mm: split swap_type_of
[platform/kernel/linux-starfive.git] / kernel / power / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48  *      The swap map is a data structure used for keeping track of each page
49  *      written to a swap partition.  It consists of many swap_map_page
50  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *      These structures are stored on the swap and linked together with the
52  *      help of the .next_swap member.
53  *
54  *      The swap map is created during suspend.  The swap map pages are
55  *      allocated and populated one at a time, so we only need one memory
56  *      page to set up the entire structure.
57  *
58  *      During resume we pick up all swap_map_page structures into a list.
59  */
60
61 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68         return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77         return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81         sector_t entries[MAP_PAGE_ENTRIES];
82         sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86         struct swap_map_page *map;
87         struct swap_map_page_list *next;
88 };
89
90 /**
91  *      The swap_map_handle structure is used for handling swap in
92  *      a file-alike way
93  */
94
95 struct swap_map_handle {
96         struct swap_map_page *cur;
97         struct swap_map_page_list *maps;
98         sector_t cur_swap;
99         sector_t first_sector;
100         unsigned int k;
101         unsigned long reqd_free_pages;
102         u32 crc32;
103 };
104
105 struct swsusp_header {
106         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107                       sizeof(u32)];
108         u32     crc32;
109         sector_t image;
110         unsigned int flags;     /* Flags to pass to the "boot" kernel */
111         char    orig_sig[10];
112         char    sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118  *      The following functions are used for tracing the allocated
119  *      swap pages, so that they can be freed in case of an error.
120  */
121
122 struct swsusp_extent {
123         struct rb_node node;
124         unsigned long start;
125         unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132         struct rb_node **new = &(swsusp_extents.rb_node);
133         struct rb_node *parent = NULL;
134         struct swsusp_extent *ext;
135
136         /* Figure out where to put the new node */
137         while (*new) {
138                 ext = rb_entry(*new, struct swsusp_extent, node);
139                 parent = *new;
140                 if (swap_offset < ext->start) {
141                         /* Try to merge */
142                         if (swap_offset == ext->start - 1) {
143                                 ext->start--;
144                                 return 0;
145                         }
146                         new = &((*new)->rb_left);
147                 } else if (swap_offset > ext->end) {
148                         /* Try to merge */
149                         if (swap_offset == ext->end + 1) {
150                                 ext->end++;
151                                 return 0;
152                         }
153                         new = &((*new)->rb_right);
154                 } else {
155                         /* It already is in the tree */
156                         return -EINVAL;
157                 }
158         }
159         /* Add the new node and rebalance the tree. */
160         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161         if (!ext)
162                 return -ENOMEM;
163
164         ext->start = swap_offset;
165         ext->end = swap_offset;
166         rb_link_node(&ext->node, parent, new);
167         rb_insert_color(&ext->node, &swsusp_extents);
168         return 0;
169 }
170
171 /**
172  *      alloc_swapdev_block - allocate a swap page and register that it has
173  *      been allocated, so that it can be freed in case of an error.
174  */
175
176 sector_t alloc_swapdev_block(int swap)
177 {
178         unsigned long offset;
179
180         offset = swp_offset(get_swap_page_of_type(swap));
181         if (offset) {
182                 if (swsusp_extents_insert(offset))
183                         swap_free(swp_entry(swap, offset));
184                 else
185                         return swapdev_block(swap, offset);
186         }
187         return 0;
188 }
189
190 /**
191  *      free_all_swap_pages - free swap pages allocated for saving image data.
192  *      It also frees the extents used to register which swap entries had been
193  *      allocated.
194  */
195
196 void free_all_swap_pages(int swap)
197 {
198         struct rb_node *node;
199
200         while ((node = swsusp_extents.rb_node)) {
201                 struct swsusp_extent *ext;
202                 unsigned long offset;
203
204                 ext = rb_entry(node, struct swsusp_extent, node);
205                 rb_erase(node, &swsusp_extents);
206                 for (offset = ext->start; offset <= ext->end; offset++)
207                         swap_free(swp_entry(swap, offset));
208
209                 kfree(ext);
210         }
211 }
212
213 int swsusp_swap_in_use(void)
214 {
215         return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219  * General things
220  */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226         atomic_t                count;
227         wait_queue_head_t       wait;
228         blk_status_t            error;
229 };
230
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233         atomic_set(&hb->count, 0);
234         init_waitqueue_head(&hb->wait);
235         hb->error = BLK_STS_OK;
236 }
237
238 static void hib_end_io(struct bio *bio)
239 {
240         struct hib_bio_batch *hb = bio->bi_private;
241         struct page *page = bio_first_page_all(bio);
242
243         if (bio->bi_status) {
244                 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
245                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
246                          (unsigned long long)bio->bi_iter.bi_sector);
247         }
248
249         if (bio_data_dir(bio) == WRITE)
250                 put_page(page);
251         else if (clean_pages_on_read)
252                 flush_icache_range((unsigned long)page_address(page),
253                                    (unsigned long)page_address(page) + PAGE_SIZE);
254
255         if (bio->bi_status && !hb->error)
256                 hb->error = bio->bi_status;
257         if (atomic_dec_and_test(&hb->count))
258                 wake_up(&hb->wait);
259
260         bio_put(bio);
261 }
262
263 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
264                 struct hib_bio_batch *hb)
265 {
266         struct page *page = virt_to_page(addr);
267         struct bio *bio;
268         int error = 0;
269
270         bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
271         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
272         bio_set_dev(bio, hib_resume_bdev);
273         bio_set_op_attrs(bio, op, op_flags);
274
275         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
276                 pr_err("Adding page to bio failed at %llu\n",
277                        (unsigned long long)bio->bi_iter.bi_sector);
278                 bio_put(bio);
279                 return -EFAULT;
280         }
281
282         if (hb) {
283                 bio->bi_end_io = hib_end_io;
284                 bio->bi_private = hb;
285                 atomic_inc(&hb->count);
286                 submit_bio(bio);
287         } else {
288                 error = submit_bio_wait(bio);
289                 bio_put(bio);
290         }
291
292         return error;
293 }
294
295 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
296 {
297         wait_event(hb->wait, atomic_read(&hb->count) == 0);
298         return blk_status_to_errno(hb->error);
299 }
300
301 /*
302  * Saving part
303  */
304
305 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
306 {
307         int error;
308
309         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
310                       swsusp_header, NULL);
311         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315                 swsusp_header->image = handle->first_sector;
316                 swsusp_header->flags = flags;
317                 if (flags & SF_CRC32_MODE)
318                         swsusp_header->crc32 = handle->crc32;
319                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
320                                       swsusp_resume_block, swsusp_header, NULL);
321         } else {
322                 pr_err("Swap header not found!\n");
323                 error = -ENODEV;
324         }
325         return error;
326 }
327
328 /**
329  *      swsusp_swap_check - check if the resume device is a swap device
330  *      and get its index (if so)
331  *
332  *      This is called before saving image
333  */
334 static int swsusp_swap_check(void)
335 {
336         int res;
337
338         if (swsusp_resume_device)
339                 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
340         else
341                 res = find_first_swap(&swsusp_resume_device);
342         if (res < 0)
343                 return res;
344         root_swap = res;
345
346         hib_resume_bdev = bdget(swsusp_resume_device);
347         if (!hib_resume_bdev)
348                 return -ENOMEM;
349         res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
350         if (res)
351                 return res;
352
353         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
354         if (res < 0)
355                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
356
357         return res;
358 }
359
360 /**
361  *      write_page - Write one page to given swap location.
362  *      @buf:           Address we're writing.
363  *      @offset:        Offset of the swap page we're writing to.
364  *      @hb:            bio completion batch
365  */
366
367 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
368 {
369         void *src;
370         int ret;
371
372         if (!offset)
373                 return -ENOSPC;
374
375         if (hb) {
376                 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
377                                               __GFP_NORETRY);
378                 if (src) {
379                         copy_page(src, buf);
380                 } else {
381                         ret = hib_wait_io(hb); /* Free pages */
382                         if (ret)
383                                 return ret;
384                         src = (void *)__get_free_page(GFP_NOIO |
385                                                       __GFP_NOWARN |
386                                                       __GFP_NORETRY);
387                         if (src) {
388                                 copy_page(src, buf);
389                         } else {
390                                 WARN_ON_ONCE(1);
391                                 hb = NULL;      /* Go synchronous */
392                                 src = buf;
393                         }
394                 }
395         } else {
396                 src = buf;
397         }
398         return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
399 }
400
401 static void release_swap_writer(struct swap_map_handle *handle)
402 {
403         if (handle->cur)
404                 free_page((unsigned long)handle->cur);
405         handle->cur = NULL;
406 }
407
408 static int get_swap_writer(struct swap_map_handle *handle)
409 {
410         int ret;
411
412         ret = swsusp_swap_check();
413         if (ret) {
414                 if (ret != -ENOSPC)
415                         pr_err("Cannot find swap device, try swapon -a\n");
416                 return ret;
417         }
418         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
419         if (!handle->cur) {
420                 ret = -ENOMEM;
421                 goto err_close;
422         }
423         handle->cur_swap = alloc_swapdev_block(root_swap);
424         if (!handle->cur_swap) {
425                 ret = -ENOSPC;
426                 goto err_rel;
427         }
428         handle->k = 0;
429         handle->reqd_free_pages = reqd_free_pages();
430         handle->first_sector = handle->cur_swap;
431         return 0;
432 err_rel:
433         release_swap_writer(handle);
434 err_close:
435         swsusp_close(FMODE_WRITE);
436         return ret;
437 }
438
439 static int swap_write_page(struct swap_map_handle *handle, void *buf,
440                 struct hib_bio_batch *hb)
441 {
442         int error = 0;
443         sector_t offset;
444
445         if (!handle->cur)
446                 return -EINVAL;
447         offset = alloc_swapdev_block(root_swap);
448         error = write_page(buf, offset, hb);
449         if (error)
450                 return error;
451         handle->cur->entries[handle->k++] = offset;
452         if (handle->k >= MAP_PAGE_ENTRIES) {
453                 offset = alloc_swapdev_block(root_swap);
454                 if (!offset)
455                         return -ENOSPC;
456                 handle->cur->next_swap = offset;
457                 error = write_page(handle->cur, handle->cur_swap, hb);
458                 if (error)
459                         goto out;
460                 clear_page(handle->cur);
461                 handle->cur_swap = offset;
462                 handle->k = 0;
463
464                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
465                         error = hib_wait_io(hb);
466                         if (error)
467                                 goto out;
468                         /*
469                          * Recalculate the number of required free pages, to
470                          * make sure we never take more than half.
471                          */
472                         handle->reqd_free_pages = reqd_free_pages();
473                 }
474         }
475  out:
476         return error;
477 }
478
479 static int flush_swap_writer(struct swap_map_handle *handle)
480 {
481         if (handle->cur && handle->cur_swap)
482                 return write_page(handle->cur, handle->cur_swap, NULL);
483         else
484                 return -EINVAL;
485 }
486
487 static int swap_writer_finish(struct swap_map_handle *handle,
488                 unsigned int flags, int error)
489 {
490         if (!error) {
491                 flush_swap_writer(handle);
492                 pr_info("S");
493                 error = mark_swapfiles(handle, flags);
494                 pr_cont("|\n");
495         }
496
497         if (error)
498                 free_all_swap_pages(root_swap);
499         release_swap_writer(handle);
500         swsusp_close(FMODE_WRITE);
501
502         return error;
503 }
504
505 /* We need to remember how much compressed data we need to read. */
506 #define LZO_HEADER      sizeof(size_t)
507
508 /* Number of pages/bytes we'll compress at one time. */
509 #define LZO_UNC_PAGES   32
510 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
511
512 /* Number of pages/bytes we need for compressed data (worst case). */
513 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
514                                      LZO_HEADER, PAGE_SIZE)
515 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
516
517 /* Maximum number of threads for compression/decompression. */
518 #define LZO_THREADS     3
519
520 /* Minimum/maximum number of pages for read buffering. */
521 #define LZO_MIN_RD_PAGES        1024
522 #define LZO_MAX_RD_PAGES        8192
523
524
525 /**
526  *      save_image - save the suspend image data
527  */
528
529 static int save_image(struct swap_map_handle *handle,
530                       struct snapshot_handle *snapshot,
531                       unsigned int nr_to_write)
532 {
533         unsigned int m;
534         int ret;
535         int nr_pages;
536         int err2;
537         struct hib_bio_batch hb;
538         ktime_t start;
539         ktime_t stop;
540
541         hib_init_batch(&hb);
542
543         pr_info("Saving image data pages (%u pages)...\n",
544                 nr_to_write);
545         m = nr_to_write / 10;
546         if (!m)
547                 m = 1;
548         nr_pages = 0;
549         start = ktime_get();
550         while (1) {
551                 ret = snapshot_read_next(snapshot);
552                 if (ret <= 0)
553                         break;
554                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
555                 if (ret)
556                         break;
557                 if (!(nr_pages % m))
558                         pr_info("Image saving progress: %3d%%\n",
559                                 nr_pages / m * 10);
560                 nr_pages++;
561         }
562         err2 = hib_wait_io(&hb);
563         stop = ktime_get();
564         if (!ret)
565                 ret = err2;
566         if (!ret)
567                 pr_info("Image saving done\n");
568         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
569         return ret;
570 }
571
572 /**
573  * Structure used for CRC32.
574  */
575 struct crc_data {
576         struct task_struct *thr;                  /* thread */
577         atomic_t ready;                           /* ready to start flag */
578         atomic_t stop;                            /* ready to stop flag */
579         unsigned run_threads;                     /* nr current threads */
580         wait_queue_head_t go;                     /* start crc update */
581         wait_queue_head_t done;                   /* crc update done */
582         u32 *crc32;                               /* points to handle's crc32 */
583         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
584         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
585 };
586
587 /**
588  * CRC32 update function that runs in its own thread.
589  */
590 static int crc32_threadfn(void *data)
591 {
592         struct crc_data *d = data;
593         unsigned i;
594
595         while (1) {
596                 wait_event(d->go, atomic_read(&d->ready) ||
597                                   kthread_should_stop());
598                 if (kthread_should_stop()) {
599                         d->thr = NULL;
600                         atomic_set(&d->stop, 1);
601                         wake_up(&d->done);
602                         break;
603                 }
604                 atomic_set(&d->ready, 0);
605
606                 for (i = 0; i < d->run_threads; i++)
607                         *d->crc32 = crc32_le(*d->crc32,
608                                              d->unc[i], *d->unc_len[i]);
609                 atomic_set(&d->stop, 1);
610                 wake_up(&d->done);
611         }
612         return 0;
613 }
614 /**
615  * Structure used for LZO data compression.
616  */
617 struct cmp_data {
618         struct task_struct *thr;                  /* thread */
619         atomic_t ready;                           /* ready to start flag */
620         atomic_t stop;                            /* ready to stop flag */
621         int ret;                                  /* return code */
622         wait_queue_head_t go;                     /* start compression */
623         wait_queue_head_t done;                   /* compression done */
624         size_t unc_len;                           /* uncompressed length */
625         size_t cmp_len;                           /* compressed length */
626         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
627         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
628         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
629 };
630
631 /**
632  * Compression function that runs in its own thread.
633  */
634 static int lzo_compress_threadfn(void *data)
635 {
636         struct cmp_data *d = data;
637
638         while (1) {
639                 wait_event(d->go, atomic_read(&d->ready) ||
640                                   kthread_should_stop());
641                 if (kthread_should_stop()) {
642                         d->thr = NULL;
643                         d->ret = -1;
644                         atomic_set(&d->stop, 1);
645                         wake_up(&d->done);
646                         break;
647                 }
648                 atomic_set(&d->ready, 0);
649
650                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
651                                           d->cmp + LZO_HEADER, &d->cmp_len,
652                                           d->wrk);
653                 atomic_set(&d->stop, 1);
654                 wake_up(&d->done);
655         }
656         return 0;
657 }
658
659 /**
660  * save_image_lzo - Save the suspend image data compressed with LZO.
661  * @handle: Swap map handle to use for saving the image.
662  * @snapshot: Image to read data from.
663  * @nr_to_write: Number of pages to save.
664  */
665 static int save_image_lzo(struct swap_map_handle *handle,
666                           struct snapshot_handle *snapshot,
667                           unsigned int nr_to_write)
668 {
669         unsigned int m;
670         int ret = 0;
671         int nr_pages;
672         int err2;
673         struct hib_bio_batch hb;
674         ktime_t start;
675         ktime_t stop;
676         size_t off;
677         unsigned thr, run_threads, nr_threads;
678         unsigned char *page = NULL;
679         struct cmp_data *data = NULL;
680         struct crc_data *crc = NULL;
681
682         hib_init_batch(&hb);
683
684         /*
685          * We'll limit the number of threads for compression to limit memory
686          * footprint.
687          */
688         nr_threads = num_online_cpus() - 1;
689         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
690
691         page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
692         if (!page) {
693                 pr_err("Failed to allocate LZO page\n");
694                 ret = -ENOMEM;
695                 goto out_clean;
696         }
697
698         data = vmalloc(array_size(nr_threads, sizeof(*data)));
699         if (!data) {
700                 pr_err("Failed to allocate LZO data\n");
701                 ret = -ENOMEM;
702                 goto out_clean;
703         }
704         for (thr = 0; thr < nr_threads; thr++)
705                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
706
707         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
708         if (!crc) {
709                 pr_err("Failed to allocate crc\n");
710                 ret = -ENOMEM;
711                 goto out_clean;
712         }
713         memset(crc, 0, offsetof(struct crc_data, go));
714
715         /*
716          * Start the compression threads.
717          */
718         for (thr = 0; thr < nr_threads; thr++) {
719                 init_waitqueue_head(&data[thr].go);
720                 init_waitqueue_head(&data[thr].done);
721
722                 data[thr].thr = kthread_run(lzo_compress_threadfn,
723                                             &data[thr],
724                                             "image_compress/%u", thr);
725                 if (IS_ERR(data[thr].thr)) {
726                         data[thr].thr = NULL;
727                         pr_err("Cannot start compression threads\n");
728                         ret = -ENOMEM;
729                         goto out_clean;
730                 }
731         }
732
733         /*
734          * Start the CRC32 thread.
735          */
736         init_waitqueue_head(&crc->go);
737         init_waitqueue_head(&crc->done);
738
739         handle->crc32 = 0;
740         crc->crc32 = &handle->crc32;
741         for (thr = 0; thr < nr_threads; thr++) {
742                 crc->unc[thr] = data[thr].unc;
743                 crc->unc_len[thr] = &data[thr].unc_len;
744         }
745
746         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
747         if (IS_ERR(crc->thr)) {
748                 crc->thr = NULL;
749                 pr_err("Cannot start CRC32 thread\n");
750                 ret = -ENOMEM;
751                 goto out_clean;
752         }
753
754         /*
755          * Adjust the number of required free pages after all allocations have
756          * been done. We don't want to run out of pages when writing.
757          */
758         handle->reqd_free_pages = reqd_free_pages();
759
760         pr_info("Using %u thread(s) for compression\n", nr_threads);
761         pr_info("Compressing and saving image data (%u pages)...\n",
762                 nr_to_write);
763         m = nr_to_write / 10;
764         if (!m)
765                 m = 1;
766         nr_pages = 0;
767         start = ktime_get();
768         for (;;) {
769                 for (thr = 0; thr < nr_threads; thr++) {
770                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
771                                 ret = snapshot_read_next(snapshot);
772                                 if (ret < 0)
773                                         goto out_finish;
774
775                                 if (!ret)
776                                         break;
777
778                                 memcpy(data[thr].unc + off,
779                                        data_of(*snapshot), PAGE_SIZE);
780
781                                 if (!(nr_pages % m))
782                                         pr_info("Image saving progress: %3d%%\n",
783                                                 nr_pages / m * 10);
784                                 nr_pages++;
785                         }
786                         if (!off)
787                                 break;
788
789                         data[thr].unc_len = off;
790
791                         atomic_set(&data[thr].ready, 1);
792                         wake_up(&data[thr].go);
793                 }
794
795                 if (!thr)
796                         break;
797
798                 crc->run_threads = thr;
799                 atomic_set(&crc->ready, 1);
800                 wake_up(&crc->go);
801
802                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
803                         wait_event(data[thr].done,
804                                    atomic_read(&data[thr].stop));
805                         atomic_set(&data[thr].stop, 0);
806
807                         ret = data[thr].ret;
808
809                         if (ret < 0) {
810                                 pr_err("LZO compression failed\n");
811                                 goto out_finish;
812                         }
813
814                         if (unlikely(!data[thr].cmp_len ||
815                                      data[thr].cmp_len >
816                                      lzo1x_worst_compress(data[thr].unc_len))) {
817                                 pr_err("Invalid LZO compressed length\n");
818                                 ret = -1;
819                                 goto out_finish;
820                         }
821
822                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
823
824                         /*
825                          * Given we are writing one page at a time to disk, we
826                          * copy that much from the buffer, although the last
827                          * bit will likely be smaller than full page. This is
828                          * OK - we saved the length of the compressed data, so
829                          * any garbage at the end will be discarded when we
830                          * read it.
831                          */
832                         for (off = 0;
833                              off < LZO_HEADER + data[thr].cmp_len;
834                              off += PAGE_SIZE) {
835                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
836
837                                 ret = swap_write_page(handle, page, &hb);
838                                 if (ret)
839                                         goto out_finish;
840                         }
841                 }
842
843                 wait_event(crc->done, atomic_read(&crc->stop));
844                 atomic_set(&crc->stop, 0);
845         }
846
847 out_finish:
848         err2 = hib_wait_io(&hb);
849         stop = ktime_get();
850         if (!ret)
851                 ret = err2;
852         if (!ret)
853                 pr_info("Image saving done\n");
854         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
855 out_clean:
856         if (crc) {
857                 if (crc->thr)
858                         kthread_stop(crc->thr);
859                 kfree(crc);
860         }
861         if (data) {
862                 for (thr = 0; thr < nr_threads; thr++)
863                         if (data[thr].thr)
864                                 kthread_stop(data[thr].thr);
865                 vfree(data);
866         }
867         if (page) free_page((unsigned long)page);
868
869         return ret;
870 }
871
872 /**
873  *      enough_swap - Make sure we have enough swap to save the image.
874  *
875  *      Returns TRUE or FALSE after checking the total amount of swap
876  *      space avaiable from the resume partition.
877  */
878
879 static int enough_swap(unsigned int nr_pages)
880 {
881         unsigned int free_swap = count_swap_pages(root_swap, 1);
882         unsigned int required;
883
884         pr_debug("Free swap pages: %u\n", free_swap);
885
886         required = PAGES_FOR_IO + nr_pages;
887         return free_swap > required;
888 }
889
890 /**
891  *      swsusp_write - Write entire image and metadata.
892  *      @flags: flags to pass to the "boot" kernel in the image header
893  *
894  *      It is important _NOT_ to umount filesystems at this point. We want
895  *      them synced (in case something goes wrong) but we DO not want to mark
896  *      filesystem clean: it is not. (And it does not matter, if we resume
897  *      correctly, we'll mark system clean, anyway.)
898  */
899
900 int swsusp_write(unsigned int flags)
901 {
902         struct swap_map_handle handle;
903         struct snapshot_handle snapshot;
904         struct swsusp_info *header;
905         unsigned long pages;
906         int error;
907
908         pages = snapshot_get_image_size();
909         error = get_swap_writer(&handle);
910         if (error) {
911                 pr_err("Cannot get swap writer\n");
912                 return error;
913         }
914         if (flags & SF_NOCOMPRESS_MODE) {
915                 if (!enough_swap(pages)) {
916                         pr_err("Not enough free swap\n");
917                         error = -ENOSPC;
918                         goto out_finish;
919                 }
920         }
921         memset(&snapshot, 0, sizeof(struct snapshot_handle));
922         error = snapshot_read_next(&snapshot);
923         if (error < (int)PAGE_SIZE) {
924                 if (error >= 0)
925                         error = -EFAULT;
926
927                 goto out_finish;
928         }
929         header = (struct swsusp_info *)data_of(snapshot);
930         error = swap_write_page(&handle, header, NULL);
931         if (!error) {
932                 error = (flags & SF_NOCOMPRESS_MODE) ?
933                         save_image(&handle, &snapshot, pages - 1) :
934                         save_image_lzo(&handle, &snapshot, pages - 1);
935         }
936 out_finish:
937         error = swap_writer_finish(&handle, flags, error);
938         return error;
939 }
940
941 /**
942  *      The following functions allow us to read data using a swap map
943  *      in a file-alike way
944  */
945
946 static void release_swap_reader(struct swap_map_handle *handle)
947 {
948         struct swap_map_page_list *tmp;
949
950         while (handle->maps) {
951                 if (handle->maps->map)
952                         free_page((unsigned long)handle->maps->map);
953                 tmp = handle->maps;
954                 handle->maps = handle->maps->next;
955                 kfree(tmp);
956         }
957         handle->cur = NULL;
958 }
959
960 static int get_swap_reader(struct swap_map_handle *handle,
961                 unsigned int *flags_p)
962 {
963         int error;
964         struct swap_map_page_list *tmp, *last;
965         sector_t offset;
966
967         *flags_p = swsusp_header->flags;
968
969         if (!swsusp_header->image) /* how can this happen? */
970                 return -EINVAL;
971
972         handle->cur = NULL;
973         last = handle->maps = NULL;
974         offset = swsusp_header->image;
975         while (offset) {
976                 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
977                 if (!tmp) {
978                         release_swap_reader(handle);
979                         return -ENOMEM;
980                 }
981                 if (!handle->maps)
982                         handle->maps = tmp;
983                 if (last)
984                         last->next = tmp;
985                 last = tmp;
986
987                 tmp->map = (struct swap_map_page *)
988                            __get_free_page(GFP_NOIO | __GFP_HIGH);
989                 if (!tmp->map) {
990                         release_swap_reader(handle);
991                         return -ENOMEM;
992                 }
993
994                 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
995                 if (error) {
996                         release_swap_reader(handle);
997                         return error;
998                 }
999                 offset = tmp->map->next_swap;
1000         }
1001         handle->k = 0;
1002         handle->cur = handle->maps->map;
1003         return 0;
1004 }
1005
1006 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1007                 struct hib_bio_batch *hb)
1008 {
1009         sector_t offset;
1010         int error;
1011         struct swap_map_page_list *tmp;
1012
1013         if (!handle->cur)
1014                 return -EINVAL;
1015         offset = handle->cur->entries[handle->k];
1016         if (!offset)
1017                 return -EFAULT;
1018         error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1019         if (error)
1020                 return error;
1021         if (++handle->k >= MAP_PAGE_ENTRIES) {
1022                 handle->k = 0;
1023                 free_page((unsigned long)handle->maps->map);
1024                 tmp = handle->maps;
1025                 handle->maps = handle->maps->next;
1026                 kfree(tmp);
1027                 if (!handle->maps)
1028                         release_swap_reader(handle);
1029                 else
1030                         handle->cur = handle->maps->map;
1031         }
1032         return error;
1033 }
1034
1035 static int swap_reader_finish(struct swap_map_handle *handle)
1036 {
1037         release_swap_reader(handle);
1038
1039         return 0;
1040 }
1041
1042 /**
1043  *      load_image - load the image using the swap map handle
1044  *      @handle and the snapshot handle @snapshot
1045  *      (assume there are @nr_pages pages to load)
1046  */
1047
1048 static int load_image(struct swap_map_handle *handle,
1049                       struct snapshot_handle *snapshot,
1050                       unsigned int nr_to_read)
1051 {
1052         unsigned int m;
1053         int ret = 0;
1054         ktime_t start;
1055         ktime_t stop;
1056         struct hib_bio_batch hb;
1057         int err2;
1058         unsigned nr_pages;
1059
1060         hib_init_batch(&hb);
1061
1062         clean_pages_on_read = true;
1063         pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1064         m = nr_to_read / 10;
1065         if (!m)
1066                 m = 1;
1067         nr_pages = 0;
1068         start = ktime_get();
1069         for ( ; ; ) {
1070                 ret = snapshot_write_next(snapshot);
1071                 if (ret <= 0)
1072                         break;
1073                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1074                 if (ret)
1075                         break;
1076                 if (snapshot->sync_read)
1077                         ret = hib_wait_io(&hb);
1078                 if (ret)
1079                         break;
1080                 if (!(nr_pages % m))
1081                         pr_info("Image loading progress: %3d%%\n",
1082                                 nr_pages / m * 10);
1083                 nr_pages++;
1084         }
1085         err2 = hib_wait_io(&hb);
1086         stop = ktime_get();
1087         if (!ret)
1088                 ret = err2;
1089         if (!ret) {
1090                 pr_info("Image loading done\n");
1091                 snapshot_write_finalize(snapshot);
1092                 if (!snapshot_image_loaded(snapshot))
1093                         ret = -ENODATA;
1094         }
1095         swsusp_show_speed(start, stop, nr_to_read, "Read");
1096         return ret;
1097 }
1098
1099 /**
1100  * Structure used for LZO data decompression.
1101  */
1102 struct dec_data {
1103         struct task_struct *thr;                  /* thread */
1104         atomic_t ready;                           /* ready to start flag */
1105         atomic_t stop;                            /* ready to stop flag */
1106         int ret;                                  /* return code */
1107         wait_queue_head_t go;                     /* start decompression */
1108         wait_queue_head_t done;                   /* decompression done */
1109         size_t unc_len;                           /* uncompressed length */
1110         size_t cmp_len;                           /* compressed length */
1111         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1112         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1113 };
1114
1115 /**
1116  * Deompression function that runs in its own thread.
1117  */
1118 static int lzo_decompress_threadfn(void *data)
1119 {
1120         struct dec_data *d = data;
1121
1122         while (1) {
1123                 wait_event(d->go, atomic_read(&d->ready) ||
1124                                   kthread_should_stop());
1125                 if (kthread_should_stop()) {
1126                         d->thr = NULL;
1127                         d->ret = -1;
1128                         atomic_set(&d->stop, 1);
1129                         wake_up(&d->done);
1130                         break;
1131                 }
1132                 atomic_set(&d->ready, 0);
1133
1134                 d->unc_len = LZO_UNC_SIZE;
1135                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1136                                                d->unc, &d->unc_len);
1137                 if (clean_pages_on_decompress)
1138                         flush_icache_range((unsigned long)d->unc,
1139                                            (unsigned long)d->unc + d->unc_len);
1140
1141                 atomic_set(&d->stop, 1);
1142                 wake_up(&d->done);
1143         }
1144         return 0;
1145 }
1146
1147 /**
1148  * load_image_lzo - Load compressed image data and decompress them with LZO.
1149  * @handle: Swap map handle to use for loading data.
1150  * @snapshot: Image to copy uncompressed data into.
1151  * @nr_to_read: Number of pages to load.
1152  */
1153 static int load_image_lzo(struct swap_map_handle *handle,
1154                           struct snapshot_handle *snapshot,
1155                           unsigned int nr_to_read)
1156 {
1157         unsigned int m;
1158         int ret = 0;
1159         int eof = 0;
1160         struct hib_bio_batch hb;
1161         ktime_t start;
1162         ktime_t stop;
1163         unsigned nr_pages;
1164         size_t off;
1165         unsigned i, thr, run_threads, nr_threads;
1166         unsigned ring = 0, pg = 0, ring_size = 0,
1167                  have = 0, want, need, asked = 0;
1168         unsigned long read_pages = 0;
1169         unsigned char **page = NULL;
1170         struct dec_data *data = NULL;
1171         struct crc_data *crc = NULL;
1172
1173         hib_init_batch(&hb);
1174
1175         /*
1176          * We'll limit the number of threads for decompression to limit memory
1177          * footprint.
1178          */
1179         nr_threads = num_online_cpus() - 1;
1180         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1181
1182         page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1183         if (!page) {
1184                 pr_err("Failed to allocate LZO page\n");
1185                 ret = -ENOMEM;
1186                 goto out_clean;
1187         }
1188
1189         data = vmalloc(array_size(nr_threads, sizeof(*data)));
1190         if (!data) {
1191                 pr_err("Failed to allocate LZO data\n");
1192                 ret = -ENOMEM;
1193                 goto out_clean;
1194         }
1195         for (thr = 0; thr < nr_threads; thr++)
1196                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1197
1198         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1199         if (!crc) {
1200                 pr_err("Failed to allocate crc\n");
1201                 ret = -ENOMEM;
1202                 goto out_clean;
1203         }
1204         memset(crc, 0, offsetof(struct crc_data, go));
1205
1206         clean_pages_on_decompress = true;
1207
1208         /*
1209          * Start the decompression threads.
1210          */
1211         for (thr = 0; thr < nr_threads; thr++) {
1212                 init_waitqueue_head(&data[thr].go);
1213                 init_waitqueue_head(&data[thr].done);
1214
1215                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1216                                             &data[thr],
1217                                             "image_decompress/%u", thr);
1218                 if (IS_ERR(data[thr].thr)) {
1219                         data[thr].thr = NULL;
1220                         pr_err("Cannot start decompression threads\n");
1221                         ret = -ENOMEM;
1222                         goto out_clean;
1223                 }
1224         }
1225
1226         /*
1227          * Start the CRC32 thread.
1228          */
1229         init_waitqueue_head(&crc->go);
1230         init_waitqueue_head(&crc->done);
1231
1232         handle->crc32 = 0;
1233         crc->crc32 = &handle->crc32;
1234         for (thr = 0; thr < nr_threads; thr++) {
1235                 crc->unc[thr] = data[thr].unc;
1236                 crc->unc_len[thr] = &data[thr].unc_len;
1237         }
1238
1239         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1240         if (IS_ERR(crc->thr)) {
1241                 crc->thr = NULL;
1242                 pr_err("Cannot start CRC32 thread\n");
1243                 ret = -ENOMEM;
1244                 goto out_clean;
1245         }
1246
1247         /*
1248          * Set the number of pages for read buffering.
1249          * This is complete guesswork, because we'll only know the real
1250          * picture once prepare_image() is called, which is much later on
1251          * during the image load phase. We'll assume the worst case and
1252          * say that none of the image pages are from high memory.
1253          */
1254         if (low_free_pages() > snapshot_get_image_size())
1255                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1256         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1257
1258         for (i = 0; i < read_pages; i++) {
1259                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1260                                                   GFP_NOIO | __GFP_HIGH :
1261                                                   GFP_NOIO | __GFP_NOWARN |
1262                                                   __GFP_NORETRY);
1263
1264                 if (!page[i]) {
1265                         if (i < LZO_CMP_PAGES) {
1266                                 ring_size = i;
1267                                 pr_err("Failed to allocate LZO pages\n");
1268                                 ret = -ENOMEM;
1269                                 goto out_clean;
1270                         } else {
1271                                 break;
1272                         }
1273                 }
1274         }
1275         want = ring_size = i;
1276
1277         pr_info("Using %u thread(s) for decompression\n", nr_threads);
1278         pr_info("Loading and decompressing image data (%u pages)...\n",
1279                 nr_to_read);
1280         m = nr_to_read / 10;
1281         if (!m)
1282                 m = 1;
1283         nr_pages = 0;
1284         start = ktime_get();
1285
1286         ret = snapshot_write_next(snapshot);
1287         if (ret <= 0)
1288                 goto out_finish;
1289
1290         for(;;) {
1291                 for (i = 0; !eof && i < want; i++) {
1292                         ret = swap_read_page(handle, page[ring], &hb);
1293                         if (ret) {
1294                                 /*
1295                                  * On real read error, finish. On end of data,
1296                                  * set EOF flag and just exit the read loop.
1297                                  */
1298                                 if (handle->cur &&
1299                                     handle->cur->entries[handle->k]) {
1300                                         goto out_finish;
1301                                 } else {
1302                                         eof = 1;
1303                                         break;
1304                                 }
1305                         }
1306                         if (++ring >= ring_size)
1307                                 ring = 0;
1308                 }
1309                 asked += i;
1310                 want -= i;
1311
1312                 /*
1313                  * We are out of data, wait for some more.
1314                  */
1315                 if (!have) {
1316                         if (!asked)
1317                                 break;
1318
1319                         ret = hib_wait_io(&hb);
1320                         if (ret)
1321                                 goto out_finish;
1322                         have += asked;
1323                         asked = 0;
1324                         if (eof)
1325                                 eof = 2;
1326                 }
1327
1328                 if (crc->run_threads) {
1329                         wait_event(crc->done, atomic_read(&crc->stop));
1330                         atomic_set(&crc->stop, 0);
1331                         crc->run_threads = 0;
1332                 }
1333
1334                 for (thr = 0; have && thr < nr_threads; thr++) {
1335                         data[thr].cmp_len = *(size_t *)page[pg];
1336                         if (unlikely(!data[thr].cmp_len ||
1337                                      data[thr].cmp_len >
1338                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1339                                 pr_err("Invalid LZO compressed length\n");
1340                                 ret = -1;
1341                                 goto out_finish;
1342                         }
1343
1344                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1345                                             PAGE_SIZE);
1346                         if (need > have) {
1347                                 if (eof > 1) {
1348                                         ret = -1;
1349                                         goto out_finish;
1350                                 }
1351                                 break;
1352                         }
1353
1354                         for (off = 0;
1355                              off < LZO_HEADER + data[thr].cmp_len;
1356                              off += PAGE_SIZE) {
1357                                 memcpy(data[thr].cmp + off,
1358                                        page[pg], PAGE_SIZE);
1359                                 have--;
1360                                 want++;
1361                                 if (++pg >= ring_size)
1362                                         pg = 0;
1363                         }
1364
1365                         atomic_set(&data[thr].ready, 1);
1366                         wake_up(&data[thr].go);
1367                 }
1368
1369                 /*
1370                  * Wait for more data while we are decompressing.
1371                  */
1372                 if (have < LZO_CMP_PAGES && asked) {
1373                         ret = hib_wait_io(&hb);
1374                         if (ret)
1375                                 goto out_finish;
1376                         have += asked;
1377                         asked = 0;
1378                         if (eof)
1379                                 eof = 2;
1380                 }
1381
1382                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1383                         wait_event(data[thr].done,
1384                                    atomic_read(&data[thr].stop));
1385                         atomic_set(&data[thr].stop, 0);
1386
1387                         ret = data[thr].ret;
1388
1389                         if (ret < 0) {
1390                                 pr_err("LZO decompression failed\n");
1391                                 goto out_finish;
1392                         }
1393
1394                         if (unlikely(!data[thr].unc_len ||
1395                                      data[thr].unc_len > LZO_UNC_SIZE ||
1396                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1397                                 pr_err("Invalid LZO uncompressed length\n");
1398                                 ret = -1;
1399                                 goto out_finish;
1400                         }
1401
1402                         for (off = 0;
1403                              off < data[thr].unc_len; off += PAGE_SIZE) {
1404                                 memcpy(data_of(*snapshot),
1405                                        data[thr].unc + off, PAGE_SIZE);
1406
1407                                 if (!(nr_pages % m))
1408                                         pr_info("Image loading progress: %3d%%\n",
1409                                                 nr_pages / m * 10);
1410                                 nr_pages++;
1411
1412                                 ret = snapshot_write_next(snapshot);
1413                                 if (ret <= 0) {
1414                                         crc->run_threads = thr + 1;
1415                                         atomic_set(&crc->ready, 1);
1416                                         wake_up(&crc->go);
1417                                         goto out_finish;
1418                                 }
1419                         }
1420                 }
1421
1422                 crc->run_threads = thr;
1423                 atomic_set(&crc->ready, 1);
1424                 wake_up(&crc->go);
1425         }
1426
1427 out_finish:
1428         if (crc->run_threads) {
1429                 wait_event(crc->done, atomic_read(&crc->stop));
1430                 atomic_set(&crc->stop, 0);
1431         }
1432         stop = ktime_get();
1433         if (!ret) {
1434                 pr_info("Image loading done\n");
1435                 snapshot_write_finalize(snapshot);
1436                 if (!snapshot_image_loaded(snapshot))
1437                         ret = -ENODATA;
1438                 if (!ret) {
1439                         if (swsusp_header->flags & SF_CRC32_MODE) {
1440                                 if(handle->crc32 != swsusp_header->crc32) {
1441                                         pr_err("Invalid image CRC32!\n");
1442                                         ret = -ENODATA;
1443                                 }
1444                         }
1445                 }
1446         }
1447         swsusp_show_speed(start, stop, nr_to_read, "Read");
1448 out_clean:
1449         for (i = 0; i < ring_size; i++)
1450                 free_page((unsigned long)page[i]);
1451         if (crc) {
1452                 if (crc->thr)
1453                         kthread_stop(crc->thr);
1454                 kfree(crc);
1455         }
1456         if (data) {
1457                 for (thr = 0; thr < nr_threads; thr++)
1458                         if (data[thr].thr)
1459                                 kthread_stop(data[thr].thr);
1460                 vfree(data);
1461         }
1462         vfree(page);
1463
1464         return ret;
1465 }
1466
1467 /**
1468  *      swsusp_read - read the hibernation image.
1469  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1470  *                be written into this memory location
1471  */
1472
1473 int swsusp_read(unsigned int *flags_p)
1474 {
1475         int error;
1476         struct swap_map_handle handle;
1477         struct snapshot_handle snapshot;
1478         struct swsusp_info *header;
1479
1480         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1481         error = snapshot_write_next(&snapshot);
1482         if (error < (int)PAGE_SIZE)
1483                 return error < 0 ? error : -EFAULT;
1484         header = (struct swsusp_info *)data_of(snapshot);
1485         error = get_swap_reader(&handle, flags_p);
1486         if (error)
1487                 goto end;
1488         if (!error)
1489                 error = swap_read_page(&handle, header, NULL);
1490         if (!error) {
1491                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1492                         load_image(&handle, &snapshot, header->pages - 1) :
1493                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1494         }
1495         swap_reader_finish(&handle);
1496 end:
1497         if (!error)
1498                 pr_debug("Image successfully loaded\n");
1499         else
1500                 pr_debug("Error %d resuming\n", error);
1501         return error;
1502 }
1503
1504 /**
1505  *      swsusp_check - Check for swsusp signature in the resume device
1506  */
1507
1508 int swsusp_check(void)
1509 {
1510         int error;
1511
1512         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1513                                             FMODE_READ, NULL);
1514         if (!IS_ERR(hib_resume_bdev)) {
1515                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1516                 clear_page(swsusp_header);
1517                 error = hib_submit_io(REQ_OP_READ, 0,
1518                                         swsusp_resume_block,
1519                                         swsusp_header, NULL);
1520                 if (error)
1521                         goto put;
1522
1523                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1524                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1525                         /* Reset swap signature now */
1526                         error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1527                                                 swsusp_resume_block,
1528                                                 swsusp_header, NULL);
1529                 } else {
1530                         error = -EINVAL;
1531                 }
1532
1533 put:
1534                 if (error)
1535                         blkdev_put(hib_resume_bdev, FMODE_READ);
1536                 else
1537                         pr_debug("Image signature found, resuming\n");
1538         } else {
1539                 error = PTR_ERR(hib_resume_bdev);
1540         }
1541
1542         if (error)
1543                 pr_debug("Image not found (code %d)\n", error);
1544
1545         return error;
1546 }
1547
1548 /**
1549  *      swsusp_close - close swap device.
1550  */
1551
1552 void swsusp_close(fmode_t mode)
1553 {
1554         if (IS_ERR(hib_resume_bdev)) {
1555                 pr_debug("Image device not initialised\n");
1556                 return;
1557         }
1558
1559         blkdev_put(hib_resume_bdev, mode);
1560 }
1561
1562 /**
1563  *      swsusp_unmark - Unmark swsusp signature in the resume device
1564  */
1565
1566 #ifdef CONFIG_SUSPEND
1567 int swsusp_unmark(void)
1568 {
1569         int error;
1570
1571         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1572                       swsusp_header, NULL);
1573         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1574                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1575                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1576                                         swsusp_resume_block,
1577                                         swsusp_header, NULL);
1578         } else {
1579                 pr_err("Cannot find swsusp signature!\n");
1580                 error = -ENODEV;
1581         }
1582
1583         /*
1584          * We just returned from suspend, we don't need the image any more.
1585          */
1586         free_all_swap_pages(root_swap);
1587
1588         return error;
1589 }
1590 #endif
1591
1592 static int __init swsusp_header_init(void)
1593 {
1594         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1595         if (!swsusp_header)
1596                 panic("Could not allocate memory for swsusp_header\n");
1597         return 0;
1598 }
1599
1600 core_initcall(swsusp_header_init);