posix-timers: Remove useless clock sample on timers cleanup
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24         cputime_t cputime = secs_to_cputime(rlim_new);
25
26         spin_lock_irq(&task->sighand->siglock);
27         set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28         spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33         int error = 0;
34         struct task_struct *p;
35         const pid_t pid = CPUCLOCK_PID(which_clock);
36
37         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38                 return -EINVAL;
39
40         if (pid == 0)
41                 return 0;
42
43         rcu_read_lock();
44         p = find_task_by_vpid(pid);
45         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46                    same_thread_group(p, current) : has_group_leader_pid(p))) {
47                 error = -EINVAL;
48         }
49         rcu_read_unlock();
50
51         return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57         unsigned long long ret;
58
59         ret = 0;                /* high half always zero when .cpu used */
60         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61                 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62         } else {
63                 ret = cputime_to_expires(timespec_to_cputime(tp));
64         }
65         return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69                                unsigned long long expires,
70                                struct timespec *tp)
71 {
72         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73                 *tp = ns_to_timespec(expires);
74         else
75                 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83                            unsigned long long now)
84 {
85         int i;
86         unsigned long long delta, incr;
87
88         if (timer->it.cpu.incr == 0)
89                 return;
90
91         if (now < timer->it.cpu.expires)
92                 return;
93
94         incr = timer->it.cpu.incr;
95         delta = now + incr - timer->it.cpu.expires;
96
97         /* Don't use (incr*2 < delta), incr*2 might overflow. */
98         for (i = 0; incr < delta - incr; i++)
99                 incr = incr << 1;
100
101         for (; i >= 0; incr >>= 1, i--) {
102                 if (delta < incr)
103                         continue;
104
105                 timer->it.cpu.expires += incr;
106                 timer->it_overrun += 1 << i;
107                 delta -= incr;
108         }
109 }
110
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:    The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122                 return 1;
123         return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128         cputime_t utime, stime;
129
130         task_cputime(p, &utime, &stime);
131
132         return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136         cputime_t utime;
137
138         task_cputime(p, &utime, NULL);
139
140         return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146         int error = check_clock(which_clock);
147         if (!error) {
148                 tp->tv_sec = 0;
149                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151                         /*
152                          * If sched_clock is using a cycle counter, we
153                          * don't have any idea of its true resolution
154                          * exported, but it is much more than 1s/HZ.
155                          */
156                         tp->tv_nsec = 1;
157                 }
158         }
159         return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165         /*
166          * You can never reset a CPU clock, but we check for other errors
167          * in the call before failing with EPERM.
168          */
169         int error = check_clock(which_clock);
170         if (error == 0) {
171                 error = -EPERM;
172         }
173         return error;
174 }
175
176
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181                             unsigned long long *sample)
182 {
183         switch (CPUCLOCK_WHICH(which_clock)) {
184         default:
185                 return -EINVAL;
186         case CPUCLOCK_PROF:
187                 *sample = prof_ticks(p);
188                 break;
189         case CPUCLOCK_VIRT:
190                 *sample = virt_ticks(p);
191                 break;
192         case CPUCLOCK_SCHED:
193                 *sample = task_sched_runtime(p);
194                 break;
195         }
196         return 0;
197 }
198
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201         if (b->utime > a->utime)
202                 a->utime = b->utime;
203
204         if (b->stime > a->stime)
205                 a->stime = b->stime;
206
207         if (b->sum_exec_runtime > a->sum_exec_runtime)
208                 a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214         struct task_cputime sum;
215         unsigned long flags;
216
217         if (!cputimer->running) {
218                 /*
219                  * The POSIX timer interface allows for absolute time expiry
220                  * values through the TIMER_ABSTIME flag, therefore we have
221                  * to synchronize the timer to the clock every time we start
222                  * it.
223                  */
224                 thread_group_cputime(tsk, &sum);
225                 raw_spin_lock_irqsave(&cputimer->lock, flags);
226                 cputimer->running = 1;
227                 update_gt_cputime(&cputimer->cputime, &sum);
228         } else
229                 raw_spin_lock_irqsave(&cputimer->lock, flags);
230         *times = cputimer->cputime;
231         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233
234 /*
235  * Sample a process (thread group) clock for the given group_leader task.
236  * Must be called with tasklist_lock held for reading.
237  */
238 static int cpu_clock_sample_group(const clockid_t which_clock,
239                                   struct task_struct *p,
240                                   unsigned long long *sample)
241 {
242         struct task_cputime cputime;
243
244         switch (CPUCLOCK_WHICH(which_clock)) {
245         default:
246                 return -EINVAL;
247         case CPUCLOCK_PROF:
248                 thread_group_cputime(p, &cputime);
249                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
250                 break;
251         case CPUCLOCK_VIRT:
252                 thread_group_cputime(p, &cputime);
253                 *sample = cputime_to_expires(cputime.utime);
254                 break;
255         case CPUCLOCK_SCHED:
256                 thread_group_cputime(p, &cputime);
257                 *sample = cputime.sum_exec_runtime;
258                 break;
259         }
260         return 0;
261 }
262
263
264 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
265 {
266         const pid_t pid = CPUCLOCK_PID(which_clock);
267         int error = -EINVAL;
268         unsigned long long rtn;
269
270         if (pid == 0) {
271                 /*
272                  * Special case constant value for our own clocks.
273                  * We don't have to do any lookup to find ourselves.
274                  */
275                 if (CPUCLOCK_PERTHREAD(which_clock)) {
276                         /*
277                          * Sampling just ourselves we can do with no locking.
278                          */
279                         error = cpu_clock_sample(which_clock,
280                                                  current, &rtn);
281                 } else {
282                         read_lock(&tasklist_lock);
283                         error = cpu_clock_sample_group(which_clock,
284                                                        current, &rtn);
285                         read_unlock(&tasklist_lock);
286                 }
287         } else {
288                 /*
289                  * Find the given PID, and validate that the caller
290                  * should be able to see it.
291                  */
292                 struct task_struct *p;
293                 rcu_read_lock();
294                 p = find_task_by_vpid(pid);
295                 if (p) {
296                         if (CPUCLOCK_PERTHREAD(which_clock)) {
297                                 if (same_thread_group(p, current)) {
298                                         error = cpu_clock_sample(which_clock,
299                                                                  p, &rtn);
300                                 }
301                         } else {
302                                 read_lock(&tasklist_lock);
303                                 if (thread_group_leader(p) && p->sighand) {
304                                         error =
305                                             cpu_clock_sample_group(which_clock,
306                                                                    p, &rtn);
307                                 }
308                                 read_unlock(&tasklist_lock);
309                         }
310                 }
311                 rcu_read_unlock();
312         }
313
314         if (error)
315                 return error;
316         sample_to_timespec(which_clock, rtn, tp);
317         return 0;
318 }
319
320
321 /*
322  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
323  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
324  * new timer already all-zeros initialized.
325  */
326 static int posix_cpu_timer_create(struct k_itimer *new_timer)
327 {
328         int ret = 0;
329         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
330         struct task_struct *p;
331
332         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
333                 return -EINVAL;
334
335         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
336
337         rcu_read_lock();
338         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
339                 if (pid == 0) {
340                         p = current;
341                 } else {
342                         p = find_task_by_vpid(pid);
343                         if (p && !same_thread_group(p, current))
344                                 p = NULL;
345                 }
346         } else {
347                 if (pid == 0) {
348                         p = current->group_leader;
349                 } else {
350                         p = find_task_by_vpid(pid);
351                         if (p && !has_group_leader_pid(p))
352                                 p = NULL;
353                 }
354         }
355         new_timer->it.cpu.task = p;
356         if (p) {
357                 get_task_struct(p);
358         } else {
359                 ret = -EINVAL;
360         }
361         rcu_read_unlock();
362
363         return ret;
364 }
365
366 /*
367  * Clean up a CPU-clock timer that is about to be destroyed.
368  * This is called from timer deletion with the timer already locked.
369  * If we return TIMER_RETRY, it's necessary to release the timer's lock
370  * and try again.  (This happens when the timer is in the middle of firing.)
371  */
372 static int posix_cpu_timer_del(struct k_itimer *timer)
373 {
374         struct task_struct *p = timer->it.cpu.task;
375         int ret = 0;
376
377         WARN_ON_ONCE(p == NULL);
378
379         read_lock(&tasklist_lock);
380         if (unlikely(p->sighand == NULL)) {
381                 /*
382                  * We raced with the reaping of the task.
383                  * The deletion should have cleared us off the list.
384                  */
385                 BUG_ON(!list_empty(&timer->it.cpu.entry));
386         } else {
387                 spin_lock(&p->sighand->siglock);
388                 if (timer->it.cpu.firing)
389                         ret = TIMER_RETRY;
390                 else
391                         list_del(&timer->it.cpu.entry);
392                 spin_unlock(&p->sighand->siglock);
393         }
394         read_unlock(&tasklist_lock);
395
396         if (!ret)
397                 put_task_struct(p);
398
399         return ret;
400 }
401
402 static void cleanup_timers_list(struct list_head *head)
403 {
404         struct cpu_timer_list *timer, *next;
405
406         list_for_each_entry_safe(timer, next, head, entry)
407                 list_del_init(&timer->entry);
408 }
409
410 /*
411  * Clean out CPU timers still ticking when a thread exited.  The task
412  * pointer is cleared, and the expiry time is replaced with the residual
413  * time for later timer_gettime calls to return.
414  * This must be called with the siglock held.
415  */
416 static void cleanup_timers(struct list_head *head)
417 {
418         cleanup_timers_list(head);
419         cleanup_timers_list(++head);
420         cleanup_timers_list(++head);
421 }
422
423 /*
424  * These are both called with the siglock held, when the current thread
425  * is being reaped.  When the final (leader) thread in the group is reaped,
426  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
427  */
428 void posix_cpu_timers_exit(struct task_struct *tsk)
429 {
430         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
431                                                 sizeof(unsigned long long));
432         cleanup_timers(tsk->cpu_timers);
433
434 }
435 void posix_cpu_timers_exit_group(struct task_struct *tsk)
436 {
437         cleanup_timers(tsk->signal->cpu_timers);
438 }
439
440 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
441 {
442         return expires == 0 || expires > new_exp;
443 }
444
445 /*
446  * Insert the timer on the appropriate list before any timers that
447  * expire later.  This must be called with the tasklist_lock held
448  * for reading, interrupts disabled and p->sighand->siglock taken.
449  */
450 static void arm_timer(struct k_itimer *timer)
451 {
452         struct task_struct *p = timer->it.cpu.task;
453         struct list_head *head, *listpos;
454         struct task_cputime *cputime_expires;
455         struct cpu_timer_list *const nt = &timer->it.cpu;
456         struct cpu_timer_list *next;
457
458         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
459                 head = p->cpu_timers;
460                 cputime_expires = &p->cputime_expires;
461         } else {
462                 head = p->signal->cpu_timers;
463                 cputime_expires = &p->signal->cputime_expires;
464         }
465         head += CPUCLOCK_WHICH(timer->it_clock);
466
467         listpos = head;
468         list_for_each_entry(next, head, entry) {
469                 if (nt->expires < next->expires)
470                         break;
471                 listpos = &next->entry;
472         }
473         list_add(&nt->entry, listpos);
474
475         if (listpos == head) {
476                 unsigned long long exp = nt->expires;
477
478                 /*
479                  * We are the new earliest-expiring POSIX 1.b timer, hence
480                  * need to update expiration cache. Take into account that
481                  * for process timers we share expiration cache with itimers
482                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
483                  */
484
485                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
486                 case CPUCLOCK_PROF:
487                         if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
488                                 cputime_expires->prof_exp = expires_to_cputime(exp);
489                         break;
490                 case CPUCLOCK_VIRT:
491                         if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
492                                 cputime_expires->virt_exp = expires_to_cputime(exp);
493                         break;
494                 case CPUCLOCK_SCHED:
495                         if (cputime_expires->sched_exp == 0 ||
496                             cputime_expires->sched_exp > exp)
497                                 cputime_expires->sched_exp = exp;
498                         break;
499                 }
500         }
501 }
502
503 /*
504  * The timer is locked, fire it and arrange for its reload.
505  */
506 static void cpu_timer_fire(struct k_itimer *timer)
507 {
508         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
509                 /*
510                  * User don't want any signal.
511                  */
512                 timer->it.cpu.expires = 0;
513         } else if (unlikely(timer->sigq == NULL)) {
514                 /*
515                  * This a special case for clock_nanosleep,
516                  * not a normal timer from sys_timer_create.
517                  */
518                 wake_up_process(timer->it_process);
519                 timer->it.cpu.expires = 0;
520         } else if (timer->it.cpu.incr == 0) {
521                 /*
522                  * One-shot timer.  Clear it as soon as it's fired.
523                  */
524                 posix_timer_event(timer, 0);
525                 timer->it.cpu.expires = 0;
526         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
527                 /*
528                  * The signal did not get queued because the signal
529                  * was ignored, so we won't get any callback to
530                  * reload the timer.  But we need to keep it
531                  * ticking in case the signal is deliverable next time.
532                  */
533                 posix_cpu_timer_schedule(timer);
534         }
535 }
536
537 /*
538  * Sample a process (thread group) timer for the given group_leader task.
539  * Must be called with tasklist_lock held for reading.
540  */
541 static int cpu_timer_sample_group(const clockid_t which_clock,
542                                   struct task_struct *p,
543                                   unsigned long long *sample)
544 {
545         struct task_cputime cputime;
546
547         thread_group_cputimer(p, &cputime);
548         switch (CPUCLOCK_WHICH(which_clock)) {
549         default:
550                 return -EINVAL;
551         case CPUCLOCK_PROF:
552                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
553                 break;
554         case CPUCLOCK_VIRT:
555                 *sample = cputime_to_expires(cputime.utime);
556                 break;
557         case CPUCLOCK_SCHED:
558                 *sample = cputime.sum_exec_runtime + task_delta_exec(p);
559                 break;
560         }
561         return 0;
562 }
563
564 #ifdef CONFIG_NO_HZ_FULL
565 static void nohz_kick_work_fn(struct work_struct *work)
566 {
567         tick_nohz_full_kick_all();
568 }
569
570 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
571
572 /*
573  * We need the IPIs to be sent from sane process context.
574  * The posix cpu timers are always set with irqs disabled.
575  */
576 static void posix_cpu_timer_kick_nohz(void)
577 {
578         if (context_tracking_is_enabled())
579                 schedule_work(&nohz_kick_work);
580 }
581
582 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
583 {
584         if (!task_cputime_zero(&tsk->cputime_expires))
585                 return false;
586
587         if (tsk->signal->cputimer.running)
588                 return false;
589
590         return true;
591 }
592 #else
593 static inline void posix_cpu_timer_kick_nohz(void) { }
594 #endif
595
596 /*
597  * Guts of sys_timer_settime for CPU timers.
598  * This is called with the timer locked and interrupts disabled.
599  * If we return TIMER_RETRY, it's necessary to release the timer's lock
600  * and try again.  (This happens when the timer is in the middle of firing.)
601  */
602 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
603                                struct itimerspec *new, struct itimerspec *old)
604 {
605         struct task_struct *p = timer->it.cpu.task;
606         unsigned long long old_expires, new_expires, old_incr, val;
607         int ret;
608
609         WARN_ON_ONCE(p == NULL);
610
611         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
612
613         read_lock(&tasklist_lock);
614         /*
615          * We need the tasklist_lock to protect against reaping that
616          * clears p->sighand.  If p has just been reaped, we can no
617          * longer get any information about it at all.
618          */
619         if (unlikely(p->sighand == NULL)) {
620                 read_unlock(&tasklist_lock);
621                 return -ESRCH;
622         }
623
624         /*
625          * Disarm any old timer after extracting its expiry time.
626          */
627         BUG_ON(!irqs_disabled());
628
629         ret = 0;
630         old_incr = timer->it.cpu.incr;
631         spin_lock(&p->sighand->siglock);
632         old_expires = timer->it.cpu.expires;
633         if (unlikely(timer->it.cpu.firing)) {
634                 timer->it.cpu.firing = -1;
635                 ret = TIMER_RETRY;
636         } else
637                 list_del_init(&timer->it.cpu.entry);
638
639         /*
640          * We need to sample the current value to convert the new
641          * value from to relative and absolute, and to convert the
642          * old value from absolute to relative.  To set a process
643          * timer, we need a sample to balance the thread expiry
644          * times (in arm_timer).  With an absolute time, we must
645          * check if it's already passed.  In short, we need a sample.
646          */
647         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
648                 cpu_clock_sample(timer->it_clock, p, &val);
649         } else {
650                 cpu_timer_sample_group(timer->it_clock, p, &val);
651         }
652
653         if (old) {
654                 if (old_expires == 0) {
655                         old->it_value.tv_sec = 0;
656                         old->it_value.tv_nsec = 0;
657                 } else {
658                         /*
659                          * Update the timer in case it has
660                          * overrun already.  If it has,
661                          * we'll report it as having overrun
662                          * and with the next reloaded timer
663                          * already ticking, though we are
664                          * swallowing that pending
665                          * notification here to install the
666                          * new setting.
667                          */
668                         bump_cpu_timer(timer, val);
669                         if (val < timer->it.cpu.expires) {
670                                 old_expires = timer->it.cpu.expires - val;
671                                 sample_to_timespec(timer->it_clock,
672                                                    old_expires,
673                                                    &old->it_value);
674                         } else {
675                                 old->it_value.tv_nsec = 1;
676                                 old->it_value.tv_sec = 0;
677                         }
678                 }
679         }
680
681         if (unlikely(ret)) {
682                 /*
683                  * We are colliding with the timer actually firing.
684                  * Punt after filling in the timer's old value, and
685                  * disable this firing since we are already reporting
686                  * it as an overrun (thanks to bump_cpu_timer above).
687                  */
688                 spin_unlock(&p->sighand->siglock);
689                 read_unlock(&tasklist_lock);
690                 goto out;
691         }
692
693         if (new_expires != 0 && !(flags & TIMER_ABSTIME)) {
694                 new_expires += val;
695         }
696
697         /*
698          * Install the new expiry time (or zero).
699          * For a timer with no notification action, we don't actually
700          * arm the timer (we'll just fake it for timer_gettime).
701          */
702         timer->it.cpu.expires = new_expires;
703         if (new_expires != 0 && val < new_expires) {
704                 arm_timer(timer);
705         }
706
707         spin_unlock(&p->sighand->siglock);
708         read_unlock(&tasklist_lock);
709
710         /*
711          * Install the new reload setting, and
712          * set up the signal and overrun bookkeeping.
713          */
714         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
715                                                 &new->it_interval);
716
717         /*
718          * This acts as a modification timestamp for the timer,
719          * so any automatic reload attempt will punt on seeing
720          * that we have reset the timer manually.
721          */
722         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
723                 ~REQUEUE_PENDING;
724         timer->it_overrun_last = 0;
725         timer->it_overrun = -1;
726
727         if (new_expires != 0 && !(val < new_expires)) {
728                 /*
729                  * The designated time already passed, so we notify
730                  * immediately, even if the thread never runs to
731                  * accumulate more time on this clock.
732                  */
733                 cpu_timer_fire(timer);
734         }
735
736         ret = 0;
737  out:
738         if (old) {
739                 sample_to_timespec(timer->it_clock,
740                                    old_incr, &old->it_interval);
741         }
742         if (!ret)
743                 posix_cpu_timer_kick_nohz();
744         return ret;
745 }
746
747 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
748 {
749         unsigned long long now;
750         struct task_struct *p = timer->it.cpu.task;
751
752         WARN_ON_ONCE(p == NULL);
753
754         /*
755          * Easy part: convert the reload time.
756          */
757         sample_to_timespec(timer->it_clock,
758                            timer->it.cpu.incr, &itp->it_interval);
759
760         if (timer->it.cpu.expires == 0) {       /* Timer not armed at all.  */
761                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
762                 return;
763         }
764
765         /*
766          * Sample the clock to take the difference with the expiry time.
767          */
768         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
769                 cpu_clock_sample(timer->it_clock, p, &now);
770         } else {
771                 read_lock(&tasklist_lock);
772                 if (unlikely(p->sighand == NULL)) {
773                         /*
774                          * The process has been reaped.
775                          * We can't even collect a sample any more.
776                          * Call the timer disarmed, nothing else to do.
777                          */
778                         timer->it.cpu.expires = 0;
779                         sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
780                                            &itp->it_value);
781                         read_unlock(&tasklist_lock);
782                 } else {
783                         cpu_timer_sample_group(timer->it_clock, p, &now);
784                 }
785                 read_unlock(&tasklist_lock);
786         }
787
788         if (now < timer->it.cpu.expires) {
789                 sample_to_timespec(timer->it_clock,
790                                    timer->it.cpu.expires - now,
791                                    &itp->it_value);
792         } else {
793                 /*
794                  * The timer should have expired already, but the firing
795                  * hasn't taken place yet.  Say it's just about to expire.
796                  */
797                 itp->it_value.tv_nsec = 1;
798                 itp->it_value.tv_sec = 0;
799         }
800 }
801
802 static unsigned long long
803 check_timers_list(struct list_head *timers,
804                   struct list_head *firing,
805                   unsigned long long curr)
806 {
807         int maxfire = 20;
808
809         while (!list_empty(timers)) {
810                 struct cpu_timer_list *t;
811
812                 t = list_first_entry(timers, struct cpu_timer_list, entry);
813
814                 if (!--maxfire || curr < t->expires)
815                         return t->expires;
816
817                 t->firing = 1;
818                 list_move_tail(&t->entry, firing);
819         }
820
821         return 0;
822 }
823
824 /*
825  * Check for any per-thread CPU timers that have fired and move them off
826  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
827  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
828  */
829 static void check_thread_timers(struct task_struct *tsk,
830                                 struct list_head *firing)
831 {
832         struct list_head *timers = tsk->cpu_timers;
833         struct signal_struct *const sig = tsk->signal;
834         struct task_cputime *tsk_expires = &tsk->cputime_expires;
835         unsigned long long expires;
836         unsigned long soft;
837
838         expires = check_timers_list(timers, firing, prof_ticks(tsk));
839         tsk_expires->prof_exp = expires_to_cputime(expires);
840
841         expires = check_timers_list(++timers, firing, virt_ticks(tsk));
842         tsk_expires->virt_exp = expires_to_cputime(expires);
843
844         tsk_expires->sched_exp = check_timers_list(++timers, firing,
845                                                    tsk->se.sum_exec_runtime);
846
847         /*
848          * Check for the special case thread timers.
849          */
850         soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
851         if (soft != RLIM_INFINITY) {
852                 unsigned long hard =
853                         ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
854
855                 if (hard != RLIM_INFINITY &&
856                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
857                         /*
858                          * At the hard limit, we just die.
859                          * No need to calculate anything else now.
860                          */
861                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
862                         return;
863                 }
864                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
865                         /*
866                          * At the soft limit, send a SIGXCPU every second.
867                          */
868                         if (soft < hard) {
869                                 soft += USEC_PER_SEC;
870                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
871                         }
872                         printk(KERN_INFO
873                                 "RT Watchdog Timeout: %s[%d]\n",
874                                 tsk->comm, task_pid_nr(tsk));
875                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
876                 }
877         }
878 }
879
880 static void stop_process_timers(struct signal_struct *sig)
881 {
882         struct thread_group_cputimer *cputimer = &sig->cputimer;
883         unsigned long flags;
884
885         raw_spin_lock_irqsave(&cputimer->lock, flags);
886         cputimer->running = 0;
887         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
888 }
889
890 static u32 onecputick;
891
892 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
893                              unsigned long long *expires,
894                              unsigned long long cur_time, int signo)
895 {
896         if (!it->expires)
897                 return;
898
899         if (cur_time >= it->expires) {
900                 if (it->incr) {
901                         it->expires += it->incr;
902                         it->error += it->incr_error;
903                         if (it->error >= onecputick) {
904                                 it->expires -= cputime_one_jiffy;
905                                 it->error -= onecputick;
906                         }
907                 } else {
908                         it->expires = 0;
909                 }
910
911                 trace_itimer_expire(signo == SIGPROF ?
912                                     ITIMER_PROF : ITIMER_VIRTUAL,
913                                     tsk->signal->leader_pid, cur_time);
914                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
915         }
916
917         if (it->expires && (!*expires || it->expires < *expires)) {
918                 *expires = it->expires;
919         }
920 }
921
922 /*
923  * Check for any per-thread CPU timers that have fired and move them
924  * off the tsk->*_timers list onto the firing list.  Per-thread timers
925  * have already been taken off.
926  */
927 static void check_process_timers(struct task_struct *tsk,
928                                  struct list_head *firing)
929 {
930         struct signal_struct *const sig = tsk->signal;
931         unsigned long long utime, ptime, virt_expires, prof_expires;
932         unsigned long long sum_sched_runtime, sched_expires;
933         struct list_head *timers = sig->cpu_timers;
934         struct task_cputime cputime;
935         unsigned long soft;
936
937         /*
938          * Collect the current process totals.
939          */
940         thread_group_cputimer(tsk, &cputime);
941         utime = cputime_to_expires(cputime.utime);
942         ptime = utime + cputime_to_expires(cputime.stime);
943         sum_sched_runtime = cputime.sum_exec_runtime;
944
945         prof_expires = check_timers_list(timers, firing, ptime);
946         virt_expires = check_timers_list(++timers, firing, utime);
947         sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
948
949         /*
950          * Check for the special case process timers.
951          */
952         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
953                          SIGPROF);
954         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
955                          SIGVTALRM);
956         soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
957         if (soft != RLIM_INFINITY) {
958                 unsigned long psecs = cputime_to_secs(ptime);
959                 unsigned long hard =
960                         ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
961                 cputime_t x;
962                 if (psecs >= hard) {
963                         /*
964                          * At the hard limit, we just die.
965                          * No need to calculate anything else now.
966                          */
967                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
968                         return;
969                 }
970                 if (psecs >= soft) {
971                         /*
972                          * At the soft limit, send a SIGXCPU every second.
973                          */
974                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
975                         if (soft < hard) {
976                                 soft++;
977                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
978                         }
979                 }
980                 x = secs_to_cputime(soft);
981                 if (!prof_expires || x < prof_expires) {
982                         prof_expires = x;
983                 }
984         }
985
986         sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
987         sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
988         sig->cputime_expires.sched_exp = sched_expires;
989         if (task_cputime_zero(&sig->cputime_expires))
990                 stop_process_timers(sig);
991 }
992
993 /*
994  * This is called from the signal code (via do_schedule_next_timer)
995  * when the last timer signal was delivered and we have to reload the timer.
996  */
997 void posix_cpu_timer_schedule(struct k_itimer *timer)
998 {
999         struct task_struct *p = timer->it.cpu.task;
1000         unsigned long long now;
1001
1002         WARN_ON_ONCE(p == NULL);
1003
1004         /*
1005          * Fetch the current sample and update the timer's expiry time.
1006          */
1007         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1008                 cpu_clock_sample(timer->it_clock, p, &now);
1009                 bump_cpu_timer(timer, now);
1010                 if (unlikely(p->exit_state))
1011                         goto out;
1012
1013                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1014                 spin_lock(&p->sighand->siglock);
1015         } else {
1016                 read_lock(&tasklist_lock);
1017                 if (unlikely(p->sighand == NULL)) {
1018                         /*
1019                          * The process has been reaped.
1020                          * We can't even collect a sample any more.
1021                          */
1022                         timer->it.cpu.expires = 0;
1023                         read_unlock(&tasklist_lock);
1024                         goto out;
1025                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1026                         read_unlock(&tasklist_lock);
1027                         /* Optimizations: if the process is dying, no need to rearm */
1028                         goto out;
1029                 }
1030                 spin_lock(&p->sighand->siglock);
1031                 cpu_timer_sample_group(timer->it_clock, p, &now);
1032                 bump_cpu_timer(timer, now);
1033                 /* Leave the tasklist_lock locked for the call below.  */
1034         }
1035
1036         /*
1037          * Now re-arm for the new expiry time.
1038          */
1039         BUG_ON(!irqs_disabled());
1040         arm_timer(timer);
1041         spin_unlock(&p->sighand->siglock);
1042         read_unlock(&tasklist_lock);
1043
1044         /* Kick full dynticks CPUs in case they need to tick on the new timer */
1045         posix_cpu_timer_kick_nohz();
1046
1047 out:
1048         timer->it_overrun_last = timer->it_overrun;
1049         timer->it_overrun = -1;
1050         ++timer->it_requeue_pending;
1051 }
1052
1053 /**
1054  * task_cputime_expired - Compare two task_cputime entities.
1055  *
1056  * @sample:     The task_cputime structure to be checked for expiration.
1057  * @expires:    Expiration times, against which @sample will be checked.
1058  *
1059  * Checks @sample against @expires to see if any field of @sample has expired.
1060  * Returns true if any field of the former is greater than the corresponding
1061  * field of the latter if the latter field is set.  Otherwise returns false.
1062  */
1063 static inline int task_cputime_expired(const struct task_cputime *sample,
1064                                         const struct task_cputime *expires)
1065 {
1066         if (expires->utime && sample->utime >= expires->utime)
1067                 return 1;
1068         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1069                 return 1;
1070         if (expires->sum_exec_runtime != 0 &&
1071             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1072                 return 1;
1073         return 0;
1074 }
1075
1076 /**
1077  * fastpath_timer_check - POSIX CPU timers fast path.
1078  *
1079  * @tsk:        The task (thread) being checked.
1080  *
1081  * Check the task and thread group timers.  If both are zero (there are no
1082  * timers set) return false.  Otherwise snapshot the task and thread group
1083  * timers and compare them with the corresponding expiration times.  Return
1084  * true if a timer has expired, else return false.
1085  */
1086 static inline int fastpath_timer_check(struct task_struct *tsk)
1087 {
1088         struct signal_struct *sig;
1089         cputime_t utime, stime;
1090
1091         task_cputime(tsk, &utime, &stime);
1092
1093         if (!task_cputime_zero(&tsk->cputime_expires)) {
1094                 struct task_cputime task_sample = {
1095                         .utime = utime,
1096                         .stime = stime,
1097                         .sum_exec_runtime = tsk->se.sum_exec_runtime
1098                 };
1099
1100                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1101                         return 1;
1102         }
1103
1104         sig = tsk->signal;
1105         if (sig->cputimer.running) {
1106                 struct task_cputime group_sample;
1107
1108                 raw_spin_lock(&sig->cputimer.lock);
1109                 group_sample = sig->cputimer.cputime;
1110                 raw_spin_unlock(&sig->cputimer.lock);
1111
1112                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1113                         return 1;
1114         }
1115
1116         return 0;
1117 }
1118
1119 /*
1120  * This is called from the timer interrupt handler.  The irq handler has
1121  * already updated our counts.  We need to check if any timers fire now.
1122  * Interrupts are disabled.
1123  */
1124 void run_posix_cpu_timers(struct task_struct *tsk)
1125 {
1126         LIST_HEAD(firing);
1127         struct k_itimer *timer, *next;
1128         unsigned long flags;
1129
1130         BUG_ON(!irqs_disabled());
1131
1132         /*
1133          * The fast path checks that there are no expired thread or thread
1134          * group timers.  If that's so, just return.
1135          */
1136         if (!fastpath_timer_check(tsk))
1137                 return;
1138
1139         if (!lock_task_sighand(tsk, &flags))
1140                 return;
1141         /*
1142          * Here we take off tsk->signal->cpu_timers[N] and
1143          * tsk->cpu_timers[N] all the timers that are firing, and
1144          * put them on the firing list.
1145          */
1146         check_thread_timers(tsk, &firing);
1147         /*
1148          * If there are any active process wide timers (POSIX 1.b, itimers,
1149          * RLIMIT_CPU) cputimer must be running.
1150          */
1151         if (tsk->signal->cputimer.running)
1152                 check_process_timers(tsk, &firing);
1153
1154         /*
1155          * We must release these locks before taking any timer's lock.
1156          * There is a potential race with timer deletion here, as the
1157          * siglock now protects our private firing list.  We have set
1158          * the firing flag in each timer, so that a deletion attempt
1159          * that gets the timer lock before we do will give it up and
1160          * spin until we've taken care of that timer below.
1161          */
1162         unlock_task_sighand(tsk, &flags);
1163
1164         /*
1165          * Now that all the timers on our list have the firing flag,
1166          * no one will touch their list entries but us.  We'll take
1167          * each timer's lock before clearing its firing flag, so no
1168          * timer call will interfere.
1169          */
1170         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1171                 int cpu_firing;
1172
1173                 spin_lock(&timer->it_lock);
1174                 list_del_init(&timer->it.cpu.entry);
1175                 cpu_firing = timer->it.cpu.firing;
1176                 timer->it.cpu.firing = 0;
1177                 /*
1178                  * The firing flag is -1 if we collided with a reset
1179                  * of the timer, which already reported this
1180                  * almost-firing as an overrun.  So don't generate an event.
1181                  */
1182                 if (likely(cpu_firing >= 0))
1183                         cpu_timer_fire(timer);
1184                 spin_unlock(&timer->it_lock);
1185         }
1186 }
1187
1188 /*
1189  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1190  * The tsk->sighand->siglock must be held by the caller.
1191  */
1192 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1193                            cputime_t *newval, cputime_t *oldval)
1194 {
1195         unsigned long long now;
1196
1197         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1198         cpu_timer_sample_group(clock_idx, tsk, &now);
1199
1200         if (oldval) {
1201                 /*
1202                  * We are setting itimer. The *oldval is absolute and we update
1203                  * it to be relative, *newval argument is relative and we update
1204                  * it to be absolute.
1205                  */
1206                 if (*oldval) {
1207                         if (*oldval <= now) {
1208                                 /* Just about to fire. */
1209                                 *oldval = cputime_one_jiffy;
1210                         } else {
1211                                 *oldval -= now;
1212                         }
1213                 }
1214
1215                 if (!*newval)
1216                         goto out;
1217                 *newval += now;
1218         }
1219
1220         /*
1221          * Update expiration cache if we are the earliest timer, or eventually
1222          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1223          */
1224         switch (clock_idx) {
1225         case CPUCLOCK_PROF:
1226                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1227                         tsk->signal->cputime_expires.prof_exp = *newval;
1228                 break;
1229         case CPUCLOCK_VIRT:
1230                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1231                         tsk->signal->cputime_expires.virt_exp = *newval;
1232                 break;
1233         }
1234 out:
1235         posix_cpu_timer_kick_nohz();
1236 }
1237
1238 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1239                             struct timespec *rqtp, struct itimerspec *it)
1240 {
1241         struct k_itimer timer;
1242         int error;
1243
1244         /*
1245          * Set up a temporary timer and then wait for it to go off.
1246          */
1247         memset(&timer, 0, sizeof timer);
1248         spin_lock_init(&timer.it_lock);
1249         timer.it_clock = which_clock;
1250         timer.it_overrun = -1;
1251         error = posix_cpu_timer_create(&timer);
1252         timer.it_process = current;
1253         if (!error) {
1254                 static struct itimerspec zero_it;
1255
1256                 memset(it, 0, sizeof *it);
1257                 it->it_value = *rqtp;
1258
1259                 spin_lock_irq(&timer.it_lock);
1260                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1261                 if (error) {
1262                         spin_unlock_irq(&timer.it_lock);
1263                         return error;
1264                 }
1265
1266                 while (!signal_pending(current)) {
1267                         if (timer.it.cpu.expires == 0) {
1268                                 /*
1269                                  * Our timer fired and was reset, below
1270                                  * deletion can not fail.
1271                                  */
1272                                 posix_cpu_timer_del(&timer);
1273                                 spin_unlock_irq(&timer.it_lock);
1274                                 return 0;
1275                         }
1276
1277                         /*
1278                          * Block until cpu_timer_fire (or a signal) wakes us.
1279                          */
1280                         __set_current_state(TASK_INTERRUPTIBLE);
1281                         spin_unlock_irq(&timer.it_lock);
1282                         schedule();
1283                         spin_lock_irq(&timer.it_lock);
1284                 }
1285
1286                 /*
1287                  * We were interrupted by a signal.
1288                  */
1289                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1290                 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1291                 if (!error) {
1292                         /*
1293                          * Timer is now unarmed, deletion can not fail.
1294                          */
1295                         posix_cpu_timer_del(&timer);
1296                 }
1297                 spin_unlock_irq(&timer.it_lock);
1298
1299                 while (error == TIMER_RETRY) {
1300                         /*
1301                          * We need to handle case when timer was or is in the
1302                          * middle of firing. In other cases we already freed
1303                          * resources.
1304                          */
1305                         spin_lock_irq(&timer.it_lock);
1306                         error = posix_cpu_timer_del(&timer);
1307                         spin_unlock_irq(&timer.it_lock);
1308                 }
1309
1310                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1311                         /*
1312                          * It actually did fire already.
1313                          */
1314                         return 0;
1315                 }
1316
1317                 error = -ERESTART_RESTARTBLOCK;
1318         }
1319
1320         return error;
1321 }
1322
1323 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1324
1325 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1326                             struct timespec *rqtp, struct timespec __user *rmtp)
1327 {
1328         struct restart_block *restart_block =
1329                 &current_thread_info()->restart_block;
1330         struct itimerspec it;
1331         int error;
1332
1333         /*
1334          * Diagnose required errors first.
1335          */
1336         if (CPUCLOCK_PERTHREAD(which_clock) &&
1337             (CPUCLOCK_PID(which_clock) == 0 ||
1338              CPUCLOCK_PID(which_clock) == current->pid))
1339                 return -EINVAL;
1340
1341         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1342
1343         if (error == -ERESTART_RESTARTBLOCK) {
1344
1345                 if (flags & TIMER_ABSTIME)
1346                         return -ERESTARTNOHAND;
1347                 /*
1348                  * Report back to the user the time still remaining.
1349                  */
1350                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1351                         return -EFAULT;
1352
1353                 restart_block->fn = posix_cpu_nsleep_restart;
1354                 restart_block->nanosleep.clockid = which_clock;
1355                 restart_block->nanosleep.rmtp = rmtp;
1356                 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1357         }
1358         return error;
1359 }
1360
1361 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1362 {
1363         clockid_t which_clock = restart_block->nanosleep.clockid;
1364         struct timespec t;
1365         struct itimerspec it;
1366         int error;
1367
1368         t = ns_to_timespec(restart_block->nanosleep.expires);
1369
1370         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1371
1372         if (error == -ERESTART_RESTARTBLOCK) {
1373                 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1374                 /*
1375                  * Report back to the user the time still remaining.
1376                  */
1377                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1378                         return -EFAULT;
1379
1380                 restart_block->nanosleep.expires = timespec_to_ns(&t);
1381         }
1382         return error;
1383
1384 }
1385
1386 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1387 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1388
1389 static int process_cpu_clock_getres(const clockid_t which_clock,
1390                                     struct timespec *tp)
1391 {
1392         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1393 }
1394 static int process_cpu_clock_get(const clockid_t which_clock,
1395                                  struct timespec *tp)
1396 {
1397         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1398 }
1399 static int process_cpu_timer_create(struct k_itimer *timer)
1400 {
1401         timer->it_clock = PROCESS_CLOCK;
1402         return posix_cpu_timer_create(timer);
1403 }
1404 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1405                               struct timespec *rqtp,
1406                               struct timespec __user *rmtp)
1407 {
1408         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1409 }
1410 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1411 {
1412         return -EINVAL;
1413 }
1414 static int thread_cpu_clock_getres(const clockid_t which_clock,
1415                                    struct timespec *tp)
1416 {
1417         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1418 }
1419 static int thread_cpu_clock_get(const clockid_t which_clock,
1420                                 struct timespec *tp)
1421 {
1422         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1423 }
1424 static int thread_cpu_timer_create(struct k_itimer *timer)
1425 {
1426         timer->it_clock = THREAD_CLOCK;
1427         return posix_cpu_timer_create(timer);
1428 }
1429
1430 struct k_clock clock_posix_cpu = {
1431         .clock_getres   = posix_cpu_clock_getres,
1432         .clock_set      = posix_cpu_clock_set,
1433         .clock_get      = posix_cpu_clock_get,
1434         .timer_create   = posix_cpu_timer_create,
1435         .nsleep         = posix_cpu_nsleep,
1436         .nsleep_restart = posix_cpu_nsleep_restart,
1437         .timer_set      = posix_cpu_timer_set,
1438         .timer_del      = posix_cpu_timer_del,
1439         .timer_get      = posix_cpu_timer_get,
1440 };
1441
1442 static __init int init_posix_cpu_timers(void)
1443 {
1444         struct k_clock process = {
1445                 .clock_getres   = process_cpu_clock_getres,
1446                 .clock_get      = process_cpu_clock_get,
1447                 .timer_create   = process_cpu_timer_create,
1448                 .nsleep         = process_cpu_nsleep,
1449                 .nsleep_restart = process_cpu_nsleep_restart,
1450         };
1451         struct k_clock thread = {
1452                 .clock_getres   = thread_cpu_clock_getres,
1453                 .clock_get      = thread_cpu_clock_get,
1454                 .timer_create   = thread_cpu_timer_create,
1455         };
1456         struct timespec ts;
1457
1458         posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1459         posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1460
1461         cputime_to_timespec(cputime_one_jiffy, &ts);
1462         onecputick = ts.tv_nsec;
1463         WARN_ON(ts.tv_sec != 0);
1464
1465         return 0;
1466 }
1467 __initcall(init_posix_cpu_timers);