Merge tag 'Smack-for-5.6' of git://github.com/cschaufler/smack-next
[platform/kernel/linux-rpi.git] / kernel / rcu / rcu.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12
13 #include <trace/events/rcu.h>
14
15 /* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
16 #define DYNTICK_IRQ_NONIDLE     ((LONG_MAX / 2) + 1)
17
18
19 /*
20  * Grace-period counter management.
21  */
22
23 #define RCU_SEQ_CTR_SHIFT       2
24 #define RCU_SEQ_STATE_MASK      ((1 << RCU_SEQ_CTR_SHIFT) - 1)
25
26 /*
27  * Return the counter portion of a sequence number previously returned
28  * by rcu_seq_snap() or rcu_seq_current().
29  */
30 static inline unsigned long rcu_seq_ctr(unsigned long s)
31 {
32         return s >> RCU_SEQ_CTR_SHIFT;
33 }
34
35 /*
36  * Return the state portion of a sequence number previously returned
37  * by rcu_seq_snap() or rcu_seq_current().
38  */
39 static inline int rcu_seq_state(unsigned long s)
40 {
41         return s & RCU_SEQ_STATE_MASK;
42 }
43
44 /*
45  * Set the state portion of the pointed-to sequence number.
46  * The caller is responsible for preventing conflicting updates.
47  */
48 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
49 {
50         WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
51         WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
52 }
53
54 /* Adjust sequence number for start of update-side operation. */
55 static inline void rcu_seq_start(unsigned long *sp)
56 {
57         WRITE_ONCE(*sp, *sp + 1);
58         smp_mb(); /* Ensure update-side operation after counter increment. */
59         WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
60 }
61
62 /* Compute the end-of-grace-period value for the specified sequence number. */
63 static inline unsigned long rcu_seq_endval(unsigned long *sp)
64 {
65         return (*sp | RCU_SEQ_STATE_MASK) + 1;
66 }
67
68 /* Adjust sequence number for end of update-side operation. */
69 static inline void rcu_seq_end(unsigned long *sp)
70 {
71         smp_mb(); /* Ensure update-side operation before counter increment. */
72         WARN_ON_ONCE(!rcu_seq_state(*sp));
73         WRITE_ONCE(*sp, rcu_seq_endval(sp));
74 }
75
76 /*
77  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
78  *
79  * This function returns the earliest value of the grace-period sequence number
80  * that will indicate that a full grace period has elapsed since the current
81  * time.  Once the grace-period sequence number has reached this value, it will
82  * be safe to invoke all callbacks that have been registered prior to the
83  * current time. This value is the current grace-period number plus two to the
84  * power of the number of low-order bits reserved for state, then rounded up to
85  * the next value in which the state bits are all zero.
86  */
87 static inline unsigned long rcu_seq_snap(unsigned long *sp)
88 {
89         unsigned long s;
90
91         s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
92         smp_mb(); /* Above access must not bleed into critical section. */
93         return s;
94 }
95
96 /* Return the current value the update side's sequence number, no ordering. */
97 static inline unsigned long rcu_seq_current(unsigned long *sp)
98 {
99         return READ_ONCE(*sp);
100 }
101
102 /*
103  * Given a snapshot from rcu_seq_snap(), determine whether or not the
104  * corresponding update-side operation has started.
105  */
106 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107 {
108         return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109 }
110
111 /*
112  * Given a snapshot from rcu_seq_snap(), determine whether or not a
113  * full update-side operation has occurred.
114  */
115 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116 {
117         return ULONG_CMP_GE(READ_ONCE(*sp), s);
118 }
119
120 /*
121  * Has a grace period completed since the time the old gp_seq was collected?
122  */
123 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124 {
125         return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126 }
127
128 /*
129  * Has a grace period started since the time the old gp_seq was collected?
130  */
131 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132 {
133         return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134                             new);
135 }
136
137 /*
138  * Roughly how many full grace periods have elapsed between the collection
139  * of the two specified grace periods?
140  */
141 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142 {
143         unsigned long rnd_diff;
144
145         if (old == new)
146                 return 0;
147         /*
148          * Compute the number of grace periods (still shifted up), plus
149          * one if either of new and old is not an exact grace period.
150          */
151         rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152                    ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153                    ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154         if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155                 return 1; /* Definitely no grace period has elapsed. */
156         return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157 }
158
159 /*
160  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161  * by call_rcu() and rcu callback execution, and are therefore not part
162  * of the RCU API. These are in rcupdate.h because they are used by all
163  * RCU implementations.
164  */
165
166 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167 # define STATE_RCU_HEAD_READY   0
168 # define STATE_RCU_HEAD_QUEUED  1
169
170 extern struct debug_obj_descr rcuhead_debug_descr;
171
172 static inline int debug_rcu_head_queue(struct rcu_head *head)
173 {
174         int r1;
175
176         r1 = debug_object_activate(head, &rcuhead_debug_descr);
177         debug_object_active_state(head, &rcuhead_debug_descr,
178                                   STATE_RCU_HEAD_READY,
179                                   STATE_RCU_HEAD_QUEUED);
180         return r1;
181 }
182
183 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184 {
185         debug_object_active_state(head, &rcuhead_debug_descr,
186                                   STATE_RCU_HEAD_QUEUED,
187                                   STATE_RCU_HEAD_READY);
188         debug_object_deactivate(head, &rcuhead_debug_descr);
189 }
190 #else   /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
191 static inline int debug_rcu_head_queue(struct rcu_head *head)
192 {
193         return 0;
194 }
195
196 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197 {
198 }
199 #endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200
201 #ifdef CONFIG_RCU_STALL_COMMON
202
203 extern int rcu_cpu_stall_ftrace_dump;
204 extern int rcu_cpu_stall_suppress;
205 extern int rcu_cpu_stall_timeout;
206 int rcu_jiffies_till_stall_check(void);
207
208 #define rcu_ftrace_dump_stall_suppress() \
209 do { \
210         if (!rcu_cpu_stall_suppress) \
211                 rcu_cpu_stall_suppress = 3; \
212 } while (0)
213
214 #define rcu_ftrace_dump_stall_unsuppress() \
215 do { \
216         if (rcu_cpu_stall_suppress == 3) \
217                 rcu_cpu_stall_suppress = 0; \
218 } while (0)
219
220 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
221 #define rcu_ftrace_dump_stall_suppress()
222 #define rcu_ftrace_dump_stall_unsuppress()
223 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
224
225 /*
226  * Strings used in tracepoints need to be exported via the
227  * tracing system such that tools like perf and trace-cmd can
228  * translate the string address pointers to actual text.
229  */
230 #define TPS(x)  tracepoint_string(x)
231
232 /*
233  * Dump the ftrace buffer, but only one time per callsite per boot.
234  */
235 #define rcu_ftrace_dump(oops_dump_mode) \
236 do { \
237         static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
238         \
239         if (!atomic_read(&___rfd_beenhere) && \
240             !atomic_xchg(&___rfd_beenhere, 1)) { \
241                 tracing_off(); \
242                 rcu_ftrace_dump_stall_suppress(); \
243                 ftrace_dump(oops_dump_mode); \
244                 rcu_ftrace_dump_stall_unsuppress(); \
245         } \
246 } while (0)
247
248 void rcu_early_boot_tests(void);
249 void rcu_test_sync_prims(void);
250
251 /*
252  * This function really isn't for public consumption, but RCU is special in
253  * that context switches can allow the state machine to make progress.
254  */
255 extern void resched_cpu(int cpu);
256
257 #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU)
258
259 #include <linux/rcu_node_tree.h>
260
261 extern int rcu_num_lvls;
262 extern int num_rcu_lvl[];
263 extern int rcu_num_nodes;
264 static bool rcu_fanout_exact;
265 static int rcu_fanout_leaf;
266
267 /*
268  * Compute the per-level fanout, either using the exact fanout specified
269  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
270  */
271 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
272 {
273         int i;
274
275         for (i = 0; i < RCU_NUM_LVLS; i++)
276                 levelspread[i] = INT_MIN;
277         if (rcu_fanout_exact) {
278                 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
279                 for (i = rcu_num_lvls - 2; i >= 0; i--)
280                         levelspread[i] = RCU_FANOUT;
281         } else {
282                 int ccur;
283                 int cprv;
284
285                 cprv = nr_cpu_ids;
286                 for (i = rcu_num_lvls - 1; i >= 0; i--) {
287                         ccur = levelcnt[i];
288                         levelspread[i] = (cprv + ccur - 1) / ccur;
289                         cprv = ccur;
290                 }
291         }
292 }
293
294 /* Returns a pointer to the first leaf rcu_node structure. */
295 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
296
297 /* Is this rcu_node a leaf? */
298 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
299
300 /* Is this rcu_node the last leaf? */
301 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
302
303 /*
304  * Do a full breadth-first scan of the {s,}rcu_node structures for the
305  * specified state structure (for SRCU) or the only rcu_state structure
306  * (for RCU).
307  */
308 #define srcu_for_each_node_breadth_first(sp, rnp) \
309         for ((rnp) = &(sp)->node[0]; \
310              (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
311 #define rcu_for_each_node_breadth_first(rnp) \
312         srcu_for_each_node_breadth_first(&rcu_state, rnp)
313
314 /*
315  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
316  * Note that if there is a singleton rcu_node tree with but one rcu_node
317  * structure, this loop -will- visit the rcu_node structure.  It is still
318  * a leaf node, even if it is also the root node.
319  */
320 #define rcu_for_each_leaf_node(rnp) \
321         for ((rnp) = rcu_first_leaf_node(); \
322              (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
323
324 /*
325  * Iterate over all possible CPUs in a leaf RCU node.
326  */
327 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
328         for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
329              (cpu) <= rnp->grphi; \
330              (cpu) = cpumask_next((cpu), cpu_possible_mask))
331
332 /*
333  * Iterate over all CPUs in a leaf RCU node's specified mask.
334  */
335 #define rcu_find_next_bit(rnp, cpu, mask) \
336         ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
337 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
338         for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
339              (cpu) <= rnp->grphi; \
340              (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
341
342 /*
343  * Wrappers for the rcu_node::lock acquire and release.
344  *
345  * Because the rcu_nodes form a tree, the tree traversal locking will observe
346  * different lock values, this in turn means that an UNLOCK of one level
347  * followed by a LOCK of another level does not imply a full memory barrier;
348  * and most importantly transitivity is lost.
349  *
350  * In order to restore full ordering between tree levels, augment the regular
351  * lock acquire functions with smp_mb__after_unlock_lock().
352  *
353  * As ->lock of struct rcu_node is a __private field, therefore one should use
354  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
355  */
356 #define raw_spin_lock_rcu_node(p)                                       \
357 do {                                                                    \
358         raw_spin_lock(&ACCESS_PRIVATE(p, lock));                        \
359         smp_mb__after_unlock_lock();                                    \
360 } while (0)
361
362 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
363
364 #define raw_spin_lock_irq_rcu_node(p)                                   \
365 do {                                                                    \
366         raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));                    \
367         smp_mb__after_unlock_lock();                                    \
368 } while (0)
369
370 #define raw_spin_unlock_irq_rcu_node(p)                                 \
371         raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
372
373 #define raw_spin_lock_irqsave_rcu_node(p, flags)                        \
374 do {                                                                    \
375         raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
376         smp_mb__after_unlock_lock();                                    \
377 } while (0)
378
379 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)                   \
380         raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
381
382 #define raw_spin_trylock_rcu_node(p)                                    \
383 ({                                                                      \
384         bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));    \
385                                                                         \
386         if (___locked)                                                  \
387                 smp_mb__after_unlock_lock();                            \
388         ___locked;                                                      \
389 })
390
391 #define raw_lockdep_assert_held_rcu_node(p)                             \
392         lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
393
394 #endif /* #if defined(CONFIG_SRCU) || !defined(CONFIG_TINY_RCU) */
395
396 #ifdef CONFIG_SRCU
397 void srcu_init(void);
398 #else /* #ifdef CONFIG_SRCU */
399 static inline void srcu_init(void) { }
400 #endif /* #else #ifdef CONFIG_SRCU */
401
402 #ifdef CONFIG_TINY_RCU
403 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
404 static inline bool rcu_gp_is_normal(void) { return true; }
405 static inline bool rcu_gp_is_expedited(void) { return false; }
406 static inline void rcu_expedite_gp(void) { }
407 static inline void rcu_unexpedite_gp(void) { }
408 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
409 #else /* #ifdef CONFIG_TINY_RCU */
410 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
411 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
412 void rcu_expedite_gp(void);
413 void rcu_unexpedite_gp(void);
414 void rcupdate_announce_bootup_oddness(void);
415 void rcu_request_urgent_qs_task(struct task_struct *t);
416 #endif /* #else #ifdef CONFIG_TINY_RCU */
417
418 #define RCU_SCHEDULER_INACTIVE  0
419 #define RCU_SCHEDULER_INIT      1
420 #define RCU_SCHEDULER_RUNNING   2
421
422 enum rcutorture_type {
423         RCU_FLAVOR,
424         RCU_TASKS_FLAVOR,
425         RCU_TRIVIAL_FLAVOR,
426         SRCU_FLAVOR,
427         INVALID_RCU_FLAVOR
428 };
429
430 #if defined(CONFIG_TREE_RCU)
431 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
432                             unsigned long *gp_seq);
433 void do_trace_rcu_torture_read(const char *rcutorturename,
434                                struct rcu_head *rhp,
435                                unsigned long secs,
436                                unsigned long c_old,
437                                unsigned long c);
438 #else
439 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
440                                           int *flags, unsigned long *gp_seq)
441 {
442         *flags = 0;
443         *gp_seq = 0;
444 }
445 #ifdef CONFIG_RCU_TRACE
446 void do_trace_rcu_torture_read(const char *rcutorturename,
447                                struct rcu_head *rhp,
448                                unsigned long secs,
449                                unsigned long c_old,
450                                unsigned long c);
451 #else
452 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
453         do { } while (0)
454 #endif
455 #endif
456
457 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
458 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
459 #endif
460
461 #ifdef CONFIG_TINY_SRCU
462
463 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
464                                            struct srcu_struct *sp, int *flags,
465                                            unsigned long *gp_seq)
466 {
467         if (test_type != SRCU_FLAVOR)
468                 return;
469         *flags = 0;
470         *gp_seq = sp->srcu_idx;
471 }
472
473 #elif defined(CONFIG_TREE_SRCU)
474
475 void srcutorture_get_gp_data(enum rcutorture_type test_type,
476                              struct srcu_struct *sp, int *flags,
477                              unsigned long *gp_seq);
478
479 #endif
480
481 #ifdef CONFIG_TINY_RCU
482 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
483 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
484 static inline unsigned long
485 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
486 static inline void rcu_force_quiescent_state(void) { }
487 static inline void show_rcu_gp_kthreads(void) { }
488 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
489 static inline void rcu_fwd_progress_check(unsigned long j) { }
490 #else /* #ifdef CONFIG_TINY_RCU */
491 unsigned long rcu_get_gp_seq(void);
492 unsigned long rcu_exp_batches_completed(void);
493 unsigned long srcu_batches_completed(struct srcu_struct *sp);
494 void show_rcu_gp_kthreads(void);
495 int rcu_get_gp_kthreads_prio(void);
496 void rcu_fwd_progress_check(unsigned long j);
497 void rcu_force_quiescent_state(void);
498 extern struct workqueue_struct *rcu_gp_wq;
499 extern struct workqueue_struct *rcu_par_gp_wq;
500 #endif /* #else #ifdef CONFIG_TINY_RCU */
501
502 #ifdef CONFIG_RCU_NOCB_CPU
503 bool rcu_is_nocb_cpu(int cpu);
504 void rcu_bind_current_to_nocb(void);
505 #else
506 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
507 static inline void rcu_bind_current_to_nocb(void) { }
508 #endif
509
510 #endif /* __LINUX_RCU_H */