rpi4: boot: Update the firmware with the latest version
[platform/kernel/linux-rpi.git] / kernel / profile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *      Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *      Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *      to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *      Oracle, 2004
16  */
17
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34
35 struct profile_hit {
36         u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT        3
39 #define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
42
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56
57 int profile_setup(char *str)
58 {
59         static const char schedstr[] = "schedule";
60         static const char sleepstr[] = "sleep";
61         static const char kvmstr[] = "kvm";
62         int par;
63
64         if (!strncmp(str, sleepstr, strlen(sleepstr))) {
65 #ifdef CONFIG_SCHEDSTATS
66                 force_schedstat_enabled();
67                 prof_on = SLEEP_PROFILING;
68                 if (str[strlen(sleepstr)] == ',')
69                         str += strlen(sleepstr) + 1;
70                 if (get_option(&str, &par))
71                         prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
72                 pr_info("kernel sleep profiling enabled (shift: %u)\n",
73                         prof_shift);
74 #else
75                 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77         } else if (!strncmp(str, schedstr, strlen(schedstr))) {
78                 prof_on = SCHED_PROFILING;
79                 if (str[strlen(schedstr)] == ',')
80                         str += strlen(schedstr) + 1;
81                 if (get_option(&str, &par))
82                         prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
83                 pr_info("kernel schedule profiling enabled (shift: %u)\n",
84                         prof_shift);
85         } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86                 prof_on = KVM_PROFILING;
87                 if (str[strlen(kvmstr)] == ',')
88                         str += strlen(kvmstr) + 1;
89                 if (get_option(&str, &par))
90                         prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
91                 pr_info("kernel KVM profiling enabled (shift: %u)\n",
92                         prof_shift);
93         } else if (get_option(&str, &par)) {
94                 prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
95                 prof_on = CPU_PROFILING;
96                 pr_info("kernel profiling enabled (shift: %u)\n",
97                         prof_shift);
98         }
99         return 1;
100 }
101 __setup("profile=", profile_setup);
102
103
104 int __ref profile_init(void)
105 {
106         int buffer_bytes;
107         if (!prof_on)
108                 return 0;
109
110         /* only text is profiled */
111         prof_len = (_etext - _stext) >> prof_shift;
112
113         if (!prof_len) {
114                 pr_warn("profiling shift: %u too large\n", prof_shift);
115                 prof_on = 0;
116                 return -EINVAL;
117         }
118
119         buffer_bytes = prof_len*sizeof(atomic_t);
120
121         if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
122                 return -ENOMEM;
123
124         cpumask_copy(prof_cpu_mask, cpu_possible_mask);
125
126         prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
127         if (prof_buffer)
128                 return 0;
129
130         prof_buffer = alloc_pages_exact(buffer_bytes,
131                                         GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
132         if (prof_buffer)
133                 return 0;
134
135         prof_buffer = vzalloc(buffer_bytes);
136         if (prof_buffer)
137                 return 0;
138
139         free_cpumask_var(prof_cpu_mask);
140         return -ENOMEM;
141 }
142
143 /* Profile event notifications */
144
145 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
146 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
147 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
148
149 void profile_task_exit(struct task_struct *task)
150 {
151         blocking_notifier_call_chain(&task_exit_notifier, 0, task);
152 }
153
154 int profile_handoff_task(struct task_struct *task)
155 {
156         int ret;
157         ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
158         return (ret == NOTIFY_OK) ? 1 : 0;
159 }
160
161 void profile_munmap(unsigned long addr)
162 {
163         blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
164 }
165
166 int task_handoff_register(struct notifier_block *n)
167 {
168         return atomic_notifier_chain_register(&task_free_notifier, n);
169 }
170 EXPORT_SYMBOL_GPL(task_handoff_register);
171
172 int task_handoff_unregister(struct notifier_block *n)
173 {
174         return atomic_notifier_chain_unregister(&task_free_notifier, n);
175 }
176 EXPORT_SYMBOL_GPL(task_handoff_unregister);
177
178 int profile_event_register(enum profile_type type, struct notifier_block *n)
179 {
180         int err = -EINVAL;
181
182         switch (type) {
183         case PROFILE_TASK_EXIT:
184                 err = blocking_notifier_chain_register(
185                                 &task_exit_notifier, n);
186                 break;
187         case PROFILE_MUNMAP:
188                 err = blocking_notifier_chain_register(
189                                 &munmap_notifier, n);
190                 break;
191         }
192
193         return err;
194 }
195 EXPORT_SYMBOL_GPL(profile_event_register);
196
197 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
198 {
199         int err = -EINVAL;
200
201         switch (type) {
202         case PROFILE_TASK_EXIT:
203                 err = blocking_notifier_chain_unregister(
204                                 &task_exit_notifier, n);
205                 break;
206         case PROFILE_MUNMAP:
207                 err = blocking_notifier_chain_unregister(
208                                 &munmap_notifier, n);
209                 break;
210         }
211
212         return err;
213 }
214 EXPORT_SYMBOL_GPL(profile_event_unregister);
215
216 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
217 /*
218  * Each cpu has a pair of open-addressed hashtables for pending
219  * profile hits. read_profile() IPI's all cpus to request them
220  * to flip buffers and flushes their contents to prof_buffer itself.
221  * Flip requests are serialized by the profile_flip_mutex. The sole
222  * use of having a second hashtable is for avoiding cacheline
223  * contention that would otherwise happen during flushes of pending
224  * profile hits required for the accuracy of reported profile hits
225  * and so resurrect the interrupt livelock issue.
226  *
227  * The open-addressed hashtables are indexed by profile buffer slot
228  * and hold the number of pending hits to that profile buffer slot on
229  * a cpu in an entry. When the hashtable overflows, all pending hits
230  * are accounted to their corresponding profile buffer slots with
231  * atomic_add() and the hashtable emptied. As numerous pending hits
232  * may be accounted to a profile buffer slot in a hashtable entry,
233  * this amortizes a number of atomic profile buffer increments likely
234  * to be far larger than the number of entries in the hashtable,
235  * particularly given that the number of distinct profile buffer
236  * positions to which hits are accounted during short intervals (e.g.
237  * several seconds) is usually very small. Exclusion from buffer
238  * flipping is provided by interrupt disablement (note that for
239  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
240  * process context).
241  * The hash function is meant to be lightweight as opposed to strong,
242  * and was vaguely inspired by ppc64 firmware-supported inverted
243  * pagetable hash functions, but uses a full hashtable full of finite
244  * collision chains, not just pairs of them.
245  *
246  * -- nyc
247  */
248 static void __profile_flip_buffers(void *unused)
249 {
250         int cpu = smp_processor_id();
251
252         per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
253 }
254
255 static void profile_flip_buffers(void)
256 {
257         int i, j, cpu;
258
259         mutex_lock(&profile_flip_mutex);
260         j = per_cpu(cpu_profile_flip, get_cpu());
261         put_cpu();
262         on_each_cpu(__profile_flip_buffers, NULL, 1);
263         for_each_online_cpu(cpu) {
264                 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
265                 for (i = 0; i < NR_PROFILE_HIT; ++i) {
266                         if (!hits[i].hits) {
267                                 if (hits[i].pc)
268                                         hits[i].pc = 0;
269                                 continue;
270                         }
271                         atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
272                         hits[i].hits = hits[i].pc = 0;
273                 }
274         }
275         mutex_unlock(&profile_flip_mutex);
276 }
277
278 static void profile_discard_flip_buffers(void)
279 {
280         int i, cpu;
281
282         mutex_lock(&profile_flip_mutex);
283         i = per_cpu(cpu_profile_flip, get_cpu());
284         put_cpu();
285         on_each_cpu(__profile_flip_buffers, NULL, 1);
286         for_each_online_cpu(cpu) {
287                 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
288                 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
289         }
290         mutex_unlock(&profile_flip_mutex);
291 }
292
293 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
294 {
295         unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
296         int i, j, cpu;
297         struct profile_hit *hits;
298
299         pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
300         i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
301         secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
302         cpu = get_cpu();
303         hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
304         if (!hits) {
305                 put_cpu();
306                 return;
307         }
308         /*
309          * We buffer the global profiler buffer into a per-CPU
310          * queue and thus reduce the number of global (and possibly
311          * NUMA-alien) accesses. The write-queue is self-coalescing:
312          */
313         local_irq_save(flags);
314         do {
315                 for (j = 0; j < PROFILE_GRPSZ; ++j) {
316                         if (hits[i + j].pc == pc) {
317                                 hits[i + j].hits += nr_hits;
318                                 goto out;
319                         } else if (!hits[i + j].hits) {
320                                 hits[i + j].pc = pc;
321                                 hits[i + j].hits = nr_hits;
322                                 goto out;
323                         }
324                 }
325                 i = (i + secondary) & (NR_PROFILE_HIT - 1);
326         } while (i != primary);
327
328         /*
329          * Add the current hit(s) and flush the write-queue out
330          * to the global buffer:
331          */
332         atomic_add(nr_hits, &prof_buffer[pc]);
333         for (i = 0; i < NR_PROFILE_HIT; ++i) {
334                 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
335                 hits[i].pc = hits[i].hits = 0;
336         }
337 out:
338         local_irq_restore(flags);
339         put_cpu();
340 }
341
342 static int profile_dead_cpu(unsigned int cpu)
343 {
344         struct page *page;
345         int i;
346
347         if (cpumask_available(prof_cpu_mask))
348                 cpumask_clear_cpu(cpu, prof_cpu_mask);
349
350         for (i = 0; i < 2; i++) {
351                 if (per_cpu(cpu_profile_hits, cpu)[i]) {
352                         page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
353                         per_cpu(cpu_profile_hits, cpu)[i] = NULL;
354                         __free_page(page);
355                 }
356         }
357         return 0;
358 }
359
360 static int profile_prepare_cpu(unsigned int cpu)
361 {
362         int i, node = cpu_to_mem(cpu);
363         struct page *page;
364
365         per_cpu(cpu_profile_flip, cpu) = 0;
366
367         for (i = 0; i < 2; i++) {
368                 if (per_cpu(cpu_profile_hits, cpu)[i])
369                         continue;
370
371                 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
372                 if (!page) {
373                         profile_dead_cpu(cpu);
374                         return -ENOMEM;
375                 }
376                 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
377
378         }
379         return 0;
380 }
381
382 static int profile_online_cpu(unsigned int cpu)
383 {
384         if (cpumask_available(prof_cpu_mask))
385                 cpumask_set_cpu(cpu, prof_cpu_mask);
386
387         return 0;
388 }
389
390 #else /* !CONFIG_SMP */
391 #define profile_flip_buffers()          do { } while (0)
392 #define profile_discard_flip_buffers()  do { } while (0)
393
394 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
395 {
396         unsigned long pc;
397         pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
398         atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
399 }
400 #endif /* !CONFIG_SMP */
401
402 void profile_hits(int type, void *__pc, unsigned int nr_hits)
403 {
404         if (prof_on != type || !prof_buffer)
405                 return;
406         do_profile_hits(type, __pc, nr_hits);
407 }
408 EXPORT_SYMBOL_GPL(profile_hits);
409
410 void profile_tick(int type)
411 {
412         struct pt_regs *regs = get_irq_regs();
413
414         if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
415             cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
416                 profile_hit(type, (void *)profile_pc(regs));
417 }
418
419 #ifdef CONFIG_PROC_FS
420 #include <linux/proc_fs.h>
421 #include <linux/seq_file.h>
422 #include <linux/uaccess.h>
423
424 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
425 {
426         seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
427         return 0;
428 }
429
430 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
431 {
432         return single_open(file, prof_cpu_mask_proc_show, NULL);
433 }
434
435 static ssize_t prof_cpu_mask_proc_write(struct file *file,
436         const char __user *buffer, size_t count, loff_t *pos)
437 {
438         cpumask_var_t new_value;
439         int err;
440
441         if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
442                 return -ENOMEM;
443
444         err = cpumask_parse_user(buffer, count, new_value);
445         if (!err) {
446                 cpumask_copy(prof_cpu_mask, new_value);
447                 err = count;
448         }
449         free_cpumask_var(new_value);
450         return err;
451 }
452
453 static const struct proc_ops prof_cpu_mask_proc_ops = {
454         .proc_open      = prof_cpu_mask_proc_open,
455         .proc_read      = seq_read,
456         .proc_lseek     = seq_lseek,
457         .proc_release   = single_release,
458         .proc_write     = prof_cpu_mask_proc_write,
459 };
460
461 void create_prof_cpu_mask(void)
462 {
463         /* create /proc/irq/prof_cpu_mask */
464         proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
465 }
466
467 /*
468  * This function accesses profiling information. The returned data is
469  * binary: the sampling step and the actual contents of the profile
470  * buffer. Use of the program readprofile is recommended in order to
471  * get meaningful info out of these data.
472  */
473 static ssize_t
474 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
475 {
476         unsigned long p = *ppos;
477         ssize_t read;
478         char *pnt;
479         unsigned long sample_step = 1UL << prof_shift;
480
481         profile_flip_buffers();
482         if (p >= (prof_len+1)*sizeof(unsigned int))
483                 return 0;
484         if (count > (prof_len+1)*sizeof(unsigned int) - p)
485                 count = (prof_len+1)*sizeof(unsigned int) - p;
486         read = 0;
487
488         while (p < sizeof(unsigned int) && count > 0) {
489                 if (put_user(*((char *)(&sample_step)+p), buf))
490                         return -EFAULT;
491                 buf++; p++; count--; read++;
492         }
493         pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494         if (copy_to_user(buf, (void *)pnt, count))
495                 return -EFAULT;
496         read += count;
497         *ppos += read;
498         return read;
499 }
500
501 /*
502  * Writing to /proc/profile resets the counters
503  *
504  * Writing a 'profiling multiplier' value into it also re-sets the profiling
505  * interrupt frequency, on architectures that support this.
506  */
507 static ssize_t write_profile(struct file *file, const char __user *buf,
508                              size_t count, loff_t *ppos)
509 {
510 #ifdef CONFIG_SMP
511         extern int setup_profiling_timer(unsigned int multiplier);
512
513         if (count == sizeof(int)) {
514                 unsigned int multiplier;
515
516                 if (copy_from_user(&multiplier, buf, sizeof(int)))
517                         return -EFAULT;
518
519                 if (setup_profiling_timer(multiplier))
520                         return -EINVAL;
521         }
522 #endif
523         profile_discard_flip_buffers();
524         memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525         return count;
526 }
527
528 static const struct proc_ops profile_proc_ops = {
529         .proc_read      = read_profile,
530         .proc_write     = write_profile,
531         .proc_lseek     = default_llseek,
532 };
533
534 int __ref create_proc_profile(void)
535 {
536         struct proc_dir_entry *entry;
537 #ifdef CONFIG_SMP
538         enum cpuhp_state online_state;
539 #endif
540
541         int err = 0;
542
543         if (!prof_on)
544                 return 0;
545 #ifdef CONFIG_SMP
546         err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
547                                 profile_prepare_cpu, profile_dead_cpu);
548         if (err)
549                 return err;
550
551         err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
552                                 profile_online_cpu, NULL);
553         if (err < 0)
554                 goto err_state_prep;
555         online_state = err;
556         err = 0;
557 #endif
558         entry = proc_create("profile", S_IWUSR | S_IRUGO,
559                             NULL, &profile_proc_ops);
560         if (!entry)
561                 goto err_state_onl;
562         proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
563
564         return err;
565 err_state_onl:
566 #ifdef CONFIG_SMP
567         cpuhp_remove_state(online_state);
568 err_state_prep:
569         cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
570 #endif
571         return err;
572 }
573 subsys_initcall(create_proc_profile);
574 #endif /* CONFIG_PROC_FS */