ptrace: ensure arch_ptrace/ptrace_request can never race with SIGKILL
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / profile.c
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *      Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *      Nadia Yvette Chambers, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *      to resolve timer interrupt livelocks, Nadia Yvette Chambers,
14  *      Oracle, 2004
15  */
16
17 #include <linux/export.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
21 #include <linux/mm.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <asm/sections.h>
29 #include <asm/irq_regs.h>
30 #include <asm/ptrace.h>
31
32 struct profile_hit {
33         u32 pc, hits;
34 };
35 #define PROFILE_GRPSHIFT        3
36 #define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
37 #define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
38 #define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
39
40 /* Oprofile timer tick hook */
41 static int (*timer_hook)(struct pt_regs *) __read_mostly;
42
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len, prof_shift;
45
46 int prof_on __read_mostly;
47 EXPORT_SYMBOL_GPL(prof_on);
48
49 static cpumask_var_t prof_cpu_mask;
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
52 static DEFINE_PER_CPU(int, cpu_profile_flip);
53 static DEFINE_MUTEX(profile_flip_mutex);
54 #endif /* CONFIG_SMP */
55
56 int profile_setup(char *str)
57 {
58         static char schedstr[] = "schedule";
59         static char sleepstr[] = "sleep";
60         static char kvmstr[] = "kvm";
61         int par;
62
63         if (!strncmp(str, sleepstr, strlen(sleepstr))) {
64 #ifdef CONFIG_SCHEDSTATS
65                 prof_on = SLEEP_PROFILING;
66                 if (str[strlen(sleepstr)] == ',')
67                         str += strlen(sleepstr) + 1;
68                 if (get_option(&str, &par))
69                         prof_shift = par;
70                 printk(KERN_INFO
71                         "kernel sleep profiling enabled (shift: %ld)\n",
72                         prof_shift);
73 #else
74                 printk(KERN_WARNING
75                         "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77         } else if (!strncmp(str, schedstr, strlen(schedstr))) {
78                 prof_on = SCHED_PROFILING;
79                 if (str[strlen(schedstr)] == ',')
80                         str += strlen(schedstr) + 1;
81                 if (get_option(&str, &par))
82                         prof_shift = par;
83                 printk(KERN_INFO
84                         "kernel schedule profiling enabled (shift: %ld)\n",
85                         prof_shift);
86         } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
87                 prof_on = KVM_PROFILING;
88                 if (str[strlen(kvmstr)] == ',')
89                         str += strlen(kvmstr) + 1;
90                 if (get_option(&str, &par))
91                         prof_shift = par;
92                 printk(KERN_INFO
93                         "kernel KVM profiling enabled (shift: %ld)\n",
94                         prof_shift);
95         } else if (get_option(&str, &par)) {
96                 prof_shift = par;
97                 prof_on = CPU_PROFILING;
98                 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
99                         prof_shift);
100         }
101         return 1;
102 }
103 __setup("profile=", profile_setup);
104
105
106 int __ref profile_init(void)
107 {
108         int buffer_bytes;
109         if (!prof_on)
110                 return 0;
111
112         /* only text is profiled */
113         prof_len = (_etext - _stext) >> prof_shift;
114         buffer_bytes = prof_len*sizeof(atomic_t);
115
116         if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
117                 return -ENOMEM;
118
119         cpumask_copy(prof_cpu_mask, cpu_possible_mask);
120
121         prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
122         if (prof_buffer)
123                 return 0;
124
125         prof_buffer = alloc_pages_exact(buffer_bytes,
126                                         GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
127         if (prof_buffer)
128                 return 0;
129
130         prof_buffer = vzalloc(buffer_bytes);
131         if (prof_buffer)
132                 return 0;
133
134         free_cpumask_var(prof_cpu_mask);
135         return -ENOMEM;
136 }
137
138 /* Profile event notifications */
139
140 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
141 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
142 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
143
144 void profile_task_exit(struct task_struct *task)
145 {
146         blocking_notifier_call_chain(&task_exit_notifier, 0, task);
147 }
148
149 int profile_handoff_task(struct task_struct *task)
150 {
151         int ret;
152         ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
153         return (ret == NOTIFY_OK) ? 1 : 0;
154 }
155
156 void profile_munmap(unsigned long addr)
157 {
158         blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
159 }
160
161 int task_handoff_register(struct notifier_block *n)
162 {
163         return atomic_notifier_chain_register(&task_free_notifier, n);
164 }
165 EXPORT_SYMBOL_GPL(task_handoff_register);
166
167 int task_handoff_unregister(struct notifier_block *n)
168 {
169         return atomic_notifier_chain_unregister(&task_free_notifier, n);
170 }
171 EXPORT_SYMBOL_GPL(task_handoff_unregister);
172
173 int profile_event_register(enum profile_type type, struct notifier_block *n)
174 {
175         int err = -EINVAL;
176
177         switch (type) {
178         case PROFILE_TASK_EXIT:
179                 err = blocking_notifier_chain_register(
180                                 &task_exit_notifier, n);
181                 break;
182         case PROFILE_MUNMAP:
183                 err = blocking_notifier_chain_register(
184                                 &munmap_notifier, n);
185                 break;
186         }
187
188         return err;
189 }
190 EXPORT_SYMBOL_GPL(profile_event_register);
191
192 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
193 {
194         int err = -EINVAL;
195
196         switch (type) {
197         case PROFILE_TASK_EXIT:
198                 err = blocking_notifier_chain_unregister(
199                                 &task_exit_notifier, n);
200                 break;
201         case PROFILE_MUNMAP:
202                 err = blocking_notifier_chain_unregister(
203                                 &munmap_notifier, n);
204                 break;
205         }
206
207         return err;
208 }
209 EXPORT_SYMBOL_GPL(profile_event_unregister);
210
211 int register_timer_hook(int (*hook)(struct pt_regs *))
212 {
213         if (timer_hook)
214                 return -EBUSY;
215         timer_hook = hook;
216         return 0;
217 }
218 EXPORT_SYMBOL_GPL(register_timer_hook);
219
220 void unregister_timer_hook(int (*hook)(struct pt_regs *))
221 {
222         WARN_ON(hook != timer_hook);
223         timer_hook = NULL;
224         /* make sure all CPUs see the NULL hook */
225         synchronize_sched();  /* Allow ongoing interrupts to complete. */
226 }
227 EXPORT_SYMBOL_GPL(unregister_timer_hook);
228
229
230 #ifdef CONFIG_SMP
231 /*
232  * Each cpu has a pair of open-addressed hashtables for pending
233  * profile hits. read_profile() IPI's all cpus to request them
234  * to flip buffers and flushes their contents to prof_buffer itself.
235  * Flip requests are serialized by the profile_flip_mutex. The sole
236  * use of having a second hashtable is for avoiding cacheline
237  * contention that would otherwise happen during flushes of pending
238  * profile hits required for the accuracy of reported profile hits
239  * and so resurrect the interrupt livelock issue.
240  *
241  * The open-addressed hashtables are indexed by profile buffer slot
242  * and hold the number of pending hits to that profile buffer slot on
243  * a cpu in an entry. When the hashtable overflows, all pending hits
244  * are accounted to their corresponding profile buffer slots with
245  * atomic_add() and the hashtable emptied. As numerous pending hits
246  * may be accounted to a profile buffer slot in a hashtable entry,
247  * this amortizes a number of atomic profile buffer increments likely
248  * to be far larger than the number of entries in the hashtable,
249  * particularly given that the number of distinct profile buffer
250  * positions to which hits are accounted during short intervals (e.g.
251  * several seconds) is usually very small. Exclusion from buffer
252  * flipping is provided by interrupt disablement (note that for
253  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
254  * process context).
255  * The hash function is meant to be lightweight as opposed to strong,
256  * and was vaguely inspired by ppc64 firmware-supported inverted
257  * pagetable hash functions, but uses a full hashtable full of finite
258  * collision chains, not just pairs of them.
259  *
260  * -- nyc
261  */
262 static void __profile_flip_buffers(void *unused)
263 {
264         int cpu = smp_processor_id();
265
266         per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
267 }
268
269 static void profile_flip_buffers(void)
270 {
271         int i, j, cpu;
272
273         mutex_lock(&profile_flip_mutex);
274         j = per_cpu(cpu_profile_flip, get_cpu());
275         put_cpu();
276         on_each_cpu(__profile_flip_buffers, NULL, 1);
277         for_each_online_cpu(cpu) {
278                 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
279                 for (i = 0; i < NR_PROFILE_HIT; ++i) {
280                         if (!hits[i].hits) {
281                                 if (hits[i].pc)
282                                         hits[i].pc = 0;
283                                 continue;
284                         }
285                         atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
286                         hits[i].hits = hits[i].pc = 0;
287                 }
288         }
289         mutex_unlock(&profile_flip_mutex);
290 }
291
292 static void profile_discard_flip_buffers(void)
293 {
294         int i, cpu;
295
296         mutex_lock(&profile_flip_mutex);
297         i = per_cpu(cpu_profile_flip, get_cpu());
298         put_cpu();
299         on_each_cpu(__profile_flip_buffers, NULL, 1);
300         for_each_online_cpu(cpu) {
301                 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
302                 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
303         }
304         mutex_unlock(&profile_flip_mutex);
305 }
306
307 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
308 {
309         unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
310         int i, j, cpu;
311         struct profile_hit *hits;
312
313         pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
314         i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
315         secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
316         cpu = get_cpu();
317         hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
318         if (!hits) {
319                 put_cpu();
320                 return;
321         }
322         /*
323          * We buffer the global profiler buffer into a per-CPU
324          * queue and thus reduce the number of global (and possibly
325          * NUMA-alien) accesses. The write-queue is self-coalescing:
326          */
327         local_irq_save(flags);
328         do {
329                 for (j = 0; j < PROFILE_GRPSZ; ++j) {
330                         if (hits[i + j].pc == pc) {
331                                 hits[i + j].hits += nr_hits;
332                                 goto out;
333                         } else if (!hits[i + j].hits) {
334                                 hits[i + j].pc = pc;
335                                 hits[i + j].hits = nr_hits;
336                                 goto out;
337                         }
338                 }
339                 i = (i + secondary) & (NR_PROFILE_HIT - 1);
340         } while (i != primary);
341
342         /*
343          * Add the current hit(s) and flush the write-queue out
344          * to the global buffer:
345          */
346         atomic_add(nr_hits, &prof_buffer[pc]);
347         for (i = 0; i < NR_PROFILE_HIT; ++i) {
348                 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
349                 hits[i].pc = hits[i].hits = 0;
350         }
351 out:
352         local_irq_restore(flags);
353         put_cpu();
354 }
355
356 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
357                                         unsigned long action, void *__cpu)
358 {
359         int node, cpu = (unsigned long)__cpu;
360         struct page *page;
361
362         switch (action) {
363         case CPU_UP_PREPARE:
364         case CPU_UP_PREPARE_FROZEN:
365                 node = cpu_to_mem(cpu);
366                 per_cpu(cpu_profile_flip, cpu) = 0;
367                 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
368                         page = alloc_pages_exact_node(node,
369                                         GFP_KERNEL | __GFP_ZERO,
370                                         0);
371                         if (!page)
372                                 return notifier_from_errno(-ENOMEM);
373                         per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
374                 }
375                 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
376                         page = alloc_pages_exact_node(node,
377                                         GFP_KERNEL | __GFP_ZERO,
378                                         0);
379                         if (!page)
380                                 goto out_free;
381                         per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
382                 }
383                 break;
384 out_free:
385                 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
386                 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
387                 __free_page(page);
388                 return notifier_from_errno(-ENOMEM);
389         case CPU_ONLINE:
390         case CPU_ONLINE_FROZEN:
391                 if (prof_cpu_mask != NULL)
392                         cpumask_set_cpu(cpu, prof_cpu_mask);
393                 break;
394         case CPU_UP_CANCELED:
395         case CPU_UP_CANCELED_FROZEN:
396         case CPU_DEAD:
397         case CPU_DEAD_FROZEN:
398                 if (prof_cpu_mask != NULL)
399                         cpumask_clear_cpu(cpu, prof_cpu_mask);
400                 if (per_cpu(cpu_profile_hits, cpu)[0]) {
401                         page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
402                         per_cpu(cpu_profile_hits, cpu)[0] = NULL;
403                         __free_page(page);
404                 }
405                 if (per_cpu(cpu_profile_hits, cpu)[1]) {
406                         page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
407                         per_cpu(cpu_profile_hits, cpu)[1] = NULL;
408                         __free_page(page);
409                 }
410                 break;
411         }
412         return NOTIFY_OK;
413 }
414 #else /* !CONFIG_SMP */
415 #define profile_flip_buffers()          do { } while (0)
416 #define profile_discard_flip_buffers()  do { } while (0)
417 #define profile_cpu_callback            NULL
418
419 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
420 {
421         unsigned long pc;
422         pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
423         atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
424 }
425 #endif /* !CONFIG_SMP */
426
427 void profile_hits(int type, void *__pc, unsigned int nr_hits)
428 {
429         if (prof_on != type || !prof_buffer)
430                 return;
431         do_profile_hits(type, __pc, nr_hits);
432 }
433 EXPORT_SYMBOL_GPL(profile_hits);
434
435 void profile_tick(int type)
436 {
437         struct pt_regs *regs = get_irq_regs();
438
439         if (type == CPU_PROFILING && timer_hook)
440                 timer_hook(regs);
441         if (!user_mode(regs) && prof_cpu_mask != NULL &&
442             cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
443                 profile_hit(type, (void *)profile_pc(regs));
444 }
445
446 #ifdef CONFIG_PROC_FS
447 #include <linux/proc_fs.h>
448 #include <linux/seq_file.h>
449 #include <asm/uaccess.h>
450
451 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
452 {
453         seq_cpumask(m, prof_cpu_mask);
454         seq_putc(m, '\n');
455         return 0;
456 }
457
458 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
459 {
460         return single_open(file, prof_cpu_mask_proc_show, NULL);
461 }
462
463 static ssize_t prof_cpu_mask_proc_write(struct file *file,
464         const char __user *buffer, size_t count, loff_t *pos)
465 {
466         cpumask_var_t new_value;
467         int err;
468
469         if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
470                 return -ENOMEM;
471
472         err = cpumask_parse_user(buffer, count, new_value);
473         if (!err) {
474                 cpumask_copy(prof_cpu_mask, new_value);
475                 err = count;
476         }
477         free_cpumask_var(new_value);
478         return err;
479 }
480
481 static const struct file_operations prof_cpu_mask_proc_fops = {
482         .open           = prof_cpu_mask_proc_open,
483         .read           = seq_read,
484         .llseek         = seq_lseek,
485         .release        = single_release,
486         .write          = prof_cpu_mask_proc_write,
487 };
488
489 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
490 {
491         /* create /proc/irq/prof_cpu_mask */
492         proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
493 }
494
495 /*
496  * This function accesses profiling information. The returned data is
497  * binary: the sampling step and the actual contents of the profile
498  * buffer. Use of the program readprofile is recommended in order to
499  * get meaningful info out of these data.
500  */
501 static ssize_t
502 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
503 {
504         unsigned long p = *ppos;
505         ssize_t read;
506         char *pnt;
507         unsigned int sample_step = 1 << prof_shift;
508
509         profile_flip_buffers();
510         if (p >= (prof_len+1)*sizeof(unsigned int))
511                 return 0;
512         if (count > (prof_len+1)*sizeof(unsigned int) - p)
513                 count = (prof_len+1)*sizeof(unsigned int) - p;
514         read = 0;
515
516         while (p < sizeof(unsigned int) && count > 0) {
517                 if (put_user(*((char *)(&sample_step)+p), buf))
518                         return -EFAULT;
519                 buf++; p++; count--; read++;
520         }
521         pnt = (char *)prof_buffer + p - sizeof(atomic_t);
522         if (copy_to_user(buf, (void *)pnt, count))
523                 return -EFAULT;
524         read += count;
525         *ppos += read;
526         return read;
527 }
528
529 /*
530  * Writing to /proc/profile resets the counters
531  *
532  * Writing a 'profiling multiplier' value into it also re-sets the profiling
533  * interrupt frequency, on architectures that support this.
534  */
535 static ssize_t write_profile(struct file *file, const char __user *buf,
536                              size_t count, loff_t *ppos)
537 {
538 #ifdef CONFIG_SMP
539         extern int setup_profiling_timer(unsigned int multiplier);
540
541         if (count == sizeof(int)) {
542                 unsigned int multiplier;
543
544                 if (copy_from_user(&multiplier, buf, sizeof(int)))
545                         return -EFAULT;
546
547                 if (setup_profiling_timer(multiplier))
548                         return -EINVAL;
549         }
550 #endif
551         profile_discard_flip_buffers();
552         memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
553         return count;
554 }
555
556 static const struct file_operations proc_profile_operations = {
557         .read           = read_profile,
558         .write          = write_profile,
559         .llseek         = default_llseek,
560 };
561
562 #ifdef CONFIG_SMP
563 static void profile_nop(void *unused)
564 {
565 }
566
567 static int create_hash_tables(void)
568 {
569         int cpu;
570
571         for_each_online_cpu(cpu) {
572                 int node = cpu_to_mem(cpu);
573                 struct page *page;
574
575                 page = alloc_pages_exact_node(node,
576                                 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
577                                 0);
578                 if (!page)
579                         goto out_cleanup;
580                 per_cpu(cpu_profile_hits, cpu)[1]
581                                 = (struct profile_hit *)page_address(page);
582                 page = alloc_pages_exact_node(node,
583                                 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
584                                 0);
585                 if (!page)
586                         goto out_cleanup;
587                 per_cpu(cpu_profile_hits, cpu)[0]
588                                 = (struct profile_hit *)page_address(page);
589         }
590         return 0;
591 out_cleanup:
592         prof_on = 0;
593         smp_mb();
594         on_each_cpu(profile_nop, NULL, 1);
595         for_each_online_cpu(cpu) {
596                 struct page *page;
597
598                 if (per_cpu(cpu_profile_hits, cpu)[0]) {
599                         page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
600                         per_cpu(cpu_profile_hits, cpu)[0] = NULL;
601                         __free_page(page);
602                 }
603                 if (per_cpu(cpu_profile_hits, cpu)[1]) {
604                         page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
605                         per_cpu(cpu_profile_hits, cpu)[1] = NULL;
606                         __free_page(page);
607                 }
608         }
609         return -1;
610 }
611 #else
612 #define create_hash_tables()                    ({ 0; })
613 #endif
614
615 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
616 {
617         struct proc_dir_entry *entry;
618
619         if (!prof_on)
620                 return 0;
621         if (create_hash_tables())
622                 return -ENOMEM;
623         entry = proc_create("profile", S_IWUSR | S_IRUGO,
624                             NULL, &proc_profile_operations);
625         if (!entry)
626                 return 0;
627         entry->size = (1+prof_len) * sizeof(atomic_t);
628         hotcpu_notifier(profile_cpu_callback, 0);
629         return 0;
630 }
631 module_init(create_proc_profile);
632 #endif /* CONFIG_PROC_FS */