1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/printk.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/kernel.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
63 int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
69 EXPORT_SYMBOL_GPL(console_printk);
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
79 EXPORT_SYMBOL(oops_in_progress);
82 * console_mutex protects console_list updates and console->flags updates.
83 * The flags are synchronized only for consoles that are registered, i.e.
84 * accessible via the console list.
86 static DEFINE_MUTEX(console_mutex);
89 * console_sem protects updates to console->seq
90 * and also provides serialization for console printing.
92 static DEFINE_SEMAPHORE(console_sem);
93 HLIST_HEAD(console_list);
94 EXPORT_SYMBOL_GPL(console_list);
95 DEFINE_STATIC_SRCU(console_srcu);
98 * System may need to suppress printk message under certain
99 * circumstances, like after kernel panic happens.
101 int __read_mostly suppress_printk;
104 * During panic, heavy printk by other CPUs can delay the
105 * panic and risk deadlock on console resources.
107 static int __read_mostly suppress_panic_printk;
109 #ifdef CONFIG_LOCKDEP
110 static struct lockdep_map console_lock_dep_map = {
111 .name = "console_lock"
114 void lockdep_assert_console_list_lock_held(void)
116 lockdep_assert_held(&console_mutex);
118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 bool console_srcu_read_lock_is_held(void)
124 return srcu_read_lock_held(&console_srcu);
126 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
129 enum devkmsg_log_bits {
130 __DEVKMSG_LOG_BIT_ON = 0,
131 __DEVKMSG_LOG_BIT_OFF,
132 __DEVKMSG_LOG_BIT_LOCK,
135 enum devkmsg_log_masks {
136 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
137 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
138 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
141 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
142 #define DEVKMSG_LOG_MASK_DEFAULT 0
144 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
146 static int __control_devkmsg(char *str)
153 len = str_has_prefix(str, "on");
155 devkmsg_log = DEVKMSG_LOG_MASK_ON;
159 len = str_has_prefix(str, "off");
161 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
165 len = str_has_prefix(str, "ratelimit");
167 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
174 static int __init control_devkmsg(char *str)
176 if (__control_devkmsg(str) < 0) {
177 pr_warn("printk.devkmsg: bad option string '%s'\n", str);
182 * Set sysctl string accordingly:
184 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
185 strcpy(devkmsg_log_str, "on");
186 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
187 strcpy(devkmsg_log_str, "off");
188 /* else "ratelimit" which is set by default. */
191 * Sysctl cannot change it anymore. The kernel command line setting of
192 * this parameter is to force the setting to be permanent throughout the
193 * runtime of the system. This is a precation measure against userspace
194 * trying to be a smarta** and attempting to change it up on us.
196 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
200 __setup("printk.devkmsg=", control_devkmsg);
202 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
203 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
204 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
205 void *buffer, size_t *lenp, loff_t *ppos)
207 char old_str[DEVKMSG_STR_MAX_SIZE];
212 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
216 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
219 err = proc_dostring(table, write, buffer, lenp, ppos);
224 err = __control_devkmsg(devkmsg_log_str);
227 * Do not accept an unknown string OR a known string with
230 if (err < 0 || (err + 1 != *lenp)) {
232 /* ... and restore old setting. */
234 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
242 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
245 * console_list_lock - Lock the console list
247 * For console list or console->flags updates
249 void console_list_lock(void)
252 * In unregister_console() and console_force_preferred_locked(),
253 * synchronize_srcu() is called with the console_list_lock held.
254 * Therefore it is not allowed that the console_list_lock is taken
255 * with the srcu_lock held.
257 * Detecting if this context is really in the read-side critical
258 * section is only possible if the appropriate debug options are
261 WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
262 srcu_read_lock_held(&console_srcu));
264 mutex_lock(&console_mutex);
266 EXPORT_SYMBOL(console_list_lock);
269 * console_list_unlock - Unlock the console list
271 * Counterpart to console_list_lock()
273 void console_list_unlock(void)
275 mutex_unlock(&console_mutex);
277 EXPORT_SYMBOL(console_list_unlock);
280 * console_srcu_read_lock - Register a new reader for the
281 * SRCU-protected console list
283 * Use for_each_console_srcu() to iterate the console list
285 * Context: Any context.
286 * Return: A cookie to pass to console_srcu_read_unlock().
288 int console_srcu_read_lock(void)
290 return srcu_read_lock_nmisafe(&console_srcu);
292 EXPORT_SYMBOL(console_srcu_read_lock);
295 * console_srcu_read_unlock - Unregister an old reader from
296 * the SRCU-protected console list
297 * @cookie: cookie returned from console_srcu_read_lock()
299 * Counterpart to console_srcu_read_lock()
301 void console_srcu_read_unlock(int cookie)
303 srcu_read_unlock_nmisafe(&console_srcu, cookie);
305 EXPORT_SYMBOL(console_srcu_read_unlock);
308 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
309 * macros instead of functions so that _RET_IP_ contains useful information.
311 #define down_console_sem() do { \
313 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
316 static int __down_trylock_console_sem(unsigned long ip)
322 * Here and in __up_console_sem() we need to be in safe mode,
323 * because spindump/WARN/etc from under console ->lock will
324 * deadlock in printk()->down_trylock_console_sem() otherwise.
326 printk_safe_enter_irqsave(flags);
327 lock_failed = down_trylock(&console_sem);
328 printk_safe_exit_irqrestore(flags);
332 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
335 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
337 static void __up_console_sem(unsigned long ip)
341 mutex_release(&console_lock_dep_map, ip);
343 printk_safe_enter_irqsave(flags);
345 printk_safe_exit_irqrestore(flags);
347 #define up_console_sem() __up_console_sem(_RET_IP_)
349 static bool panic_in_progress(void)
351 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
355 * This is used for debugging the mess that is the VT code by
356 * keeping track if we have the console semaphore held. It's
357 * definitely not the perfect debug tool (we don't know if _WE_
358 * hold it and are racing, but it helps tracking those weird code
359 * paths in the console code where we end up in places I want
360 * locked without the console semaphore held).
362 static int console_locked;
365 * Array of consoles built from command line options (console=)
368 #define MAX_CMDLINECONSOLES 8
370 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
372 static int preferred_console = -1;
373 int console_set_on_cmdline;
374 EXPORT_SYMBOL(console_set_on_cmdline);
376 /* Flag: console code may call schedule() */
377 static int console_may_schedule;
379 enum con_msg_format_flags {
380 MSG_FORMAT_DEFAULT = 0,
381 MSG_FORMAT_SYSLOG = (1 << 0),
384 static int console_msg_format = MSG_FORMAT_DEFAULT;
387 * The printk log buffer consists of a sequenced collection of records, each
388 * containing variable length message text. Every record also contains its
389 * own meta-data (@info).
391 * Every record meta-data carries the timestamp in microseconds, as well as
392 * the standard userspace syslog level and syslog facility. The usual kernel
393 * messages use LOG_KERN; userspace-injected messages always carry a matching
394 * syslog facility, by default LOG_USER. The origin of every message can be
395 * reliably determined that way.
397 * The human readable log message of a record is available in @text, the
398 * length of the message text in @text_len. The stored message is not
401 * Optionally, a record can carry a dictionary of properties (key/value
402 * pairs), to provide userspace with a machine-readable message context.
404 * Examples for well-defined, commonly used property names are:
405 * DEVICE=b12:8 device identifier
409 * +sound:card0 subsystem:devname
410 * SUBSYSTEM=pci driver-core subsystem name
412 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
413 * and values are terminated by a '\0' character.
415 * Example of record values:
416 * record.text_buf = "it's a line" (unterminated)
417 * record.info.seq = 56
418 * record.info.ts_nsec = 36863
419 * record.info.text_len = 11
420 * record.info.facility = 0 (LOG_KERN)
421 * record.info.flags = 0
422 * record.info.level = 3 (LOG_ERR)
423 * record.info.caller_id = 299 (task 299)
424 * record.info.dev_info.subsystem = "pci" (terminated)
425 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
427 * The 'struct printk_info' buffer must never be directly exported to
428 * userspace, it is a kernel-private implementation detail that might
429 * need to be changed in the future, when the requirements change.
431 * /dev/kmsg exports the structured data in the following line format:
432 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
434 * Users of the export format should ignore possible additional values
435 * separated by ',', and find the message after the ';' character.
437 * The optional key/value pairs are attached as continuation lines starting
438 * with a space character and terminated by a newline. All possible
439 * non-prinatable characters are escaped in the "\xff" notation.
442 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
443 static DEFINE_MUTEX(syslog_lock);
446 DECLARE_WAIT_QUEUE_HEAD(log_wait);
447 /* All 3 protected by @syslog_lock. */
448 /* the next printk record to read by syslog(READ) or /proc/kmsg */
449 static u64 syslog_seq;
450 static size_t syslog_partial;
451 static bool syslog_time;
454 seqcount_latch_t latch;
459 * The next printk record to read after the last 'clear' command. There are
460 * two copies (updated with seqcount_latch) so that reads can locklessly
461 * access a valid value. Writers are synchronized by @syslog_lock.
463 static struct latched_seq clear_seq = {
464 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch),
469 #define LOG_LEVEL(v) ((v) & 0x07)
470 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
473 #define LOG_ALIGN __alignof__(unsigned long)
474 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
475 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
476 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
477 static char *log_buf = __log_buf;
478 static u32 log_buf_len = __LOG_BUF_LEN;
481 * Define the average message size. This only affects the number of
482 * descriptors that will be available. Underestimating is better than
483 * overestimating (too many available descriptors is better than not enough).
485 #define PRB_AVGBITS 5 /* 32 character average length */
487 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
488 #error CONFIG_LOG_BUF_SHIFT value too small.
490 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
491 PRB_AVGBITS, &__log_buf[0]);
493 static struct printk_ringbuffer printk_rb_dynamic;
495 static struct printk_ringbuffer *prb = &printk_rb_static;
498 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
499 * per_cpu_areas are initialised. This variable is set to true when
500 * it's safe to access per-CPU data.
502 static bool __printk_percpu_data_ready __ro_after_init;
504 bool printk_percpu_data_ready(void)
506 return __printk_percpu_data_ready;
509 /* Must be called under syslog_lock. */
510 static void latched_seq_write(struct latched_seq *ls, u64 val)
512 raw_write_seqcount_latch(&ls->latch);
514 raw_write_seqcount_latch(&ls->latch);
518 /* Can be called from any context. */
519 static u64 latched_seq_read_nolock(struct latched_seq *ls)
526 seq = raw_read_seqcount_latch(&ls->latch);
529 } while (read_seqcount_latch_retry(&ls->latch, seq));
534 /* Return log buffer address */
535 char *log_buf_addr_get(void)
540 /* Return log buffer size */
541 u32 log_buf_len_get(void)
547 * Define how much of the log buffer we could take at maximum. The value
548 * must be greater than two. Note that only half of the buffer is available
549 * when the index points to the middle.
551 #define MAX_LOG_TAKE_PART 4
552 static const char trunc_msg[] = "<truncated>";
554 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
557 * The message should not take the whole buffer. Otherwise, it might
558 * get removed too soon.
560 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
562 if (*text_len > max_text_len)
563 *text_len = max_text_len;
565 /* enable the warning message (if there is room) */
566 *trunc_msg_len = strlen(trunc_msg);
567 if (*text_len >= *trunc_msg_len)
568 *text_len -= *trunc_msg_len;
573 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
575 static int syslog_action_restricted(int type)
580 * Unless restricted, we allow "read all" and "get buffer size"
583 return type != SYSLOG_ACTION_READ_ALL &&
584 type != SYSLOG_ACTION_SIZE_BUFFER;
587 static int check_syslog_permissions(int type, int source)
590 * If this is from /proc/kmsg and we've already opened it, then we've
591 * already done the capabilities checks at open time.
593 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
596 if (syslog_action_restricted(type)) {
597 if (capable(CAP_SYSLOG))
600 * For historical reasons, accept CAP_SYS_ADMIN too, with
603 if (capable(CAP_SYS_ADMIN)) {
604 pr_warn_once("%s (%d): Attempt to access syslog with "
605 "CAP_SYS_ADMIN but no CAP_SYSLOG "
607 current->comm, task_pid_nr(current));
613 return security_syslog(type);
616 static void append_char(char **pp, char *e, char c)
622 static ssize_t info_print_ext_header(char *buf, size_t size,
623 struct printk_info *info)
625 u64 ts_usec = info->ts_nsec;
627 #ifdef CONFIG_PRINTK_CALLER
628 u32 id = info->caller_id;
630 snprintf(caller, sizeof(caller), ",caller=%c%u",
631 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
636 do_div(ts_usec, 1000);
638 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
639 (info->facility << 3) | info->level, info->seq,
640 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
643 static ssize_t msg_add_ext_text(char *buf, size_t size,
644 const char *text, size_t text_len,
647 char *p = buf, *e = buf + size;
650 /* escape non-printable characters */
651 for (i = 0; i < text_len; i++) {
652 unsigned char c = text[i];
654 if (c < ' ' || c >= 127 || c == '\\')
655 p += scnprintf(p, e - p, "\\x%02x", c);
657 append_char(&p, e, c);
659 append_char(&p, e, endc);
664 static ssize_t msg_add_dict_text(char *buf, size_t size,
665 const char *key, const char *val)
667 size_t val_len = strlen(val);
673 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
674 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
675 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
680 static ssize_t msg_print_ext_body(char *buf, size_t size,
681 char *text, size_t text_len,
682 struct dev_printk_info *dev_info)
686 len = msg_add_ext_text(buf, size, text, text_len, '\n');
691 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
692 dev_info->subsystem);
693 len += msg_add_dict_text(buf + len, size - len, "DEVICE",
699 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
700 bool is_extended, bool may_supress);
702 /* /dev/kmsg - userspace message inject/listen interface */
703 struct devkmsg_user {
705 struct ratelimit_state rs;
707 struct printk_buffers pbufs;
710 static __printf(3, 4) __cold
711 int devkmsg_emit(int facility, int level, const char *fmt, ...)
717 r = vprintk_emit(facility, level, NULL, fmt, args);
723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
726 int level = default_message_loglevel;
727 int facility = 1; /* LOG_USER */
728 struct file *file = iocb->ki_filp;
729 struct devkmsg_user *user = file->private_data;
730 size_t len = iov_iter_count(from);
733 if (len > PRINTKRB_RECORD_MAX)
736 /* Ignore when user logging is disabled. */
737 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
740 /* Ratelimit when not explicitly enabled. */
741 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
742 if (!___ratelimit(&user->rs, current->comm))
746 buf = kmalloc(len+1, GFP_KERNEL);
751 if (!copy_from_iter_full(buf, len, from)) {
757 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
758 * the decimal value represents 32bit, the lower 3 bit are the log
759 * level, the rest are the log facility.
761 * If no prefix or no userspace facility is specified, we
762 * enforce LOG_USER, to be able to reliably distinguish
763 * kernel-generated messages from userspace-injected ones.
766 if (line[0] == '<') {
770 u = simple_strtoul(line + 1, &endp, 10);
771 if (endp && endp[0] == '>') {
772 level = LOG_LEVEL(u);
773 if (LOG_FACILITY(u) != 0)
774 facility = LOG_FACILITY(u);
780 devkmsg_emit(facility, level, "%s", line);
785 static ssize_t devkmsg_read(struct file *file, char __user *buf,
786 size_t count, loff_t *ppos)
788 struct devkmsg_user *user = file->private_data;
789 char *outbuf = &user->pbufs.outbuf[0];
790 struct printk_message pmsg = {
791 .pbufs = &user->pbufs,
795 ret = mutex_lock_interruptible(&user->lock);
799 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
800 if (file->f_flags & O_NONBLOCK) {
806 * Guarantee this task is visible on the waitqueue before
807 * checking the wake condition.
809 * The full memory barrier within set_current_state() of
810 * prepare_to_wait_event() pairs with the full memory barrier
811 * within wq_has_sleeper().
813 * This pairs with __wake_up_klogd:A.
815 ret = wait_event_interruptible(log_wait,
816 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
817 false)); /* LMM(devkmsg_read:A) */
823 /* our last seen message is gone, return error and reset */
824 atomic64_set(&user->seq, pmsg.seq);
829 atomic64_set(&user->seq, pmsg.seq + 1);
831 if (pmsg.outbuf_len > count) {
836 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
840 ret = pmsg.outbuf_len;
842 mutex_unlock(&user->lock);
847 * Be careful when modifying this function!!!
849 * Only few operations are supported because the device works only with the
850 * entire variable length messages (records). Non-standard values are
851 * returned in the other cases and has been this way for quite some time.
852 * User space applications might depend on this behavior.
854 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
856 struct devkmsg_user *user = file->private_data;
864 /* the first record */
865 atomic64_set(&user->seq, prb_first_valid_seq(prb));
869 * The first record after the last SYSLOG_ACTION_CLEAR,
870 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
871 * changes no global state, and does not clear anything.
873 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
876 /* after the last record */
877 atomic64_set(&user->seq, prb_next_seq(prb));
885 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
887 struct devkmsg_user *user = file->private_data;
888 struct printk_info info;
891 poll_wait(file, &log_wait, wait);
893 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
894 /* return error when data has vanished underneath us */
895 if (info.seq != atomic64_read(&user->seq))
896 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
898 ret = EPOLLIN|EPOLLRDNORM;
904 static int devkmsg_open(struct inode *inode, struct file *file)
906 struct devkmsg_user *user;
909 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
912 /* write-only does not need any file context */
913 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
914 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
920 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
924 ratelimit_default_init(&user->rs);
925 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
927 mutex_init(&user->lock);
929 atomic64_set(&user->seq, prb_first_valid_seq(prb));
931 file->private_data = user;
935 static int devkmsg_release(struct inode *inode, struct file *file)
937 struct devkmsg_user *user = file->private_data;
939 ratelimit_state_exit(&user->rs);
941 mutex_destroy(&user->lock);
946 const struct file_operations kmsg_fops = {
947 .open = devkmsg_open,
948 .read = devkmsg_read,
949 .write_iter = devkmsg_write,
950 .llseek = devkmsg_llseek,
951 .poll = devkmsg_poll,
952 .release = devkmsg_release,
955 #ifdef CONFIG_CRASH_CORE
957 * This appends the listed symbols to /proc/vmcore
959 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
960 * obtain access to symbols that are otherwise very difficult to locate. These
961 * symbols are specifically used so that utilities can access and extract the
962 * dmesg log from a vmcore file after a crash.
964 void log_buf_vmcoreinfo_setup(void)
966 struct dev_printk_info *dev_info = NULL;
968 VMCOREINFO_SYMBOL(prb);
969 VMCOREINFO_SYMBOL(printk_rb_static);
970 VMCOREINFO_SYMBOL(clear_seq);
973 * Export struct size and field offsets. User space tools can
974 * parse it and detect any changes to structure down the line.
977 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
978 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
979 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
980 VMCOREINFO_OFFSET(printk_ringbuffer, fail);
982 VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
983 VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
984 VMCOREINFO_OFFSET(prb_desc_ring, descs);
985 VMCOREINFO_OFFSET(prb_desc_ring, infos);
986 VMCOREINFO_OFFSET(prb_desc_ring, head_id);
987 VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
989 VMCOREINFO_STRUCT_SIZE(prb_desc);
990 VMCOREINFO_OFFSET(prb_desc, state_var);
991 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
993 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
994 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
995 VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
997 VMCOREINFO_STRUCT_SIZE(printk_info);
998 VMCOREINFO_OFFSET(printk_info, seq);
999 VMCOREINFO_OFFSET(printk_info, ts_nsec);
1000 VMCOREINFO_OFFSET(printk_info, text_len);
1001 VMCOREINFO_OFFSET(printk_info, caller_id);
1002 VMCOREINFO_OFFSET(printk_info, dev_info);
1004 VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1005 VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1006 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1007 VMCOREINFO_OFFSET(dev_printk_info, device);
1008 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1010 VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1011 VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1012 VMCOREINFO_OFFSET(prb_data_ring, data);
1013 VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1014 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1016 VMCOREINFO_SIZE(atomic_long_t);
1017 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1019 VMCOREINFO_STRUCT_SIZE(latched_seq);
1020 VMCOREINFO_OFFSET(latched_seq, val);
1024 /* requested log_buf_len from kernel cmdline */
1025 static unsigned long __initdata new_log_buf_len;
1027 /* we practice scaling the ring buffer by powers of 2 */
1028 static void __init log_buf_len_update(u64 size)
1030 if (size > (u64)LOG_BUF_LEN_MAX) {
1031 size = (u64)LOG_BUF_LEN_MAX;
1032 pr_err("log_buf over 2G is not supported.\n");
1036 size = roundup_pow_of_two(size);
1037 if (size > log_buf_len)
1038 new_log_buf_len = (unsigned long)size;
1041 /* save requested log_buf_len since it's too early to process it */
1042 static int __init log_buf_len_setup(char *str)
1049 size = memparse(str, &str);
1051 log_buf_len_update(size);
1055 early_param("log_buf_len", log_buf_len_setup);
1058 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1060 static void __init log_buf_add_cpu(void)
1062 unsigned int cpu_extra;
1065 * archs should set up cpu_possible_bits properly with
1066 * set_cpu_possible() after setup_arch() but just in
1067 * case lets ensure this is valid.
1069 if (num_possible_cpus() == 1)
1072 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1074 /* by default this will only continue through for large > 64 CPUs */
1075 if (cpu_extra <= __LOG_BUF_LEN / 2)
1078 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1079 __LOG_CPU_MAX_BUF_LEN);
1080 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1082 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1084 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1086 #else /* !CONFIG_SMP */
1087 static inline void log_buf_add_cpu(void) {}
1088 #endif /* CONFIG_SMP */
1090 static void __init set_percpu_data_ready(void)
1092 __printk_percpu_data_ready = true;
1095 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1096 struct printk_record *r)
1098 struct prb_reserved_entry e;
1099 struct printk_record dest_r;
1101 prb_rec_init_wr(&dest_r, r->info->text_len);
1103 if (!prb_reserve(&e, rb, &dest_r))
1106 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1107 dest_r.info->text_len = r->info->text_len;
1108 dest_r.info->facility = r->info->facility;
1109 dest_r.info->level = r->info->level;
1110 dest_r.info->flags = r->info->flags;
1111 dest_r.info->ts_nsec = r->info->ts_nsec;
1112 dest_r.info->caller_id = r->info->caller_id;
1113 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1115 prb_final_commit(&e);
1117 return prb_record_text_space(&e);
1120 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1122 void __init setup_log_buf(int early)
1124 struct printk_info *new_infos;
1125 unsigned int new_descs_count;
1126 struct prb_desc *new_descs;
1127 struct printk_info info;
1128 struct printk_record r;
1129 unsigned int text_size;
1130 size_t new_descs_size;
1131 size_t new_infos_size;
1132 unsigned long flags;
1138 * Some archs call setup_log_buf() multiple times - first is very
1139 * early, e.g. from setup_arch(), and second - when percpu_areas
1143 set_percpu_data_ready();
1145 if (log_buf != __log_buf)
1148 if (!early && !new_log_buf_len)
1151 if (!new_log_buf_len)
1154 new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1155 if (new_descs_count == 0) {
1156 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1160 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1161 if (unlikely(!new_log_buf)) {
1162 pr_err("log_buf_len: %lu text bytes not available\n",
1167 new_descs_size = new_descs_count * sizeof(struct prb_desc);
1168 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1169 if (unlikely(!new_descs)) {
1170 pr_err("log_buf_len: %zu desc bytes not available\n",
1172 goto err_free_log_buf;
1175 new_infos_size = new_descs_count * sizeof(struct printk_info);
1176 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1177 if (unlikely(!new_infos)) {
1178 pr_err("log_buf_len: %zu info bytes not available\n",
1180 goto err_free_descs;
1183 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1185 prb_init(&printk_rb_dynamic,
1186 new_log_buf, ilog2(new_log_buf_len),
1187 new_descs, ilog2(new_descs_count),
1190 local_irq_save(flags);
1192 log_buf_len = new_log_buf_len;
1193 log_buf = new_log_buf;
1194 new_log_buf_len = 0;
1196 free = __LOG_BUF_LEN;
1197 prb_for_each_record(0, &printk_rb_static, seq, &r) {
1198 text_size = add_to_rb(&printk_rb_dynamic, &r);
1199 if (text_size > free)
1205 prb = &printk_rb_dynamic;
1207 local_irq_restore(flags);
1210 * Copy any remaining messages that might have appeared from
1211 * NMI context after copying but before switching to the
1214 prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1215 text_size = add_to_rb(&printk_rb_dynamic, &r);
1216 if (text_size > free)
1222 if (seq != prb_next_seq(&printk_rb_static)) {
1223 pr_err("dropped %llu messages\n",
1224 prb_next_seq(&printk_rb_static) - seq);
1227 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1228 pr_info("early log buf free: %u(%u%%)\n",
1229 free, (free * 100) / __LOG_BUF_LEN);
1233 memblock_free(new_descs, new_descs_size);
1235 memblock_free(new_log_buf, new_log_buf_len);
1238 static bool __read_mostly ignore_loglevel;
1240 static int __init ignore_loglevel_setup(char *str)
1242 ignore_loglevel = true;
1243 pr_info("debug: ignoring loglevel setting.\n");
1248 early_param("ignore_loglevel", ignore_loglevel_setup);
1249 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1250 MODULE_PARM_DESC(ignore_loglevel,
1251 "ignore loglevel setting (prints all kernel messages to the console)");
1253 static bool suppress_message_printing(int level)
1255 return (level >= console_loglevel && !ignore_loglevel);
1258 #ifdef CONFIG_BOOT_PRINTK_DELAY
1260 static int boot_delay; /* msecs delay after each printk during bootup */
1261 static unsigned long long loops_per_msec; /* based on boot_delay */
1263 static int __init boot_delay_setup(char *str)
1267 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1268 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1270 get_option(&str, &boot_delay);
1271 if (boot_delay > 10 * 1000)
1274 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1275 "HZ: %d, loops_per_msec: %llu\n",
1276 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1279 early_param("boot_delay", boot_delay_setup);
1281 static void boot_delay_msec(int level)
1283 unsigned long long k;
1284 unsigned long timeout;
1286 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1287 || suppress_message_printing(level)) {
1291 k = (unsigned long long)loops_per_msec * boot_delay;
1293 timeout = jiffies + msecs_to_jiffies(boot_delay);
1298 * use (volatile) jiffies to prevent
1299 * compiler reduction; loop termination via jiffies
1300 * is secondary and may or may not happen.
1302 if (time_after(jiffies, timeout))
1304 touch_nmi_watchdog();
1308 static inline void boot_delay_msec(int level)
1313 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1314 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1316 static size_t print_syslog(unsigned int level, char *buf)
1318 return sprintf(buf, "<%u>", level);
1321 static size_t print_time(u64 ts, char *buf)
1323 unsigned long rem_nsec = do_div(ts, 1000000000);
1325 return sprintf(buf, "[%5lu.%06lu]",
1326 (unsigned long)ts, rem_nsec / 1000);
1329 #ifdef CONFIG_PRINTK_CALLER
1330 static size_t print_caller(u32 id, char *buf)
1334 snprintf(caller, sizeof(caller), "%c%u",
1335 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1336 return sprintf(buf, "[%6s]", caller);
1339 #define print_caller(id, buf) 0
1342 static size_t info_print_prefix(const struct printk_info *info, bool syslog,
1343 bool time, char *buf)
1348 len = print_syslog((info->facility << 3) | info->level, buf);
1351 len += print_time(info->ts_nsec, buf + len);
1353 len += print_caller(info->caller_id, buf + len);
1355 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1364 * Prepare the record for printing. The text is shifted within the given
1365 * buffer to avoid a need for another one. The following operations are
1368 * - Add prefix for each line.
1369 * - Drop truncated lines that no longer fit into the buffer.
1370 * - Add the trailing newline that has been removed in vprintk_store().
1371 * - Add a string terminator.
1373 * Since the produced string is always terminated, the maximum possible
1374 * return value is @r->text_buf_size - 1;
1376 * Return: The length of the updated/prepared text, including the added
1377 * prefixes and the newline. The terminator is not counted. The dropped
1378 * line(s) are not counted.
1380 static size_t record_print_text(struct printk_record *r, bool syslog,
1383 size_t text_len = r->info->text_len;
1384 size_t buf_size = r->text_buf_size;
1385 char *text = r->text_buf;
1386 char prefix[PRINTK_PREFIX_MAX];
1387 bool truncated = false;
1394 * If the message was truncated because the buffer was not large
1395 * enough, treat the available text as if it were the full text.
1397 if (text_len > buf_size)
1398 text_len = buf_size;
1400 prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1403 * @text_len: bytes of unprocessed text
1404 * @line_len: bytes of current line _without_ newline
1405 * @text: pointer to beginning of current line
1406 * @len: number of bytes prepared in r->text_buf
1409 next = memchr(text, '\n', text_len);
1411 line_len = next - text;
1413 /* Drop truncated line(s). */
1416 line_len = text_len;
1420 * Truncate the text if there is not enough space to add the
1421 * prefix and a trailing newline and a terminator.
1423 if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1424 /* Drop even the current line if no space. */
1425 if (len + prefix_len + line_len + 1 + 1 > buf_size)
1428 text_len = buf_size - len - prefix_len - 1 - 1;
1432 memmove(text + prefix_len, text, text_len);
1433 memcpy(text, prefix, prefix_len);
1436 * Increment the prepared length to include the text and
1437 * prefix that were just moved+copied. Also increment for the
1438 * newline at the end of this line. If this is the last line,
1439 * there is no newline, but it will be added immediately below.
1441 len += prefix_len + line_len + 1;
1442 if (text_len == line_len) {
1444 * This is the last line. Add the trailing newline
1445 * removed in vprintk_store().
1447 text[prefix_len + line_len] = '\n';
1452 * Advance beyond the added prefix and the related line with
1455 text += prefix_len + line_len + 1;
1458 * The remaining text has only decreased by the line with its
1461 * Note that @text_len can become zero. It happens when @text
1462 * ended with a newline (either due to truncation or the
1463 * original string ending with "\n\n"). The loop is correctly
1464 * repeated and (if not truncated) an empty line with a prefix
1467 text_len -= line_len + 1;
1471 * If a buffer was provided, it will be terminated. Space for the
1472 * string terminator is guaranteed to be available. The terminator is
1473 * not counted in the return value.
1476 r->text_buf[len] = 0;
1481 static size_t get_record_print_text_size(struct printk_info *info,
1482 unsigned int line_count,
1483 bool syslog, bool time)
1485 char prefix[PRINTK_PREFIX_MAX];
1488 prefix_len = info_print_prefix(info, syslog, time, prefix);
1491 * Each line will be preceded with a prefix. The intermediate
1492 * newlines are already within the text, but a final trailing
1493 * newline will be added.
1495 return ((prefix_len * line_count) + info->text_len + 1);
1499 * Beginning with @start_seq, find the first record where it and all following
1500 * records up to (but not including) @max_seq fit into @size.
1502 * @max_seq is simply an upper bound and does not need to exist. If the caller
1503 * does not require an upper bound, -1 can be used for @max_seq.
1505 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1506 bool syslog, bool time)
1508 struct printk_info info;
1509 unsigned int line_count;
1513 /* Determine the size of the records up to @max_seq. */
1514 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1515 if (info.seq >= max_seq)
1517 len += get_record_print_text_size(&info, line_count, syslog, time);
1521 * Adjust the upper bound for the next loop to avoid subtracting
1522 * lengths that were never added.
1528 * Move first record forward until length fits into the buffer. Ignore
1529 * newest messages that were not counted in the above cycle. Messages
1530 * might appear and get lost in the meantime. This is a best effort
1531 * that prevents an infinite loop that could occur with a retry.
1533 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1534 if (len <= size || info.seq >= max_seq)
1536 len -= get_record_print_text_size(&info, line_count, syslog, time);
1542 /* The caller is responsible for making sure @size is greater than 0. */
1543 static int syslog_print(char __user *buf, int size)
1545 struct printk_info info;
1546 struct printk_record r;
1551 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1555 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1557 mutex_lock(&syslog_lock);
1560 * Wait for the @syslog_seq record to be available. @syslog_seq may
1561 * change while waiting.
1566 mutex_unlock(&syslog_lock);
1568 * Guarantee this task is visible on the waitqueue before
1569 * checking the wake condition.
1571 * The full memory barrier within set_current_state() of
1572 * prepare_to_wait_event() pairs with the full memory barrier
1573 * within wq_has_sleeper().
1575 * This pairs with __wake_up_klogd:A.
1577 len = wait_event_interruptible(log_wait,
1578 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1579 mutex_lock(&syslog_lock);
1583 } while (syslog_seq != seq);
1586 * Copy records that fit into the buffer. The above cycle makes sure
1587 * that the first record is always available.
1594 if (!prb_read_valid(prb, syslog_seq, &r))
1597 if (r.info->seq != syslog_seq) {
1598 /* message is gone, move to next valid one */
1599 syslog_seq = r.info->seq;
1604 * To keep reading/counting partial line consistent,
1605 * use printk_time value as of the beginning of a line.
1607 if (!syslog_partial)
1608 syslog_time = printk_time;
1610 skip = syslog_partial;
1611 n = record_print_text(&r, true, syslog_time);
1612 if (n - syslog_partial <= size) {
1613 /* message fits into buffer, move forward */
1614 syslog_seq = r.info->seq + 1;
1615 n -= syslog_partial;
1618 /* partial read(), remember position */
1620 syslog_partial += n;
1627 mutex_unlock(&syslog_lock);
1628 err = copy_to_user(buf, text + skip, n);
1629 mutex_lock(&syslog_lock);
1642 mutex_unlock(&syslog_lock);
1647 static int syslog_print_all(char __user *buf, int size, bool clear)
1649 struct printk_info info;
1650 struct printk_record r;
1656 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1662 * Find first record that fits, including all following records,
1663 * into the user-provided buffer for this dump.
1665 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1668 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1671 prb_for_each_record(seq, prb, seq, &r) {
1674 textlen = record_print_text(&r, true, time);
1676 if (len + textlen > size) {
1681 if (copy_to_user(buf + len, text, textlen))
1691 mutex_lock(&syslog_lock);
1692 latched_seq_write(&clear_seq, seq);
1693 mutex_unlock(&syslog_lock);
1700 static void syslog_clear(void)
1702 mutex_lock(&syslog_lock);
1703 latched_seq_write(&clear_seq, prb_next_seq(prb));
1704 mutex_unlock(&syslog_lock);
1707 int do_syslog(int type, char __user *buf, int len, int source)
1709 struct printk_info info;
1711 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1714 error = check_syslog_permissions(type, source);
1719 case SYSLOG_ACTION_CLOSE: /* Close log */
1721 case SYSLOG_ACTION_OPEN: /* Open log */
1723 case SYSLOG_ACTION_READ: /* Read from log */
1724 if (!buf || len < 0)
1728 if (!access_ok(buf, len))
1730 error = syslog_print(buf, len);
1732 /* Read/clear last kernel messages */
1733 case SYSLOG_ACTION_READ_CLEAR:
1736 /* Read last kernel messages */
1737 case SYSLOG_ACTION_READ_ALL:
1738 if (!buf || len < 0)
1742 if (!access_ok(buf, len))
1744 error = syslog_print_all(buf, len, clear);
1746 /* Clear ring buffer */
1747 case SYSLOG_ACTION_CLEAR:
1750 /* Disable logging to console */
1751 case SYSLOG_ACTION_CONSOLE_OFF:
1752 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1753 saved_console_loglevel = console_loglevel;
1754 console_loglevel = minimum_console_loglevel;
1756 /* Enable logging to console */
1757 case SYSLOG_ACTION_CONSOLE_ON:
1758 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1759 console_loglevel = saved_console_loglevel;
1760 saved_console_loglevel = LOGLEVEL_DEFAULT;
1763 /* Set level of messages printed to console */
1764 case SYSLOG_ACTION_CONSOLE_LEVEL:
1765 if (len < 1 || len > 8)
1767 if (len < minimum_console_loglevel)
1768 len = minimum_console_loglevel;
1769 console_loglevel = len;
1770 /* Implicitly re-enable logging to console */
1771 saved_console_loglevel = LOGLEVEL_DEFAULT;
1773 /* Number of chars in the log buffer */
1774 case SYSLOG_ACTION_SIZE_UNREAD:
1775 mutex_lock(&syslog_lock);
1776 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1777 /* No unread messages. */
1778 mutex_unlock(&syslog_lock);
1781 if (info.seq != syslog_seq) {
1782 /* messages are gone, move to first one */
1783 syslog_seq = info.seq;
1786 if (source == SYSLOG_FROM_PROC) {
1788 * Short-cut for poll(/"proc/kmsg") which simply checks
1789 * for pending data, not the size; return the count of
1790 * records, not the length.
1792 error = prb_next_seq(prb) - syslog_seq;
1794 bool time = syslog_partial ? syslog_time : printk_time;
1795 unsigned int line_count;
1798 prb_for_each_info(syslog_seq, prb, seq, &info,
1800 error += get_record_print_text_size(&info, line_count,
1804 error -= syslog_partial;
1806 mutex_unlock(&syslog_lock);
1808 /* Size of the log buffer */
1809 case SYSLOG_ACTION_SIZE_BUFFER:
1810 error = log_buf_len;
1820 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1822 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1826 * Special console_lock variants that help to reduce the risk of soft-lockups.
1827 * They allow to pass console_lock to another printk() call using a busy wait.
1830 #ifdef CONFIG_LOCKDEP
1831 static struct lockdep_map console_owner_dep_map = {
1832 .name = "console_owner"
1836 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1837 static struct task_struct *console_owner;
1838 static bool console_waiter;
1841 * console_lock_spinning_enable - mark beginning of code where another
1842 * thread might safely busy wait
1844 * This basically converts console_lock into a spinlock. This marks
1845 * the section where the console_lock owner can not sleep, because
1846 * there may be a waiter spinning (like a spinlock). Also it must be
1847 * ready to hand over the lock at the end of the section.
1849 static void console_lock_spinning_enable(void)
1851 raw_spin_lock(&console_owner_lock);
1852 console_owner = current;
1853 raw_spin_unlock(&console_owner_lock);
1855 /* The waiter may spin on us after setting console_owner */
1856 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1860 * console_lock_spinning_disable_and_check - mark end of code where another
1861 * thread was able to busy wait and check if there is a waiter
1862 * @cookie: cookie returned from console_srcu_read_lock()
1864 * This is called at the end of the section where spinning is allowed.
1865 * It has two functions. First, it is a signal that it is no longer
1866 * safe to start busy waiting for the lock. Second, it checks if
1867 * there is a busy waiter and passes the lock rights to her.
1869 * Important: Callers lose both the console_lock and the SRCU read lock if
1870 * there was a busy waiter. They must not touch items synchronized by
1871 * console_lock or SRCU read lock in this case.
1873 * Return: 1 if the lock rights were passed, 0 otherwise.
1875 static int console_lock_spinning_disable_and_check(int cookie)
1879 raw_spin_lock(&console_owner_lock);
1880 waiter = READ_ONCE(console_waiter);
1881 console_owner = NULL;
1882 raw_spin_unlock(&console_owner_lock);
1885 spin_release(&console_owner_dep_map, _THIS_IP_);
1889 /* The waiter is now free to continue */
1890 WRITE_ONCE(console_waiter, false);
1892 spin_release(&console_owner_dep_map, _THIS_IP_);
1895 * Preserve lockdep lock ordering. Release the SRCU read lock before
1896 * releasing the console_lock.
1898 console_srcu_read_unlock(cookie);
1901 * Hand off console_lock to waiter. The waiter will perform
1902 * the up(). After this, the waiter is the console_lock owner.
1904 mutex_release(&console_lock_dep_map, _THIS_IP_);
1909 * console_trylock_spinning - try to get console_lock by busy waiting
1911 * This allows to busy wait for the console_lock when the current
1912 * owner is running in specially marked sections. It means that
1913 * the current owner is running and cannot reschedule until it
1914 * is ready to lose the lock.
1916 * Return: 1 if we got the lock, 0 othrewise
1918 static int console_trylock_spinning(void)
1920 struct task_struct *owner = NULL;
1923 unsigned long flags;
1925 if (console_trylock())
1929 * It's unsafe to spin once a panic has begun. If we are the
1930 * panic CPU, we may have already halted the owner of the
1931 * console_sem. If we are not the panic CPU, then we should
1932 * avoid taking console_sem, so the panic CPU has a better
1933 * chance of cleanly acquiring it later.
1935 if (panic_in_progress())
1938 printk_safe_enter_irqsave(flags);
1940 raw_spin_lock(&console_owner_lock);
1941 owner = READ_ONCE(console_owner);
1942 waiter = READ_ONCE(console_waiter);
1943 if (!waiter && owner && owner != current) {
1944 WRITE_ONCE(console_waiter, true);
1947 raw_spin_unlock(&console_owner_lock);
1950 * If there is an active printk() writing to the
1951 * consoles, instead of having it write our data too,
1952 * see if we can offload that load from the active
1953 * printer, and do some printing ourselves.
1954 * Go into a spin only if there isn't already a waiter
1955 * spinning, and there is an active printer, and
1956 * that active printer isn't us (recursive printk?).
1959 printk_safe_exit_irqrestore(flags);
1963 /* We spin waiting for the owner to release us */
1964 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1965 /* Owner will clear console_waiter on hand off */
1966 while (READ_ONCE(console_waiter))
1968 spin_release(&console_owner_dep_map, _THIS_IP_);
1970 printk_safe_exit_irqrestore(flags);
1972 * The owner passed the console lock to us.
1973 * Since we did not spin on console lock, annotate
1974 * this as a trylock. Otherwise lockdep will
1977 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1983 * Recursion is tracked separately on each CPU. If NMIs are supported, an
1984 * additional NMI context per CPU is also separately tracked. Until per-CPU
1985 * is available, a separate "early tracking" is performed.
1987 static DEFINE_PER_CPU(u8, printk_count);
1988 static u8 printk_count_early;
1989 #ifdef CONFIG_HAVE_NMI
1990 static DEFINE_PER_CPU(u8, printk_count_nmi);
1991 static u8 printk_count_nmi_early;
1995 * Recursion is limited to keep the output sane. printk() should not require
1996 * more than 1 level of recursion (allowing, for example, printk() to trigger
1997 * a WARN), but a higher value is used in case some printk-internal errors
1998 * exist, such as the ringbuffer validation checks failing.
2000 #define PRINTK_MAX_RECURSION 3
2003 * Return a pointer to the dedicated counter for the CPU+context of the
2006 static u8 *__printk_recursion_counter(void)
2008 #ifdef CONFIG_HAVE_NMI
2010 if (printk_percpu_data_ready())
2011 return this_cpu_ptr(&printk_count_nmi);
2012 return &printk_count_nmi_early;
2015 if (printk_percpu_data_ready())
2016 return this_cpu_ptr(&printk_count);
2017 return &printk_count_early;
2021 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2022 * The caller must check the boolean return value to see if the recursion is
2023 * allowed. On failure, interrupts are not disabled.
2025 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2026 * that is passed to printk_exit_irqrestore().
2028 #define printk_enter_irqsave(recursion_ptr, flags) \
2030 bool success = true; \
2032 typecheck(u8 *, recursion_ptr); \
2033 local_irq_save(flags); \
2034 (recursion_ptr) = __printk_recursion_counter(); \
2035 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
2036 local_irq_restore(flags); \
2039 (*(recursion_ptr))++; \
2044 /* Exit recursion tracking, restoring interrupts. */
2045 #define printk_exit_irqrestore(recursion_ptr, flags) \
2047 typecheck(u8 *, recursion_ptr); \
2048 (*(recursion_ptr))--; \
2049 local_irq_restore(flags); \
2052 int printk_delay_msec __read_mostly;
2054 static inline void printk_delay(int level)
2056 boot_delay_msec(level);
2058 if (unlikely(printk_delay_msec)) {
2059 int m = printk_delay_msec;
2063 touch_nmi_watchdog();
2068 static inline u32 printk_caller_id(void)
2070 return in_task() ? task_pid_nr(current) :
2071 0x80000000 + smp_processor_id();
2075 * printk_parse_prefix - Parse level and control flags.
2077 * @text: The terminated text message.
2078 * @level: A pointer to the current level value, will be updated.
2079 * @flags: A pointer to the current printk_info flags, will be updated.
2081 * @level may be NULL if the caller is not interested in the parsed value.
2082 * Otherwise the variable pointed to by @level must be set to
2083 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2085 * @flags may be NULL if the caller is not interested in the parsed value.
2086 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2089 * Return: The length of the parsed level and control flags.
2091 u16 printk_parse_prefix(const char *text, int *level,
2092 enum printk_info_flags *flags)
2098 kern_level = printk_get_level(text);
2102 switch (kern_level) {
2104 if (level && *level == LOGLEVEL_DEFAULT)
2105 *level = kern_level - '0';
2107 case 'c': /* KERN_CONT */
2120 static u16 printk_sprint(char *text, u16 size, int facility,
2121 enum printk_info_flags *flags, const char *fmt,
2126 text_len = vscnprintf(text, size, fmt, args);
2128 /* Mark and strip a trailing newline. */
2129 if (text_len && text[text_len - 1] == '\n') {
2131 *flags |= LOG_NEWLINE;
2134 /* Strip log level and control flags. */
2135 if (facility == 0) {
2138 prefix_len = printk_parse_prefix(text, NULL, NULL);
2140 text_len -= prefix_len;
2141 memmove(text, text + prefix_len, text_len);
2145 trace_console(text, text_len);
2151 int vprintk_store(int facility, int level,
2152 const struct dev_printk_info *dev_info,
2153 const char *fmt, va_list args)
2155 struct prb_reserved_entry e;
2156 enum printk_info_flags flags = 0;
2157 struct printk_record r;
2158 unsigned long irqflags;
2159 u16 trunc_msg_len = 0;
2169 if (!printk_enter_irqsave(recursion_ptr, irqflags))
2173 * Since the duration of printk() can vary depending on the message
2174 * and state of the ringbuffer, grab the timestamp now so that it is
2175 * close to the call of printk(). This provides a more deterministic
2176 * timestamp with respect to the caller.
2178 ts_nsec = local_clock();
2180 caller_id = printk_caller_id();
2183 * The sprintf needs to come first since the syslog prefix might be
2184 * passed in as a parameter. An extra byte must be reserved so that
2185 * later the vscnprintf() into the reserved buffer has room for the
2186 * terminating '\0', which is not counted by vsnprintf().
2188 va_copy(args2, args);
2189 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2192 if (reserve_size > PRINTKRB_RECORD_MAX)
2193 reserve_size = PRINTKRB_RECORD_MAX;
2195 /* Extract log level or control flags. */
2197 printk_parse_prefix(&prefix_buf[0], &level, &flags);
2199 if (level == LOGLEVEL_DEFAULT)
2200 level = default_message_loglevel;
2203 flags |= LOG_NEWLINE;
2205 if (flags & LOG_CONT) {
2206 prb_rec_init_wr(&r, reserve_size);
2207 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2208 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2209 facility, &flags, fmt, args);
2210 r.info->text_len += text_len;
2212 if (flags & LOG_NEWLINE) {
2213 r.info->flags |= LOG_NEWLINE;
2214 prb_final_commit(&e);
2225 * Explicitly initialize the record before every prb_reserve() call.
2226 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2227 * structure when they fail.
2229 prb_rec_init_wr(&r, reserve_size);
2230 if (!prb_reserve(&e, prb, &r)) {
2231 /* truncate the message if it is too long for empty buffer */
2232 truncate_msg(&reserve_size, &trunc_msg_len);
2234 prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2235 if (!prb_reserve(&e, prb, &r))
2240 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2242 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2243 r.info->text_len = text_len + trunc_msg_len;
2244 r.info->facility = facility;
2245 r.info->level = level & 7;
2246 r.info->flags = flags & 0x1f;
2247 r.info->ts_nsec = ts_nsec;
2248 r.info->caller_id = caller_id;
2250 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2252 /* A message without a trailing newline can be continued. */
2253 if (!(flags & LOG_NEWLINE))
2256 prb_final_commit(&e);
2258 ret = text_len + trunc_msg_len;
2260 printk_exit_irqrestore(recursion_ptr, irqflags);
2264 asmlinkage int vprintk_emit(int facility, int level,
2265 const struct dev_printk_info *dev_info,
2266 const char *fmt, va_list args)
2269 bool in_sched = false;
2271 /* Suppress unimportant messages after panic happens */
2272 if (unlikely(suppress_printk))
2275 if (unlikely(suppress_panic_printk) &&
2276 atomic_read(&panic_cpu) != raw_smp_processor_id())
2279 if (level == LOGLEVEL_SCHED) {
2280 level = LOGLEVEL_DEFAULT;
2284 printk_delay(level);
2286 printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2288 /* If called from the scheduler, we can not call up(). */
2291 * The caller may be holding system-critical or
2292 * timing-sensitive locks. Disable preemption during
2293 * printing of all remaining records to all consoles so that
2294 * this context can return as soon as possible. Hopefully
2295 * another printk() caller will take over the printing.
2299 * Try to acquire and then immediately release the console
2300 * semaphore. The release will print out buffers. With the
2301 * spinning variant, this context tries to take over the
2302 * printing from another printing context.
2304 if (console_trylock_spinning())
2310 defer_console_output();
2316 EXPORT_SYMBOL(vprintk_emit);
2318 int vprintk_default(const char *fmt, va_list args)
2320 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2322 EXPORT_SYMBOL_GPL(vprintk_default);
2324 asmlinkage __visible int _printk(const char *fmt, ...)
2329 va_start(args, fmt);
2330 r = vprintk(fmt, args);
2335 EXPORT_SYMBOL(_printk);
2337 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2338 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2340 #else /* CONFIG_PRINTK */
2342 #define printk_time false
2344 #define prb_read_valid(rb, seq, r) false
2345 #define prb_first_valid_seq(rb) 0
2346 #define prb_next_seq(rb) 0
2348 static u64 syslog_seq;
2350 static size_t record_print_text(const struct printk_record *r,
2351 bool syslog, bool time)
2355 static ssize_t info_print_ext_header(char *buf, size_t size,
2356 struct printk_info *info)
2360 static ssize_t msg_print_ext_body(char *buf, size_t size,
2361 char *text, size_t text_len,
2362 struct dev_printk_info *dev_info) { return 0; }
2363 static void console_lock_spinning_enable(void) { }
2364 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
2365 static bool suppress_message_printing(int level) { return false; }
2366 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2367 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2369 #endif /* CONFIG_PRINTK */
2371 #ifdef CONFIG_EARLY_PRINTK
2372 struct console *early_console;
2374 asmlinkage __visible void early_printk(const char *fmt, ...)
2384 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2387 early_console->write(early_console, buf, n);
2391 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2393 if (!user_specified)
2397 * @c console was defined by the user on the command line.
2398 * Do not clear when added twice also by SPCR or the device tree.
2400 c->user_specified = true;
2401 /* At least one console defined by the user on the command line. */
2402 console_set_on_cmdline = 1;
2405 static int __add_preferred_console(char *name, int idx, char *options,
2406 char *brl_options, bool user_specified)
2408 struct console_cmdline *c;
2412 * See if this tty is not yet registered, and
2413 * if we have a slot free.
2415 for (i = 0, c = console_cmdline;
2416 i < MAX_CMDLINECONSOLES && c->name[0];
2418 if (strcmp(c->name, name) == 0 && c->index == idx) {
2420 preferred_console = i;
2421 set_user_specified(c, user_specified);
2425 if (i == MAX_CMDLINECONSOLES)
2428 preferred_console = i;
2429 strscpy(c->name, name, sizeof(c->name));
2430 c->options = options;
2431 set_user_specified(c, user_specified);
2432 braille_set_options(c, brl_options);
2438 static int __init console_msg_format_setup(char *str)
2440 if (!strcmp(str, "syslog"))
2441 console_msg_format = MSG_FORMAT_SYSLOG;
2442 if (!strcmp(str, "default"))
2443 console_msg_format = MSG_FORMAT_DEFAULT;
2446 __setup("console_msg_format=", console_msg_format_setup);
2449 * Set up a console. Called via do_early_param() in init/main.c
2450 * for each "console=" parameter in the boot command line.
2452 static int __init console_setup(char *str)
2454 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2455 char *s, *options, *brl_options = NULL;
2459 * console="" or console=null have been suggested as a way to
2460 * disable console output. Use ttynull that has been created
2461 * for exactly this purpose.
2463 if (str[0] == 0 || strcmp(str, "null") == 0) {
2464 __add_preferred_console("ttynull", 0, NULL, NULL, true);
2468 if (_braille_console_setup(&str, &brl_options))
2472 * Decode str into name, index, options.
2474 if (str[0] >= '0' && str[0] <= '9') {
2475 strcpy(buf, "ttyS");
2476 strncpy(buf + 4, str, sizeof(buf) - 5);
2478 strncpy(buf, str, sizeof(buf) - 1);
2480 buf[sizeof(buf) - 1] = 0;
2481 options = strchr(str, ',');
2485 if (!strcmp(str, "ttya"))
2486 strcpy(buf, "ttyS0");
2487 if (!strcmp(str, "ttyb"))
2488 strcpy(buf, "ttyS1");
2490 for (s = buf; *s; s++)
2491 if (isdigit(*s) || *s == ',')
2493 idx = simple_strtoul(s, NULL, 10);
2496 __add_preferred_console(buf, idx, options, brl_options, true);
2499 __setup("console=", console_setup);
2502 * add_preferred_console - add a device to the list of preferred consoles.
2503 * @name: device name
2504 * @idx: device index
2505 * @options: options for this console
2507 * The last preferred console added will be used for kernel messages
2508 * and stdin/out/err for init. Normally this is used by console_setup
2509 * above to handle user-supplied console arguments; however it can also
2510 * be used by arch-specific code either to override the user or more
2511 * commonly to provide a default console (ie from PROM variables) when
2512 * the user has not supplied one.
2514 int add_preferred_console(char *name, int idx, char *options)
2516 return __add_preferred_console(name, idx, options, NULL, false);
2519 bool console_suspend_enabled = true;
2520 EXPORT_SYMBOL(console_suspend_enabled);
2522 static int __init console_suspend_disable(char *str)
2524 console_suspend_enabled = false;
2527 __setup("no_console_suspend", console_suspend_disable);
2528 module_param_named(console_suspend, console_suspend_enabled,
2529 bool, S_IRUGO | S_IWUSR);
2530 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2531 " and hibernate operations");
2533 static bool printk_console_no_auto_verbose;
2535 void console_verbose(void)
2537 if (console_loglevel && !printk_console_no_auto_verbose)
2538 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2540 EXPORT_SYMBOL_GPL(console_verbose);
2542 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2543 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2546 * suspend_console - suspend the console subsystem
2548 * This disables printk() while we go into suspend states
2550 void suspend_console(void)
2552 struct console *con;
2554 if (!console_suspend_enabled)
2556 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2557 pr_flush(1000, true);
2559 console_list_lock();
2560 for_each_console(con)
2561 console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2562 console_list_unlock();
2565 * Ensure that all SRCU list walks have completed. All printing
2566 * contexts must be able to see that they are suspended so that it
2567 * is guaranteed that all printing has stopped when this function
2570 synchronize_srcu(&console_srcu);
2573 void resume_console(void)
2575 struct console *con;
2577 if (!console_suspend_enabled)
2580 console_list_lock();
2581 for_each_console(con)
2582 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2583 console_list_unlock();
2586 * Ensure that all SRCU list walks have completed. All printing
2587 * contexts must be able to see they are no longer suspended so
2588 * that they are guaranteed to wake up and resume printing.
2590 synchronize_srcu(&console_srcu);
2592 pr_flush(1000, true);
2596 * console_cpu_notify - print deferred console messages after CPU hotplug
2599 * If printk() is called from a CPU that is not online yet, the messages
2600 * will be printed on the console only if there are CON_ANYTIME consoles.
2601 * This function is called when a new CPU comes online (or fails to come
2602 * up) or goes offline.
2604 static int console_cpu_notify(unsigned int cpu)
2606 if (!cpuhp_tasks_frozen) {
2607 /* If trylock fails, someone else is doing the printing */
2608 if (console_trylock())
2615 * Return true if a panic is in progress on a remote CPU.
2617 * On true, the local CPU should immediately release any printing resources
2618 * that may be needed by the panic CPU.
2620 bool other_cpu_in_panic(void)
2622 if (!panic_in_progress())
2626 * We can use raw_smp_processor_id() here because it is impossible for
2627 * the task to be migrated to the panic_cpu, or away from it. If
2628 * panic_cpu has already been set, and we're not currently executing on
2629 * that CPU, then we never will be.
2631 return atomic_read(&panic_cpu) != raw_smp_processor_id();
2635 * console_lock - block the console subsystem from printing
2637 * Acquires a lock which guarantees that no consoles will
2638 * be in or enter their write() callback.
2640 * Can sleep, returns nothing.
2642 void console_lock(void)
2646 /* On panic, the console_lock must be left to the panic cpu. */
2647 while (other_cpu_in_panic())
2652 console_may_schedule = 1;
2654 EXPORT_SYMBOL(console_lock);
2657 * console_trylock - try to block the console subsystem from printing
2659 * Try to acquire a lock which guarantees that no consoles will
2660 * be in or enter their write() callback.
2662 * returns 1 on success, and 0 on failure to acquire the lock.
2664 int console_trylock(void)
2666 /* On panic, the console_lock must be left to the panic cpu. */
2667 if (other_cpu_in_panic())
2669 if (down_trylock_console_sem())
2672 console_may_schedule = 0;
2675 EXPORT_SYMBOL(console_trylock);
2677 int is_console_locked(void)
2679 return console_locked;
2681 EXPORT_SYMBOL(is_console_locked);
2684 * Check if the given console is currently capable and allowed to print
2687 * Requires the console_srcu_read_lock.
2689 static inline bool console_is_usable(struct console *con)
2691 short flags = console_srcu_read_flags(con);
2693 if (!(flags & CON_ENABLED))
2696 if ((flags & CON_SUSPENDED))
2703 * Console drivers may assume that per-cpu resources have been
2704 * allocated. So unless they're explicitly marked as being able to
2705 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2707 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2713 static void __console_unlock(void)
2720 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2721 * is achieved by shifting the existing message over and inserting the dropped
2724 * @pmsg is the printk message to prepend.
2726 * @dropped is the dropped count to report in the dropped message.
2728 * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2729 * the dropped message, the message text will be sufficiently truncated.
2731 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2733 #ifdef CONFIG_PRINTK
2734 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2736 struct printk_buffers *pbufs = pmsg->pbufs;
2737 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2738 const size_t outbuf_sz = sizeof(pbufs->outbuf);
2739 char *scratchbuf = &pbufs->scratchbuf[0];
2740 char *outbuf = &pbufs->outbuf[0];
2743 len = scnprintf(scratchbuf, scratchbuf_sz,
2744 "** %lu printk messages dropped **\n", dropped);
2747 * Make sure outbuf is sufficiently large before prepending.
2748 * Keep at least the prefix when the message must be truncated.
2749 * It is a rather theoretical problem when someone tries to
2750 * use a minimalist buffer.
2752 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2755 if (pmsg->outbuf_len + len >= outbuf_sz) {
2756 /* Truncate the message, but keep it terminated. */
2757 pmsg->outbuf_len = outbuf_sz - (len + 1);
2758 outbuf[pmsg->outbuf_len] = 0;
2761 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2762 memcpy(outbuf, scratchbuf, len);
2763 pmsg->outbuf_len += len;
2766 #define console_prepend_dropped(pmsg, dropped)
2767 #endif /* CONFIG_PRINTK */
2770 * Read and format the specified record (or a later record if the specified
2771 * record is not available).
2773 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2774 * struct printk_buffers.
2776 * @seq is the record to read and format. If it is not available, the next
2777 * valid record is read.
2779 * @is_extended specifies if the message should be formatted for extended
2782 * @may_supress specifies if records may be skipped based on loglevel.
2784 * Returns false if no record is available. Otherwise true and all fields
2785 * of @pmsg are valid. (See the documentation of struct printk_message
2786 * for information about the @pmsg fields.)
2788 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2789 bool is_extended, bool may_suppress)
2791 static int panic_console_dropped;
2793 struct printk_buffers *pbufs = pmsg->pbufs;
2794 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2795 const size_t outbuf_sz = sizeof(pbufs->outbuf);
2796 char *scratchbuf = &pbufs->scratchbuf[0];
2797 char *outbuf = &pbufs->outbuf[0];
2798 struct printk_info info;
2799 struct printk_record r;
2803 * Formatting extended messages requires a separate buffer, so use the
2804 * scratch buffer to read in the ringbuffer text.
2806 * Formatting normal messages is done in-place, so read the ringbuffer
2807 * text directly into the output buffer.
2810 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2812 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2814 if (!prb_read_valid(prb, seq, &r))
2817 pmsg->seq = r.info->seq;
2818 pmsg->dropped = r.info->seq - seq;
2821 * Check for dropped messages in panic here so that printk
2822 * suppression can occur as early as possible if necessary.
2824 if (pmsg->dropped &&
2825 panic_in_progress() &&
2826 panic_console_dropped++ > 10) {
2827 suppress_panic_printk = 1;
2828 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2831 /* Skip record that has level above the console loglevel. */
2832 if (may_suppress && suppress_message_printing(r.info->level))
2836 len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2837 len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2838 &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2840 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2843 pmsg->outbuf_len = len;
2848 * Print one record for the given console. The record printed is whatever
2849 * record is the next available record for the given console.
2851 * @handover will be set to true if a printk waiter has taken over the
2852 * console_lock, in which case the caller is no longer holding both the
2853 * console_lock and the SRCU read lock. Otherwise it is set to false.
2855 * @cookie is the cookie from the SRCU read lock.
2857 * Returns false if the given console has no next record to print, otherwise
2860 * Requires the console_lock and the SRCU read lock.
2862 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2864 static struct printk_buffers pbufs;
2866 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2867 char *outbuf = &pbufs.outbuf[0];
2868 struct printk_message pmsg = {
2871 unsigned long flags;
2875 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2878 con->dropped += pmsg.dropped;
2880 /* Skip messages of formatted length 0. */
2881 if (pmsg.outbuf_len == 0) {
2882 con->seq = pmsg.seq + 1;
2886 if (con->dropped && !is_extended) {
2887 console_prepend_dropped(&pmsg, con->dropped);
2892 * While actively printing out messages, if another printk()
2893 * were to occur on another CPU, it may wait for this one to
2894 * finish. This task can not be preempted if there is a
2895 * waiter waiting to take over.
2897 * Interrupts are disabled because the hand over to a waiter
2898 * must not be interrupted until the hand over is completed
2899 * (@console_waiter is cleared).
2901 printk_safe_enter_irqsave(flags);
2902 console_lock_spinning_enable();
2904 /* Do not trace print latency. */
2905 stop_critical_timings();
2907 /* Write everything out to the hardware. */
2908 con->write(con, outbuf, pmsg.outbuf_len);
2910 start_critical_timings();
2912 con->seq = pmsg.seq + 1;
2914 *handover = console_lock_spinning_disable_and_check(cookie);
2915 printk_safe_exit_irqrestore(flags);
2921 * Print out all remaining records to all consoles.
2923 * @do_cond_resched is set by the caller. It can be true only in schedulable
2926 * @next_seq is set to the sequence number after the last available record.
2927 * The value is valid only when this function returns true. It means that all
2928 * usable consoles are completely flushed.
2930 * @handover will be set to true if a printk waiter has taken over the
2931 * console_lock, in which case the caller is no longer holding the
2932 * console_lock. Otherwise it is set to false.
2934 * Returns true when there was at least one usable console and all messages
2935 * were flushed to all usable consoles. A returned false informs the caller
2936 * that everything was not flushed (either there were no usable consoles or
2937 * another context has taken over printing or it is a panic situation and this
2938 * is not the panic CPU). Regardless the reason, the caller should assume it
2939 * is not useful to immediately try again.
2941 * Requires the console_lock.
2943 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2945 bool any_usable = false;
2946 struct console *con;
2954 any_progress = false;
2956 cookie = console_srcu_read_lock();
2957 for_each_console_srcu(con) {
2960 if (!console_is_usable(con))
2964 progress = console_emit_next_record(con, handover, cookie);
2967 * If a handover has occurred, the SRCU read lock
2968 * is already released.
2973 /* Track the next of the highest seq flushed. */
2974 if (con->seq > *next_seq)
2975 *next_seq = con->seq;
2979 any_progress = true;
2981 /* Allow panic_cpu to take over the consoles safely. */
2982 if (other_cpu_in_panic())
2985 if (do_cond_resched)
2988 console_srcu_read_unlock(cookie);
2989 } while (any_progress);
2994 console_srcu_read_unlock(cookie);
2999 * console_unlock - unblock the console subsystem from printing
3001 * Releases the console_lock which the caller holds to block printing of
3002 * the console subsystem.
3004 * While the console_lock was held, console output may have been buffered
3005 * by printk(). If this is the case, console_unlock(); emits
3006 * the output prior to releasing the lock.
3008 * console_unlock(); may be called from any context.
3010 void console_unlock(void)
3012 bool do_cond_resched;
3018 * Console drivers are called with interrupts disabled, so
3019 * @console_may_schedule should be cleared before; however, we may
3020 * end up dumping a lot of lines, for example, if called from
3021 * console registration path, and should invoke cond_resched()
3022 * between lines if allowable. Not doing so can cause a very long
3023 * scheduling stall on a slow console leading to RCU stall and
3024 * softlockup warnings which exacerbate the issue with more
3025 * messages practically incapacitating the system. Therefore, create
3026 * a local to use for the printing loop.
3028 do_cond_resched = console_may_schedule;
3031 console_may_schedule = 0;
3033 flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3038 * Abort if there was a failure to flush all messages to all
3039 * usable consoles. Either it is not possible to flush (in
3040 * which case it would be an infinite loop of retrying) or
3041 * another context has taken over printing.
3047 * Some context may have added new records after
3048 * console_flush_all() but before unlocking the console.
3049 * Re-check if there is a new record to flush. If the trylock
3050 * fails, another context is already handling the printing.
3052 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3054 EXPORT_SYMBOL(console_unlock);
3057 * console_conditional_schedule - yield the CPU if required
3059 * If the console code is currently allowed to sleep, and
3060 * if this CPU should yield the CPU to another task, do
3063 * Must be called within console_lock();.
3065 void __sched console_conditional_schedule(void)
3067 if (console_may_schedule)
3070 EXPORT_SYMBOL(console_conditional_schedule);
3072 void console_unblank(void)
3074 bool found_unblank = false;
3079 * First check if there are any consoles implementing the unblank()
3080 * callback. If not, there is no reason to continue and take the
3081 * console lock, which in particular can be dangerous if
3082 * @oops_in_progress is set.
3084 cookie = console_srcu_read_lock();
3085 for_each_console_srcu(c) {
3086 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3087 found_unblank = true;
3091 console_srcu_read_unlock(cookie);
3096 * Stop console printing because the unblank() callback may
3097 * assume the console is not within its write() callback.
3099 * If @oops_in_progress is set, this may be an atomic context.
3100 * In that case, attempt a trylock as best-effort.
3102 if (oops_in_progress) {
3103 /* Semaphores are not NMI-safe. */
3108 * Attempting to trylock the console lock can deadlock
3109 * if another CPU was stopped while modifying the
3110 * semaphore. "Hope and pray" that this is not the
3111 * current situation.
3113 if (down_trylock_console_sem() != 0)
3119 console_may_schedule = 0;
3121 cookie = console_srcu_read_lock();
3122 for_each_console_srcu(c) {
3123 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3126 console_srcu_read_unlock(cookie);
3130 if (!oops_in_progress)
3131 pr_flush(1000, true);
3135 * console_flush_on_panic - flush console content on panic
3136 * @mode: flush all messages in buffer or just the pending ones
3138 * Immediately output all pending messages no matter what.
3140 void console_flush_on_panic(enum con_flush_mode mode)
3146 * Ignore the console lock and flush out the messages. Attempting a
3147 * trylock would not be useful because:
3149 * - if it is contended, it must be ignored anyway
3150 * - console_lock() and console_trylock() block and fail
3151 * respectively in panic for non-panic CPUs
3152 * - semaphores are not NMI-safe
3156 * If another context is holding the console lock,
3157 * @console_may_schedule might be set. Clear it so that
3158 * this context does not call cond_resched() while flushing.
3160 console_may_schedule = 0;
3162 if (mode == CONSOLE_REPLAY_ALL) {
3167 seq = prb_first_valid_seq(prb);
3169 cookie = console_srcu_read_lock();
3170 for_each_console_srcu(c) {
3172 * This is an unsynchronized assignment, but the
3173 * kernel is in "hope and pray" mode anyway.
3177 console_srcu_read_unlock(cookie);
3180 console_flush_all(false, &next_seq, &handover);
3184 * Return the console tty driver structure and its associated index
3186 struct tty_driver *console_device(int *index)
3189 struct tty_driver *driver = NULL;
3193 * Take console_lock to serialize device() callback with
3194 * other console operations. For example, fg_console is
3195 * modified under console_lock when switching vt.
3199 cookie = console_srcu_read_lock();
3200 for_each_console_srcu(c) {
3203 driver = c->device(c, index);
3207 console_srcu_read_unlock(cookie);
3214 * Prevent further output on the passed console device so that (for example)
3215 * serial drivers can disable console output before suspending a port, and can
3216 * re-enable output afterwards.
3218 void console_stop(struct console *console)
3220 __pr_flush(console, 1000, true);
3221 console_list_lock();
3222 console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3223 console_list_unlock();
3226 * Ensure that all SRCU list walks have completed. All contexts must
3227 * be able to see that this console is disabled so that (for example)
3228 * the caller can suspend the port without risk of another context
3231 synchronize_srcu(&console_srcu);
3233 EXPORT_SYMBOL(console_stop);
3235 void console_start(struct console *console)
3237 console_list_lock();
3238 console_srcu_write_flags(console, console->flags | CON_ENABLED);
3239 console_list_unlock();
3240 __pr_flush(console, 1000, true);
3242 EXPORT_SYMBOL(console_start);
3244 static int __read_mostly keep_bootcon;
3246 static int __init keep_bootcon_setup(char *str)
3249 pr_info("debug: skip boot console de-registration.\n");
3254 early_param("keep_bootcon", keep_bootcon_setup);
3257 * This is called by register_console() to try to match
3258 * the newly registered console with any of the ones selected
3259 * by either the command line or add_preferred_console() and
3262 * Care need to be taken with consoles that are statically
3263 * enabled such as netconsole
3265 static int try_enable_preferred_console(struct console *newcon,
3266 bool user_specified)
3268 struct console_cmdline *c;
3271 for (i = 0, c = console_cmdline;
3272 i < MAX_CMDLINECONSOLES && c->name[0];
3274 if (c->user_specified != user_specified)
3276 if (!newcon->match ||
3277 newcon->match(newcon, c->name, c->index, c->options) != 0) {
3278 /* default matching */
3279 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3280 if (strcmp(c->name, newcon->name) != 0)
3282 if (newcon->index >= 0 &&
3283 newcon->index != c->index)
3285 if (newcon->index < 0)
3286 newcon->index = c->index;
3288 if (_braille_register_console(newcon, c))
3291 if (newcon->setup &&
3292 (err = newcon->setup(newcon, c->options)) != 0)
3295 newcon->flags |= CON_ENABLED;
3296 if (i == preferred_console)
3297 newcon->flags |= CON_CONSDEV;
3302 * Some consoles, such as pstore and netconsole, can be enabled even
3303 * without matching. Accept the pre-enabled consoles only when match()
3304 * and setup() had a chance to be called.
3306 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
3312 /* Try to enable the console unconditionally */
3313 static void try_enable_default_console(struct console *newcon)
3315 if (newcon->index < 0)
3318 if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3321 newcon->flags |= CON_ENABLED;
3324 newcon->flags |= CON_CONSDEV;
3327 #define con_printk(lvl, con, fmt, ...) \
3328 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \
3329 (con->flags & CON_BOOT) ? "boot" : "", \
3330 con->name, con->index, ##__VA_ARGS__)
3332 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3334 struct console *con;
3337 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3338 /* Get a consistent copy of @syslog_seq. */
3339 mutex_lock(&syslog_lock);
3340 newcon->seq = syslog_seq;
3341 mutex_unlock(&syslog_lock);
3343 /* Begin with next message added to ringbuffer. */
3344 newcon->seq = prb_next_seq(prb);
3347 * If any enabled boot consoles are due to be unregistered
3348 * shortly, some may not be caught up and may be the same
3349 * device as @newcon. Since it is not known which boot console
3350 * is the same device, flush all consoles and, if necessary,
3351 * start with the message of the enabled boot console that is
3352 * the furthest behind.
3354 if (bootcon_registered && !keep_bootcon) {
3356 * Hold the console_lock to stop console printing and
3357 * guarantee safe access to console->seq.
3362 * Flush all consoles and set the console to start at
3363 * the next unprinted sequence number.
3365 if (!console_flush_all(true, &newcon->seq, &handover)) {
3367 * Flushing failed. Just choose the lowest
3368 * sequence of the enabled boot consoles.
3372 * If there was a handover, this context no
3373 * longer holds the console_lock.
3378 newcon->seq = prb_next_seq(prb);
3379 for_each_console(con) {
3380 if ((con->flags & CON_BOOT) &&
3381 (con->flags & CON_ENABLED) &&
3382 con->seq < newcon->seq) {
3383 newcon->seq = con->seq;
3393 #define console_first() \
3394 hlist_entry(console_list.first, struct console, node)
3396 static int unregister_console_locked(struct console *console);
3399 * The console driver calls this routine during kernel initialization
3400 * to register the console printing procedure with printk() and to
3401 * print any messages that were printed by the kernel before the
3402 * console driver was initialized.
3404 * This can happen pretty early during the boot process (because of
3405 * early_printk) - sometimes before setup_arch() completes - be careful
3406 * of what kernel features are used - they may not be initialised yet.
3408 * There are two types of consoles - bootconsoles (early_printk) and
3409 * "real" consoles (everything which is not a bootconsole) which are
3410 * handled differently.
3411 * - Any number of bootconsoles can be registered at any time.
3412 * - As soon as a "real" console is registered, all bootconsoles
3413 * will be unregistered automatically.
3414 * - Once a "real" console is registered, any attempt to register a
3415 * bootconsoles will be rejected
3417 void register_console(struct console *newcon)
3419 struct console *con;
3420 bool bootcon_registered = false;
3421 bool realcon_registered = false;
3424 console_list_lock();
3426 for_each_console(con) {
3427 if (WARN(con == newcon, "console '%s%d' already registered\n",
3428 con->name, con->index)) {
3432 if (con->flags & CON_BOOT)
3433 bootcon_registered = true;
3435 realcon_registered = true;
3438 /* Do not register boot consoles when there already is a real one. */
3439 if ((newcon->flags & CON_BOOT) && realcon_registered) {
3440 pr_info("Too late to register bootconsole %s%d\n",
3441 newcon->name, newcon->index);
3446 * See if we want to enable this console driver by default.
3448 * Nope when a console is preferred by the command line, device
3451 * The first real console with tty binding (driver) wins. More
3452 * consoles might get enabled before the right one is found.
3454 * Note that a console with tty binding will have CON_CONSDEV
3455 * flag set and will be first in the list.
3457 if (preferred_console < 0) {
3458 if (hlist_empty(&console_list) || !console_first()->device ||
3459 console_first()->flags & CON_BOOT) {
3460 try_enable_default_console(newcon);
3464 /* See if this console matches one we selected on the command line */
3465 err = try_enable_preferred_console(newcon, true);
3467 /* If not, try to match against the platform default(s) */
3469 err = try_enable_preferred_console(newcon, false);
3471 /* printk() messages are not printed to the Braille console. */
3472 if (err || newcon->flags & CON_BRL)
3476 * If we have a bootconsole, and are switching to a real console,
3477 * don't print everything out again, since when the boot console, and
3478 * the real console are the same physical device, it's annoying to
3479 * see the beginning boot messages twice
3481 if (bootcon_registered &&
3482 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3483 newcon->flags &= ~CON_PRINTBUFFER;
3486 newcon->dropped = 0;
3487 console_init_seq(newcon, bootcon_registered);
3490 * Put this console in the list - keep the
3491 * preferred driver at the head of the list.
3493 if (hlist_empty(&console_list)) {
3494 /* Ensure CON_CONSDEV is always set for the head. */
3495 newcon->flags |= CON_CONSDEV;
3496 hlist_add_head_rcu(&newcon->node, &console_list);
3498 } else if (newcon->flags & CON_CONSDEV) {
3499 /* Only the new head can have CON_CONSDEV set. */
3500 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3501 hlist_add_head_rcu(&newcon->node, &console_list);
3504 hlist_add_behind_rcu(&newcon->node, console_list.first);
3508 * No need to synchronize SRCU here! The caller does not rely
3509 * on all contexts being able to see the new console before
3510 * register_console() completes.
3513 console_sysfs_notify();
3516 * By unregistering the bootconsoles after we enable the real console
3517 * we get the "console xxx enabled" message on all the consoles -
3518 * boot consoles, real consoles, etc - this is to ensure that end
3519 * users know there might be something in the kernel's log buffer that
3520 * went to the bootconsole (that they do not see on the real console)
3522 con_printk(KERN_INFO, newcon, "enabled\n");
3523 if (bootcon_registered &&
3524 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3526 struct hlist_node *tmp;
3528 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3529 if (con->flags & CON_BOOT)
3530 unregister_console_locked(con);
3534 console_list_unlock();
3536 EXPORT_SYMBOL(register_console);
3538 /* Must be called under console_list_lock(). */
3539 static int unregister_console_locked(struct console *console)
3543 lockdep_assert_console_list_lock_held();
3545 con_printk(KERN_INFO, console, "disabled\n");
3547 res = _braille_unregister_console(console);
3553 /* Disable it unconditionally */
3554 console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3556 if (!console_is_registered_locked(console))
3559 hlist_del_init_rcu(&console->node);
3563 * If this isn't the last console and it has CON_CONSDEV set, we
3564 * need to set it on the next preferred console.
3567 * The above makes no sense as there is no guarantee that the next
3568 * console has any device attached. Oh well....
3570 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3571 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3574 * Ensure that all SRCU list walks have completed. All contexts
3575 * must not be able to see this console in the list so that any
3576 * exit/cleanup routines can be performed safely.
3578 synchronize_srcu(&console_srcu);
3580 console_sysfs_notify();
3583 res = console->exit(console);
3588 int unregister_console(struct console *console)
3592 console_list_lock();
3593 res = unregister_console_locked(console);
3594 console_list_unlock();
3597 EXPORT_SYMBOL(unregister_console);
3600 * console_force_preferred_locked - force a registered console preferred
3601 * @con: The registered console to force preferred.
3603 * Must be called under console_list_lock().
3605 void console_force_preferred_locked(struct console *con)
3607 struct console *cur_pref_con;
3609 if (!console_is_registered_locked(con))
3612 cur_pref_con = console_first();
3614 /* Already preferred? */
3615 if (cur_pref_con == con)
3619 * Delete, but do not re-initialize the entry. This allows the console
3620 * to continue to appear registered (via any hlist_unhashed_lockless()
3621 * checks), even though it was briefly removed from the console list.
3623 hlist_del_rcu(&con->node);
3626 * Ensure that all SRCU list walks have completed so that the console
3627 * can be added to the beginning of the console list and its forward
3628 * list pointer can be re-initialized.
3630 synchronize_srcu(&console_srcu);
3632 con->flags |= CON_CONSDEV;
3633 WARN_ON(!con->device);
3635 /* Only the new head can have CON_CONSDEV set. */
3636 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3637 hlist_add_head_rcu(&con->node, &console_list);
3639 EXPORT_SYMBOL(console_force_preferred_locked);
3642 * Initialize the console device. This is called *early*, so
3643 * we can't necessarily depend on lots of kernel help here.
3644 * Just do some early initializations, and do the complex setup
3647 void __init console_init(void)
3651 initcall_entry_t *ce;
3653 /* Setup the default TTY line discipline. */
3657 * set up the console device so that later boot sequences can
3658 * inform about problems etc..
3660 ce = __con_initcall_start;
3661 trace_initcall_level("console");
3662 while (ce < __con_initcall_end) {
3663 call = initcall_from_entry(ce);
3664 trace_initcall_start(call);
3666 trace_initcall_finish(call, ret);
3672 * Some boot consoles access data that is in the init section and which will
3673 * be discarded after the initcalls have been run. To make sure that no code
3674 * will access this data, unregister the boot consoles in a late initcall.
3676 * If for some reason, such as deferred probe or the driver being a loadable
3677 * module, the real console hasn't registered yet at this point, there will
3678 * be a brief interval in which no messages are logged to the console, which
3679 * makes it difficult to diagnose problems that occur during this time.
3681 * To mitigate this problem somewhat, only unregister consoles whose memory
3682 * intersects with the init section. Note that all other boot consoles will
3683 * get unregistered when the real preferred console is registered.
3685 static int __init printk_late_init(void)
3687 struct hlist_node *tmp;
3688 struct console *con;
3691 console_list_lock();
3692 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3693 if (!(con->flags & CON_BOOT))
3696 /* Check addresses that might be used for enabled consoles. */
3697 if (init_section_intersects(con, sizeof(*con)) ||
3698 init_section_contains(con->write, 0) ||
3699 init_section_contains(con->read, 0) ||
3700 init_section_contains(con->device, 0) ||
3701 init_section_contains(con->unblank, 0) ||
3702 init_section_contains(con->data, 0)) {
3704 * Please, consider moving the reported consoles out
3705 * of the init section.
3707 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3708 con->name, con->index);
3709 unregister_console_locked(con);
3712 console_list_unlock();
3714 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3715 console_cpu_notify);
3717 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3718 console_cpu_notify, NULL);
3720 printk_sysctl_init();
3723 late_initcall(printk_late_init);
3725 #if defined CONFIG_PRINTK
3726 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3727 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3729 int remaining = timeout_ms;
3739 seq = prb_next_seq(prb);
3741 /* Flush the consoles so that records up to @seq are printed. */
3749 * Hold the console_lock to guarantee safe access to
3750 * console->seq. Releasing console_lock flushes more
3751 * records in case @seq is still not printed on all
3756 cookie = console_srcu_read_lock();
3757 for_each_console_srcu(c) {
3758 if (con && con != c)
3761 * If consoles are not usable, it cannot be expected
3762 * that they make forward progress, so only increment
3763 * @diff for usable consoles.
3765 if (!console_is_usable(c))
3767 printk_seq = c->seq;
3768 if (printk_seq < seq)
3769 diff += seq - printk_seq;
3771 console_srcu_read_unlock(cookie);
3773 if (diff != last_diff && reset_on_progress)
3774 remaining = timeout_ms;
3778 /* Note: @diff is 0 if there are no usable consoles. */
3779 if (diff == 0 || remaining == 0)
3782 if (remaining < 0) {
3783 /* no timeout limit */
3785 } else if (remaining < 100) {
3800 * pr_flush() - Wait for printing threads to catch up.
3802 * @timeout_ms: The maximum time (in ms) to wait.
3803 * @reset_on_progress: Reset the timeout if forward progress is seen.
3805 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3806 * represents infinite waiting.
3808 * If @reset_on_progress is true, the timeout will be reset whenever any
3809 * printer has been seen to make some forward progress.
3811 * Context: Process context. May sleep while acquiring console lock.
3812 * Return: true if all usable printers are caught up.
3814 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3816 return __pr_flush(NULL, timeout_ms, reset_on_progress);
3820 * Delayed printk version, for scheduler-internal messages:
3822 #define PRINTK_PENDING_WAKEUP 0x01
3823 #define PRINTK_PENDING_OUTPUT 0x02
3825 static DEFINE_PER_CPU(int, printk_pending);
3827 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3829 int pending = this_cpu_xchg(printk_pending, 0);
3831 if (pending & PRINTK_PENDING_OUTPUT) {
3832 /* If trylock fails, someone else is doing the printing */
3833 if (console_trylock())
3837 if (pending & PRINTK_PENDING_WAKEUP)
3838 wake_up_interruptible(&log_wait);
3841 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3842 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3844 static void __wake_up_klogd(int val)
3846 if (!printk_percpu_data_ready())
3851 * Guarantee any new records can be seen by tasks preparing to wait
3852 * before this context checks if the wait queue is empty.
3854 * The full memory barrier within wq_has_sleeper() pairs with the full
3855 * memory barrier within set_current_state() of
3856 * prepare_to_wait_event(), which is called after ___wait_event() adds
3857 * the waiter but before it has checked the wait condition.
3859 * This pairs with devkmsg_read:A and syslog_print:A.
3861 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3862 (val & PRINTK_PENDING_OUTPUT)) {
3863 this_cpu_or(printk_pending, val);
3864 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3870 * wake_up_klogd - Wake kernel logging daemon
3872 * Use this function when new records have been added to the ringbuffer
3873 * and the console printing of those records has already occurred or is
3874 * known to be handled by some other context. This function will only
3875 * wake the logging daemon.
3877 * Context: Any context.
3879 void wake_up_klogd(void)
3881 __wake_up_klogd(PRINTK_PENDING_WAKEUP);
3885 * defer_console_output - Wake kernel logging daemon and trigger
3886 * console printing in a deferred context
3888 * Use this function when new records have been added to the ringbuffer,
3889 * this context is responsible for console printing those records, but
3890 * the current context is not allowed to perform the console printing.
3891 * Trigger an irq_work context to perform the console printing. This
3892 * function also wakes the logging daemon.
3894 * Context: Any context.
3896 void defer_console_output(void)
3899 * New messages may have been added directly to the ringbuffer
3900 * using vprintk_store(), so wake any waiters as well.
3902 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3905 void printk_trigger_flush(void)
3907 defer_console_output();
3910 int vprintk_deferred(const char *fmt, va_list args)
3912 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3915 int _printk_deferred(const char *fmt, ...)
3920 va_start(args, fmt);
3921 r = vprintk_deferred(fmt, args);
3928 * printk rate limiting, lifted from the networking subsystem.
3930 * This enforces a rate limit: not more than 10 kernel messages
3931 * every 5s to make a denial-of-service attack impossible.
3933 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3935 int __printk_ratelimit(const char *func)
3937 return ___ratelimit(&printk_ratelimit_state, func);
3939 EXPORT_SYMBOL(__printk_ratelimit);
3942 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3943 * @caller_jiffies: pointer to caller's state
3944 * @interval_msecs: minimum interval between prints
3946 * printk_timed_ratelimit() returns true if more than @interval_msecs
3947 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3950 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3951 unsigned int interval_msecs)
3953 unsigned long elapsed = jiffies - *caller_jiffies;
3955 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3958 *caller_jiffies = jiffies;
3961 EXPORT_SYMBOL(printk_timed_ratelimit);
3963 static DEFINE_SPINLOCK(dump_list_lock);
3964 static LIST_HEAD(dump_list);
3967 * kmsg_dump_register - register a kernel log dumper.
3968 * @dumper: pointer to the kmsg_dumper structure
3970 * Adds a kernel log dumper to the system. The dump callback in the
3971 * structure will be called when the kernel oopses or panics and must be
3972 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3974 int kmsg_dump_register(struct kmsg_dumper *dumper)
3976 unsigned long flags;
3979 /* The dump callback needs to be set */
3983 spin_lock_irqsave(&dump_list_lock, flags);
3984 /* Don't allow registering multiple times */
3985 if (!dumper->registered) {
3986 dumper->registered = 1;
3987 list_add_tail_rcu(&dumper->list, &dump_list);
3990 spin_unlock_irqrestore(&dump_list_lock, flags);
3994 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3997 * kmsg_dump_unregister - unregister a kmsg dumper.
3998 * @dumper: pointer to the kmsg_dumper structure
4000 * Removes a dump device from the system. Returns zero on success and
4001 * %-EINVAL otherwise.
4003 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4005 unsigned long flags;
4008 spin_lock_irqsave(&dump_list_lock, flags);
4009 if (dumper->registered) {
4010 dumper->registered = 0;
4011 list_del_rcu(&dumper->list);
4014 spin_unlock_irqrestore(&dump_list_lock, flags);
4019 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4021 static bool always_kmsg_dump;
4022 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4024 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4027 case KMSG_DUMP_PANIC:
4029 case KMSG_DUMP_OOPS:
4031 case KMSG_DUMP_EMERG:
4033 case KMSG_DUMP_SHUTDOWN:
4039 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4042 * kmsg_dump - dump kernel log to kernel message dumpers.
4043 * @reason: the reason (oops, panic etc) for dumping
4045 * Call each of the registered dumper's dump() callback, which can
4046 * retrieve the kmsg records with kmsg_dump_get_line() or
4047 * kmsg_dump_get_buffer().
4049 void kmsg_dump(enum kmsg_dump_reason reason)
4051 struct kmsg_dumper *dumper;
4054 list_for_each_entry_rcu(dumper, &dump_list, list) {
4055 enum kmsg_dump_reason max_reason = dumper->max_reason;
4058 * If client has not provided a specific max_reason, default
4059 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4061 if (max_reason == KMSG_DUMP_UNDEF) {
4062 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4065 if (reason > max_reason)
4068 /* invoke dumper which will iterate over records */
4069 dumper->dump(dumper, reason);
4075 * kmsg_dump_get_line - retrieve one kmsg log line
4076 * @iter: kmsg dump iterator
4077 * @syslog: include the "<4>" prefixes
4078 * @line: buffer to copy the line to
4079 * @size: maximum size of the buffer
4080 * @len: length of line placed into buffer
4082 * Start at the beginning of the kmsg buffer, with the oldest kmsg
4083 * record, and copy one record into the provided buffer.
4085 * Consecutive calls will return the next available record moving
4086 * towards the end of the buffer with the youngest messages.
4088 * A return value of FALSE indicates that there are no more records to
4091 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4092 char *line, size_t size, size_t *len)
4094 u64 min_seq = latched_seq_read_nolock(&clear_seq);
4095 struct printk_info info;
4096 unsigned int line_count;
4097 struct printk_record r;
4101 if (iter->cur_seq < min_seq)
4102 iter->cur_seq = min_seq;
4104 prb_rec_init_rd(&r, &info, line, size);
4106 /* Read text or count text lines? */
4108 if (!prb_read_valid(prb, iter->cur_seq, &r))
4110 l = record_print_text(&r, syslog, printk_time);
4112 if (!prb_read_valid_info(prb, iter->cur_seq,
4113 &info, &line_count)) {
4116 l = get_record_print_text_size(&info, line_count, syslog,
4121 iter->cur_seq = r.info->seq + 1;
4128 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4131 * kmsg_dump_get_buffer - copy kmsg log lines
4132 * @iter: kmsg dump iterator
4133 * @syslog: include the "<4>" prefixes
4134 * @buf: buffer to copy the line to
4135 * @size: maximum size of the buffer
4136 * @len_out: length of line placed into buffer
4138 * Start at the end of the kmsg buffer and fill the provided buffer
4139 * with as many of the *youngest* kmsg records that fit into it.
4140 * If the buffer is large enough, all available kmsg records will be
4141 * copied with a single call.
4143 * Consecutive calls will fill the buffer with the next block of
4144 * available older records, not including the earlier retrieved ones.
4146 * A return value of FALSE indicates that there are no more records to
4149 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4150 char *buf, size_t size, size_t *len_out)
4152 u64 min_seq = latched_seq_read_nolock(&clear_seq);
4153 struct printk_info info;
4154 struct printk_record r;
4159 bool time = printk_time;
4164 if (iter->cur_seq < min_seq)
4165 iter->cur_seq = min_seq;
4167 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4168 if (info.seq != iter->cur_seq) {
4169 /* messages are gone, move to first available one */
4170 iter->cur_seq = info.seq;
4175 if (iter->cur_seq >= iter->next_seq)
4179 * Find first record that fits, including all following records,
4180 * into the user-provided buffer for this dump. Pass in size-1
4181 * because this function (by way of record_print_text()) will
4182 * not write more than size-1 bytes of text into @buf.
4184 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4185 size - 1, syslog, time);
4188 * Next kmsg_dump_get_buffer() invocation will dump block of
4189 * older records stored right before this one.
4193 prb_rec_init_rd(&r, &info, buf, size);
4196 prb_for_each_record(seq, prb, seq, &r) {
4197 if (r.info->seq >= iter->next_seq)
4200 len += record_print_text(&r, syslog, time);
4202 /* Adjust record to store to remaining buffer space. */
4203 prb_rec_init_rd(&r, &info, buf + len, size - len);
4206 iter->next_seq = next_seq;
4213 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4216 * kmsg_dump_rewind - reset the iterator
4217 * @iter: kmsg dump iterator
4219 * Reset the dumper's iterator so that kmsg_dump_get_line() and
4220 * kmsg_dump_get_buffer() can be called again and used multiple
4221 * times within the same dumper.dump() callback.
4223 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4225 iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4226 iter->next_seq = prb_next_seq(prb);
4228 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4233 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4234 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4237 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4238 * spinning lock is not owned by any CPU.
4240 * Context: Any context.
4242 void __printk_cpu_sync_wait(void)
4246 } while (atomic_read(&printk_cpu_sync_owner) != -1);
4248 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4251 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4254 * If no processor has the lock, the calling processor takes the lock and
4255 * becomes the owner. If the calling processor is already the owner of the
4256 * lock, this function succeeds immediately.
4258 * Context: Any context. Expects interrupts to be disabled.
4259 * Return: 1 on success, otherwise 0.
4261 int __printk_cpu_sync_try_get(void)
4266 cpu = smp_processor_id();
4269 * Guarantee loads and stores from this CPU when it is the lock owner
4270 * are _not_ visible to the previous lock owner. This pairs with
4271 * __printk_cpu_sync_put:B.
4273 * Memory barrier involvement:
4275 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4276 * then __printk_cpu_sync_put:A can never read from
4277 * __printk_cpu_sync_try_get:B.
4281 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4282 * of the previous CPU
4284 * ACQUIRE from __printk_cpu_sync_try_get:A to
4285 * __printk_cpu_sync_try_get:B of this CPU
4287 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4288 cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4291 * This CPU is now the owner and begins loading/storing
4292 * data: LMM(__printk_cpu_sync_try_get:B)
4296 } else if (old == cpu) {
4297 /* This CPU is already the owner. */
4298 atomic_inc(&printk_cpu_sync_nested);
4304 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4307 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4309 * The calling processor must be the owner of the lock.
4311 * Context: Any context. Expects interrupts to be disabled.
4313 void __printk_cpu_sync_put(void)
4315 if (atomic_read(&printk_cpu_sync_nested)) {
4316 atomic_dec(&printk_cpu_sync_nested);
4321 * This CPU is finished loading/storing data:
4322 * LMM(__printk_cpu_sync_put:A)
4326 * Guarantee loads and stores from this CPU when it was the
4327 * lock owner are visible to the next lock owner. This pairs
4328 * with __printk_cpu_sync_try_get:A.
4330 * Memory barrier involvement:
4332 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4333 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4337 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4340 * ACQUIRE from __printk_cpu_sync_try_get:A to
4341 * __printk_cpu_sync_try_get:B of the next CPU
4343 atomic_set_release(&printk_cpu_sync_owner,
4344 -1); /* LMM(__printk_cpu_sync_put:B) */
4346 EXPORT_SYMBOL(__printk_cpu_sync_put);
4347 #endif /* CONFIG_SMP */