netfilter: nft_compat: reject unused compat flag
[platform/kernel/linux-starfive.git] / kernel / rcu / srcutree.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *         Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *              Documentation/RCU/ *.txt
13  *
14  */
15
16 #define pr_fmt(fmt) "rcu: " fmt
17
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE        0
51 #define SRCU_SIZING_INIT        1
52 #define SRCU_SIZING_TORTURE     2
53 #define SRCU_SIZING_AUTO        3
54 #define SRCU_SIZING_CONTEND     0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)                                                   \
82 do {                                                                            \
83         spin_lock(&ACCESS_PRIVATE(p, lock));                                    \
84         smp_mb__after_unlock_lock();                                            \
85 } while (0)
86
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88
89 #define spin_lock_irq_rcu_node(p)                                               \
90 do {                                                                            \
91         spin_lock_irq(&ACCESS_PRIVATE(p, lock));                                \
92         smp_mb__after_unlock_lock();                                            \
93 } while (0)
94
95 #define spin_unlock_irq_rcu_node(p)                                             \
96         spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97
98 #define spin_lock_irqsave_rcu_node(p, flags)                                    \
99 do {                                                                            \
100         spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);                     \
101         smp_mb__after_unlock_lock();                                            \
102 } while (0)
103
104 #define spin_trylock_irqsave_rcu_node(p, flags)                                 \
105 ({                                                                              \
106         bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107                                                                                 \
108         if (___locked)                                                          \
109                 smp_mb__after_unlock_lock();                                    \
110         ___locked;                                                              \
111 })
112
113 #define spin_unlock_irqrestore_rcu_node(p, flags)                               \
114         spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)                 \
115
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124         int cpu;
125         struct srcu_data *sdp;
126
127         /*
128          * Initialize the per-CPU srcu_data array, which feeds into the
129          * leaves of the srcu_node tree.
130          */
131         WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
132                      ARRAY_SIZE(sdp->srcu_unlock_count));
133         for_each_possible_cpu(cpu) {
134                 sdp = per_cpu_ptr(ssp->sda, cpu);
135                 spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136                 rcu_segcblist_init(&sdp->srcu_cblist);
137                 sdp->srcu_cblist_invoking = false;
138                 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
139                 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
140                 sdp->mynode = NULL;
141                 sdp->cpu = cpu;
142                 INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143                 timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144                 sdp->ssp = ssp;
145         }
146 }
147
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ               0x2
150
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157         return s == SRCU_SNP_INIT_SEQ;
158 }
159
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166         int cpu;
167         int i;
168         int level = 0;
169         int levelspread[RCU_NUM_LVLS];
170         struct srcu_data *sdp;
171         struct srcu_node *snp;
172         struct srcu_node *snp_first;
173
174         /* Initialize geometry if it has not already been initialized. */
175         rcu_init_geometry();
176         ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177         if (!ssp->srcu_sup->node)
178                 return false;
179
180         /* Work out the overall tree geometry. */
181         ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182         for (i = 1; i < rcu_num_lvls; i++)
183                 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184         rcu_init_levelspread(levelspread, num_rcu_lvl);
185
186         /* Each pass through this loop initializes one srcu_node structure. */
187         srcu_for_each_node_breadth_first(ssp, snp) {
188                 spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189                 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
190                              ARRAY_SIZE(snp->srcu_data_have_cbs));
191                 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192                         snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193                         snp->srcu_data_have_cbs[i] = 0;
194                 }
195                 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196                 snp->grplo = -1;
197                 snp->grphi = -1;
198                 if (snp == &ssp->srcu_sup->node[0]) {
199                         /* Root node, special case. */
200                         snp->srcu_parent = NULL;
201                         continue;
202                 }
203
204                 /* Non-root node. */
205                 if (snp == ssp->srcu_sup->level[level + 1])
206                         level++;
207                 snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208                                    (snp - ssp->srcu_sup->level[level]) /
209                                    levelspread[level - 1];
210         }
211
212         /*
213          * Initialize the per-CPU srcu_data array, which feeds into the
214          * leaves of the srcu_node tree.
215          */
216         level = rcu_num_lvls - 1;
217         snp_first = ssp->srcu_sup->level[level];
218         for_each_possible_cpu(cpu) {
219                 sdp = per_cpu_ptr(ssp->sda, cpu);
220                 sdp->mynode = &snp_first[cpu / levelspread[level]];
221                 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222                         if (snp->grplo < 0)
223                                 snp->grplo = cpu;
224                         snp->grphi = cpu;
225                 }
226                 sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
227         }
228         smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229         return true;
230 }
231
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239         if (!is_static)
240                 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241         if (!ssp->srcu_sup)
242                 return -ENOMEM;
243         if (!is_static)
244                 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245         ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246         ssp->srcu_sup->node = NULL;
247         mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248         mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249         ssp->srcu_idx = 0;
250         ssp->srcu_sup->srcu_gp_seq = 0;
251         ssp->srcu_sup->srcu_barrier_seq = 0;
252         mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
253         atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
254         INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
255         ssp->srcu_sup->sda_is_static = is_static;
256         if (!is_static)
257                 ssp->sda = alloc_percpu(struct srcu_data);
258         if (!ssp->sda) {
259                 if (!is_static)
260                         kfree(ssp->srcu_sup);
261                 return -ENOMEM;
262         }
263         init_srcu_struct_data(ssp);
264         ssp->srcu_sup->srcu_gp_seq_needed_exp = 0;
265         ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
266         if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
267                 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) {
268                         if (!ssp->srcu_sup->sda_is_static) {
269                                 free_percpu(ssp->sda);
270                                 ssp->sda = NULL;
271                                 kfree(ssp->srcu_sup);
272                                 return -ENOMEM;
273                         }
274                 } else {
275                         WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
276                 }
277         }
278         ssp->srcu_sup->srcu_ssp = ssp;
279         smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */
280         return 0;
281 }
282
283 #ifdef CONFIG_DEBUG_LOCK_ALLOC
284
285 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
286                        struct lock_class_key *key)
287 {
288         /* Don't re-initialize a lock while it is held. */
289         debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
290         lockdep_init_map(&ssp->dep_map, name, key, 0);
291         return init_srcu_struct_fields(ssp, false);
292 }
293 EXPORT_SYMBOL_GPL(__init_srcu_struct);
294
295 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
296
297 /**
298  * init_srcu_struct - initialize a sleep-RCU structure
299  * @ssp: structure to initialize.
300  *
301  * Must invoke this on a given srcu_struct before passing that srcu_struct
302  * to any other function.  Each srcu_struct represents a separate domain
303  * of SRCU protection.
304  */
305 int init_srcu_struct(struct srcu_struct *ssp)
306 {
307         return init_srcu_struct_fields(ssp, false);
308 }
309 EXPORT_SYMBOL_GPL(init_srcu_struct);
310
311 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
312
313 /*
314  * Initiate a transition to SRCU_SIZE_BIG with lock held.
315  */
316 static void __srcu_transition_to_big(struct srcu_struct *ssp)
317 {
318         lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
319         smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
320 }
321
322 /*
323  * Initiate an idempotent transition to SRCU_SIZE_BIG.
324  */
325 static void srcu_transition_to_big(struct srcu_struct *ssp)
326 {
327         unsigned long flags;
328
329         /* Double-checked locking on ->srcu_size-state. */
330         if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
331                 return;
332         spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
333         if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
334                 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
335                 return;
336         }
337         __srcu_transition_to_big(ssp);
338         spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
339 }
340
341 /*
342  * Check to see if the just-encountered contention event justifies
343  * a transition to SRCU_SIZE_BIG.
344  */
345 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
346 {
347         unsigned long j;
348
349         if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
350                 return;
351         j = jiffies;
352         if (ssp->srcu_sup->srcu_size_jiffies != j) {
353                 ssp->srcu_sup->srcu_size_jiffies = j;
354                 ssp->srcu_sup->srcu_n_lock_retries = 0;
355         }
356         if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
357                 return;
358         __srcu_transition_to_big(ssp);
359 }
360
361 /*
362  * Acquire the specified srcu_data structure's ->lock, but check for
363  * excessive contention, which results in initiation of a transition
364  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
365  * parameter permits this.
366  */
367 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
368 {
369         struct srcu_struct *ssp = sdp->ssp;
370
371         if (spin_trylock_irqsave_rcu_node(sdp, *flags))
372                 return;
373         spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
374         spin_lock_irqsave_check_contention(ssp);
375         spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
376         spin_lock_irqsave_rcu_node(sdp, *flags);
377 }
378
379 /*
380  * Acquire the specified srcu_struct structure's ->lock, but check for
381  * excessive contention, which results in initiation of a transition
382  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
383  * parameter permits this.
384  */
385 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
386 {
387         if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
388                 return;
389         spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
390         spin_lock_irqsave_check_contention(ssp);
391 }
392
393 /*
394  * First-use initialization of statically allocated srcu_struct
395  * structure.  Wiring up the combining tree is more than can be
396  * done with compile-time initialization, so this check is added
397  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
398  * compile-time initialized, to resolve races involving multiple
399  * CPUs trying to garner first-use privileges.
400  */
401 static void check_init_srcu_struct(struct srcu_struct *ssp)
402 {
403         unsigned long flags;
404
405         /* The smp_load_acquire() pairs with the smp_store_release(). */
406         if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
407                 return; /* Already initialized. */
408         spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
409         if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
410                 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
411                 return;
412         }
413         init_srcu_struct_fields(ssp, true);
414         spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
415 }
416
417 /*
418  * Returns approximate total of the readers' ->srcu_lock_count[] values
419  * for the rank of per-CPU counters specified by idx.
420  */
421 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
422 {
423         int cpu;
424         unsigned long sum = 0;
425
426         for_each_possible_cpu(cpu) {
427                 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
428
429                 sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
430         }
431         return sum;
432 }
433
434 /*
435  * Returns approximate total of the readers' ->srcu_unlock_count[] values
436  * for the rank of per-CPU counters specified by idx.
437  */
438 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
439 {
440         int cpu;
441         unsigned long mask = 0;
442         unsigned long sum = 0;
443
444         for_each_possible_cpu(cpu) {
445                 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
446
447                 sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
448                 if (IS_ENABLED(CONFIG_PROVE_RCU))
449                         mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
450         }
451         WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
452                   "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
453         return sum;
454 }
455
456 /*
457  * Return true if the number of pre-existing readers is determined to
458  * be zero.
459  */
460 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
461 {
462         unsigned long unlocks;
463
464         unlocks = srcu_readers_unlock_idx(ssp, idx);
465
466         /*
467          * Make sure that a lock is always counted if the corresponding
468          * unlock is counted. Needs to be a smp_mb() as the read side may
469          * contain a read from a variable that is written to before the
470          * synchronize_srcu() in the write side. In this case smp_mb()s
471          * A and B act like the store buffering pattern.
472          *
473          * This smp_mb() also pairs with smp_mb() C to prevent accesses
474          * after the synchronize_srcu() from being executed before the
475          * grace period ends.
476          */
477         smp_mb(); /* A */
478
479         /*
480          * If the locks are the same as the unlocks, then there must have
481          * been no readers on this index at some point in this function.
482          * But there might be more readers, as a task might have read
483          * the current ->srcu_idx but not yet have incremented its CPU's
484          * ->srcu_lock_count[idx] counter.  In fact, it is possible
485          * that most of the tasks have been preempted between fetching
486          * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
487          * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
488          * in a system whose address space was fully populated with memory.
489          * Call this quantity Nt.
490          *
491          * So suppose that the updater is preempted at this point in the
492          * code for a long time.  That now-preempted updater has already
493          * flipped ->srcu_idx (possibly during the preceding grace period),
494          * done an smp_mb() (again, possibly during the preceding grace
495          * period), and summed up the ->srcu_unlock_count[idx] counters.
496          * How many times can a given one of the aforementioned Nt tasks
497          * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
498          * counter, in the absence of nesting?
499          *
500          * It can clearly do so once, given that it has already fetched
501          * the old value of ->srcu_idx and is just about to use that value
502          * to index its increment of ->srcu_lock_count[idx].  But as soon as
503          * it leaves that SRCU read-side critical section, it will increment
504          * ->srcu_unlock_count[idx], which must follow the updater's above
505          * read from that same value.  Thus, as soon the reading task does
506          * an smp_mb() and a later fetch from ->srcu_idx, that task will be
507          * guaranteed to get the new index.  Except that the increment of
508          * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
509          * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
510          * is before the smp_mb().  Thus, that task might not see the new
511          * value of ->srcu_idx until the -second- __srcu_read_lock(),
512          * which in turn means that this task might well increment
513          * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
514          * not just once.
515          *
516          * However, it is important to note that a given smp_mb() takes
517          * effect not just for the task executing it, but also for any
518          * later task running on that same CPU.
519          *
520          * That is, there can be almost Nt + Nc further increments of
521          * ->srcu_lock_count[idx] for the old index, where Nc is the number
522          * of CPUs.  But this is OK because the size of the task_struct
523          * structure limits the value of Nt and current systems limit Nc
524          * to a few thousand.
525          *
526          * OK, but what about nesting?  This does impose a limit on
527          * nesting of half of the size of the task_struct structure
528          * (measured in bytes), which should be sufficient.  A late 2022
529          * TREE01 rcutorture run reported this size to be no less than
530          * 9408 bytes, allowing up to 4704 levels of nesting, which is
531          * comfortably beyond excessive.  Especially on 64-bit systems,
532          * which are unlikely to be configured with an address space fully
533          * populated with memory, at least not anytime soon.
534          */
535         return srcu_readers_lock_idx(ssp, idx) == unlocks;
536 }
537
538 /**
539  * srcu_readers_active - returns true if there are readers. and false
540  *                       otherwise
541  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
542  *
543  * Note that this is not an atomic primitive, and can therefore suffer
544  * severe errors when invoked on an active srcu_struct.  That said, it
545  * can be useful as an error check at cleanup time.
546  */
547 static bool srcu_readers_active(struct srcu_struct *ssp)
548 {
549         int cpu;
550         unsigned long sum = 0;
551
552         for_each_possible_cpu(cpu) {
553                 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
554
555                 sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
556                 sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
557                 sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
558                 sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
559         }
560         return sum;
561 }
562
563 /*
564  * We use an adaptive strategy for synchronize_srcu() and especially for
565  * synchronize_srcu_expedited().  We spin for a fixed time period
566  * (defined below, boot time configurable) to allow SRCU readers to exit
567  * their read-side critical sections.  If there are still some readers
568  * after one jiffy, we repeatedly block for one jiffy time periods.
569  * The blocking time is increased as the grace-period age increases,
570  * with max blocking time capped at 10 jiffies.
571  */
572 #define SRCU_DEFAULT_RETRY_CHECK_DELAY          5
573
574 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
575 module_param(srcu_retry_check_delay, ulong, 0444);
576
577 #define SRCU_INTERVAL           1               // Base delay if no expedited GPs pending.
578 #define SRCU_MAX_INTERVAL       10              // Maximum incremental delay from slow readers.
579
580 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO       3UL     // Lowmark on default per-GP-phase
581                                                         // no-delay instances.
582 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI       1000UL  // Highmark on default per-GP-phase
583                                                         // no-delay instances.
584
585 #define SRCU_UL_CLAMP_LO(val, low)      ((val) > (low) ? (val) : (low))
586 #define SRCU_UL_CLAMP_HI(val, high)     ((val) < (high) ? (val) : (high))
587 #define SRCU_UL_CLAMP(val, low, high)   SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
588 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
589 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
590 // called from process_srcu().
591 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \
592         (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
593
594 // Maximum per-GP-phase consecutive no-delay instances.
595 #define SRCU_DEFAULT_MAX_NODELAY_PHASE  \
596         SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,  \
597                       SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,        \
598                       SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
599
600 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
601 module_param(srcu_max_nodelay_phase, ulong, 0444);
602
603 // Maximum consecutive no-delay instances.
604 #define SRCU_DEFAULT_MAX_NODELAY        (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \
605                                          SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
606
607 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
608 module_param(srcu_max_nodelay, ulong, 0444);
609
610 /*
611  * Return grace-period delay, zero if there are expedited grace
612  * periods pending, SRCU_INTERVAL otherwise.
613  */
614 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
615 {
616         unsigned long gpstart;
617         unsigned long j;
618         unsigned long jbase = SRCU_INTERVAL;
619         struct srcu_usage *sup = ssp->srcu_sup;
620
621         if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
622                 jbase = 0;
623         if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
624                 j = jiffies - 1;
625                 gpstart = READ_ONCE(sup->srcu_gp_start);
626                 if (time_after(j, gpstart))
627                         jbase += j - gpstart;
628                 if (!jbase) {
629                         WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
630                         if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
631                                 jbase = 1;
632                 }
633         }
634         return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
635 }
636
637 /**
638  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
639  * @ssp: structure to clean up.
640  *
641  * Must invoke this after you are finished using a given srcu_struct that
642  * was initialized via init_srcu_struct(), else you leak memory.
643  */
644 void cleanup_srcu_struct(struct srcu_struct *ssp)
645 {
646         int cpu;
647         struct srcu_usage *sup = ssp->srcu_sup;
648
649         if (WARN_ON(!srcu_get_delay(ssp)))
650                 return; /* Just leak it! */
651         if (WARN_ON(srcu_readers_active(ssp)))
652                 return; /* Just leak it! */
653         flush_delayed_work(&sup->work);
654         for_each_possible_cpu(cpu) {
655                 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
656
657                 del_timer_sync(&sdp->delay_work);
658                 flush_work(&sdp->work);
659                 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
660                         return; /* Forgot srcu_barrier(), so just leak it! */
661         }
662         if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
663             WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
664             WARN_ON(srcu_readers_active(ssp))) {
665                 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
666                         __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
667                         rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
668                 return; /* Caller forgot to stop doing call_srcu()? */
669         }
670         kfree(sup->node);
671         sup->node = NULL;
672         sup->srcu_size_state = SRCU_SIZE_SMALL;
673         if (!sup->sda_is_static) {
674                 free_percpu(ssp->sda);
675                 ssp->sda = NULL;
676                 kfree(sup);
677                 ssp->srcu_sup = NULL;
678         }
679 }
680 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
681
682 #ifdef CONFIG_PROVE_RCU
683 /*
684  * Check for consistent NMI safety.
685  */
686 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
687 {
688         int nmi_safe_mask = 1 << nmi_safe;
689         int old_nmi_safe_mask;
690         struct srcu_data *sdp;
691
692         /* NMI-unsafe use in NMI is a bad sign */
693         WARN_ON_ONCE(!nmi_safe && in_nmi());
694         sdp = raw_cpu_ptr(ssp->sda);
695         old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
696         if (!old_nmi_safe_mask) {
697                 WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
698                 return;
699         }
700         WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
701 }
702 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
703 #endif /* CONFIG_PROVE_RCU */
704
705 /*
706  * Counts the new reader in the appropriate per-CPU element of the
707  * srcu_struct.
708  * Returns an index that must be passed to the matching srcu_read_unlock().
709  */
710 int __srcu_read_lock(struct srcu_struct *ssp)
711 {
712         int idx;
713
714         idx = READ_ONCE(ssp->srcu_idx) & 0x1;
715         this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
716         smp_mb(); /* B */  /* Avoid leaking the critical section. */
717         return idx;
718 }
719 EXPORT_SYMBOL_GPL(__srcu_read_lock);
720
721 /*
722  * Removes the count for the old reader from the appropriate per-CPU
723  * element of the srcu_struct.  Note that this may well be a different
724  * CPU than that which was incremented by the corresponding srcu_read_lock().
725  */
726 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
727 {
728         smp_mb(); /* C */  /* Avoid leaking the critical section. */
729         this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
730 }
731 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
732
733 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
734
735 /*
736  * Counts the new reader in the appropriate per-CPU element of the
737  * srcu_struct, but in an NMI-safe manner using RMW atomics.
738  * Returns an index that must be passed to the matching srcu_read_unlock().
739  */
740 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
741 {
742         int idx;
743         struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
744
745         idx = READ_ONCE(ssp->srcu_idx) & 0x1;
746         atomic_long_inc(&sdp->srcu_lock_count[idx]);
747         smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
748         return idx;
749 }
750 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
751
752 /*
753  * Removes the count for the old reader from the appropriate per-CPU
754  * element of the srcu_struct.  Note that this may well be a different
755  * CPU than that which was incremented by the corresponding srcu_read_lock().
756  */
757 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
758 {
759         struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
760
761         smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
762         atomic_long_inc(&sdp->srcu_unlock_count[idx]);
763 }
764 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
765
766 #endif // CONFIG_NEED_SRCU_NMI_SAFE
767
768 /*
769  * Start an SRCU grace period.
770  */
771 static void srcu_gp_start(struct srcu_struct *ssp)
772 {
773         struct srcu_data *sdp;
774         int state;
775
776         if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
777                 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
778         else
779                 sdp = this_cpu_ptr(ssp->sda);
780         lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
781         WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
782         spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
783         rcu_segcblist_advance(&sdp->srcu_cblist,
784                               rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
785         WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
786         spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
787         WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
788         WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
789         smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
790         rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
791         state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
792         WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
793 }
794
795
796 static void srcu_delay_timer(struct timer_list *t)
797 {
798         struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
799
800         queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
801 }
802
803 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
804                                        unsigned long delay)
805 {
806         if (!delay) {
807                 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
808                 return;
809         }
810
811         timer_reduce(&sdp->delay_work, jiffies + delay);
812 }
813
814 /*
815  * Schedule callback invocation for the specified srcu_data structure,
816  * if possible, on the corresponding CPU.
817  */
818 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
819 {
820         srcu_queue_delayed_work_on(sdp, delay);
821 }
822
823 /*
824  * Schedule callback invocation for all srcu_data structures associated
825  * with the specified srcu_node structure that have callbacks for the
826  * just-completed grace period, the one corresponding to idx.  If possible,
827  * schedule this invocation on the corresponding CPUs.
828  */
829 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
830                                   unsigned long mask, unsigned long delay)
831 {
832         int cpu;
833
834         for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
835                 if (!(mask & (1UL << (cpu - snp->grplo))))
836                         continue;
837                 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
838         }
839 }
840
841 /*
842  * Note the end of an SRCU grace period.  Initiates callback invocation
843  * and starts a new grace period if needed.
844  *
845  * The ->srcu_cb_mutex acquisition does not protect any data, but
846  * instead prevents more than one grace period from starting while we
847  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
848  * array to have a finite number of elements.
849  */
850 static void srcu_gp_end(struct srcu_struct *ssp)
851 {
852         unsigned long cbdelay = 1;
853         bool cbs;
854         bool last_lvl;
855         int cpu;
856         unsigned long flags;
857         unsigned long gpseq;
858         int idx;
859         unsigned long mask;
860         struct srcu_data *sdp;
861         unsigned long sgsne;
862         struct srcu_node *snp;
863         int ss_state;
864         struct srcu_usage *sup = ssp->srcu_sup;
865
866         /* Prevent more than one additional grace period. */
867         mutex_lock(&sup->srcu_cb_mutex);
868
869         /* End the current grace period. */
870         spin_lock_irq_rcu_node(sup);
871         idx = rcu_seq_state(sup->srcu_gp_seq);
872         WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
873         if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
874                 cbdelay = 0;
875
876         WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
877         rcu_seq_end(&sup->srcu_gp_seq);
878         gpseq = rcu_seq_current(&sup->srcu_gp_seq);
879         if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
880                 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
881         spin_unlock_irq_rcu_node(sup);
882         mutex_unlock(&sup->srcu_gp_mutex);
883         /* A new grace period can start at this point.  But only one. */
884
885         /* Initiate callback invocation as needed. */
886         ss_state = smp_load_acquire(&sup->srcu_size_state);
887         if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
888                 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
889                                         cbdelay);
890         } else {
891                 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
892                 srcu_for_each_node_breadth_first(ssp, snp) {
893                         spin_lock_irq_rcu_node(snp);
894                         cbs = false;
895                         last_lvl = snp >= sup->level[rcu_num_lvls - 1];
896                         if (last_lvl)
897                                 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
898                         snp->srcu_have_cbs[idx] = gpseq;
899                         rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
900                         sgsne = snp->srcu_gp_seq_needed_exp;
901                         if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
902                                 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
903                         if (ss_state < SRCU_SIZE_BIG)
904                                 mask = ~0;
905                         else
906                                 mask = snp->srcu_data_have_cbs[idx];
907                         snp->srcu_data_have_cbs[idx] = 0;
908                         spin_unlock_irq_rcu_node(snp);
909                         if (cbs)
910                                 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
911                 }
912         }
913
914         /* Occasionally prevent srcu_data counter wrap. */
915         if (!(gpseq & counter_wrap_check))
916                 for_each_possible_cpu(cpu) {
917                         sdp = per_cpu_ptr(ssp->sda, cpu);
918                         spin_lock_irqsave_rcu_node(sdp, flags);
919                         if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
920                                 sdp->srcu_gp_seq_needed = gpseq;
921                         if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
922                                 sdp->srcu_gp_seq_needed_exp = gpseq;
923                         spin_unlock_irqrestore_rcu_node(sdp, flags);
924                 }
925
926         /* Callback initiation done, allow grace periods after next. */
927         mutex_unlock(&sup->srcu_cb_mutex);
928
929         /* Start a new grace period if needed. */
930         spin_lock_irq_rcu_node(sup);
931         gpseq = rcu_seq_current(&sup->srcu_gp_seq);
932         if (!rcu_seq_state(gpseq) &&
933             ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
934                 srcu_gp_start(ssp);
935                 spin_unlock_irq_rcu_node(sup);
936                 srcu_reschedule(ssp, 0);
937         } else {
938                 spin_unlock_irq_rcu_node(sup);
939         }
940
941         /* Transition to big if needed. */
942         if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
943                 if (ss_state == SRCU_SIZE_ALLOC)
944                         init_srcu_struct_nodes(ssp, GFP_KERNEL);
945                 else
946                         smp_store_release(&sup->srcu_size_state, ss_state + 1);
947         }
948 }
949
950 /*
951  * Funnel-locking scheme to scalably mediate many concurrent expedited
952  * grace-period requests.  This function is invoked for the first known
953  * expedited request for a grace period that has already been requested,
954  * but without expediting.  To start a completely new grace period,
955  * whether expedited or not, use srcu_funnel_gp_start() instead.
956  */
957 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
958                                   unsigned long s)
959 {
960         unsigned long flags;
961         unsigned long sgsne;
962
963         if (snp)
964                 for (; snp != NULL; snp = snp->srcu_parent) {
965                         sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
966                         if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
967                             (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
968                                 return;
969                         spin_lock_irqsave_rcu_node(snp, flags);
970                         sgsne = snp->srcu_gp_seq_needed_exp;
971                         if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
972                                 spin_unlock_irqrestore_rcu_node(snp, flags);
973                                 return;
974                         }
975                         WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
976                         spin_unlock_irqrestore_rcu_node(snp, flags);
977                 }
978         spin_lock_irqsave_ssp_contention(ssp, &flags);
979         if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
980                 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
981         spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
982 }
983
984 /*
985  * Funnel-locking scheme to scalably mediate many concurrent grace-period
986  * requests.  The winner has to do the work of actually starting grace
987  * period s.  Losers must either ensure that their desired grace-period
988  * number is recorded on at least their leaf srcu_node structure, or they
989  * must take steps to invoke their own callbacks.
990  *
991  * Note that this function also does the work of srcu_funnel_exp_start(),
992  * in some cases by directly invoking it.
993  *
994  * The srcu read lock should be hold around this function. And s is a seq snap
995  * after holding that lock.
996  */
997 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
998                                  unsigned long s, bool do_norm)
999 {
1000         unsigned long flags;
1001         int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
1002         unsigned long sgsne;
1003         struct srcu_node *snp;
1004         struct srcu_node *snp_leaf;
1005         unsigned long snp_seq;
1006         struct srcu_usage *sup = ssp->srcu_sup;
1007
1008         /* Ensure that snp node tree is fully initialized before traversing it */
1009         if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1010                 snp_leaf = NULL;
1011         else
1012                 snp_leaf = sdp->mynode;
1013
1014         if (snp_leaf)
1015                 /* Each pass through the loop does one level of the srcu_node tree. */
1016                 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1017                         if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1018                                 return; /* GP already done and CBs recorded. */
1019                         spin_lock_irqsave_rcu_node(snp, flags);
1020                         snp_seq = snp->srcu_have_cbs[idx];
1021                         if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1022                                 if (snp == snp_leaf && snp_seq == s)
1023                                         snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1024                                 spin_unlock_irqrestore_rcu_node(snp, flags);
1025                                 if (snp == snp_leaf && snp_seq != s) {
1026                                         srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1027                                         return;
1028                                 }
1029                                 if (!do_norm)
1030                                         srcu_funnel_exp_start(ssp, snp, s);
1031                                 return;
1032                         }
1033                         snp->srcu_have_cbs[idx] = s;
1034                         if (snp == snp_leaf)
1035                                 snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1036                         sgsne = snp->srcu_gp_seq_needed_exp;
1037                         if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1038                                 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1039                         spin_unlock_irqrestore_rcu_node(snp, flags);
1040                 }
1041
1042         /* Top of tree, must ensure the grace period will be started. */
1043         spin_lock_irqsave_ssp_contention(ssp, &flags);
1044         if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1045                 /*
1046                  * Record need for grace period s.  Pair with load
1047                  * acquire setting up for initialization.
1048                  */
1049                 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1050         }
1051         if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1052                 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1053
1054         /* If grace period not already in progress, start it. */
1055         if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1056             rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1057                 WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed));
1058                 srcu_gp_start(ssp);
1059
1060                 // And how can that list_add() in the "else" clause
1061                 // possibly be safe for concurrent execution?  Well,
1062                 // it isn't.  And it does not have to be.  After all, it
1063                 // can only be executed during early boot when there is only
1064                 // the one boot CPU running with interrupts still disabled.
1065                 if (likely(srcu_init_done))
1066                         queue_delayed_work(rcu_gp_wq, &sup->work,
1067                                            !!srcu_get_delay(ssp));
1068                 else if (list_empty(&sup->work.work.entry))
1069                         list_add(&sup->work.work.entry, &srcu_boot_list);
1070         }
1071         spin_unlock_irqrestore_rcu_node(sup, flags);
1072 }
1073
1074 /*
1075  * Wait until all readers counted by array index idx complete, but
1076  * loop an additional time if there is an expedited grace period pending.
1077  * The caller must ensure that ->srcu_idx is not changed while checking.
1078  */
1079 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1080 {
1081         unsigned long curdelay;
1082
1083         curdelay = !srcu_get_delay(ssp);
1084
1085         for (;;) {
1086                 if (srcu_readers_active_idx_check(ssp, idx))
1087                         return true;
1088                 if ((--trycount + curdelay) <= 0)
1089                         return false;
1090                 udelay(srcu_retry_check_delay);
1091         }
1092 }
1093
1094 /*
1095  * Increment the ->srcu_idx counter so that future SRCU readers will
1096  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1097  * us to wait for pre-existing readers in a starvation-free manner.
1098  */
1099 static void srcu_flip(struct srcu_struct *ssp)
1100 {
1101         /*
1102          * Because the flip of ->srcu_idx is executed only if the
1103          * preceding call to srcu_readers_active_idx_check() found that
1104          * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
1105          * and because that summing uses atomic_long_read(), there is
1106          * ordering due to a control dependency between that summing and
1107          * the WRITE_ONCE() in this call to srcu_flip().  This ordering
1108          * ensures that if this updater saw a given reader's increment from
1109          * __srcu_read_lock(), that reader was using a value of ->srcu_idx
1110          * from before the previous call to srcu_flip(), which should be
1111          * quite rare.  This ordering thus helps forward progress because
1112          * the grace period could otherwise be delayed by additional
1113          * calls to __srcu_read_lock() using that old (soon to be new)
1114          * value of ->srcu_idx.
1115          *
1116          * This sum-equality check and ordering also ensures that if
1117          * a given call to __srcu_read_lock() uses the new value of
1118          * ->srcu_idx, this updater's earlier scans cannot have seen
1119          * that reader's increments, which is all to the good, because
1120          * this grace period need not wait on that reader.  After all,
1121          * if those earlier scans had seen that reader, there would have
1122          * been a sum mismatch and this code would not be reached.
1123          *
1124          * This means that the following smp_mb() is redundant, but
1125          * it stays until either (1) Compilers learn about this sort of
1126          * control dependency or (2) Some production workload running on
1127          * a production system is unduly delayed by this slowpath smp_mb().
1128          */
1129         smp_mb(); /* E */  /* Pairs with B and C. */
1130
1131         WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
1132
1133         /*
1134          * Ensure that if the updater misses an __srcu_read_unlock()
1135          * increment, that task's __srcu_read_lock() following its next
1136          * __srcu_read_lock() or __srcu_read_unlock() will see the above
1137          * counter update.  Note that both this memory barrier and the
1138          * one in srcu_readers_active_idx_check() provide the guarantee
1139          * for __srcu_read_lock().
1140          */
1141         smp_mb(); /* D */  /* Pairs with C. */
1142 }
1143
1144 /*
1145  * If SRCU is likely idle, return true, otherwise return false.
1146  *
1147  * Note that it is OK for several current from-idle requests for a new
1148  * grace period from idle to specify expediting because they will all end
1149  * up requesting the same grace period anyhow.  So no loss.
1150  *
1151  * Note also that if any CPU (including the current one) is still invoking
1152  * callbacks, this function will nevertheless say "idle".  This is not
1153  * ideal, but the overhead of checking all CPUs' callback lists is even
1154  * less ideal, especially on large systems.  Furthermore, the wakeup
1155  * can happen before the callback is fully removed, so we have no choice
1156  * but to accept this type of error.
1157  *
1158  * This function is also subject to counter-wrap errors, but let's face
1159  * it, if this function was preempted for enough time for the counters
1160  * to wrap, it really doesn't matter whether or not we expedite the grace
1161  * period.  The extra overhead of a needlessly expedited grace period is
1162  * negligible when amortized over that time period, and the extra latency
1163  * of a needlessly non-expedited grace period is similarly negligible.
1164  */
1165 static bool srcu_might_be_idle(struct srcu_struct *ssp)
1166 {
1167         unsigned long curseq;
1168         unsigned long flags;
1169         struct srcu_data *sdp;
1170         unsigned long t;
1171         unsigned long tlast;
1172
1173         check_init_srcu_struct(ssp);
1174         /* If the local srcu_data structure has callbacks, not idle.  */
1175         sdp = raw_cpu_ptr(ssp->sda);
1176         spin_lock_irqsave_rcu_node(sdp, flags);
1177         if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1178                 spin_unlock_irqrestore_rcu_node(sdp, flags);
1179                 return false; /* Callbacks already present, so not idle. */
1180         }
1181         spin_unlock_irqrestore_rcu_node(sdp, flags);
1182
1183         /*
1184          * No local callbacks, so probabilistically probe global state.
1185          * Exact information would require acquiring locks, which would
1186          * kill scalability, hence the probabilistic nature of the probe.
1187          */
1188
1189         /* First, see if enough time has passed since the last GP. */
1190         t = ktime_get_mono_fast_ns();
1191         tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1192         if (exp_holdoff == 0 ||
1193             time_in_range_open(t, tlast, tlast + exp_holdoff))
1194                 return false; /* Too soon after last GP. */
1195
1196         /* Next, check for probable idleness. */
1197         curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1198         smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1199         if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1200                 return false; /* Grace period in progress, so not idle. */
1201         smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1202         if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1203                 return false; /* GP # changed, so not idle. */
1204         return true; /* With reasonable probability, idle! */
1205 }
1206
1207 /*
1208  * SRCU callback function to leak a callback.
1209  */
1210 static void srcu_leak_callback(struct rcu_head *rhp)
1211 {
1212 }
1213
1214 /*
1215  * Start an SRCU grace period, and also queue the callback if non-NULL.
1216  */
1217 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1218                                              struct rcu_head *rhp, bool do_norm)
1219 {
1220         unsigned long flags;
1221         int idx;
1222         bool needexp = false;
1223         bool needgp = false;
1224         unsigned long s;
1225         struct srcu_data *sdp;
1226         struct srcu_node *sdp_mynode;
1227         int ss_state;
1228
1229         check_init_srcu_struct(ssp);
1230         /*
1231          * While starting a new grace period, make sure we are in an
1232          * SRCU read-side critical section so that the grace-period
1233          * sequence number cannot wrap around in the meantime.
1234          */
1235         idx = __srcu_read_lock_nmisafe(ssp);
1236         ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1237         if (ss_state < SRCU_SIZE_WAIT_CALL)
1238                 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1239         else
1240                 sdp = raw_cpu_ptr(ssp->sda);
1241         spin_lock_irqsave_sdp_contention(sdp, &flags);
1242         if (rhp)
1243                 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1244         /*
1245          * The snapshot for acceleration must be taken _before_ the read of the
1246          * current gp sequence used for advancing, otherwise advancing may fail
1247          * and acceleration may then fail too.
1248          *
1249          * This could happen if:
1250          *
1251          *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1252          *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1253          *
1254          *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1255          *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1256          *
1257          *  3) This value is passed to rcu_segcblist_advance() which can't move
1258          *     any segment forward and fails.
1259          *
1260          *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1261          *     But then the call to rcu_seq_snap() observes the grace period for the
1262          *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1263          *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1264          *     so it returns a snapshot of the next grace period, which is X + 12.
1265          *
1266          *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1267          *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1268          *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1269          *     period (gp_num = X + 8). So acceleration fails.
1270          */
1271         s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1272         rcu_segcblist_advance(&sdp->srcu_cblist,
1273                               rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1274         WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s) && rhp);
1275         if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1276                 sdp->srcu_gp_seq_needed = s;
1277                 needgp = true;
1278         }
1279         if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1280                 sdp->srcu_gp_seq_needed_exp = s;
1281                 needexp = true;
1282         }
1283         spin_unlock_irqrestore_rcu_node(sdp, flags);
1284
1285         /* Ensure that snp node tree is fully initialized before traversing it */
1286         if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1287                 sdp_mynode = NULL;
1288         else
1289                 sdp_mynode = sdp->mynode;
1290
1291         if (needgp)
1292                 srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1293         else if (needexp)
1294                 srcu_funnel_exp_start(ssp, sdp_mynode, s);
1295         __srcu_read_unlock_nmisafe(ssp, idx);
1296         return s;
1297 }
1298
1299 /*
1300  * Enqueue an SRCU callback on the srcu_data structure associated with
1301  * the current CPU and the specified srcu_struct structure, initiating
1302  * grace-period processing if it is not already running.
1303  *
1304  * Note that all CPUs must agree that the grace period extended beyond
1305  * all pre-existing SRCU read-side critical section.  On systems with
1306  * more than one CPU, this means that when "func()" is invoked, each CPU
1307  * is guaranteed to have executed a full memory barrier since the end of
1308  * its last corresponding SRCU read-side critical section whose beginning
1309  * preceded the call to call_srcu().  It also means that each CPU executing
1310  * an SRCU read-side critical section that continues beyond the start of
1311  * "func()" must have executed a memory barrier after the call_srcu()
1312  * but before the beginning of that SRCU read-side critical section.
1313  * Note that these guarantees include CPUs that are offline, idle, or
1314  * executing in user mode, as well as CPUs that are executing in the kernel.
1315  *
1316  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1317  * resulting SRCU callback function "func()", then both CPU A and CPU
1318  * B are guaranteed to execute a full memory barrier during the time
1319  * interval between the call to call_srcu() and the invocation of "func()".
1320  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1321  * again only if the system has more than one CPU).
1322  *
1323  * Of course, these guarantees apply only for invocations of call_srcu(),
1324  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1325  * srcu_struct structure.
1326  */
1327 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1328                         rcu_callback_t func, bool do_norm)
1329 {
1330         if (debug_rcu_head_queue(rhp)) {
1331                 /* Probable double call_srcu(), so leak the callback. */
1332                 WRITE_ONCE(rhp->func, srcu_leak_callback);
1333                 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1334                 return;
1335         }
1336         rhp->func = func;
1337         (void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1338 }
1339
1340 /**
1341  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1342  * @ssp: srcu_struct in queue the callback
1343  * @rhp: structure to be used for queueing the SRCU callback.
1344  * @func: function to be invoked after the SRCU grace period
1345  *
1346  * The callback function will be invoked some time after a full SRCU
1347  * grace period elapses, in other words after all pre-existing SRCU
1348  * read-side critical sections have completed.  However, the callback
1349  * function might well execute concurrently with other SRCU read-side
1350  * critical sections that started after call_srcu() was invoked.  SRCU
1351  * read-side critical sections are delimited by srcu_read_lock() and
1352  * srcu_read_unlock(), and may be nested.
1353  *
1354  * The callback will be invoked from process context, but must nevertheless
1355  * be fast and must not block.
1356  */
1357 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1358                rcu_callback_t func)
1359 {
1360         __call_srcu(ssp, rhp, func, true);
1361 }
1362 EXPORT_SYMBOL_GPL(call_srcu);
1363
1364 /*
1365  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1366  */
1367 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1368 {
1369         struct rcu_synchronize rcu;
1370
1371         srcu_lock_sync(&ssp->dep_map);
1372
1373         RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1374                          lock_is_held(&rcu_bh_lock_map) ||
1375                          lock_is_held(&rcu_lock_map) ||
1376                          lock_is_held(&rcu_sched_lock_map),
1377                          "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1378
1379         if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1380                 return;
1381         might_sleep();
1382         check_init_srcu_struct(ssp);
1383         init_completion(&rcu.completion);
1384         init_rcu_head_on_stack(&rcu.head);
1385         __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1386         wait_for_completion(&rcu.completion);
1387         destroy_rcu_head_on_stack(&rcu.head);
1388
1389         /*
1390          * Make sure that later code is ordered after the SRCU grace
1391          * period.  This pairs with the spin_lock_irq_rcu_node()
1392          * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1393          * because the current CPU might have been totally uninvolved with
1394          * (and thus unordered against) that grace period.
1395          */
1396         smp_mb();
1397 }
1398
1399 /**
1400  * synchronize_srcu_expedited - Brute-force SRCU grace period
1401  * @ssp: srcu_struct with which to synchronize.
1402  *
1403  * Wait for an SRCU grace period to elapse, but be more aggressive about
1404  * spinning rather than blocking when waiting.
1405  *
1406  * Note that synchronize_srcu_expedited() has the same deadlock and
1407  * memory-ordering properties as does synchronize_srcu().
1408  */
1409 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1410 {
1411         __synchronize_srcu(ssp, rcu_gp_is_normal());
1412 }
1413 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1414
1415 /**
1416  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1417  * @ssp: srcu_struct with which to synchronize.
1418  *
1419  * Wait for the count to drain to zero of both indexes. To avoid the
1420  * possible starvation of synchronize_srcu(), it waits for the count of
1421  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1422  * and then flip the srcu_idx and wait for the count of the other index.
1423  *
1424  * Can block; must be called from process context.
1425  *
1426  * Note that it is illegal to call synchronize_srcu() from the corresponding
1427  * SRCU read-side critical section; doing so will result in deadlock.
1428  * However, it is perfectly legal to call synchronize_srcu() on one
1429  * srcu_struct from some other srcu_struct's read-side critical section,
1430  * as long as the resulting graph of srcu_structs is acyclic.
1431  *
1432  * There are memory-ordering constraints implied by synchronize_srcu().
1433  * On systems with more than one CPU, when synchronize_srcu() returns,
1434  * each CPU is guaranteed to have executed a full memory barrier since
1435  * the end of its last corresponding SRCU read-side critical section
1436  * whose beginning preceded the call to synchronize_srcu().  In addition,
1437  * each CPU having an SRCU read-side critical section that extends beyond
1438  * the return from synchronize_srcu() is guaranteed to have executed a
1439  * full memory barrier after the beginning of synchronize_srcu() and before
1440  * the beginning of that SRCU read-side critical section.  Note that these
1441  * guarantees include CPUs that are offline, idle, or executing in user mode,
1442  * as well as CPUs that are executing in the kernel.
1443  *
1444  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1445  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1446  * to have executed a full memory barrier during the execution of
1447  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1448  * are the same CPU, but again only if the system has more than one CPU.
1449  *
1450  * Of course, these memory-ordering guarantees apply only when
1451  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1452  * passed the same srcu_struct structure.
1453  *
1454  * Implementation of these memory-ordering guarantees is similar to
1455  * that of synchronize_rcu().
1456  *
1457  * If SRCU is likely idle, expedite the first request.  This semantic
1458  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1459  * SRCU must also provide it.  Note that detecting idleness is heuristic
1460  * and subject to both false positives and negatives.
1461  */
1462 void synchronize_srcu(struct srcu_struct *ssp)
1463 {
1464         if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1465                 synchronize_srcu_expedited(ssp);
1466         else
1467                 __synchronize_srcu(ssp, true);
1468 }
1469 EXPORT_SYMBOL_GPL(synchronize_srcu);
1470
1471 /**
1472  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1473  * @ssp: srcu_struct to provide cookie for.
1474  *
1475  * This function returns a cookie that can be passed to
1476  * poll_state_synchronize_srcu(), which will return true if a full grace
1477  * period has elapsed in the meantime.  It is the caller's responsibility
1478  * to make sure that grace period happens, for example, by invoking
1479  * call_srcu() after return from get_state_synchronize_srcu().
1480  */
1481 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1482 {
1483         // Any prior manipulation of SRCU-protected data must happen
1484         // before the load from ->srcu_gp_seq.
1485         smp_mb();
1486         return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1487 }
1488 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1489
1490 /**
1491  * start_poll_synchronize_srcu - Provide cookie and start grace period
1492  * @ssp: srcu_struct to provide cookie for.
1493  *
1494  * This function returns a cookie that can be passed to
1495  * poll_state_synchronize_srcu(), which will return true if a full grace
1496  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1497  * this function also ensures that any needed SRCU grace period will be
1498  * started.  This convenience does come at a cost in terms of CPU overhead.
1499  */
1500 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1501 {
1502         return srcu_gp_start_if_needed(ssp, NULL, true);
1503 }
1504 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1505
1506 /**
1507  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1508  * @ssp: srcu_struct to provide cookie for.
1509  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1510  *
1511  * This function takes the cookie that was returned from either
1512  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1513  * returns @true if an SRCU grace period elapsed since the time that the
1514  * cookie was created.
1515  *
1516  * Because cookies are finite in size, wrapping/overflow is possible.
1517  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1518  * where in theory wrapping could happen in about 14 hours assuming
1519  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1520  * overflow lower bound is on the order of 24 days in the case of
1521  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1522  * system requires geologic timespans, as in more than seven million years
1523  * even for expedited SRCU grace periods.
1524  *
1525  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1526  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1527  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1528  * few minutes.  If this proves to be a problem, this counter will be
1529  * expanded to the same size as for Tree SRCU.
1530  */
1531 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1532 {
1533         if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1534                 return false;
1535         // Ensure that the end of the SRCU grace period happens before
1536         // any subsequent code that the caller might execute.
1537         smp_mb(); // ^^^
1538         return true;
1539 }
1540 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1541
1542 /*
1543  * Callback function for srcu_barrier() use.
1544  */
1545 static void srcu_barrier_cb(struct rcu_head *rhp)
1546 {
1547         struct srcu_data *sdp;
1548         struct srcu_struct *ssp;
1549
1550         sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1551         ssp = sdp->ssp;
1552         if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1553                 complete(&ssp->srcu_sup->srcu_barrier_completion);
1554 }
1555
1556 /*
1557  * Enqueue an srcu_barrier() callback on the specified srcu_data
1558  * structure's ->cblist.  but only if that ->cblist already has at least one
1559  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1560  * it must have already registered the need for a future grace period,
1561  * so all we need do is enqueue a callback that will use the same grace
1562  * period as the last callback already in the queue.
1563  */
1564 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1565 {
1566         spin_lock_irq_rcu_node(sdp);
1567         atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1568         sdp->srcu_barrier_head.func = srcu_barrier_cb;
1569         debug_rcu_head_queue(&sdp->srcu_barrier_head);
1570         if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1571                                    &sdp->srcu_barrier_head)) {
1572                 debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1573                 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1574         }
1575         spin_unlock_irq_rcu_node(sdp);
1576 }
1577
1578 /**
1579  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1580  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1581  */
1582 void srcu_barrier(struct srcu_struct *ssp)
1583 {
1584         int cpu;
1585         int idx;
1586         unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1587
1588         check_init_srcu_struct(ssp);
1589         mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1590         if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1591                 smp_mb(); /* Force ordering following return. */
1592                 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1593                 return; /* Someone else did our work for us. */
1594         }
1595         rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1596         init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1597
1598         /* Initial count prevents reaching zero until all CBs are posted. */
1599         atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1600
1601         idx = __srcu_read_lock_nmisafe(ssp);
1602         if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1603                 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id()));
1604         else
1605                 for_each_possible_cpu(cpu)
1606                         srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1607         __srcu_read_unlock_nmisafe(ssp, idx);
1608
1609         /* Remove the initial count, at which point reaching zero can happen. */
1610         if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1611                 complete(&ssp->srcu_sup->srcu_barrier_completion);
1612         wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1613
1614         rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1615         mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1616 }
1617 EXPORT_SYMBOL_GPL(srcu_barrier);
1618
1619 /**
1620  * srcu_batches_completed - return batches completed.
1621  * @ssp: srcu_struct on which to report batch completion.
1622  *
1623  * Report the number of batches, correlated with, but not necessarily
1624  * precisely the same as, the number of grace periods that have elapsed.
1625  */
1626 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1627 {
1628         return READ_ONCE(ssp->srcu_idx);
1629 }
1630 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1631
1632 /*
1633  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1634  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1635  * completed in that state.
1636  */
1637 static void srcu_advance_state(struct srcu_struct *ssp)
1638 {
1639         int idx;
1640
1641         mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1642
1643         /*
1644          * Because readers might be delayed for an extended period after
1645          * fetching ->srcu_idx for their index, at any point in time there
1646          * might well be readers using both idx=0 and idx=1.  We therefore
1647          * need to wait for readers to clear from both index values before
1648          * invoking a callback.
1649          *
1650          * The load-acquire ensures that we see the accesses performed
1651          * by the prior grace period.
1652          */
1653         idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1654         if (idx == SRCU_STATE_IDLE) {
1655                 spin_lock_irq_rcu_node(ssp->srcu_sup);
1656                 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1657                         WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1658                         spin_unlock_irq_rcu_node(ssp->srcu_sup);
1659                         mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1660                         return;
1661                 }
1662                 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1663                 if (idx == SRCU_STATE_IDLE)
1664                         srcu_gp_start(ssp);
1665                 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1666                 if (idx != SRCU_STATE_IDLE) {
1667                         mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1668                         return; /* Someone else started the grace period. */
1669                 }
1670         }
1671
1672         if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1673                 idx = 1 ^ (ssp->srcu_idx & 1);
1674                 if (!try_check_zero(ssp, idx, 1)) {
1675                         mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1676                         return; /* readers present, retry later. */
1677                 }
1678                 srcu_flip(ssp);
1679                 spin_lock_irq_rcu_node(ssp->srcu_sup);
1680                 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1681                 ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1682                 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1683         }
1684
1685         if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1686
1687                 /*
1688                  * SRCU read-side critical sections are normally short,
1689                  * so check at least twice in quick succession after a flip.
1690                  */
1691                 idx = 1 ^ (ssp->srcu_idx & 1);
1692                 if (!try_check_zero(ssp, idx, 2)) {
1693                         mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1694                         return; /* readers present, retry later. */
1695                 }
1696                 ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1697                 srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1698         }
1699 }
1700
1701 /*
1702  * Invoke a limited number of SRCU callbacks that have passed through
1703  * their grace period.  If there are more to do, SRCU will reschedule
1704  * the workqueue.  Note that needed memory barriers have been executed
1705  * in this task's context by srcu_readers_active_idx_check().
1706  */
1707 static void srcu_invoke_callbacks(struct work_struct *work)
1708 {
1709         long len;
1710         bool more;
1711         struct rcu_cblist ready_cbs;
1712         struct rcu_head *rhp;
1713         struct srcu_data *sdp;
1714         struct srcu_struct *ssp;
1715
1716         sdp = container_of(work, struct srcu_data, work);
1717
1718         ssp = sdp->ssp;
1719         rcu_cblist_init(&ready_cbs);
1720         spin_lock_irq_rcu_node(sdp);
1721         WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1722         rcu_segcblist_advance(&sdp->srcu_cblist,
1723                               rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1724         if (sdp->srcu_cblist_invoking ||
1725             !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1726                 spin_unlock_irq_rcu_node(sdp);
1727                 return;  /* Someone else on the job or nothing to do. */
1728         }
1729
1730         /* We are on the job!  Extract and invoke ready callbacks. */
1731         sdp->srcu_cblist_invoking = true;
1732         rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1733         len = ready_cbs.len;
1734         spin_unlock_irq_rcu_node(sdp);
1735         rhp = rcu_cblist_dequeue(&ready_cbs);
1736         for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1737                 debug_rcu_head_unqueue(rhp);
1738                 local_bh_disable();
1739                 rhp->func(rhp);
1740                 local_bh_enable();
1741         }
1742         WARN_ON_ONCE(ready_cbs.len);
1743
1744         /*
1745          * Update counts, accelerate new callbacks, and if needed,
1746          * schedule another round of callback invocation.
1747          */
1748         spin_lock_irq_rcu_node(sdp);
1749         rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1750         sdp->srcu_cblist_invoking = false;
1751         more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1752         spin_unlock_irq_rcu_node(sdp);
1753         if (more)
1754                 srcu_schedule_cbs_sdp(sdp, 0);
1755 }
1756
1757 /*
1758  * Finished one round of SRCU grace period.  Start another if there are
1759  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1760  */
1761 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1762 {
1763         bool pushgp = true;
1764
1765         spin_lock_irq_rcu_node(ssp->srcu_sup);
1766         if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1767                 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1768                         /* All requests fulfilled, time to go idle. */
1769                         pushgp = false;
1770                 }
1771         } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1772                 /* Outstanding request and no GP.  Start one. */
1773                 srcu_gp_start(ssp);
1774         }
1775         spin_unlock_irq_rcu_node(ssp->srcu_sup);
1776
1777         if (pushgp)
1778                 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1779 }
1780
1781 /*
1782  * This is the work-queue function that handles SRCU grace periods.
1783  */
1784 static void process_srcu(struct work_struct *work)
1785 {
1786         unsigned long curdelay;
1787         unsigned long j;
1788         struct srcu_struct *ssp;
1789         struct srcu_usage *sup;
1790
1791         sup = container_of(work, struct srcu_usage, work.work);
1792         ssp = sup->srcu_ssp;
1793
1794         srcu_advance_state(ssp);
1795         curdelay = srcu_get_delay(ssp);
1796         if (curdelay) {
1797                 WRITE_ONCE(sup->reschedule_count, 0);
1798         } else {
1799                 j = jiffies;
1800                 if (READ_ONCE(sup->reschedule_jiffies) == j) {
1801                         WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1802                         if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1803                                 curdelay = 1;
1804                 } else {
1805                         WRITE_ONCE(sup->reschedule_count, 1);
1806                         WRITE_ONCE(sup->reschedule_jiffies, j);
1807                 }
1808         }
1809         srcu_reschedule(ssp, curdelay);
1810 }
1811
1812 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1813                              struct srcu_struct *ssp, int *flags,
1814                              unsigned long *gp_seq)
1815 {
1816         if (test_type != SRCU_FLAVOR)
1817                 return;
1818         *flags = 0;
1819         *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1820 }
1821 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1822
1823 static const char * const srcu_size_state_name[] = {
1824         "SRCU_SIZE_SMALL",
1825         "SRCU_SIZE_ALLOC",
1826         "SRCU_SIZE_WAIT_BARRIER",
1827         "SRCU_SIZE_WAIT_CALL",
1828         "SRCU_SIZE_WAIT_CBS1",
1829         "SRCU_SIZE_WAIT_CBS2",
1830         "SRCU_SIZE_WAIT_CBS3",
1831         "SRCU_SIZE_WAIT_CBS4",
1832         "SRCU_SIZE_BIG",
1833         "SRCU_SIZE_???",
1834 };
1835
1836 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1837 {
1838         int cpu;
1839         int idx;
1840         unsigned long s0 = 0, s1 = 0;
1841         int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1842         int ss_state_idx = ss_state;
1843
1844         idx = ssp->srcu_idx & 0x1;
1845         if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1846                 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1847         pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1848                  tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1849                  srcu_size_state_name[ss_state_idx]);
1850         if (!ssp->sda) {
1851                 // Called after cleanup_srcu_struct(), perhaps.
1852                 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1853         } else {
1854                 pr_cont(" per-CPU(idx=%d):", idx);
1855                 for_each_possible_cpu(cpu) {
1856                         unsigned long l0, l1;
1857                         unsigned long u0, u1;
1858                         long c0, c1;
1859                         struct srcu_data *sdp;
1860
1861                         sdp = per_cpu_ptr(ssp->sda, cpu);
1862                         u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1863                         u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1864
1865                         /*
1866                          * Make sure that a lock is always counted if the corresponding
1867                          * unlock is counted.
1868                          */
1869                         smp_rmb();
1870
1871                         l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1872                         l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1873
1874                         c0 = l0 - u0;
1875                         c1 = l1 - u1;
1876                         pr_cont(" %d(%ld,%ld %c)",
1877                                 cpu, c0, c1,
1878                                 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1879                         s0 += c0;
1880                         s1 += c1;
1881                 }
1882                 pr_cont(" T(%ld,%ld)\n", s0, s1);
1883         }
1884         if (SRCU_SIZING_IS_TORTURE())
1885                 srcu_transition_to_big(ssp);
1886 }
1887 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1888
1889 static int __init srcu_bootup_announce(void)
1890 {
1891         pr_info("Hierarchical SRCU implementation.\n");
1892         if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1893                 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1894         if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1895                 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1896         if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1897                 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1898         pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1899         return 0;
1900 }
1901 early_initcall(srcu_bootup_announce);
1902
1903 void __init srcu_init(void)
1904 {
1905         struct srcu_usage *sup;
1906
1907         /* Decide on srcu_struct-size strategy. */
1908         if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1909                 if (nr_cpu_ids >= big_cpu_lim) {
1910                         convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1911                         pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1912                 } else {
1913                         convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1914                         pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1915                 }
1916         }
1917
1918         /*
1919          * Once that is set, call_srcu() can follow the normal path and
1920          * queue delayed work. This must follow RCU workqueues creation
1921          * and timers initialization.
1922          */
1923         srcu_init_done = true;
1924         while (!list_empty(&srcu_boot_list)) {
1925                 sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1926                                       work.work.entry);
1927                 list_del_init(&sup->work.work.entry);
1928                 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1929                     sup->srcu_size_state == SRCU_SIZE_SMALL)
1930                         sup->srcu_size_state = SRCU_SIZE_ALLOC;
1931                 queue_work(rcu_gp_wq, &sup->work.work);
1932         }
1933 }
1934
1935 #ifdef CONFIG_MODULES
1936
1937 /* Initialize any global-scope srcu_struct structures used by this module. */
1938 static int srcu_module_coming(struct module *mod)
1939 {
1940         int i;
1941         struct srcu_struct *ssp;
1942         struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1943
1944         for (i = 0; i < mod->num_srcu_structs; i++) {
1945                 ssp = *(sspp++);
1946                 ssp->sda = alloc_percpu(struct srcu_data);
1947                 if (WARN_ON_ONCE(!ssp->sda))
1948                         return -ENOMEM;
1949         }
1950         return 0;
1951 }
1952
1953 /* Clean up any global-scope srcu_struct structures used by this module. */
1954 static void srcu_module_going(struct module *mod)
1955 {
1956         int i;
1957         struct srcu_struct *ssp;
1958         struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1959
1960         for (i = 0; i < mod->num_srcu_structs; i++) {
1961                 ssp = *(sspp++);
1962                 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
1963                     !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
1964                         cleanup_srcu_struct(ssp);
1965                 if (!WARN_ON(srcu_readers_active(ssp)))
1966                         free_percpu(ssp->sda);
1967         }
1968 }
1969
1970 /* Handle one module, either coming or going. */
1971 static int srcu_module_notify(struct notifier_block *self,
1972                               unsigned long val, void *data)
1973 {
1974         struct module *mod = data;
1975         int ret = 0;
1976
1977         switch (val) {
1978         case MODULE_STATE_COMING:
1979                 ret = srcu_module_coming(mod);
1980                 break;
1981         case MODULE_STATE_GOING:
1982                 srcu_module_going(mod);
1983                 break;
1984         default:
1985                 break;
1986         }
1987         return ret;
1988 }
1989
1990 static struct notifier_block srcu_module_nb = {
1991         .notifier_call = srcu_module_notify,
1992         .priority = 0,
1993 };
1994
1995 static __init int init_srcu_module_notifier(void)
1996 {
1997         int ret;
1998
1999         ret = register_module_notifier(&srcu_module_nb);
2000         if (ret)
2001                 pr_warn("Failed to register srcu module notifier\n");
2002         return ret;
2003 }
2004 late_initcall(init_srcu_module_notifier);
2005
2006 #endif /* #ifdef CONFIG_MODULES */