singular.
2892 * Even though it is lockless an access has to be protected by the
2894 * @page_cache_work: A work to refill the cache when it is empty
2895 * @backoff_page_cache_fill: Delay cache refills
2896 * @work_in_progress: Indicates that page_cache_work is running
2897 * @hrtimer: A hrtimer for scheduling a page_cache_work
2898 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2900 * This is a per-CPU structure. The reason that it is not included in
2901 * the rcu_data structure is to permit this code to be extracted from
2902 * the RCU files. Such extraction could allow further optimization of
2903 * the interactions with the slab allocators.
2905 struct kfree_rcu_cpu {
2906 struct rcu_head *head;
2907 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
2908 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2909 raw_spinlock_t lock;
2910 struct delayed_work monitor_work;
2914 struct delayed_work page_cache_work;
2915 atomic_t backoff_page_cache_fill;
2916 atomic_t work_in_progress;
2917 struct hrtimer hrtimer;
2919 struct llist_head bkvcache;
2923 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2924 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2927 static __always_inline void
2928 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2930 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2933 for (i = 0; i < bhead->nr_records; i++)
2934 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2938 static inline struct kfree_rcu_cpu *
2939 krc_this_cpu_lock(unsigned long *flags)
2941 struct kfree_rcu_cpu *krcp;
2943 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2944 krcp = this_cpu_ptr(&krc);
2945 raw_spin_lock(&krcp->lock);
2951 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2953 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2956 static inline struct kvfree_rcu_bulk_data *
2957 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2959 if (!krcp->nr_bkv_objs)
2962 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2963 return (struct kvfree_rcu_bulk_data *)
2964 llist_del_first(&krcp->bkvcache);
2968 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2969 struct kvfree_rcu_bulk_data *bnode)
2972 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2975 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2976 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2981 drain_page_cache(struct kfree_rcu_cpu *krcp)
2983 unsigned long flags;
2984 struct llist_node *page_list, *pos, *n;
2987 raw_spin_lock_irqsave(&krcp->lock, flags);
2988 page_list = llist_del_all(&krcp->bkvcache);
2989 WRITE_ONCE(krcp->nr_bkv_objs, 0);
2990 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2992 llist_for_each_safe(pos, n, page_list) {
2993 free_page((unsigned long)pos);
3001 * This function is invoked in workqueue context after a grace period.
3002 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3004 static void kfree_rcu_work(struct work_struct *work)
3006 unsigned long flags;
3007 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3008 struct rcu_head *head, *next;
3009 struct kfree_rcu_cpu *krcp;
3010 struct kfree_rcu_cpu_work *krwp;
3013 krwp = container_of(to_rcu_work(work),
3014 struct kfree_rcu_cpu_work, rcu_work);
3017 raw_spin_lock_irqsave(&krcp->lock, flags);
3018 // Channels 1 and 2.
3019 for (i = 0; i < FREE_N_CHANNELS; i++) {
3020 bkvhead[i] = krwp->bkvhead_free[i];
3021 krwp->bkvhead_free[i] = NULL;
3025 head = krwp->head_free;
3026 krwp->head_free = NULL;
3027 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3029 // Handle the first two channels.
3030 for (i = 0; i < FREE_N_CHANNELS; i++) {
3031 for (; bkvhead[i]; bkvhead[i] = bnext) {
3032 bnext = bkvhead[i]->next;
3033 debug_rcu_bhead_unqueue(bkvhead[i]);
3035 rcu_lock_acquire(&rcu_callback_map);
3036 if (i == 0) { // kmalloc() / kfree().
3037 trace_rcu_invoke_kfree_bulk_callback(
3038 rcu_state.name, bkvhead[i]->nr_records,
3039 bkvhead[i]->records);
3041 kfree_bulk(bkvhead[i]->nr_records,
3042 bkvhead[i]->records);
3043 } else { // vmalloc() / vfree().
3044 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3045 trace_rcu_invoke_kvfree_callback(
3047 bkvhead[i]->records[j], 0);
3049 vfree(bkvhead[i]->records[j]);
3052 rcu_lock_release(&rcu_callback_map);
3054 raw_spin_lock_irqsave(&krcp->lock, flags);
3055 if (put_cached_bnode(krcp, bkvhead[i]))
3057 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3060 free_page((unsigned long) bkvhead[i]);
3062 cond_resched_tasks_rcu_qs();
3067 * This is used when the "bulk" path can not be used for the
3068 * double-argument of kvfree_rcu(). This happens when the
3069 * page-cache is empty, which means that objects are instead
3070 * queued on a linked list through their rcu_head structures.
3071 * This list is named "Channel 3".
3073 for (; head; head = next) {
3074 unsigned long offset = (unsigned long)head->func;
3075 void *ptr = (void *)head - offset;
3078 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3079 rcu_lock_acquire(&rcu_callback_map);
3080 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3082 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3085 rcu_lock_release(&rcu_callback_map);
3086 cond_resched_tasks_rcu_qs();
3091 need_offload_krc(struct kfree_rcu_cpu *krcp)
3095 for (i = 0; i < FREE_N_CHANNELS; i++)
3096 if (krcp->bkvhead[i])
3099 return !!krcp->head;
3103 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3107 for (i = 0; i < FREE_N_CHANNELS; i++)
3108 if (krwp->bkvhead_free[i])
3111 return !!krwp->head_free;
3115 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3117 long delay, delay_left;
3119 delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3120 if (delayed_work_pending(&krcp->monitor_work)) {
3121 delay_left = krcp->monitor_work.timer.expires - jiffies;
3122 if (delay < delay_left)
3123 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3126 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3130 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3132 static void kfree_rcu_monitor(struct work_struct *work)
3134 struct kfree_rcu_cpu *krcp = container_of(work,
3135 struct kfree_rcu_cpu, monitor_work.work);
3136 unsigned long flags;
3139 raw_spin_lock_irqsave(&krcp->lock, flags);
3141 // Attempt to start a new batch.
3142 for (i = 0; i < KFREE_N_BATCHES; i++) {
3143 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3145 // Try to detach bulk_head or head and attach it, only when
3146 // all channels are free. Any channel is not free means at krwp
3147 // there is on-going rcu work to handle krwp's free business.
3148 if (need_wait_for_krwp_work(krwp))
3151 if (need_offload_krc(krcp)) {
3152 // Channel 1 corresponds to the SLAB-pointer bulk path.
3153 // Channel 2 corresponds to vmalloc-pointer bulk path.
3154 for (j = 0; j < FREE_N_CHANNELS; j++) {
3155 if (!krwp->bkvhead_free[j]) {
3156 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3157 krcp->bkvhead[j] = NULL;
3161 // Channel 3 corresponds to both SLAB and vmalloc
3162 // objects queued on the linked list.
3163 if (!krwp->head_free) {
3164 krwp->head_free = krcp->head;
3168 WRITE_ONCE(krcp->count, 0);
3170 // One work is per one batch, so there are three
3171 // "free channels", the batch can handle. It can
3172 // be that the work is in the pending state when
3173 // channels have been detached following by each
3175 queue_rcu_work(system_wq, &krwp->rcu_work);
3179 // If there is nothing to detach, it means that our job is
3180 // successfully done here. In case of having at least one
3181 // of the channels that is still busy we should rearm the
3182 // work to repeat an attempt. Because previous batches are
3183 // still in progress.
3184 if (need_offload_krc(krcp))
3185 schedule_delayed_monitor_work(krcp);
3187 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3190 static enum hrtimer_restart
3191 schedule_page_work_fn(struct hrtimer *t)
3193 struct kfree_rcu_cpu *krcp =
3194 container_of(t, struct kfree_rcu_cpu, hrtimer);
3196 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3197 return HRTIMER_NORESTART;
3200 static void fill_page_cache_func(struct work_struct *work)
3202 struct kvfree_rcu_bulk_data *bnode;
3203 struct kfree_rcu_cpu *krcp =
3204 container_of(work, struct kfree_rcu_cpu,
3205 page_cache_work.work);
3206 unsigned long flags;
3211 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3212 1 : rcu_min_cached_objs;
3214 for (i = 0; i < nr_pages; i++) {
3215 bnode = (struct kvfree_rcu_bulk_data *)
3216 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3221 raw_spin_lock_irqsave(&krcp->lock, flags);
3222 pushed = put_cached_bnode(krcp, bnode);
3223 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3226 free_page((unsigned long) bnode);
3231 atomic_set(&krcp->work_in_progress, 0);
3232 atomic_set(&krcp->backoff_page_cache_fill, 0);
3236 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3238 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3239 !atomic_xchg(&krcp->work_in_progress, 1)) {
3240 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3241 queue_delayed_work(system_wq,
3242 &krcp->page_cache_work,
3243 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3245 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3246 krcp->hrtimer.function = schedule_page_work_fn;
3247 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3252 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3253 // state specified by flags. If can_alloc is true, the caller must
3254 // be schedulable and not be holding any locks or mutexes that might be
3255 // acquired by the memory allocator or anything that it might invoke.
3256 // Returns true if ptr was successfully recorded, else the caller must
3259 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3260 unsigned long *flags, void *ptr, bool can_alloc)
3262 struct kvfree_rcu_bulk_data *bnode;
3265 *krcp = krc_this_cpu_lock(flags);
3266 if (unlikely(!(*krcp)->initialized))
3269 idx = !!is_vmalloc_addr(ptr);
3271 /* Check if a new block is required. */
3272 if (!(*krcp)->bkvhead[idx] ||
3273 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3274 bnode = get_cached_bnode(*krcp);
3275 if (!bnode && can_alloc) {
3276 krc_this_cpu_unlock(*krcp, *flags);
3278 // __GFP_NORETRY - allows a light-weight direct reclaim
3279 // what is OK from minimizing of fallback hitting point of
3280 // view. Apart of that it forbids any OOM invoking what is
3281 // also beneficial since we are about to release memory soon.
3283 // __GFP_NOMEMALLOC - prevents from consuming of all the
3284 // memory reserves. Please note we have a fallback path.
3286 // __GFP_NOWARN - it is supposed that an allocation can
3287 // be failed under low memory or high memory pressure
3289 bnode = (struct kvfree_rcu_bulk_data *)
3290 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3291 *krcp = krc_this_cpu_lock(flags);
3297 /* Initialize the new block. */
3298 bnode->nr_records = 0;
3299 bnode->next = (*krcp)->bkvhead[idx];
3301 /* Attach it to the head. */
3302 (*krcp)->bkvhead[idx] = bnode;
3305 /* Finally insert. */
3306 (*krcp)->bkvhead[idx]->records
3307 [(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3313 * Queue a request for lazy invocation of the appropriate free routine
3314 * after a grace period. Please note that three paths are maintained,
3315 * two for the common case using arrays of pointers and a third one that
3316 * is used only when the main paths cannot be used, for example, due to
3319 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3320 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3321 * be free'd in workqueue context. This allows us to: batch requests together to
3322 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3324 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3326 unsigned long flags;
3327 struct kfree_rcu_cpu *krcp;
3332 ptr = (void *) head - (unsigned long) func;
3335 * Please note there is a limitation for the head-less
3336 * variant, that is why there is a clear rule for such
3337 * objects: it can be used from might_sleep() context
3338 * only. For other places please embed an rcu_head to
3342 ptr = (unsigned long *) func;
3345 // Queue the object but don't yet schedule the batch.
3346 if (debug_rcu_head_queue(ptr)) {
3347 // Probable double kfree_rcu(), just leak.
3348 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3351 // Mark as success and leave.
3355 kasan_record_aux_stack_noalloc(ptr);
3356 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3358 run_page_cache_worker(krcp);
3361 // Inline if kvfree_rcu(one_arg) call.
3365 head->next = krcp->head;
3370 WRITE_ONCE(krcp->count, krcp->count + 1);
3372 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3373 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3374 schedule_delayed_monitor_work(krcp);
3377 krc_this_cpu_unlock(krcp, flags);
3380 * Inline kvfree() after synchronize_rcu(). We can do
3381 * it from might_sleep() context only, so the current
3382 * CPU can pass the QS state.
3385 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3390 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3392 static unsigned long
3393 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3396 unsigned long count = 0;
3398 /* Snapshot count of all CPUs */
3399 for_each_possible_cpu(cpu) {
3400 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3402 count += READ_ONCE(krcp->count);
3403 count += READ_ONCE(krcp->nr_bkv_objs);
3404 atomic_set(&krcp->backoff_page_cache_fill, 1);
3407 return count == 0 ? SHRINK_EMPTY : count;
3410 static unsigned long
3411 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3415 for_each_possible_cpu(cpu) {
3417 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3419 count = krcp->count;
3420 count += drain_page_cache(krcp);
3421 kfree_rcu_monitor(&krcp->monitor_work.work);
3423 sc->nr_to_scan -= count;
3426 if (sc->nr_to_scan <= 0)
3430 return freed == 0 ? SHRINK_STOP : freed;
3433 static struct shrinker kfree_rcu_shrinker = {
3434 .count_objects = kfree_rcu_shrink_count,
3435 .scan_objects = kfree_rcu_shrink_scan,
3437 .seeks = DEFAULT_SEEKS,
3440 void __init kfree_rcu_scheduler_running(void)
3443 unsigned long flags;
3445 for_each_possible_cpu(cpu) {
3446 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3448 raw_spin_lock_irqsave(&krcp->lock, flags);
3449 if (need_offload_krc(krcp))
3450 schedule_delayed_monitor_work(krcp);
3451 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3456 * During early boot, any blocking grace-period wait automatically
3457 * implies a grace period.
3459 * Later on, this could in theory be the case for kernels built with
3460 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3461 * is not a common case. Furthermore, this optimization would cause
3462 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3463 * grace-period optimization is ignored once the scheduler is running.
3465 static int rcu_blocking_is_gp(void)
3467 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
3469 might_sleep(); /* Check for RCU read-side critical section. */
3474 * synchronize_rcu - wait until a grace period has elapsed.
3476 * Control will return to the caller some time after a full grace
3477 * period has elapsed, in other words after all currently executing RCU
3478 * read-side critical sections have completed. Note, however, that
3479 * upon return from synchronize_rcu(), the caller might well be executing
3480 * concurrently with new RCU read-side critical sections that began while
3481 * synchronize_rcu() was waiting.
3483 * RCU read-side critical sections are delimited by rcu_read_lock()
3484 * and rcu_read_unlock(), and may be nested. In addition, but only in
3485 * v5.0 and later, regions of code across which interrupts, preemption,
3486 * or softirqs have been disabled also serve as RCU read-side critical
3487 * sections. This includes hardware interrupt handlers, softirq handlers,
3490 * Note that this guarantee implies further memory-ordering guarantees.
3491 * On systems with more than one CPU, when synchronize_rcu() returns,
3492 * each CPU is guaranteed to have executed a full memory barrier since
3493 * the end of its last RCU read-side critical section whose beginning
3494 * preceded the call to synchronize_rcu(). In addition, each CPU having
3495 * an RCU read-side critical section that extends beyond the return from
3496 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3497 * after the beginning of synchronize_rcu() and before the beginning of
3498 * that RCU read-side critical section. Note that these guarantees include
3499 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3500 * that are executing in the kernel.
3502 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3503 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3504 * to have executed a full memory barrier during the execution of
3505 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3506 * again only if the system has more than one CPU).
3508 * Implementation of these memory-ordering guarantees is described here:
3509 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3511 void synchronize_rcu(void)
3513 unsigned long flags;
3514 struct rcu_node *rnp;
3516 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3517 lock_is_held(&rcu_lock_map) ||
3518 lock_is_held(&rcu_sched_lock_map),
3519 "Illegal synchronize_rcu() in RCU read-side critical section");
3520 if (!rcu_blocking_is_gp()) {
3521 if (rcu_gp_is_expedited())
3522 synchronize_rcu_expedited();
3524 wait_rcu_gp(call_rcu);
3528 // Context allows vacuous grace periods.
3529 // Note well that this code runs with !PREEMPT && !SMP.
3530 // In addition, all code that advances grace periods runs at
3531 // process level. Therefore, this normal GP overlaps with other
3532 // normal GPs only by being fully nested within them, which allows
3533 // reuse of ->gp_seq_polled_snap.
3534 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3535 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3537 // Update the normal grace-period counters to record
3538 // this grace period, but only those used by the boot CPU.
3539 // The rcu_scheduler_starting() will take care of the rest of
3541 local_irq_save(flags);
3542 WARN_ON_ONCE(num_online_cpus() > 1);
3543 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3544 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3545 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3546 local_irq_restore(flags);
3548 EXPORT_SYMBOL_GPL(synchronize_rcu);
3551 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3552 * @rgosp: Place to put state cookie
3554 * Stores into @rgosp a value that will always be treated by functions
3555 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3556 * has already completed.
3558 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3560 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3561 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3563 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3566 * get_state_synchronize_rcu - Snapshot current RCU state
3568 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3569 * or poll_state_synchronize_rcu() to determine whether or not a full
3570 * grace period has elapsed in the meantime.
3572 unsigned long get_state_synchronize_rcu(void)
3575 * Any prior manipulation of RCU-protected data must happen
3576 * before the load from ->gp_seq.
3579 return rcu_seq_snap(&rcu_state.gp_seq_polled);
3581 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3584 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3585 * @rgosp: location to place combined normal/expedited grace-period state
3587 * Places the normal and expedited grace-period states in @rgosp. This
3588 * state value can be passed to a later call to cond_synchronize_rcu_full()
3589 * or poll_state_synchronize_rcu_full() to determine whether or not a
3590 * grace period (whether normal or expedited) has elapsed in the meantime.
3591 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3592 * long, but is guaranteed to see all grace periods. In contrast, the
3593 * combined state occupies less memory, but can sometimes fail to take
3594 * grace periods into account.
3596 * This does not guarantee that the needed grace period will actually
3599 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3601 struct rcu_node *rnp = rcu_get_root();
3604 * Any prior manipulation of RCU-protected data must happen
3605 * before the loads from ->gp_seq and ->expedited_sequence.
3608 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3609 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3611 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3614 * Helper function for start_poll_synchronize_rcu() and
3615 * start_poll_synchronize_rcu_full().
3617 static void start_poll_synchronize_rcu_common(void)
3619 unsigned long flags;
3621 struct rcu_data *rdp;
3622 struct rcu_node *rnp;
3624 lockdep_assert_irqs_enabled();
3625 local_irq_save(flags);
3626 rdp = this_cpu_ptr(&rcu_data);
3628 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3629 // Note it is possible for a grace period to have elapsed between
3630 // the above call to get_state_synchronize_rcu() and the below call
3631 // to rcu_seq_snap. This is OK, the worst that happens is that we
3632 // get a grace period that no one needed. These accesses are ordered
3633 // by smp_mb(), and we are accessing them in the opposite order
3634 // from which they are updated at grace-period start, as required.
3635 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3636 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3638 rcu_gp_kthread_wake();
3642 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3644 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3645 * or poll_state_synchronize_rcu() to determine whether or not a full
3646 * grace period has elapsed in the meantime. If the needed grace period
3647 * is not already slated to start, notifies RCU core of the need for that
3650 * Interrupts must be enabled for the case where it is necessary to awaken
3651 * the grace-period kthread.
3653 unsigned long start_poll_synchronize_rcu(void)
3655 unsigned long gp_seq = get_state_synchronize_rcu();
3657 start_poll_synchronize_rcu_common();
3660 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3663 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3664 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3666 * Places the normal and expedited grace-period states in *@rgos. This
3667 * state value can be passed to a later call to cond_synchronize_rcu_full()
3668 * or poll_state_synchronize_rcu_full() to determine whether or not a
3669 * grace period (whether normal or expedited) has elapsed in the meantime.
3670 * If the needed grace period is not already slated to start, notifies
3671 * RCU core of the need for that grace period.
3673 * Interrupts must be enabled for the case where it is necessary to awaken
3674 * the grace-period kthread.
3676 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3678 get_state_synchronize_rcu_full(rgosp);
3680 start_poll_synchronize_rcu_common();
3682 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3685 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3686 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3688 * If a full RCU grace period has elapsed since the earlier call from
3689 * which @oldstate was obtained, return @true, otherwise return @false.
3690 * If @false is returned, it is the caller's responsibility to invoke this
3691 * function later on until it does return @true. Alternatively, the caller
3692 * can explicitly wait for a grace period, for example, by passing @oldstate
3693 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3695 * Yes, this function does not take counter wrap into account.
3696 * But counter wrap is harmless. If the counter wraps, we have waited for
3697 * more than a billion grace periods (and way more on a 64-bit system!).
3698 * Those needing to keep old state values for very long time periods
3699 * (many hours even on 32-bit systems) should check them occasionally and
3700 * either refresh them or set a flag indicating that the grace period has
3701 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3702 * to get a guaranteed-completed grace-period state.
3704 * This function provides the same memory-ordering guarantees that
3705 * would be provided by a synchronize_rcu() that was invoked at the call
3706 * to the function that provided @oldstate, and that returned at the end
3709 bool poll_state_synchronize_rcu(unsigned long oldstate)
3711 if (oldstate == RCU_GET_STATE_COMPLETED ||
3712 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3713 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3718 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3721 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3722 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3724 * If a full RCU grace period has elapsed since the earlier call from
3725 * which *rgosp was obtained, return @true, otherwise return @false.
3726 * If @false is returned, it is the caller's responsibility to invoke this
3727 * function later on until it does return @true. Alternatively, the caller
3728 * can explicitly wait for a grace period, for example, by passing @rgosp
3729 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3731 * Yes, this function does not take counter wrap into account.
3732 * But counter wrap is harmless. If the counter wraps, we have waited
3733 * for more than a billion grace periods (and way more on a 64-bit
3734 * system!). Those needing to keep rcu_gp_oldstate values for very
3735 * long time periods (many hours even on 32-bit systems) should check
3736 * them occasionally and either refresh them or set a flag indicating
3737 * that the grace period has completed. Alternatively, they can use
3738 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3739 * grace-period state.
3741 * This function provides the same memory-ordering guarantees that would
3742 * be provided by a synchronize_rcu() that was invoked at the call to
3743 * the function that provided @rgosp, and that returned at the end of this
3744 * function. And this guarantee requires that the root rcu_node structure's
3745 * ->gp_seq field be checked instead of that of the rcu_state structure.
3746 * The problem is that the just-ending grace-period's callbacks can be
3747 * invoked between the time that the root rcu_node structure's ->gp_seq
3748 * field is updated and the time that the rcu_state structure's ->gp_seq
3749 * field is updated. Therefore, if a single synchronize_rcu() is to
3750 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3751 * then the root rcu_node structure is the one that needs to be polled.
3753 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3755 struct rcu_node *rnp = rcu_get_root();
3757 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3758 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3759 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3760 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3761 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3762 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3767 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3770 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3771 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3773 * If a full RCU grace period has elapsed since the earlier call to
3774 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3775 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3777 * Yes, this function does not take counter wrap into account.
3778 * But counter wrap is harmless. If the counter wraps, we have waited for
3779 * more than 2 billion grace periods (and way more on a 64-bit system!),
3780 * so waiting for a couple of additional grace periods should be just fine.
3782 * This function provides the same memory-ordering guarantees that
3783 * would be provided by a synchronize_rcu() that was invoked at the call
3784 * to the function that provided @oldstate and that returned at the end
3787 void cond_synchronize_rcu(unsigned long oldstate)
3789 if (!poll_state_synchronize_rcu(oldstate))
3792 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3795 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3796 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3798 * If a full RCU grace period has elapsed since the call to
3799 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3800 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3801 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3802 * for a full grace period.
3804 * Yes, this function does not take counter wrap into account.
3805 * But counter wrap is harmless. If the counter wraps, we have waited for
3806 * more than 2 billion grace periods (and way more on a 64-bit system!),
3807 * so waiting for a couple of additional grace periods should be just fine.
3809 * This function provides the same memory-ordering guarantees that
3810 * would be provided by a synchronize_rcu() that was invoked at the call
3811 * to the function that provided @rgosp and that returned at the end of
3814 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3816 if (!poll_state_synchronize_rcu_full(rgosp))
3819 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3822 * Check to see if there is any immediate RCU-related work to be done by
3823 * the current CPU, returning 1 if so and zero otherwise. The checks are
3824 * in order of increasing expense: checks that can be carried out against
3825 * CPU-local state are performed first. However, we must check for CPU
3826 * stalls first, else we might not get a chance.
3828 static int rcu_pending(int user)
3830 bool gp_in_progress;
3831 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3832 struct rcu_node *rnp = rdp->mynode;
3834 lockdep_assert_irqs_disabled();
3836 /* Check for CPU stalls, if enabled. */
3837 check_cpu_stall(rdp);
3839 /* Does this CPU need a deferred NOCB wakeup? */
3840 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3843 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3844 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3847 /* Is the RCU core waiting for a quiescent state from this CPU? */
3848 gp_in_progress = rcu_gp_in_progress();
3849 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3852 /* Does this CPU have callbacks ready to invoke? */
3853 if (!rcu_rdp_is_offloaded(rdp) &&
3854 rcu_segcblist_ready_cbs(&rdp->cblist))
3857 /* Has RCU gone idle with this CPU needing another grace period? */
3858 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3859 !rcu_rdp_is_offloaded(rdp) &&
3860 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3863 /* Have RCU grace period completed or started? */
3864 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3865 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3873 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3874 * the compiler is expected to optimize this away.
3876 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3878 trace_rcu_barrier(rcu_state.name, s, cpu,
3879 atomic_read(&rcu_state.barrier_cpu_count), done);
3883 * RCU callback function for rcu_barrier(). If we are last, wake
3884 * up the task executing rcu_barrier().
3886 * Note that the value of rcu_state.barrier_sequence must be captured
3887 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3888 * other CPUs might count the value down to zero before this CPU gets
3889 * around to invoking rcu_barrier_trace(), which might result in bogus
3890 * data from the next instance of rcu_barrier().
3892 static void rcu_barrier_callback(struct rcu_head *rhp)
3894 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3896 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3897 rcu_barrier_trace(TPS("LastCB"), -1, s);
3898 complete(&rcu_state.barrier_completion);
3900 rcu_barrier_trace(TPS("CB"), -1, s);
3905 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3907 static void rcu_barrier_entrain(struct rcu_data *rdp)
3909 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3910 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3912 lockdep_assert_held(&rcu_state.barrier_lock);
3913 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3915 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3916 rdp->barrier_head.func = rcu_barrier_callback;
3917 debug_rcu_head_queue(&rdp->barrier_head);
3919 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3920 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3921 atomic_inc(&rcu_state.barrier_cpu_count);
3923 debug_rcu_head_unqueue(&rdp->barrier_head);
3924 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3926 rcu_nocb_unlock(rdp);
3927 smp_store_release(&rdp->barrier_seq_snap, gseq);
3931 * Called with preemption disabled, and from cross-cpu IRQ context.
3933 static void rcu_barrier_handler(void *cpu_in)
3935 uintptr_t cpu = (uintptr_t)cpu_in;
3936 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3938 lockdep_assert_irqs_disabled();
3939 WARN_ON_ONCE(cpu != rdp->cpu);
3940 WARN_ON_ONCE(cpu != smp_processor_id());
3941 raw_spin_lock(&rcu_state.barrier_lock);
3942 rcu_barrier_entrain(rdp);
3943 raw_spin_unlock(&rcu_state.barrier_lock);
3947 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3949 * Note that this primitive does not necessarily wait for an RCU grace period
3950 * to complete. For example, if there are no RCU callbacks queued anywhere
3951 * in the system, then rcu_barrier() is within its rights to return
3952 * immediately, without waiting for anything, much less an RCU grace period.
3954 void rcu_barrier(void)
3957 unsigned long flags;
3959 struct rcu_data *rdp;
3960 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3962 rcu_barrier_trace(TPS("Begin"), -1, s);
3964 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3965 mutex_lock(&rcu_state.barrier_mutex);
3967 /* Did someone else do our work for us? */
3968 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3969 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
3970 smp_mb(); /* caller's subsequent code after above check. */
3971 mutex_unlock(&rcu_state.barrier_mutex);
3975 /* Mark the start of the barrier operation. */
3976 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3977 rcu_seq_start(&rcu_state.barrier_sequence);
3978 gseq = rcu_state.barrier_sequence;
3979 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3982 * Initialize the count to two rather than to zero in order
3983 * to avoid a too-soon return to zero in case of an immediate
3984 * invocation of the just-enqueued callback (or preemption of
3985 * this task). Exclude CPU-hotplug operations to ensure that no
3986 * offline non-offloaded CPU has callbacks queued.
3988 init_completion(&rcu_state.barrier_completion);
3989 atomic_set(&rcu_state.barrier_cpu_count, 2);
3990 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3993 * Force each CPU with callbacks to register a new callback.
3994 * When that callback is invoked, we will know that all of the
3995 * corresponding CPU's preceding callbacks have been invoked.
3997 for_each_possible_cpu(cpu) {
3998 rdp = per_cpu_ptr(&rcu_data, cpu);
4000 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4002 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4003 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4004 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4005 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4006 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4009 if (!rcu_rdp_cpu_online(rdp)) {
4010 rcu_barrier_entrain(rdp);
4011 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4012 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4013 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4016 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4017 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4018 schedule_timeout_uninterruptible(1);
4021 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4022 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4026 * Now that we have an rcu_barrier_callback() callback on each
4027 * CPU, and thus each counted, remove the initial count.
4029 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4030 complete(&rcu_state.barrier_completion);
4032 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4033 wait_for_completion(&rcu_state.barrier_completion);
4035 /* Mark the end of the barrier operation. */
4036 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4037 rcu_seq_end(&rcu_state.barrier_sequence);
4038 gseq = rcu_state.barrier_sequence;
4039 for_each_possible_cpu(cpu) {
4040 rdp = per_cpu_ptr(&rcu_data, cpu);
4042 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4045 /* Other rcu_barrier() invocations can now safely proceed. */
4046 mutex_unlock(&rcu_state.barrier_mutex);
4048 EXPORT_SYMBOL_GPL(rcu_barrier);
4051 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4052 * first CPU in a given leaf rcu_node structure coming online. The caller
4053 * must hold the corresponding leaf rcu_node ->lock with interrupts
4056 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4060 struct rcu_node *rnp = rnp_leaf;
4062 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4063 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4065 mask = rnp->grpmask;
4069 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4070 oldmask = rnp->qsmaskinit;
4071 rnp->qsmaskinit |= mask;
4072 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4079 * Do boot-time initialization of a CPU's per-CPU RCU data.
4082 rcu_boot_init_percpu_data(int cpu)
4084 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4085 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4087 /* Set up local state, ensuring consistent view of global state. */
4088 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4089 INIT_WORK(&rdp->strict_work, strict_work_handler);
4090 WARN_ON_ONCE(ct->dynticks_nesting != 1);
4091 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4092 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4093 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4094 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4095 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4096 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4097 rdp->last_sched_clock = jiffies;
4099 rcu_boot_init_nocb_percpu_data(rdp);
4103 * Invoked early in the CPU-online process, when pretty much all services
4104 * are available. The incoming CPU is not present.
4106 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4107 * offline event can be happening at a given time. Note also that we can
4108 * accept some slop in the rsp->gp_seq access due to the fact that this
4109 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4110 * And any offloaded callbacks are being numbered elsewhere.
4112 int rcutree_prepare_cpu(unsigned int cpu)
4114 unsigned long flags;
4115 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4116 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4117 struct rcu_node *rnp = rcu_get_root();
4119 /* Set up local state, ensuring consistent view of global state. */
4120 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4121 rdp->qlen_last_fqs_check = 0;
4122 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4123 rdp->blimit = blimit;
4124 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
4125 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4128 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4131 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4132 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4135 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4136 * propagation up the rcu_node tree will happen at the beginning
4137 * of the next grace period.
4140 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4141 rdp->beenonline = true; /* We have now been online. */
4142 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4143 rdp->gp_seq_needed = rdp->gp_seq;
4144 rdp->cpu_no_qs.b.norm = true;
4145 rdp->core_needs_qs = false;
4146 rdp->rcu_iw_pending = false;
4147 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4148 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4149 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4150 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4151 rcu_spawn_one_boost_kthread(rnp);
4152 rcu_spawn_cpu_nocb_kthread(cpu);
4153 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4159 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4161 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4163 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4165 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4169 * Near the end of the CPU-online process. Pretty much all services
4170 * enabled, and the CPU is now very much alive.
4172 int rcutree_online_cpu(unsigned int cpu)
4174 unsigned long flags;
4175 struct rcu_data *rdp;
4176 struct rcu_node *rnp;
4178 rdp = per_cpu_ptr(&rcu_data, cpu);
4180 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4181 rnp->ffmask |= rdp->grpmask;
4182 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4183 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4184 return 0; /* Too early in boot for scheduler work. */
4185 sync_sched_exp_online_cleanup(cpu);
4186 rcutree_affinity_setting(cpu, -1);
4188 // Stop-machine done, so allow nohz_full to disable tick.
4189 tick_dep_clear(TICK_DEP_BIT_RCU);
4194 * Near the beginning of the process. The CPU is still very much alive
4195 * with pretty much all services enabled.
4197 int rcutree_offline_cpu(unsigned int cpu)
4199 unsigned long flags;
4200 struct rcu_data *rdp;
4201 struct rcu_node *rnp;
4203 rdp = per_cpu_ptr(&rcu_data, cpu);
4205 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4206 rnp->ffmask &= ~rdp->grpmask;
4207 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4209 rcutree_affinity_setting(cpu, cpu);
4211 // nohz_full CPUs need the tick for stop-machine to work quickly
4212 tick_dep_set(TICK_DEP_BIT_RCU);
4217 * Mark the specified CPU as being online so that subsequent grace periods
4218 * (both expedited and normal) will wait on it. Note that this means that
4219 * incoming CPUs are not allowed to use RCU read-side critical sections
4220 * until this function is called. Failing to observe this restriction
4221 * will result in lockdep splats.
4223 * Note that this function is special in that it is invoked directly
4224 * from the incoming CPU rather than from the cpuhp_step mechanism.
4225 * This is because this function must be invoked at a precise location.
4226 * This incoming CPU must not have enabled interrupts yet.
4228 void rcu_cpu_starting(unsigned int cpu)
4231 struct rcu_data *rdp;
4232 struct rcu_node *rnp;
4235 lockdep_assert_irqs_disabled();
4236 rdp = per_cpu_ptr(&rcu_data, cpu);
4237 if (rdp->cpu_started)
4239 rdp->cpu_started = true;
4242 mask = rdp->grpmask;
4243 arch_spin_lock(&rcu_state.ofl_lock);
4244 rcu_dynticks_eqs_online();
4245 raw_spin_lock(&rcu_state.barrier_lock);
4246 raw_spin_lock_rcu_node(rnp);
4247 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4248 raw_spin_unlock(&rcu_state.barrier_lock);
4249 newcpu = !(rnp->expmaskinitnext & mask);
4250 rnp->expmaskinitnext |= mask;
4251 /* Allow lockless access for expedited grace periods. */
4252 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4253 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4254 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4255 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4256 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4258 /* An incoming CPU should never be blocking a grace period. */
4259 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4260 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4261 unsigned long flags;
4263 local_irq_save(flags);
4264 rcu_disable_urgency_upon_qs(rdp);
4265 /* Report QS -after- changing ->qsmaskinitnext! */
4266 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4268 raw_spin_unlock_rcu_node(rnp);
4270 arch_spin_unlock(&rcu_state.ofl_lock);
4271 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4275 * The outgoing function has no further need of RCU, so remove it from
4276 * the rcu_node tree's ->qsmaskinitnext bit masks.
4278 * Note that this function is special in that it is invoked directly
4279 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4280 * This is because this function must be invoked at a precise location.
4282 void rcu_report_dead(unsigned int cpu)
4284 unsigned long flags, seq_flags;
4286 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4287 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4289 // Do any dangling deferred wakeups.
4290 do_nocb_deferred_wakeup(rdp);
4292 /* QS for any half-done expedited grace period. */
4293 rcu_report_exp_rdp(rdp);
4294 rcu_preempt_deferred_qs(current);
4296 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4297 mask = rdp->grpmask;
4298 local_irq_save(seq_flags);
4299 arch_spin_lock(&rcu_state.ofl_lock);
4300 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4301 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4302 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4303 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4304 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4305 rcu_disable_urgency_upon_qs(rdp);
4306 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4307 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4309 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4310 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4311 arch_spin_unlock(&rcu_state.ofl_lock);
4312 local_irq_restore(seq_flags);
4314 rdp->cpu_started = false;
4317 #ifdef CONFIG_HOTPLUG_CPU
4319 * The outgoing CPU has just passed through the dying-idle state, and we
4320 * are being invoked from the CPU that was IPIed to continue the offline
4321 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4323 void rcutree_migrate_callbacks(int cpu)
4325 unsigned long flags;
4326 struct rcu_data *my_rdp;
4327 struct rcu_node *my_rnp;
4328 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4331 if (rcu_rdp_is_offloaded(rdp) ||
4332 rcu_segcblist_empty(&rdp->cblist))
4333 return; /* No callbacks to migrate. */
4335 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4336 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4337 rcu_barrier_entrain(rdp);
4338 my_rdp = this_cpu_ptr(&rcu_data);
4339 my_rnp = my_rdp->mynode;
4340 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4341 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4342 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4343 /* Leverage recent GPs and set GP for new callbacks. */
4344 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4345 rcu_advance_cbs(my_rnp, my_rdp);
4346 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4347 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4348 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4349 rcu_segcblist_disable(&rdp->cblist);
4350 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4351 check_cb_ovld_locked(my_rdp, my_rnp);
4352 if (rcu_rdp_is_offloaded(my_rdp)) {
4353 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4354 __call_rcu_nocb_wake(my_rdp, true, flags);
4356 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4357 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4360 rcu_gp_kthread_wake();
4361 lockdep_assert_irqs_enabled();
4362 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4363 !rcu_segcblist_empty(&rdp->cblist),
4364 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4365 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4366 rcu_segcblist_first_cb(&rdp->cblist));
4371 * On non-huge systems, use expedited RCU grace periods to make suspend
4372 * and hibernation run faster.
4374 static int rcu_pm_notify(struct notifier_block *self,
4375 unsigned long action, void *hcpu)
4378 case PM_HIBERNATION_PREPARE:
4379 case PM_SUSPEND_PREPARE:
4382 case PM_POST_HIBERNATION:
4383 case PM_POST_SUSPEND:
4384 rcu_unexpedite_gp();
4392 #ifdef CONFIG_RCU_EXP_KTHREAD
4393 struct kthread_worker *rcu_exp_gp_kworker;
4394 struct kthread_worker *rcu_exp_par_gp_kworker;
4396 static void __init rcu_start_exp_gp_kworkers(void)
4398 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4399 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4400 struct sched_param param = { .sched_priority = kthread_prio };
4402 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4403 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4404 pr_err("Failed to create %s!\n", gp_kworker_name);
4408 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4409 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4410 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4411 kthread_destroy_worker(rcu_exp_gp_kworker);
4415 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m);
4416 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4420 static inline void rcu_alloc_par_gp_wq(void)
4423 #else /* !CONFIG_RCU_EXP_KTHREAD */
4424 struct workqueue_struct *rcu_par_gp_wq;
4426 static void __init rcu_start_exp_gp_kworkers(void)
4430 static inline void rcu_alloc_par_gp_wq(void)
4432 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4433 WARN_ON(!rcu_par_gp_wq);
4435 #endif /* CONFIG_RCU_EXP_KTHREAD */
4438 * Spawn the kthreads that handle RCU's grace periods.
4440 static int __init rcu_spawn_gp_kthread(void)
4442 unsigned long flags;
4443 struct rcu_node *rnp;
4444 struct sched_param sp;
4445 struct task_struct *t;
4446 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4448 rcu_scheduler_fully_active = 1;
4449 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4450 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4453 sp.sched_priority = kthread_prio;
4454 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4456 rnp = rcu_get_root();
4457 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4458 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4459 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4460 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4461 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4462 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4464 /* This is a pre-SMP initcall, we expect a single CPU */
4465 WARN_ON(num_online_cpus() > 1);
4467 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4468 * due to rcu_scheduler_fully_active.
4470 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4471 rcu_spawn_one_boost_kthread(rdp->mynode);
4472 rcu_spawn_core_kthreads();
4473 /* Create kthread worker for expedited GPs */
4474 rcu_start_exp_gp_kworkers();
4477 early_initcall(rcu_spawn_gp_kthread);
4480 * This function is invoked towards the end of the scheduler's
4481 * initialization process. Before this is called, the idle task might
4482 * contain synchronous grace-period primitives (during which time, this idle
4483 * task is booting the system, and such primitives are no-ops). After this
4484 * function is called, any synchronous grace-period primitives are run as
4485 * expedited, with the requesting task driving the grace period forward.
4486 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4487 * runtime RCU functionality.
4489 void rcu_scheduler_starting(void)
4491 unsigned long flags;
4492 struct rcu_node *rnp;
4494 WARN_ON(num_online_cpus() != 1);
4495 WARN_ON(nr_context_switches() > 0);
4496 rcu_test_sync_prims();
4498 // Fix up the ->gp_seq counters.
4499 local_irq_save(flags);
4500 rcu_for_each_node_breadth_first(rnp)
4501 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4502 local_irq_restore(flags);
4504 // Switch out of early boot mode.
4505 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4506 rcu_test_sync_prims();
4510 * Helper function for rcu_init() that initializes the rcu_state structure.
4512 static void __init rcu_init_one(void)
4514 static const char * const buf[] = RCU_NODE_NAME_INIT;
4515 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4516 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4517 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4519 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4523 struct rcu_node *rnp;
4525 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4527 /* Silence gcc 4.8 false positive about array index out of range. */
4528 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4529 panic("rcu_init_one: rcu_num_lvls out of range");
4531 /* Initialize the level-tracking arrays. */
4533 for (i = 1; i < rcu_num_lvls; i++)
4534 rcu_state.level[i] =
4535 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4536 rcu_init_levelspread(levelspread, num_rcu_lvl);
4538 /* Initialize the elements themselves, starting from the leaves. */
4540 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4541 cpustride *= levelspread[i];
4542 rnp = rcu_state.level[i];
4543 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4544 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4545 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4546 &rcu_node_class[i], buf[i]);
4547 raw_spin_lock_init(&rnp->fqslock);
4548 lockdep_set_class_and_name(&rnp->fqslock,
4549 &rcu_fqs_class[i], fqs[i]);
4550 rnp->gp_seq = rcu_state.gp_seq;
4551 rnp->gp_seq_needed = rcu_state.gp_seq;
4552 rnp->completedqs = rcu_state.gp_seq;
4554 rnp->qsmaskinit = 0;
4555 rnp->grplo = j * cpustride;
4556 rnp->grphi = (j + 1) * cpustride - 1;
4557 if (rnp->grphi >= nr_cpu_ids)
4558 rnp->grphi = nr_cpu_ids - 1;
4564 rnp->grpnum = j % levelspread[i - 1];
4565 rnp->grpmask = BIT(rnp->grpnum);
4566 rnp->parent = rcu_state.level[i - 1] +
4567 j / levelspread[i - 1];
4570 INIT_LIST_HEAD(&rnp->blkd_tasks);
4571 rcu_init_one_nocb(rnp);
4572 init_waitqueue_head(&rnp->exp_wq[0]);
4573 init_waitqueue_head(&rnp->exp_wq[1]);
4574 init_waitqueue_head(&rnp->exp_wq[2]);
4575 init_waitqueue_head(&rnp->exp_wq[3]);
4576 spin_lock_init(&rnp->exp_lock);
4577 mutex_init(&rnp->boost_kthread_mutex);
4578 raw_spin_lock_init(&rnp->exp_poll_lock);
4579 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4580 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4584 init_swait_queue_head(&rcu_state.gp_wq);
4585 init_swait_queue_head(&rcu_state.expedited_wq);
4586 rnp = rcu_first_leaf_node();
4587 for_each_possible_cpu(i) {
4588 while (i > rnp->grphi)
4590 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4591 rcu_boot_init_percpu_data(i);
4596 * Force priority from the kernel command-line into range.
4598 static void __init sanitize_kthread_prio(void)
4600 int kthread_prio_in = kthread_prio;
4602 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4603 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4605 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4607 else if (kthread_prio < 0)
4609 else if (kthread_prio > 99)
4612 if (kthread_prio != kthread_prio_in)
4613 pr_alert("%s: Limited prio to %d from %d\n",
4614 __func__, kthread_prio, kthread_prio_in);
4618 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4619 * replace the definitions in tree.h because those are needed to size
4620 * the ->node array in the rcu_state structure.
4622 void rcu_init_geometry(void)
4626 static unsigned long old_nr_cpu_ids;
4627 int rcu_capacity[RCU_NUM_LVLS];
4628 static bool initialized;
4632 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4633 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4635 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4639 old_nr_cpu_ids = nr_cpu_ids;
4643 * Initialize any unspecified boot parameters.
4644 * The default values of jiffies_till_first_fqs and
4645 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4646 * value, which is a function of HZ, then adding one for each
4647 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4649 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4650 if (jiffies_till_first_fqs == ULONG_MAX)
4651 jiffies_till_first_fqs = d;
4652 if (jiffies_till_next_fqs == ULONG_MAX)
4653 jiffies_till_next_fqs = d;
4654 adjust_jiffies_till_sched_qs();
4656 /* If the compile-time values are accurate, just leave. */
4657 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4658 nr_cpu_ids == NR_CPUS)
4660 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4661 rcu_fanout_leaf, nr_cpu_ids);
4664 * The boot-time rcu_fanout_leaf parameter must be at least two
4665 * and cannot exceed the number of bits in the rcu_node masks.
4666 * Complain and fall back to the compile-time values if this
4667 * limit is exceeded.
4669 if (rcu_fanout_leaf < 2 ||
4670 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4671 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4677 * Compute number of nodes that can be handled an rcu_node tree
4678 * with the given number of levels.
4680 rcu_capacity[0] = rcu_fanout_leaf;
4681 for (i = 1; i < RCU_NUM_LVLS; i++)
4682 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4685 * The tree must be able to accommodate the configured number of CPUs.
4686 * If this limit is exceeded, fall back to the compile-time values.
4688 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4689 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4694 /* Calculate the number of levels in the tree. */
4695 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4697 rcu_num_lvls = i + 1;
4699 /* Calculate the number of rcu_nodes at each level of the tree. */
4700 for (i = 0; i < rcu_num_lvls; i++) {
4701 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4702 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4705 /* Calculate the total number of rcu_node structures. */
4707 for (i = 0; i < rcu_num_lvls; i++)
4708 rcu_num_nodes += num_rcu_lvl[i];
4712 * Dump out the structure of the rcu_node combining tree associated
4713 * with the rcu_state structure.
4715 static void __init rcu_dump_rcu_node_tree(void)
4718 struct rcu_node *rnp;
4720 pr_info("rcu_node tree layout dump\n");
4722 rcu_for_each_node_breadth_first(rnp) {
4723 if (rnp->level != level) {
4728 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4733 struct workqueue_struct *rcu_gp_wq;
4735 static void __init kfree_rcu_batch_init(void)
4740 /* Clamp it to [0:100] seconds interval. */
4741 if (rcu_delay_page_cache_fill_msec < 0 ||
4742 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4744 rcu_delay_page_cache_fill_msec =
4745 clamp(rcu_delay_page_cache_fill_msec, 0,
4746 (int) (100 * MSEC_PER_SEC));
4748 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4749 rcu_delay_page_cache_fill_msec);
4752 for_each_possible_cpu(cpu) {
4753 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4755 for (i = 0; i < KFREE_N_BATCHES; i++) {
4756 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4757 krcp->krw_arr[i].krcp = krcp;
4760 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4761 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4762 krcp->initialized = true;
4764 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4765 pr_err("Failed to register kfree_rcu() shrinker!\n");
4768 void __init rcu_init(void)
4770 int cpu = smp_processor_id();
4772 rcu_early_boot_tests();
4774 kfree_rcu_batch_init();
4775 rcu_bootup_announce();
4776 sanitize_kthread_prio();
4777 rcu_init_geometry();
4780 rcu_dump_rcu_node_tree();
4782 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4785 * We don't need protection against CPU-hotplug here because
4786 * this is called early in boot, before either interrupts
4787 * or the scheduler are operational.
4789 pm_notifier(rcu_pm_notify, 0);
4790 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4791 rcutree_prepare_cpu(cpu);
4792 rcu_cpu_starting(cpu);
4793 rcutree_online_cpu(cpu);
4795 /* Create workqueue for Tree SRCU and for expedited GPs. */
4796 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4797 WARN_ON(!rcu_gp_wq);
4798 rcu_alloc_par_gp_wq();
4800 /* Fill in default value for rcutree.qovld boot parameter. */
4801 /* -After- the rcu_node ->lock fields are initialized! */
4803 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4807 // Kick-start any polled grace periods that started early.
4808 if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4809 (void)start_poll_synchronize_rcu_expedited();
4812 #include "tree_stall.h"
4813 #include "tree_exp.h"
4814 #include "tree_nocb.h"
4815 #include "tree_plugin.h"