clocksource: Skip watchdog check for large watchdog intervals
[platform/kernel/linux-starfive.git] / kernel / power / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/power/process.c - Functions for starting/stopping processes on
4  *                           suspend transitions.
5  *
6  * Originally from swsusp.
7  */
8
9 #include <linux/interrupt.h>
10 #include <linux/oom.h>
11 #include <linux/suspend.h>
12 #include <linux/module.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/syscalls.h>
16 #include <linux/freezer.h>
17 #include <linux/delay.h>
18 #include <linux/workqueue.h>
19 #include <linux/kmod.h>
20 #include <trace/events/power.h>
21 #include <linux/cpuset.h>
22
23 /*
24  * Timeout for stopping processes
25  */
26 unsigned int __read_mostly freeze_timeout_msecs = 20 * MSEC_PER_SEC;
27
28 static int try_to_freeze_tasks(bool user_only)
29 {
30         const char *what = user_only ? "user space processes" :
31                                         "remaining freezable tasks";
32         struct task_struct *g, *p;
33         unsigned long end_time;
34         unsigned int todo;
35         bool wq_busy = false;
36         ktime_t start, end, elapsed;
37         unsigned int elapsed_msecs;
38         bool wakeup = false;
39         int sleep_usecs = USEC_PER_MSEC;
40
41         pr_info("Freezing %s\n", what);
42
43         start = ktime_get_boottime();
44
45         end_time = jiffies + msecs_to_jiffies(freeze_timeout_msecs);
46
47         if (!user_only)
48                 freeze_workqueues_begin();
49
50         while (true) {
51                 todo = 0;
52                 read_lock(&tasklist_lock);
53                 for_each_process_thread(g, p) {
54                         if (p == current || !freeze_task(p))
55                                 continue;
56
57                         todo++;
58                 }
59                 read_unlock(&tasklist_lock);
60
61                 if (!user_only) {
62                         wq_busy = freeze_workqueues_busy();
63                         todo += wq_busy;
64                 }
65
66                 if (!todo || time_after(jiffies, end_time))
67                         break;
68
69                 if (pm_wakeup_pending()) {
70                         wakeup = true;
71                         break;
72                 }
73
74                 /*
75                  * We need to retry, but first give the freezing tasks some
76                  * time to enter the refrigerator.  Start with an initial
77                  * 1 ms sleep followed by exponential backoff until 8 ms.
78                  */
79                 usleep_range(sleep_usecs / 2, sleep_usecs);
80                 if (sleep_usecs < 8 * USEC_PER_MSEC)
81                         sleep_usecs *= 2;
82         }
83
84         end = ktime_get_boottime();
85         elapsed = ktime_sub(end, start);
86         elapsed_msecs = ktime_to_ms(elapsed);
87
88         if (todo) {
89                 pr_err("Freezing %s %s after %d.%03d seconds "
90                        "(%d tasks refusing to freeze, wq_busy=%d):\n", what,
91                        wakeup ? "aborted" : "failed",
92                        elapsed_msecs / 1000, elapsed_msecs % 1000,
93                        todo - wq_busy, wq_busy);
94
95                 if (wq_busy)
96                         show_freezable_workqueues();
97
98                 if (!wakeup || pm_debug_messages_on) {
99                         read_lock(&tasklist_lock);
100                         for_each_process_thread(g, p) {
101                                 if (p != current && freezing(p) && !frozen(p))
102                                         sched_show_task(p);
103                         }
104                         read_unlock(&tasklist_lock);
105                 }
106         } else {
107                 pr_info("Freezing %s completed (elapsed %d.%03d seconds)\n",
108                         what, elapsed_msecs / 1000, elapsed_msecs % 1000);
109         }
110
111         return todo ? -EBUSY : 0;
112 }
113
114 /**
115  * freeze_processes - Signal user space processes to enter the refrigerator.
116  * The current thread will not be frozen.  The same process that calls
117  * freeze_processes must later call thaw_processes.
118  *
119  * On success, returns 0.  On failure, -errno and system is fully thawed.
120  */
121 int freeze_processes(void)
122 {
123         int error;
124
125         error = __usermodehelper_disable(UMH_FREEZING);
126         if (error)
127                 return error;
128
129         /* Make sure this task doesn't get frozen */
130         current->flags |= PF_SUSPEND_TASK;
131
132         if (!pm_freezing)
133                 static_branch_inc(&freezer_active);
134
135         pm_wakeup_clear(0);
136         pm_freezing = true;
137         error = try_to_freeze_tasks(true);
138         if (!error)
139                 __usermodehelper_set_disable_depth(UMH_DISABLED);
140
141         BUG_ON(in_atomic());
142
143         /*
144          * Now that the whole userspace is frozen we need to disable
145          * the OOM killer to disallow any further interference with
146          * killable tasks. There is no guarantee oom victims will
147          * ever reach a point they go away we have to wait with a timeout.
148          */
149         if (!error && !oom_killer_disable(msecs_to_jiffies(freeze_timeout_msecs)))
150                 error = -EBUSY;
151
152         if (error)
153                 thaw_processes();
154         return error;
155 }
156
157 /**
158  * freeze_kernel_threads - Make freezable kernel threads go to the refrigerator.
159  *
160  * On success, returns 0.  On failure, -errno and only the kernel threads are
161  * thawed, so as to give a chance to the caller to do additional cleanups
162  * (if any) before thawing the userspace tasks. So, it is the responsibility
163  * of the caller to thaw the userspace tasks, when the time is right.
164  */
165 int freeze_kernel_threads(void)
166 {
167         int error;
168
169         pm_nosig_freezing = true;
170         error = try_to_freeze_tasks(false);
171
172         BUG_ON(in_atomic());
173
174         if (error)
175                 thaw_kernel_threads();
176         return error;
177 }
178
179 void thaw_processes(void)
180 {
181         struct task_struct *g, *p;
182         struct task_struct *curr = current;
183
184         trace_suspend_resume(TPS("thaw_processes"), 0, true);
185         if (pm_freezing)
186                 static_branch_dec(&freezer_active);
187         pm_freezing = false;
188         pm_nosig_freezing = false;
189
190         oom_killer_enable();
191
192         pr_info("Restarting tasks ... ");
193
194         __usermodehelper_set_disable_depth(UMH_FREEZING);
195         thaw_workqueues();
196
197         cpuset_wait_for_hotplug();
198
199         read_lock(&tasklist_lock);
200         for_each_process_thread(g, p) {
201                 /* No other threads should have PF_SUSPEND_TASK set */
202                 WARN_ON((p != curr) && (p->flags & PF_SUSPEND_TASK));
203                 __thaw_task(p);
204         }
205         read_unlock(&tasklist_lock);
206
207         WARN_ON(!(curr->flags & PF_SUSPEND_TASK));
208         curr->flags &= ~PF_SUSPEND_TASK;
209
210         usermodehelper_enable();
211
212         schedule();
213         pr_cont("done.\n");
214         trace_suspend_resume(TPS("thaw_processes"), 0, false);
215 }
216
217 void thaw_kernel_threads(void)
218 {
219         struct task_struct *g, *p;
220
221         pm_nosig_freezing = false;
222         pr_info("Restarting kernel threads ... ");
223
224         thaw_workqueues();
225
226         read_lock(&tasklist_lock);
227         for_each_process_thread(g, p) {
228                 if (p->flags & PF_KTHREAD)
229                         __thaw_task(p);
230         }
231         read_unlock(&tasklist_lock);
232
233         schedule();
234         pr_cont("done.\n");
235 }