Merge tag 'm68knommu-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg...
[platform/kernel/linux-starfive.git] / kernel / rcu / tasks.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @rtp_n_lock_retries: Rough lock-contention statistic.
29  * @rtp_work: Work queue for invoking callbacks.
30  * @rtp_irq_work: IRQ work queue for deferred wakeups.
31  * @barrier_q_head: RCU callback for barrier operation.
32  * @rtp_blkd_tasks: List of tasks blocked as readers.
33  * @cpu: CPU number corresponding to this entry.
34  * @rtpp: Pointer to the rcu_tasks structure.
35  */
36 struct rcu_tasks_percpu {
37         struct rcu_segcblist cblist;
38         raw_spinlock_t __private lock;
39         unsigned long rtp_jiffies;
40         unsigned long rtp_n_lock_retries;
41         struct work_struct rtp_work;
42         struct irq_work rtp_irq_work;
43         struct rcu_head barrier_q_head;
44         struct list_head rtp_blkd_tasks;
45         int cpu;
46         struct rcu_tasks *rtpp;
47 };
48
49 /**
50  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
51  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
52  * @cbs_gbl_lock: Lock protecting callback list.
53  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
54  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
55  * @gp_func: This flavor's grace-period-wait function.
56  * @gp_state: Grace period's most recent state transition (debugging).
57  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
58  * @init_fract: Initial backoff sleep interval.
59  * @gp_jiffies: Time of last @gp_state transition.
60  * @gp_start: Most recent grace-period start in jiffies.
61  * @tasks_gp_seq: Number of grace periods completed since boot.
62  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
63  * @n_ipis_fails: Number of IPI-send failures.
64  * @pregp_func: This flavor's pre-grace-period function (optional).
65  * @pertask_func: This flavor's per-task scan function (optional).
66  * @postscan_func: This flavor's post-task scan function (optional).
67  * @holdouts_func: This flavor's holdout-list scan function (optional).
68  * @postgp_func: This flavor's post-grace-period function (optional).
69  * @call_func: This flavor's call_rcu()-equivalent function.
70  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
71  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
72  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
73  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
74  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
75  * @barrier_q_mutex: Serialize barrier operations.
76  * @barrier_q_count: Number of queues being waited on.
77  * @barrier_q_completion: Barrier wait/wakeup mechanism.
78  * @barrier_q_seq: Sequence number for barrier operations.
79  * @name: This flavor's textual name.
80  * @kname: This flavor's kthread name.
81  */
82 struct rcu_tasks {
83         struct rcuwait cbs_wait;
84         raw_spinlock_t cbs_gbl_lock;
85         struct mutex tasks_gp_mutex;
86         int gp_state;
87         int gp_sleep;
88         int init_fract;
89         unsigned long gp_jiffies;
90         unsigned long gp_start;
91         unsigned long tasks_gp_seq;
92         unsigned long n_ipis;
93         unsigned long n_ipis_fails;
94         struct task_struct *kthread_ptr;
95         rcu_tasks_gp_func_t gp_func;
96         pregp_func_t pregp_func;
97         pertask_func_t pertask_func;
98         postscan_func_t postscan_func;
99         holdouts_func_t holdouts_func;
100         postgp_func_t postgp_func;
101         call_rcu_func_t call_func;
102         struct rcu_tasks_percpu __percpu *rtpcpu;
103         int percpu_enqueue_shift;
104         int percpu_enqueue_lim;
105         int percpu_dequeue_lim;
106         unsigned long percpu_dequeue_gpseq;
107         struct mutex barrier_q_mutex;
108         atomic_t barrier_q_count;
109         struct completion barrier_q_completion;
110         unsigned long barrier_q_seq;
111         char *name;
112         char *kname;
113 };
114
115 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
116
117 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)                                          \
118 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {                 \
119         .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),            \
120         .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),                   \
121 };                                                                                      \
122 static struct rcu_tasks rt_name =                                                       \
123 {                                                                                       \
124         .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),                                \
125         .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),                 \
126         .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),                  \
127         .gp_func = gp,                                                                  \
128         .call_func = call,                                                              \
129         .rtpcpu = &rt_name ## __percpu,                                                 \
130         .name = n,                                                                      \
131         .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),                           \
132         .percpu_enqueue_lim = 1,                                                        \
133         .percpu_dequeue_lim = 1,                                                        \
134         .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),                \
135         .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,                             \
136         .kname = #rt_name,                                                              \
137 }
138
139 /* Track exiting tasks in order to allow them to be waited for. */
140 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
141
142 /* Avoid IPIing CPUs early in the grace period. */
143 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
144 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
145 module_param(rcu_task_ipi_delay, int, 0644);
146
147 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
148 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
149 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
150 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
151 module_param(rcu_task_stall_timeout, int, 0644);
152 #define RCU_TASK_STALL_INFO (HZ * 10)
153 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
154 module_param(rcu_task_stall_info, int, 0644);
155 static int rcu_task_stall_info_mult __read_mostly = 3;
156 module_param(rcu_task_stall_info_mult, int, 0444);
157
158 static int rcu_task_enqueue_lim __read_mostly = -1;
159 module_param(rcu_task_enqueue_lim, int, 0444);
160
161 static bool rcu_task_cb_adjust;
162 static int rcu_task_contend_lim __read_mostly = 100;
163 module_param(rcu_task_contend_lim, int, 0444);
164 static int rcu_task_collapse_lim __read_mostly = 10;
165 module_param(rcu_task_collapse_lim, int, 0444);
166
167 /* RCU tasks grace-period state for debugging. */
168 #define RTGS_INIT                0
169 #define RTGS_WAIT_WAIT_CBS       1
170 #define RTGS_WAIT_GP             2
171 #define RTGS_PRE_WAIT_GP         3
172 #define RTGS_SCAN_TASKLIST       4
173 #define RTGS_POST_SCAN_TASKLIST  5
174 #define RTGS_WAIT_SCAN_HOLDOUTS  6
175 #define RTGS_SCAN_HOLDOUTS       7
176 #define RTGS_POST_GP             8
177 #define RTGS_WAIT_READERS        9
178 #define RTGS_INVOKE_CBS         10
179 #define RTGS_WAIT_CBS           11
180 #ifndef CONFIG_TINY_RCU
181 static const char * const rcu_tasks_gp_state_names[] = {
182         "RTGS_INIT",
183         "RTGS_WAIT_WAIT_CBS",
184         "RTGS_WAIT_GP",
185         "RTGS_PRE_WAIT_GP",
186         "RTGS_SCAN_TASKLIST",
187         "RTGS_POST_SCAN_TASKLIST",
188         "RTGS_WAIT_SCAN_HOLDOUTS",
189         "RTGS_SCAN_HOLDOUTS",
190         "RTGS_POST_GP",
191         "RTGS_WAIT_READERS",
192         "RTGS_INVOKE_CBS",
193         "RTGS_WAIT_CBS",
194 };
195 #endif /* #ifndef CONFIG_TINY_RCU */
196
197 ////////////////////////////////////////////////////////////////////////
198 //
199 // Generic code.
200
201 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
202
203 /* Record grace-period phase and time. */
204 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
205 {
206         rtp->gp_state = newstate;
207         rtp->gp_jiffies = jiffies;
208 }
209
210 #ifndef CONFIG_TINY_RCU
211 /* Return state name. */
212 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
213 {
214         int i = data_race(rtp->gp_state); // Let KCSAN detect update races
215         int j = READ_ONCE(i); // Prevent the compiler from reading twice
216
217         if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
218                 return "???";
219         return rcu_tasks_gp_state_names[j];
220 }
221 #endif /* #ifndef CONFIG_TINY_RCU */
222
223 // Initialize per-CPU callback lists for the specified flavor of
224 // Tasks RCU.
225 static void cblist_init_generic(struct rcu_tasks *rtp)
226 {
227         int cpu;
228         unsigned long flags;
229         int lim;
230         int shift;
231
232         raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
233         if (rcu_task_enqueue_lim < 0) {
234                 rcu_task_enqueue_lim = 1;
235                 rcu_task_cb_adjust = true;
236                 pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
237         } else if (rcu_task_enqueue_lim == 0) {
238                 rcu_task_enqueue_lim = 1;
239         }
240         lim = rcu_task_enqueue_lim;
241
242         if (lim > nr_cpu_ids)
243                 lim = nr_cpu_ids;
244         shift = ilog2(nr_cpu_ids / lim);
245         if (((nr_cpu_ids - 1) >> shift) >= lim)
246                 shift++;
247         WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
248         WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
249         smp_store_release(&rtp->percpu_enqueue_lim, lim);
250         for_each_possible_cpu(cpu) {
251                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
252
253                 WARN_ON_ONCE(!rtpcp);
254                 if (cpu)
255                         raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
256                 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
257                 if (rcu_segcblist_empty(&rtpcp->cblist))
258                         rcu_segcblist_init(&rtpcp->cblist);
259                 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
260                 rtpcp->cpu = cpu;
261                 rtpcp->rtpp = rtp;
262                 if (!rtpcp->rtp_blkd_tasks.next)
263                         INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
264                 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
265         }
266         raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
267         pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
268 }
269
270 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
271 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
272 {
273         struct rcu_tasks *rtp;
274         struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
275
276         rtp = rtpcp->rtpp;
277         rcuwait_wake_up(&rtp->cbs_wait);
278 }
279
280 // Enqueue a callback for the specified flavor of Tasks RCU.
281 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
282                                    struct rcu_tasks *rtp)
283 {
284         int chosen_cpu;
285         unsigned long flags;
286         int ideal_cpu;
287         unsigned long j;
288         bool needadjust = false;
289         bool needwake;
290         struct rcu_tasks_percpu *rtpcp;
291
292         rhp->next = NULL;
293         rhp->func = func;
294         local_irq_save(flags);
295         rcu_read_lock();
296         ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
297         chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
298         rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
299         if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
300                 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
301                 j = jiffies;
302                 if (rtpcp->rtp_jiffies != j) {
303                         rtpcp->rtp_jiffies = j;
304                         rtpcp->rtp_n_lock_retries = 0;
305                 }
306                 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
307                     READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
308                         needadjust = true;  // Defer adjustment to avoid deadlock.
309         }
310         if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
311                 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
312                 cblist_init_generic(rtp);
313                 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
314         }
315         needwake = rcu_segcblist_empty(&rtpcp->cblist);
316         rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
317         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
318         if (unlikely(needadjust)) {
319                 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
320                 if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
321                         WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
322                         WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
323                         smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
324                         pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
325                 }
326                 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
327         }
328         rcu_read_unlock();
329         /* We can't create the thread unless interrupts are enabled. */
330         if (needwake && READ_ONCE(rtp->kthread_ptr))
331                 irq_work_queue(&rtpcp->rtp_irq_work);
332 }
333
334 // RCU callback function for rcu_barrier_tasks_generic().
335 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
336 {
337         struct rcu_tasks *rtp;
338         struct rcu_tasks_percpu *rtpcp;
339
340         rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
341         rtp = rtpcp->rtpp;
342         if (atomic_dec_and_test(&rtp->barrier_q_count))
343                 complete(&rtp->barrier_q_completion);
344 }
345
346 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
347 // Operates in a manner similar to rcu_barrier().
348 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
349 {
350         int cpu;
351         unsigned long flags;
352         struct rcu_tasks_percpu *rtpcp;
353         unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
354
355         mutex_lock(&rtp->barrier_q_mutex);
356         if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
357                 smp_mb();
358                 mutex_unlock(&rtp->barrier_q_mutex);
359                 return;
360         }
361         rcu_seq_start(&rtp->barrier_q_seq);
362         init_completion(&rtp->barrier_q_completion);
363         atomic_set(&rtp->barrier_q_count, 2);
364         for_each_possible_cpu(cpu) {
365                 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
366                         break;
367                 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
368                 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
369                 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
370                 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
371                         atomic_inc(&rtp->barrier_q_count);
372                 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
373         }
374         if (atomic_sub_and_test(2, &rtp->barrier_q_count))
375                 complete(&rtp->barrier_q_completion);
376         wait_for_completion(&rtp->barrier_q_completion);
377         rcu_seq_end(&rtp->barrier_q_seq);
378         mutex_unlock(&rtp->barrier_q_mutex);
379 }
380
381 // Advance callbacks and indicate whether either a grace period or
382 // callback invocation is needed.
383 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
384 {
385         int cpu;
386         unsigned long flags;
387         long n;
388         long ncbs = 0;
389         long ncbsnz = 0;
390         int needgpcb = 0;
391
392         for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
393                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
394
395                 /* Advance and accelerate any new callbacks. */
396                 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
397                         continue;
398                 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
399                 // Should we shrink down to a single callback queue?
400                 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
401                 if (n) {
402                         ncbs += n;
403                         if (cpu > 0)
404                                 ncbsnz += n;
405                 }
406                 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
407                 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
408                 if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
409                         needgpcb |= 0x3;
410                 if (!rcu_segcblist_empty(&rtpcp->cblist))
411                         needgpcb |= 0x1;
412                 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
413         }
414
415         // Shrink down to a single callback queue if appropriate.
416         // This is done in two stages: (1) If there are no more than
417         // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
418         // CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
419         // if there has not been an increase in callbacks, limit dequeuing
420         // to CPU 0.  Note the matching RCU read-side critical section in
421         // call_rcu_tasks_generic().
422         if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
423                 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
424                 if (rtp->percpu_enqueue_lim > 1) {
425                         WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
426                         smp_store_release(&rtp->percpu_enqueue_lim, 1);
427                         rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
428                         pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
429                 }
430                 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
431         }
432         if (rcu_task_cb_adjust && !ncbsnz &&
433             poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
434                 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
435                 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
436                         WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
437                         pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
438                 }
439                 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
440                         struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
441
442                         WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
443                 }
444                 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
445         }
446
447         return needgpcb;
448 }
449
450 // Advance callbacks and invoke any that are ready.
451 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
452 {
453         int cpu;
454         int cpunext;
455         unsigned long flags;
456         int len;
457         struct rcu_head *rhp;
458         struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
459         struct rcu_tasks_percpu *rtpcp_next;
460
461         cpu = rtpcp->cpu;
462         cpunext = cpu * 2 + 1;
463         if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
464                 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
465                 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
466                 cpunext++;
467                 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
468                         rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
469                         queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
470                 }
471         }
472
473         if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
474                 return;
475         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
476         rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
477         rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
478         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
479         len = rcl.len;
480         for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
481                 local_bh_disable();
482                 rhp->func(rhp);
483                 local_bh_enable();
484                 cond_resched();
485         }
486         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
487         rcu_segcblist_add_len(&rtpcp->cblist, -len);
488         (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
489         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
490 }
491
492 // Workqueue flood to advance callbacks and invoke any that are ready.
493 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
494 {
495         struct rcu_tasks *rtp;
496         struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
497
498         rtp = rtpcp->rtpp;
499         rcu_tasks_invoke_cbs(rtp, rtpcp);
500 }
501
502 // Wait for one grace period.
503 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
504 {
505         int needgpcb;
506
507         mutex_lock(&rtp->tasks_gp_mutex);
508
509         // If there were none, wait a bit and start over.
510         if (unlikely(midboot)) {
511                 needgpcb = 0x2;
512         } else {
513                 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
514                 rcuwait_wait_event(&rtp->cbs_wait,
515                                    (needgpcb = rcu_tasks_need_gpcb(rtp)),
516                                    TASK_IDLE);
517         }
518
519         if (needgpcb & 0x2) {
520                 // Wait for one grace period.
521                 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
522                 rtp->gp_start = jiffies;
523                 rcu_seq_start(&rtp->tasks_gp_seq);
524                 rtp->gp_func(rtp);
525                 rcu_seq_end(&rtp->tasks_gp_seq);
526         }
527
528         // Invoke callbacks.
529         set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
530         rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
531         mutex_unlock(&rtp->tasks_gp_mutex);
532 }
533
534 // RCU-tasks kthread that detects grace periods and invokes callbacks.
535 static int __noreturn rcu_tasks_kthread(void *arg)
536 {
537         struct rcu_tasks *rtp = arg;
538
539         /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
540         housekeeping_affine(current, HK_TYPE_RCU);
541         WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
542
543         /*
544          * Each pass through the following loop makes one check for
545          * newly arrived callbacks, and, if there are some, waits for
546          * one RCU-tasks grace period and then invokes the callbacks.
547          * This loop is terminated by the system going down.  ;-)
548          */
549         for (;;) {
550                 // Wait for one grace period and invoke any callbacks
551                 // that are ready.
552                 rcu_tasks_one_gp(rtp, false);
553
554                 // Paranoid sleep to keep this from entering a tight loop.
555                 schedule_timeout_idle(rtp->gp_sleep);
556         }
557 }
558
559 // Wait for a grace period for the specified flavor of Tasks RCU.
560 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
561 {
562         /* Complain if the scheduler has not started.  */
563         WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
564                          "synchronize_rcu_tasks called too soon");
565
566         // If the grace-period kthread is running, use it.
567         if (READ_ONCE(rtp->kthread_ptr)) {
568                 wait_rcu_gp(rtp->call_func);
569                 return;
570         }
571         rcu_tasks_one_gp(rtp, true);
572 }
573
574 /* Spawn RCU-tasks grace-period kthread. */
575 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
576 {
577         struct task_struct *t;
578
579         t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
580         if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
581                 return;
582         smp_mb(); /* Ensure others see full kthread. */
583 }
584
585 #ifndef CONFIG_TINY_RCU
586
587 /*
588  * Print any non-default Tasks RCU settings.
589  */
590 static void __init rcu_tasks_bootup_oddness(void)
591 {
592 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
593         int rtsimc;
594
595         if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
596                 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
597         rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
598         if (rtsimc != rcu_task_stall_info_mult) {
599                 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
600                 rcu_task_stall_info_mult = rtsimc;
601         }
602 #endif /* #ifdef CONFIG_TASKS_RCU */
603 #ifdef CONFIG_TASKS_RCU
604         pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
605 #endif /* #ifdef CONFIG_TASKS_RCU */
606 #ifdef CONFIG_TASKS_RUDE_RCU
607         pr_info("\tRude variant of Tasks RCU enabled.\n");
608 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
609 #ifdef CONFIG_TASKS_TRACE_RCU
610         pr_info("\tTracing variant of Tasks RCU enabled.\n");
611 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
612 }
613
614 #endif /* #ifndef CONFIG_TINY_RCU */
615
616 #ifndef CONFIG_TINY_RCU
617 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
618 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
619 {
620         int cpu;
621         bool havecbs = false;
622
623         for_each_possible_cpu(cpu) {
624                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
625
626                 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
627                         havecbs = true;
628                         break;
629                 }
630         }
631         pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
632                 rtp->kname,
633                 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
634                 jiffies - data_race(rtp->gp_jiffies),
635                 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
636                 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
637                 ".k"[!!data_race(rtp->kthread_ptr)],
638                 ".C"[havecbs],
639                 s);
640 }
641 #endif // #ifndef CONFIG_TINY_RCU
642
643 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
644
645 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
646
647 ////////////////////////////////////////////////////////////////////////
648 //
649 // Shared code between task-list-scanning variants of Tasks RCU.
650
651 /* Wait for one RCU-tasks grace period. */
652 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
653 {
654         struct task_struct *g;
655         int fract;
656         LIST_HEAD(holdouts);
657         unsigned long j;
658         unsigned long lastinfo;
659         unsigned long lastreport;
660         bool reported = false;
661         int rtsi;
662         struct task_struct *t;
663
664         set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
665         rtp->pregp_func(&holdouts);
666
667         /*
668          * There were callbacks, so we need to wait for an RCU-tasks
669          * grace period.  Start off by scanning the task list for tasks
670          * that are not already voluntarily blocked.  Mark these tasks
671          * and make a list of them in holdouts.
672          */
673         set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
674         if (rtp->pertask_func) {
675                 rcu_read_lock();
676                 for_each_process_thread(g, t)
677                         rtp->pertask_func(t, &holdouts);
678                 rcu_read_unlock();
679         }
680
681         set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
682         rtp->postscan_func(&holdouts);
683
684         /*
685          * Each pass through the following loop scans the list of holdout
686          * tasks, removing any that are no longer holdouts.  When the list
687          * is empty, we are done.
688          */
689         lastreport = jiffies;
690         lastinfo = lastreport;
691         rtsi = READ_ONCE(rcu_task_stall_info);
692
693         // Start off with initial wait and slowly back off to 1 HZ wait.
694         fract = rtp->init_fract;
695
696         while (!list_empty(&holdouts)) {
697                 ktime_t exp;
698                 bool firstreport;
699                 bool needreport;
700                 int rtst;
701
702                 // Slowly back off waiting for holdouts
703                 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
704                 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
705                         schedule_timeout_idle(fract);
706                 } else {
707                         exp = jiffies_to_nsecs(fract);
708                         __set_current_state(TASK_IDLE);
709                         schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
710                 }
711
712                 if (fract < HZ)
713                         fract++;
714
715                 rtst = READ_ONCE(rcu_task_stall_timeout);
716                 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
717                 if (needreport) {
718                         lastreport = jiffies;
719                         reported = true;
720                 }
721                 firstreport = true;
722                 WARN_ON(signal_pending(current));
723                 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
724                 rtp->holdouts_func(&holdouts, needreport, &firstreport);
725
726                 // Print pre-stall informational messages if needed.
727                 j = jiffies;
728                 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
729                         lastinfo = j;
730                         rtsi = rtsi * rcu_task_stall_info_mult;
731                         pr_info("%s: %s grace period %lu is %lu jiffies old.\n",
732                                 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
733                 }
734         }
735
736         set_tasks_gp_state(rtp, RTGS_POST_GP);
737         rtp->postgp_func(rtp);
738 }
739
740 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
741
742 #ifdef CONFIG_TASKS_RCU
743
744 ////////////////////////////////////////////////////////////////////////
745 //
746 // Simple variant of RCU whose quiescent states are voluntary context
747 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
748 // As such, grace periods can take one good long time.  There are no
749 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
750 // because this implementation is intended to get the system into a safe
751 // state for some of the manipulations involved in tracing and the like.
752 // Finally, this implementation does not support high call_rcu_tasks()
753 // rates from multiple CPUs.  If this is required, per-CPU callback lists
754 // will be needed.
755 //
756 // The implementation uses rcu_tasks_wait_gp(), which relies on function
757 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
758 // function sets these function pointers up so that rcu_tasks_wait_gp()
759 // invokes these functions in this order:
760 //
761 // rcu_tasks_pregp_step():
762 //      Invokes synchronize_rcu() in order to wait for all in-flight
763 //      t->on_rq and t->nvcsw transitions to complete.  This works because
764 //      all such transitions are carried out with interrupts disabled.
765 // rcu_tasks_pertask(), invoked on every non-idle task:
766 //      For every runnable non-idle task other than the current one, use
767 //      get_task_struct() to pin down that task, snapshot that task's
768 //      number of voluntary context switches, and add that task to the
769 //      holdout list.
770 // rcu_tasks_postscan():
771 //      Invoke synchronize_srcu() to ensure that all tasks that were
772 //      in the process of exiting (and which thus might not know to
773 //      synchronize with this RCU Tasks grace period) have completed
774 //      exiting.
775 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
776 //      Scans the holdout list, attempting to identify a quiescent state
777 //      for each task on the list.  If there is a quiescent state, the
778 //      corresponding task is removed from the holdout list.
779 // rcu_tasks_postgp():
780 //      Invokes synchronize_rcu() in order to ensure that all prior
781 //      t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
782 //      to have happened before the end of this RCU Tasks grace period.
783 //      Again, this works because all such transitions are carried out
784 //      with interrupts disabled.
785 //
786 // For each exiting task, the exit_tasks_rcu_start() and
787 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
788 // read-side critical sections waited for by rcu_tasks_postscan().
789 //
790 // Pre-grace-period update-side code is ordered before the grace
791 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
792 // is ordered before the grace period via synchronize_rcu() call in
793 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
794 // disabling.
795
796 /* Pre-grace-period preparation. */
797 static void rcu_tasks_pregp_step(struct list_head *hop)
798 {
799         /*
800          * Wait for all pre-existing t->on_rq and t->nvcsw transitions
801          * to complete.  Invoking synchronize_rcu() suffices because all
802          * these transitions occur with interrupts disabled.  Without this
803          * synchronize_rcu(), a read-side critical section that started
804          * before the grace period might be incorrectly seen as having
805          * started after the grace period.
806          *
807          * This synchronize_rcu() also dispenses with the need for a
808          * memory barrier on the first store to t->rcu_tasks_holdout,
809          * as it forces the store to happen after the beginning of the
810          * grace period.
811          */
812         synchronize_rcu();
813 }
814
815 /* Per-task initial processing. */
816 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
817 {
818         if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
819                 get_task_struct(t);
820                 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
821                 WRITE_ONCE(t->rcu_tasks_holdout, true);
822                 list_add(&t->rcu_tasks_holdout_list, hop);
823         }
824 }
825
826 /* Processing between scanning taskslist and draining the holdout list. */
827 static void rcu_tasks_postscan(struct list_head *hop)
828 {
829         /*
830          * Wait for tasks that are in the process of exiting.  This
831          * does only part of the job, ensuring that all tasks that were
832          * previously exiting reach the point where they have disabled
833          * preemption, allowing the later synchronize_rcu() to finish
834          * the job.
835          */
836         synchronize_srcu(&tasks_rcu_exit_srcu);
837 }
838
839 /* See if tasks are still holding out, complain if so. */
840 static void check_holdout_task(struct task_struct *t,
841                                bool needreport, bool *firstreport)
842 {
843         int cpu;
844
845         if (!READ_ONCE(t->rcu_tasks_holdout) ||
846             t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
847             !READ_ONCE(t->on_rq) ||
848             (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
849              !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
850                 WRITE_ONCE(t->rcu_tasks_holdout, false);
851                 list_del_init(&t->rcu_tasks_holdout_list);
852                 put_task_struct(t);
853                 return;
854         }
855         rcu_request_urgent_qs_task(t);
856         if (!needreport)
857                 return;
858         if (*firstreport) {
859                 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
860                 *firstreport = false;
861         }
862         cpu = task_cpu(t);
863         pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
864                  t, ".I"[is_idle_task(t)],
865                  "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
866                  t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
867                  t->rcu_tasks_idle_cpu, cpu);
868         sched_show_task(t);
869 }
870
871 /* Scan the holdout lists for tasks no longer holding out. */
872 static void check_all_holdout_tasks(struct list_head *hop,
873                                     bool needreport, bool *firstreport)
874 {
875         struct task_struct *t, *t1;
876
877         list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
878                 check_holdout_task(t, needreport, firstreport);
879                 cond_resched();
880         }
881 }
882
883 /* Finish off the Tasks-RCU grace period. */
884 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
885 {
886         /*
887          * Because ->on_rq and ->nvcsw are not guaranteed to have a full
888          * memory barriers prior to them in the schedule() path, memory
889          * reordering on other CPUs could cause their RCU-tasks read-side
890          * critical sections to extend past the end of the grace period.
891          * However, because these ->nvcsw updates are carried out with
892          * interrupts disabled, we can use synchronize_rcu() to force the
893          * needed ordering on all such CPUs.
894          *
895          * This synchronize_rcu() also confines all ->rcu_tasks_holdout
896          * accesses to be within the grace period, avoiding the need for
897          * memory barriers for ->rcu_tasks_holdout accesses.
898          *
899          * In addition, this synchronize_rcu() waits for exiting tasks
900          * to complete their final preempt_disable() region of execution,
901          * cleaning up after the synchronize_srcu() above.
902          */
903         synchronize_rcu();
904 }
905
906 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
907 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
908
909 /**
910  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
911  * @rhp: structure to be used for queueing the RCU updates.
912  * @func: actual callback function to be invoked after the grace period
913  *
914  * The callback function will be invoked some time after a full grace
915  * period elapses, in other words after all currently executing RCU
916  * read-side critical sections have completed. call_rcu_tasks() assumes
917  * that the read-side critical sections end at a voluntary context
918  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
919  * or transition to usermode execution.  As such, there are no read-side
920  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
921  * this primitive is intended to determine that all tasks have passed
922  * through a safe state, not so much for data-structure synchronization.
923  *
924  * See the description of call_rcu() for more detailed information on
925  * memory ordering guarantees.
926  */
927 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
928 {
929         call_rcu_tasks_generic(rhp, func, &rcu_tasks);
930 }
931 EXPORT_SYMBOL_GPL(call_rcu_tasks);
932
933 /**
934  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
935  *
936  * Control will return to the caller some time after a full rcu-tasks
937  * grace period has elapsed, in other words after all currently
938  * executing rcu-tasks read-side critical sections have elapsed.  These
939  * read-side critical sections are delimited by calls to schedule(),
940  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
941  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
942  *
943  * This is a very specialized primitive, intended only for a few uses in
944  * tracing and other situations requiring manipulation of function
945  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
946  * is not (yet) intended for heavy use from multiple CPUs.
947  *
948  * See the description of synchronize_rcu() for more detailed information
949  * on memory ordering guarantees.
950  */
951 void synchronize_rcu_tasks(void)
952 {
953         synchronize_rcu_tasks_generic(&rcu_tasks);
954 }
955 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
956
957 /**
958  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
959  *
960  * Although the current implementation is guaranteed to wait, it is not
961  * obligated to, for example, if there are no pending callbacks.
962  */
963 void rcu_barrier_tasks(void)
964 {
965         rcu_barrier_tasks_generic(&rcu_tasks);
966 }
967 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
968
969 static int __init rcu_spawn_tasks_kthread(void)
970 {
971         cblist_init_generic(&rcu_tasks);
972         rcu_tasks.gp_sleep = HZ / 10;
973         rcu_tasks.init_fract = HZ / 10;
974         rcu_tasks.pregp_func = rcu_tasks_pregp_step;
975         rcu_tasks.pertask_func = rcu_tasks_pertask;
976         rcu_tasks.postscan_func = rcu_tasks_postscan;
977         rcu_tasks.holdouts_func = check_all_holdout_tasks;
978         rcu_tasks.postgp_func = rcu_tasks_postgp;
979         rcu_spawn_tasks_kthread_generic(&rcu_tasks);
980         return 0;
981 }
982
983 #if !defined(CONFIG_TINY_RCU)
984 void show_rcu_tasks_classic_gp_kthread(void)
985 {
986         show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
987 }
988 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
989 #endif // !defined(CONFIG_TINY_RCU)
990
991 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
992 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
993 {
994         preempt_disable();
995         current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
996         preempt_enable();
997 }
998
999 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
1000 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
1001 {
1002         struct task_struct *t = current;
1003
1004         preempt_disable();
1005         __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
1006         preempt_enable();
1007         exit_tasks_rcu_finish_trace(t);
1008 }
1009
1010 #else /* #ifdef CONFIG_TASKS_RCU */
1011 void exit_tasks_rcu_start(void) { }
1012 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1013 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1014
1015 #ifdef CONFIG_TASKS_RUDE_RCU
1016
1017 ////////////////////////////////////////////////////////////////////////
1018 //
1019 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1020 // passing an empty function to schedule_on_each_cpu().  This approach
1021 // provides an asynchronous call_rcu_tasks_rude() API and batching of
1022 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1023 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1024 // and induces otherwise unnecessary context switches on all online CPUs,
1025 // whether idle or not.
1026 //
1027 // Callback handling is provided by the rcu_tasks_kthread() function.
1028 //
1029 // Ordering is provided by the scheduler's context-switch code.
1030
1031 // Empty function to allow workqueues to force a context switch.
1032 static void rcu_tasks_be_rude(struct work_struct *work)
1033 {
1034 }
1035
1036 // Wait for one rude RCU-tasks grace period.
1037 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1038 {
1039         if (num_online_cpus() <= 1)
1040                 return; // Fastpath for only one CPU.
1041
1042         rtp->n_ipis += cpumask_weight(cpu_online_mask);
1043         schedule_on_each_cpu(rcu_tasks_be_rude);
1044 }
1045
1046 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1047 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1048                  "RCU Tasks Rude");
1049
1050 /**
1051  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1052  * @rhp: structure to be used for queueing the RCU updates.
1053  * @func: actual callback function to be invoked after the grace period
1054  *
1055  * The callback function will be invoked some time after a full grace
1056  * period elapses, in other words after all currently executing RCU
1057  * read-side critical sections have completed. call_rcu_tasks_rude()
1058  * assumes that the read-side critical sections end at context switch,
1059  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1060  * usermode execution is schedulable). As such, there are no read-side
1061  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1062  * this primitive is intended to determine that all tasks have passed
1063  * through a safe state, not so much for data-structure synchronization.
1064  *
1065  * See the description of call_rcu() for more detailed information on
1066  * memory ordering guarantees.
1067  */
1068 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1069 {
1070         call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1071 }
1072 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1073
1074 /**
1075  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1076  *
1077  * Control will return to the caller some time after a rude rcu-tasks
1078  * grace period has elapsed, in other words after all currently
1079  * executing rcu-tasks read-side critical sections have elapsed.  These
1080  * read-side critical sections are delimited by calls to schedule(),
1081  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1082  * context), and (in theory, anyway) cond_resched().
1083  *
1084  * This is a very specialized primitive, intended only for a few uses in
1085  * tracing and other situations requiring manipulation of function preambles
1086  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1087  * (yet) intended for heavy use from multiple CPUs.
1088  *
1089  * See the description of synchronize_rcu() for more detailed information
1090  * on memory ordering guarantees.
1091  */
1092 void synchronize_rcu_tasks_rude(void)
1093 {
1094         synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1095 }
1096 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1097
1098 /**
1099  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1100  *
1101  * Although the current implementation is guaranteed to wait, it is not
1102  * obligated to, for example, if there are no pending callbacks.
1103  */
1104 void rcu_barrier_tasks_rude(void)
1105 {
1106         rcu_barrier_tasks_generic(&rcu_tasks_rude);
1107 }
1108 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1109
1110 static int __init rcu_spawn_tasks_rude_kthread(void)
1111 {
1112         cblist_init_generic(&rcu_tasks_rude);
1113         rcu_tasks_rude.gp_sleep = HZ / 10;
1114         rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1115         return 0;
1116 }
1117
1118 #if !defined(CONFIG_TINY_RCU)
1119 void show_rcu_tasks_rude_gp_kthread(void)
1120 {
1121         show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1122 }
1123 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1124 #endif // !defined(CONFIG_TINY_RCU)
1125 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1126
1127 ////////////////////////////////////////////////////////////////////////
1128 //
1129 // Tracing variant of Tasks RCU.  This variant is designed to be used
1130 // to protect tracing hooks, including those of BPF.  This variant
1131 // therefore:
1132 //
1133 // 1.   Has explicit read-side markers to allow finite grace periods
1134 //      in the face of in-kernel loops for PREEMPT=n builds.
1135 //
1136 // 2.   Protects code in the idle loop, exception entry/exit, and
1137 //      CPU-hotplug code paths, similar to the capabilities of SRCU.
1138 //
1139 // 3.   Avoids expensive read-side instructions, having overhead similar
1140 //      to that of Preemptible RCU.
1141 //
1142 // There are of course downsides.  For example, the grace-period code
1143 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1144 // in nohz_full userspace.  If needed, these downsides can be at least
1145 // partially remedied.
1146 //
1147 // Perhaps most important, this variant of RCU does not affect the vanilla
1148 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1149 // readers can operate from idle, offline, and exception entry/exit in no
1150 // way allows rcu_preempt and rcu_sched readers to also do so.
1151 //
1152 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1153 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1154 // function sets these function pointers up so that rcu_tasks_wait_gp()
1155 // invokes these functions in this order:
1156 //
1157 // rcu_tasks_trace_pregp_step():
1158 //      Disables CPU hotplug, adds all currently executing tasks to the
1159 //      holdout list, then checks the state of all tasks that blocked
1160 //      or were preempted within their current RCU Tasks Trace read-side
1161 //      critical section, adding them to the holdout list if appropriate.
1162 //      Finally, this function re-enables CPU hotplug.
1163 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1164 // rcu_tasks_trace_postscan():
1165 //      Invokes synchronize_rcu() to wait for late-stage exiting tasks
1166 //      to finish exiting.
1167 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1168 //      Scans the holdout list, attempting to identify a quiescent state
1169 //      for each task on the list.  If there is a quiescent state, the
1170 //      corresponding task is removed from the holdout list.  Once this
1171 //      list is empty, the grace period has completed.
1172 // rcu_tasks_trace_postgp():
1173 //      Provides the needed full memory barrier and does debug checks.
1174 //
1175 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1176 //
1177 // Pre-grace-period update-side code is ordered before the grace period
1178 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1179 // read-side code is ordered before the grace period by atomic operations
1180 // on .b.need_qs flag of each task involved in this process, or by scheduler
1181 // context-switch ordering (for locked-down non-running readers).
1182
1183 // The lockdep state must be outside of #ifdef to be useful.
1184 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1185 static struct lock_class_key rcu_lock_trace_key;
1186 struct lockdep_map rcu_trace_lock_map =
1187         STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1188 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1189 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1190
1191 #ifdef CONFIG_TASKS_TRACE_RCU
1192
1193 // Record outstanding IPIs to each CPU.  No point in sending two...
1194 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1195
1196 // The number of detections of task quiescent state relying on
1197 // heavyweight readers executing explicit memory barriers.
1198 static unsigned long n_heavy_reader_attempts;
1199 static unsigned long n_heavy_reader_updates;
1200 static unsigned long n_heavy_reader_ofl_updates;
1201 static unsigned long n_trc_holdouts;
1202
1203 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1204 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1205                  "RCU Tasks Trace");
1206
1207 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1208 static u8 rcu_ld_need_qs(struct task_struct *t)
1209 {
1210         smp_mb(); // Enforce full grace-period ordering.
1211         return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1212 }
1213
1214 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1215 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1216 {
1217         smp_store_release(&t->trc_reader_special.b.need_qs, v);
1218         smp_mb(); // Enforce full grace-period ordering.
1219 }
1220
1221 /*
1222  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1223  * the four-byte operand-size restriction of some platforms.
1224  * Returns the old value, which is often ignored.
1225  */
1226 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1227 {
1228         union rcu_special ret;
1229         union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1230         union rcu_special trs_new = trs_old;
1231
1232         if (trs_old.b.need_qs != old)
1233                 return trs_old.b.need_qs;
1234         trs_new.b.need_qs = new;
1235         ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1236         return ret.b.need_qs;
1237 }
1238 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1239
1240 /*
1241  * If we are the last reader, signal the grace-period kthread.
1242  * Also remove from the per-CPU list of blocked tasks.
1243  */
1244 void rcu_read_unlock_trace_special(struct task_struct *t)
1245 {
1246         unsigned long flags;
1247         struct rcu_tasks_percpu *rtpcp;
1248         union rcu_special trs;
1249
1250         // Open-coded full-word version of rcu_ld_need_qs().
1251         smp_mb(); // Enforce full grace-period ordering.
1252         trs = smp_load_acquire(&t->trc_reader_special);
1253
1254         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1255                 smp_mb(); // Pairs with update-side barriers.
1256         // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1257         if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1258                 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1259                                                        TRC_NEED_QS_CHECKED);
1260
1261                 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1262         }
1263         if (trs.b.blocked) {
1264                 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1265                 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1266                 list_del_init(&t->trc_blkd_node);
1267                 WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1268                 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1269         }
1270         WRITE_ONCE(t->trc_reader_nesting, 0);
1271 }
1272 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1273
1274 /* Add a newly blocked reader task to its CPU's list. */
1275 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1276 {
1277         unsigned long flags;
1278         struct rcu_tasks_percpu *rtpcp;
1279
1280         local_irq_save(flags);
1281         rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1282         raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1283         t->trc_blkd_cpu = smp_processor_id();
1284         if (!rtpcp->rtp_blkd_tasks.next)
1285                 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1286         list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1287         WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1288         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1289 }
1290 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1291
1292 /* Add a task to the holdout list, if it is not already on the list. */
1293 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1294 {
1295         if (list_empty(&t->trc_holdout_list)) {
1296                 get_task_struct(t);
1297                 list_add(&t->trc_holdout_list, bhp);
1298                 n_trc_holdouts++;
1299         }
1300 }
1301
1302 /* Remove a task from the holdout list, if it is in fact present. */
1303 static void trc_del_holdout(struct task_struct *t)
1304 {
1305         if (!list_empty(&t->trc_holdout_list)) {
1306                 list_del_init(&t->trc_holdout_list);
1307                 put_task_struct(t);
1308                 n_trc_holdouts--;
1309         }
1310 }
1311
1312 /* IPI handler to check task state. */
1313 static void trc_read_check_handler(void *t_in)
1314 {
1315         int nesting;
1316         struct task_struct *t = current;
1317         struct task_struct *texp = t_in;
1318
1319         // If the task is no longer running on this CPU, leave.
1320         if (unlikely(texp != t))
1321                 goto reset_ipi; // Already on holdout list, so will check later.
1322
1323         // If the task is not in a read-side critical section, and
1324         // if this is the last reader, awaken the grace-period kthread.
1325         nesting = READ_ONCE(t->trc_reader_nesting);
1326         if (likely(!nesting)) {
1327                 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1328                 goto reset_ipi;
1329         }
1330         // If we are racing with an rcu_read_unlock_trace(), try again later.
1331         if (unlikely(nesting < 0))
1332                 goto reset_ipi;
1333
1334         // Get here if the task is in a read-side critical section.
1335         // Set its state so that it will update state for the grace-period
1336         // kthread upon exit from that critical section.
1337         rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1338
1339 reset_ipi:
1340         // Allow future IPIs to be sent on CPU and for task.
1341         // Also order this IPI handler against any later manipulations of
1342         // the intended task.
1343         smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1344         smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1345 }
1346
1347 /* Callback function for scheduler to check locked-down task.  */
1348 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1349 {
1350         struct list_head *bhp = bhp_in;
1351         int cpu = task_cpu(t);
1352         int nesting;
1353         bool ofl = cpu_is_offline(cpu);
1354
1355         if (task_curr(t) && !ofl) {
1356                 // If no chance of heavyweight readers, do it the hard way.
1357                 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1358                         return -EINVAL;
1359
1360                 // If heavyweight readers are enabled on the remote task,
1361                 // we can inspect its state despite its currently running.
1362                 // However, we cannot safely change its state.
1363                 n_heavy_reader_attempts++;
1364                 // Check for "running" idle tasks on offline CPUs.
1365                 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1366                         return -EINVAL; // No quiescent state, do it the hard way.
1367                 n_heavy_reader_updates++;
1368                 nesting = 0;
1369         } else {
1370                 // The task is not running, so C-language access is safe.
1371                 nesting = t->trc_reader_nesting;
1372                 WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t));
1373                 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1374                         n_heavy_reader_ofl_updates++;
1375         }
1376
1377         // If not exiting a read-side critical section, mark as checked
1378         // so that the grace-period kthread will remove it from the
1379         // holdout list.
1380         if (!nesting) {
1381                 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1382                 return 0;  // In QS, so done.
1383         }
1384         if (nesting < 0)
1385                 return -EINVAL; // Reader transitioning, try again later.
1386
1387         // The task is in a read-side critical section, so set up its
1388         // state so that it will update state upon exit from that critical
1389         // section.
1390         if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1391                 trc_add_holdout(t, bhp);
1392         return 0;
1393 }
1394
1395 /* Attempt to extract the state for the specified task. */
1396 static void trc_wait_for_one_reader(struct task_struct *t,
1397                                     struct list_head *bhp)
1398 {
1399         int cpu;
1400
1401         // If a previous IPI is still in flight, let it complete.
1402         if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1403                 return;
1404
1405         // The current task had better be in a quiescent state.
1406         if (t == current) {
1407                 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1408                 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1409                 return;
1410         }
1411
1412         // Attempt to nail down the task for inspection.
1413         get_task_struct(t);
1414         if (!task_call_func(t, trc_inspect_reader, bhp)) {
1415                 put_task_struct(t);
1416                 return;
1417         }
1418         put_task_struct(t);
1419
1420         // If this task is not yet on the holdout list, then we are in
1421         // an RCU read-side critical section.  Otherwise, the invocation of
1422         // trc_add_holdout() that added it to the list did the necessary
1423         // get_task_struct().  Either way, the task cannot be freed out
1424         // from under this code.
1425
1426         // If currently running, send an IPI, either way, add to list.
1427         trc_add_holdout(t, bhp);
1428         if (task_curr(t) &&
1429             time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1430                 // The task is currently running, so try IPIing it.
1431                 cpu = task_cpu(t);
1432
1433                 // If there is already an IPI outstanding, let it happen.
1434                 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1435                         return;
1436
1437                 per_cpu(trc_ipi_to_cpu, cpu) = true;
1438                 t->trc_ipi_to_cpu = cpu;
1439                 rcu_tasks_trace.n_ipis++;
1440                 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1441                         // Just in case there is some other reason for
1442                         // failure than the target CPU being offline.
1443                         WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1444                                   __func__, cpu);
1445                         rcu_tasks_trace.n_ipis_fails++;
1446                         per_cpu(trc_ipi_to_cpu, cpu) = false;
1447                         t->trc_ipi_to_cpu = -1;
1448                 }
1449         }
1450 }
1451
1452 /*
1453  * Initialize for first-round processing for the specified task.
1454  * Return false if task is NULL or already taken care of, true otherwise.
1455  */
1456 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1457 {
1458         // During early boot when there is only the one boot CPU, there
1459         // is no idle task for the other CPUs.  Also, the grace-period
1460         // kthread is always in a quiescent state.  In addition, just return
1461         // if this task is already on the list.
1462         if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1463                 return false;
1464
1465         rcu_st_need_qs(t, 0);
1466         t->trc_ipi_to_cpu = -1;
1467         return true;
1468 }
1469
1470 /* Do first-round processing for the specified task. */
1471 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1472 {
1473         if (rcu_tasks_trace_pertask_prep(t, true))
1474                 trc_wait_for_one_reader(t, hop);
1475 }
1476
1477 /* Initialize for a new RCU-tasks-trace grace period. */
1478 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1479 {
1480         LIST_HEAD(blkd_tasks);
1481         int cpu;
1482         unsigned long flags;
1483         struct rcu_tasks_percpu *rtpcp;
1484         struct task_struct *t;
1485
1486         // There shouldn't be any old IPIs, but...
1487         for_each_possible_cpu(cpu)
1488                 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1489
1490         // Disable CPU hotplug across the CPU scan for the benefit of
1491         // any IPIs that might be needed.  This also waits for all readers
1492         // in CPU-hotplug code paths.
1493         cpus_read_lock();
1494
1495         // These rcu_tasks_trace_pertask_prep() calls are serialized to
1496         // allow safe access to the hop list.
1497         for_each_online_cpu(cpu) {
1498                 rcu_read_lock();
1499                 t = cpu_curr_snapshot(cpu);
1500                 if (rcu_tasks_trace_pertask_prep(t, true))
1501                         trc_add_holdout(t, hop);
1502                 rcu_read_unlock();
1503                 cond_resched_tasks_rcu_qs();
1504         }
1505
1506         // Only after all running tasks have been accounted for is it
1507         // safe to take care of the tasks that have blocked within their
1508         // current RCU tasks trace read-side critical section.
1509         for_each_possible_cpu(cpu) {
1510                 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1511                 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1512                 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1513                 while (!list_empty(&blkd_tasks)) {
1514                         rcu_read_lock();
1515                         t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1516                         list_del_init(&t->trc_blkd_node);
1517                         list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1518                         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1519                         rcu_tasks_trace_pertask(t, hop);
1520                         rcu_read_unlock();
1521                         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1522                 }
1523                 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1524                 cond_resched_tasks_rcu_qs();
1525         }
1526
1527         // Re-enable CPU hotplug now that the holdout list is populated.
1528         cpus_read_unlock();
1529 }
1530
1531 /*
1532  * Do intermediate processing between task and holdout scans.
1533  */
1534 static void rcu_tasks_trace_postscan(struct list_head *hop)
1535 {
1536         // Wait for late-stage exiting tasks to finish exiting.
1537         // These might have passed the call to exit_tasks_rcu_finish().
1538         synchronize_rcu();
1539         // Any tasks that exit after this point will set
1540         // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1541 }
1542
1543 /* Communicate task state back to the RCU tasks trace stall warning request. */
1544 struct trc_stall_chk_rdr {
1545         int nesting;
1546         int ipi_to_cpu;
1547         u8 needqs;
1548 };
1549
1550 static int trc_check_slow_task(struct task_struct *t, void *arg)
1551 {
1552         struct trc_stall_chk_rdr *trc_rdrp = arg;
1553
1554         if (task_curr(t) && cpu_online(task_cpu(t)))
1555                 return false; // It is running, so decline to inspect it.
1556         trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1557         trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1558         trc_rdrp->needqs = rcu_ld_need_qs(t);
1559         return true;
1560 }
1561
1562 /* Show the state of a task stalling the current RCU tasks trace GP. */
1563 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1564 {
1565         int cpu;
1566         struct trc_stall_chk_rdr trc_rdr;
1567         bool is_idle_tsk = is_idle_task(t);
1568
1569         if (*firstreport) {
1570                 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1571                 *firstreport = false;
1572         }
1573         cpu = task_cpu(t);
1574         if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1575                 pr_alert("P%d: %c%c\n",
1576                          t->pid,
1577                          ".I"[t->trc_ipi_to_cpu >= 0],
1578                          ".i"[is_idle_tsk]);
1579         else
1580                 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1581                          t->pid,
1582                          ".I"[trc_rdr.ipi_to_cpu >= 0],
1583                          ".i"[is_idle_tsk],
1584                          ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1585                          ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1586                          trc_rdr.nesting,
1587                          " !CN"[trc_rdr.needqs & 0x3],
1588                          " ?"[trc_rdr.needqs > 0x3],
1589                          cpu, cpu_online(cpu) ? "" : "(offline)");
1590         sched_show_task(t);
1591 }
1592
1593 /* List stalled IPIs for RCU tasks trace. */
1594 static void show_stalled_ipi_trace(void)
1595 {
1596         int cpu;
1597
1598         for_each_possible_cpu(cpu)
1599                 if (per_cpu(trc_ipi_to_cpu, cpu))
1600                         pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1601 }
1602
1603 /* Do one scan of the holdout list. */
1604 static void check_all_holdout_tasks_trace(struct list_head *hop,
1605                                           bool needreport, bool *firstreport)
1606 {
1607         struct task_struct *g, *t;
1608
1609         // Disable CPU hotplug across the holdout list scan for IPIs.
1610         cpus_read_lock();
1611
1612         list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1613                 // If safe and needed, try to check the current task.
1614                 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1615                     !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1616                         trc_wait_for_one_reader(t, hop);
1617
1618                 // If check succeeded, remove this task from the list.
1619                 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1620                     rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1621                         trc_del_holdout(t);
1622                 else if (needreport)
1623                         show_stalled_task_trace(t, firstreport);
1624                 cond_resched_tasks_rcu_qs();
1625         }
1626
1627         // Re-enable CPU hotplug now that the holdout list scan has completed.
1628         cpus_read_unlock();
1629
1630         if (needreport) {
1631                 if (*firstreport)
1632                         pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1633                 show_stalled_ipi_trace();
1634         }
1635 }
1636
1637 static void rcu_tasks_trace_empty_fn(void *unused)
1638 {
1639 }
1640
1641 /* Wait for grace period to complete and provide ordering. */
1642 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1643 {
1644         int cpu;
1645
1646         // Wait for any lingering IPI handlers to complete.  Note that
1647         // if a CPU has gone offline or transitioned to userspace in the
1648         // meantime, all IPI handlers should have been drained beforehand.
1649         // Yes, this assumes that CPUs process IPIs in order.  If that ever
1650         // changes, there will need to be a recheck and/or timed wait.
1651         for_each_online_cpu(cpu)
1652                 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1653                         smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1654
1655         smp_mb(); // Caller's code must be ordered after wakeup.
1656                   // Pairs with pretty much every ordering primitive.
1657 }
1658
1659 /* Report any needed quiescent state for this exiting task. */
1660 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1661 {
1662         union rcu_special trs = READ_ONCE(t->trc_reader_special);
1663
1664         rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1665         WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1666         if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1667                 rcu_read_unlock_trace_special(t);
1668         else
1669                 WRITE_ONCE(t->trc_reader_nesting, 0);
1670 }
1671
1672 /**
1673  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1674  * @rhp: structure to be used for queueing the RCU updates.
1675  * @func: actual callback function to be invoked after the grace period
1676  *
1677  * The callback function will be invoked some time after a trace rcu-tasks
1678  * grace period elapses, in other words after all currently executing
1679  * trace rcu-tasks read-side critical sections have completed. These
1680  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1681  * and rcu_read_unlock_trace().
1682  *
1683  * See the description of call_rcu() for more detailed information on
1684  * memory ordering guarantees.
1685  */
1686 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1687 {
1688         call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1689 }
1690 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1691
1692 /**
1693  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1694  *
1695  * Control will return to the caller some time after a trace rcu-tasks
1696  * grace period has elapsed, in other words after all currently executing
1697  * trace rcu-tasks read-side critical sections have elapsed. These read-side
1698  * critical sections are delimited by calls to rcu_read_lock_trace()
1699  * and rcu_read_unlock_trace().
1700  *
1701  * This is a very specialized primitive, intended only for a few uses in
1702  * tracing and other situations requiring manipulation of function preambles
1703  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1704  * (yet) intended for heavy use from multiple CPUs.
1705  *
1706  * See the description of synchronize_rcu() for more detailed information
1707  * on memory ordering guarantees.
1708  */
1709 void synchronize_rcu_tasks_trace(void)
1710 {
1711         RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1712         synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1713 }
1714 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1715
1716 /**
1717  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1718  *
1719  * Although the current implementation is guaranteed to wait, it is not
1720  * obligated to, for example, if there are no pending callbacks.
1721  */
1722 void rcu_barrier_tasks_trace(void)
1723 {
1724         rcu_barrier_tasks_generic(&rcu_tasks_trace);
1725 }
1726 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1727
1728 static int __init rcu_spawn_tasks_trace_kthread(void)
1729 {
1730         cblist_init_generic(&rcu_tasks_trace);
1731         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1732                 rcu_tasks_trace.gp_sleep = HZ / 10;
1733                 rcu_tasks_trace.init_fract = HZ / 10;
1734         } else {
1735                 rcu_tasks_trace.gp_sleep = HZ / 200;
1736                 if (rcu_tasks_trace.gp_sleep <= 0)
1737                         rcu_tasks_trace.gp_sleep = 1;
1738                 rcu_tasks_trace.init_fract = HZ / 200;
1739                 if (rcu_tasks_trace.init_fract <= 0)
1740                         rcu_tasks_trace.init_fract = 1;
1741         }
1742         rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1743         rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1744         rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1745         rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1746         rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1747         return 0;
1748 }
1749
1750 #if !defined(CONFIG_TINY_RCU)
1751 void show_rcu_tasks_trace_gp_kthread(void)
1752 {
1753         char buf[64];
1754
1755         sprintf(buf, "N%lu h:%lu/%lu/%lu",
1756                 data_race(n_trc_holdouts),
1757                 data_race(n_heavy_reader_ofl_updates),
1758                 data_race(n_heavy_reader_updates),
1759                 data_race(n_heavy_reader_attempts));
1760         show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1761 }
1762 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1763 #endif // !defined(CONFIG_TINY_RCU)
1764
1765 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1766 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1767 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1768
1769 #ifndef CONFIG_TINY_RCU
1770 void show_rcu_tasks_gp_kthreads(void)
1771 {
1772         show_rcu_tasks_classic_gp_kthread();
1773         show_rcu_tasks_rude_gp_kthread();
1774         show_rcu_tasks_trace_gp_kthread();
1775 }
1776 #endif /* #ifndef CONFIG_TINY_RCU */
1777
1778 #ifdef CONFIG_PROVE_RCU
1779 struct rcu_tasks_test_desc {
1780         struct rcu_head rh;
1781         const char *name;
1782         bool notrun;
1783         unsigned long runstart;
1784 };
1785
1786 static struct rcu_tasks_test_desc tests[] = {
1787         {
1788                 .name = "call_rcu_tasks()",
1789                 /* If not defined, the test is skipped. */
1790                 .notrun = IS_ENABLED(CONFIG_TASKS_RCU),
1791         },
1792         {
1793                 .name = "call_rcu_tasks_rude()",
1794                 /* If not defined, the test is skipped. */
1795                 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1796         },
1797         {
1798                 .name = "call_rcu_tasks_trace()",
1799                 /* If not defined, the test is skipped. */
1800                 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1801         }
1802 };
1803
1804 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1805 {
1806         struct rcu_tasks_test_desc *rttd =
1807                 container_of(rhp, struct rcu_tasks_test_desc, rh);
1808
1809         pr_info("Callback from %s invoked.\n", rttd->name);
1810
1811         rttd->notrun = false;
1812 }
1813
1814 static void rcu_tasks_initiate_self_tests(void)
1815 {
1816         unsigned long j = jiffies;
1817
1818         pr_info("Running RCU-tasks wait API self tests\n");
1819 #ifdef CONFIG_TASKS_RCU
1820         tests[0].runstart = j;
1821         synchronize_rcu_tasks();
1822         call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1823 #endif
1824
1825 #ifdef CONFIG_TASKS_RUDE_RCU
1826         tests[1].runstart = j;
1827         synchronize_rcu_tasks_rude();
1828         call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1829 #endif
1830
1831 #ifdef CONFIG_TASKS_TRACE_RCU
1832         tests[2].runstart = j;
1833         synchronize_rcu_tasks_trace();
1834         call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1835 #endif
1836 }
1837
1838 /*
1839  * Return:  0 - test passed
1840  *          1 - test failed, but have not timed out yet
1841  *         -1 - test failed and timed out
1842  */
1843 static int rcu_tasks_verify_self_tests(void)
1844 {
1845         int ret = 0;
1846         int i;
1847         unsigned long bst = rcu_task_stall_timeout;
1848
1849         if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
1850                 bst = RCU_TASK_BOOT_STALL_TIMEOUT;
1851         for (i = 0; i < ARRAY_SIZE(tests); i++) {
1852                 while (tests[i].notrun) {               // still hanging.
1853                         if (time_after(jiffies, tests[i].runstart + bst)) {
1854                                 pr_err("%s has failed boot-time tests.\n", tests[i].name);
1855                                 ret = -1;
1856                                 break;
1857                         }
1858                         ret = 1;
1859                         break;
1860                 }
1861         }
1862         WARN_ON(ret < 0);
1863
1864         return ret;
1865 }
1866
1867 /*
1868  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
1869  * test passes or has timed out.
1870  */
1871 static struct delayed_work rcu_tasks_verify_work;
1872 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
1873 {
1874         int ret = rcu_tasks_verify_self_tests();
1875
1876         if (ret <= 0)
1877                 return;
1878
1879         /* Test fails but not timed out yet, reschedule another check */
1880         schedule_delayed_work(&rcu_tasks_verify_work, HZ);
1881 }
1882
1883 static int rcu_tasks_verify_schedule_work(void)
1884 {
1885         INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
1886         rcu_tasks_verify_work_fn(NULL);
1887         return 0;
1888 }
1889 late_initcall(rcu_tasks_verify_schedule_work);
1890 #else /* #ifdef CONFIG_PROVE_RCU */
1891 static void rcu_tasks_initiate_self_tests(void) { }
1892 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1893
1894 void __init rcu_init_tasks_generic(void)
1895 {
1896 #ifdef CONFIG_TASKS_RCU
1897         rcu_spawn_tasks_kthread();
1898 #endif
1899
1900 #ifdef CONFIG_TASKS_RUDE_RCU
1901         rcu_spawn_tasks_rude_kthread();
1902 #endif
1903
1904 #ifdef CONFIG_TASKS_TRACE_RCU
1905         rcu_spawn_tasks_trace_kthread();
1906 #endif
1907
1908         // Run the self-tests.
1909         rcu_tasks_initiate_self_tests();
1910 }
1911
1912 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1913 static inline void rcu_tasks_bootup_oddness(void) {}
1914 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */