posix-timers: Use sighand lock instead of tasklist_lock on timer deletion
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24         cputime_t cputime = secs_to_cputime(rlim_new);
25
26         spin_lock_irq(&task->sighand->siglock);
27         set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28         spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33         int error = 0;
34         struct task_struct *p;
35         const pid_t pid = CPUCLOCK_PID(which_clock);
36
37         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38                 return -EINVAL;
39
40         if (pid == 0)
41                 return 0;
42
43         rcu_read_lock();
44         p = find_task_by_vpid(pid);
45         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46                    same_thread_group(p, current) : has_group_leader_pid(p))) {
47                 error = -EINVAL;
48         }
49         rcu_read_unlock();
50
51         return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57         unsigned long long ret;
58
59         ret = 0;                /* high half always zero when .cpu used */
60         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61                 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62         } else {
63                 ret = cputime_to_expires(timespec_to_cputime(tp));
64         }
65         return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69                                unsigned long long expires,
70                                struct timespec *tp)
71 {
72         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73                 *tp = ns_to_timespec(expires);
74         else
75                 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83                            unsigned long long now)
84 {
85         int i;
86         unsigned long long delta, incr;
87
88         if (timer->it.cpu.incr == 0)
89                 return;
90
91         if (now < timer->it.cpu.expires)
92                 return;
93
94         incr = timer->it.cpu.incr;
95         delta = now + incr - timer->it.cpu.expires;
96
97         /* Don't use (incr*2 < delta), incr*2 might overflow. */
98         for (i = 0; incr < delta - incr; i++)
99                 incr = incr << 1;
100
101         for (; i >= 0; incr >>= 1, i--) {
102                 if (delta < incr)
103                         continue;
104
105                 timer->it.cpu.expires += incr;
106                 timer->it_overrun += 1 << i;
107                 delta -= incr;
108         }
109 }
110
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:    The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122                 return 1;
123         return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128         cputime_t utime, stime;
129
130         task_cputime(p, &utime, &stime);
131
132         return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136         cputime_t utime;
137
138         task_cputime(p, &utime, NULL);
139
140         return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146         int error = check_clock(which_clock);
147         if (!error) {
148                 tp->tv_sec = 0;
149                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151                         /*
152                          * If sched_clock is using a cycle counter, we
153                          * don't have any idea of its true resolution
154                          * exported, but it is much more than 1s/HZ.
155                          */
156                         tp->tv_nsec = 1;
157                 }
158         }
159         return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165         /*
166          * You can never reset a CPU clock, but we check for other errors
167          * in the call before failing with EPERM.
168          */
169         int error = check_clock(which_clock);
170         if (error == 0) {
171                 error = -EPERM;
172         }
173         return error;
174 }
175
176
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181                             unsigned long long *sample)
182 {
183         switch (CPUCLOCK_WHICH(which_clock)) {
184         default:
185                 return -EINVAL;
186         case CPUCLOCK_PROF:
187                 *sample = prof_ticks(p);
188                 break;
189         case CPUCLOCK_VIRT:
190                 *sample = virt_ticks(p);
191                 break;
192         case CPUCLOCK_SCHED:
193                 *sample = task_sched_runtime(p);
194                 break;
195         }
196         return 0;
197 }
198
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201         if (b->utime > a->utime)
202                 a->utime = b->utime;
203
204         if (b->stime > a->stime)
205                 a->stime = b->stime;
206
207         if (b->sum_exec_runtime > a->sum_exec_runtime)
208                 a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214         struct task_cputime sum;
215         unsigned long flags;
216
217         if (!cputimer->running) {
218                 /*
219                  * The POSIX timer interface allows for absolute time expiry
220                  * values through the TIMER_ABSTIME flag, therefore we have
221                  * to synchronize the timer to the clock every time we start
222                  * it.
223                  */
224                 thread_group_cputime(tsk, &sum);
225                 raw_spin_lock_irqsave(&cputimer->lock, flags);
226                 cputimer->running = 1;
227                 update_gt_cputime(&cputimer->cputime, &sum);
228         } else
229                 raw_spin_lock_irqsave(&cputimer->lock, flags);
230         *times = cputimer->cputime;
231         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233
234 /*
235  * Sample a process (thread group) clock for the given group_leader task.
236  * Must be called with tasklist_lock held for reading.
237  */
238 static int cpu_clock_sample_group(const clockid_t which_clock,
239                                   struct task_struct *p,
240                                   unsigned long long *sample)
241 {
242         struct task_cputime cputime;
243
244         switch (CPUCLOCK_WHICH(which_clock)) {
245         default:
246                 return -EINVAL;
247         case CPUCLOCK_PROF:
248                 thread_group_cputime(p, &cputime);
249                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
250                 break;
251         case CPUCLOCK_VIRT:
252                 thread_group_cputime(p, &cputime);
253                 *sample = cputime_to_expires(cputime.utime);
254                 break;
255         case CPUCLOCK_SCHED:
256                 thread_group_cputime(p, &cputime);
257                 *sample = cputime.sum_exec_runtime;
258                 break;
259         }
260         return 0;
261 }
262
263 static int posix_cpu_clock_get_task(struct task_struct *tsk,
264                                     const clockid_t which_clock,
265                                     struct timespec *tp)
266 {
267         int err = -EINVAL;
268         unsigned long long rtn;
269
270         if (CPUCLOCK_PERTHREAD(which_clock)) {
271                 if (same_thread_group(tsk, current))
272                         err = cpu_clock_sample(which_clock, tsk, &rtn);
273         } else {
274                 unsigned long flags;
275                 struct sighand_struct *sighand;
276
277                 /*
278                  * while_each_thread() is not yet entirely RCU safe,
279                  * keep locking the group while sampling process
280                  * clock for now.
281                  */
282                 sighand = lock_task_sighand(tsk, &flags);
283                 if (!sighand)
284                         return err;
285
286                 if (tsk == current || thread_group_leader(tsk))
287                         err = cpu_clock_sample_group(which_clock, tsk, &rtn);
288
289                 unlock_task_sighand(tsk, &flags);
290         }
291
292         if (!err)
293                 sample_to_timespec(which_clock, rtn, tp);
294
295         return err;
296 }
297
298
299 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
300 {
301         const pid_t pid = CPUCLOCK_PID(which_clock);
302         int err = -EINVAL;
303
304         if (pid == 0) {
305                 /*
306                  * Special case constant value for our own clocks.
307                  * We don't have to do any lookup to find ourselves.
308                  */
309                 err = posix_cpu_clock_get_task(current, which_clock, tp);
310         } else {
311                 /*
312                  * Find the given PID, and validate that the caller
313                  * should be able to see it.
314                  */
315                 struct task_struct *p;
316                 rcu_read_lock();
317                 p = find_task_by_vpid(pid);
318                 if (p)
319                         err = posix_cpu_clock_get_task(p, which_clock, tp);
320                 rcu_read_unlock();
321         }
322
323         return err;
324 }
325
326
327 /*
328  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
329  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
330  * new timer already all-zeros initialized.
331  */
332 static int posix_cpu_timer_create(struct k_itimer *new_timer)
333 {
334         int ret = 0;
335         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
336         struct task_struct *p;
337
338         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
339                 return -EINVAL;
340
341         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
342
343         rcu_read_lock();
344         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
345                 if (pid == 0) {
346                         p = current;
347                 } else {
348                         p = find_task_by_vpid(pid);
349                         if (p && !same_thread_group(p, current))
350                                 p = NULL;
351                 }
352         } else {
353                 if (pid == 0) {
354                         p = current->group_leader;
355                 } else {
356                         p = find_task_by_vpid(pid);
357                         if (p && !has_group_leader_pid(p))
358                                 p = NULL;
359                 }
360         }
361         new_timer->it.cpu.task = p;
362         if (p) {
363                 get_task_struct(p);
364         } else {
365                 ret = -EINVAL;
366         }
367         rcu_read_unlock();
368
369         return ret;
370 }
371
372 /*
373  * Clean up a CPU-clock timer that is about to be destroyed.
374  * This is called from timer deletion with the timer already locked.
375  * If we return TIMER_RETRY, it's necessary to release the timer's lock
376  * and try again.  (This happens when the timer is in the middle of firing.)
377  */
378 static int posix_cpu_timer_del(struct k_itimer *timer)
379 {
380         int ret = 0;
381         unsigned long flags;
382         struct sighand_struct *sighand;
383         struct task_struct *p = timer->it.cpu.task;
384
385         WARN_ON_ONCE(p == NULL);
386
387         /*
388          * Protect against sighand release/switch in exit/exec and process/
389          * thread timer list entry concurrent read/writes.
390          */
391         sighand = lock_task_sighand(p, &flags);
392         if (unlikely(sighand == NULL)) {
393                 /*
394                  * We raced with the reaping of the task.
395                  * The deletion should have cleared us off the list.
396                  */
397                 BUG_ON(!list_empty(&timer->it.cpu.entry));
398         } else {
399                 if (timer->it.cpu.firing)
400                         ret = TIMER_RETRY;
401                 else
402                         list_del(&timer->it.cpu.entry);
403
404                 unlock_task_sighand(p, &flags);
405         }
406
407         if (!ret)
408                 put_task_struct(p);
409
410         return ret;
411 }
412
413 static void cleanup_timers_list(struct list_head *head)
414 {
415         struct cpu_timer_list *timer, *next;
416
417         list_for_each_entry_safe(timer, next, head, entry)
418                 list_del_init(&timer->entry);
419 }
420
421 /*
422  * Clean out CPU timers still ticking when a thread exited.  The task
423  * pointer is cleared, and the expiry time is replaced with the residual
424  * time for later timer_gettime calls to return.
425  * This must be called with the siglock held.
426  */
427 static void cleanup_timers(struct list_head *head)
428 {
429         cleanup_timers_list(head);
430         cleanup_timers_list(++head);
431         cleanup_timers_list(++head);
432 }
433
434 /*
435  * These are both called with the siglock held, when the current thread
436  * is being reaped.  When the final (leader) thread in the group is reaped,
437  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
438  */
439 void posix_cpu_timers_exit(struct task_struct *tsk)
440 {
441         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
442                                                 sizeof(unsigned long long));
443         cleanup_timers(tsk->cpu_timers);
444
445 }
446 void posix_cpu_timers_exit_group(struct task_struct *tsk)
447 {
448         cleanup_timers(tsk->signal->cpu_timers);
449 }
450
451 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
452 {
453         return expires == 0 || expires > new_exp;
454 }
455
456 /*
457  * Insert the timer on the appropriate list before any timers that
458  * expire later.  This must be called with the tasklist_lock held
459  * for reading, interrupts disabled and p->sighand->siglock taken.
460  */
461 static void arm_timer(struct k_itimer *timer)
462 {
463         struct task_struct *p = timer->it.cpu.task;
464         struct list_head *head, *listpos;
465         struct task_cputime *cputime_expires;
466         struct cpu_timer_list *const nt = &timer->it.cpu;
467         struct cpu_timer_list *next;
468
469         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
470                 head = p->cpu_timers;
471                 cputime_expires = &p->cputime_expires;
472         } else {
473                 head = p->signal->cpu_timers;
474                 cputime_expires = &p->signal->cputime_expires;
475         }
476         head += CPUCLOCK_WHICH(timer->it_clock);
477
478         listpos = head;
479         list_for_each_entry(next, head, entry) {
480                 if (nt->expires < next->expires)
481                         break;
482                 listpos = &next->entry;
483         }
484         list_add(&nt->entry, listpos);
485
486         if (listpos == head) {
487                 unsigned long long exp = nt->expires;
488
489                 /*
490                  * We are the new earliest-expiring POSIX 1.b timer, hence
491                  * need to update expiration cache. Take into account that
492                  * for process timers we share expiration cache with itimers
493                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
494                  */
495
496                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
497                 case CPUCLOCK_PROF:
498                         if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
499                                 cputime_expires->prof_exp = expires_to_cputime(exp);
500                         break;
501                 case CPUCLOCK_VIRT:
502                         if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
503                                 cputime_expires->virt_exp = expires_to_cputime(exp);
504                         break;
505                 case CPUCLOCK_SCHED:
506                         if (cputime_expires->sched_exp == 0 ||
507                             cputime_expires->sched_exp > exp)
508                                 cputime_expires->sched_exp = exp;
509                         break;
510                 }
511         }
512 }
513
514 /*
515  * The timer is locked, fire it and arrange for its reload.
516  */
517 static void cpu_timer_fire(struct k_itimer *timer)
518 {
519         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
520                 /*
521                  * User don't want any signal.
522                  */
523                 timer->it.cpu.expires = 0;
524         } else if (unlikely(timer->sigq == NULL)) {
525                 /*
526                  * This a special case for clock_nanosleep,
527                  * not a normal timer from sys_timer_create.
528                  */
529                 wake_up_process(timer->it_process);
530                 timer->it.cpu.expires = 0;
531         } else if (timer->it.cpu.incr == 0) {
532                 /*
533                  * One-shot timer.  Clear it as soon as it's fired.
534                  */
535                 posix_timer_event(timer, 0);
536                 timer->it.cpu.expires = 0;
537         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
538                 /*
539                  * The signal did not get queued because the signal
540                  * was ignored, so we won't get any callback to
541                  * reload the timer.  But we need to keep it
542                  * ticking in case the signal is deliverable next time.
543                  */
544                 posix_cpu_timer_schedule(timer);
545         }
546 }
547
548 /*
549  * Sample a process (thread group) timer for the given group_leader task.
550  * Must be called with tasklist_lock held for reading.
551  */
552 static int cpu_timer_sample_group(const clockid_t which_clock,
553                                   struct task_struct *p,
554                                   unsigned long long *sample)
555 {
556         struct task_cputime cputime;
557
558         thread_group_cputimer(p, &cputime);
559         switch (CPUCLOCK_WHICH(which_clock)) {
560         default:
561                 return -EINVAL;
562         case CPUCLOCK_PROF:
563                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
564                 break;
565         case CPUCLOCK_VIRT:
566                 *sample = cputime_to_expires(cputime.utime);
567                 break;
568         case CPUCLOCK_SCHED:
569                 *sample = cputime.sum_exec_runtime + task_delta_exec(p);
570                 break;
571         }
572         return 0;
573 }
574
575 #ifdef CONFIG_NO_HZ_FULL
576 static void nohz_kick_work_fn(struct work_struct *work)
577 {
578         tick_nohz_full_kick_all();
579 }
580
581 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
582
583 /*
584  * We need the IPIs to be sent from sane process context.
585  * The posix cpu timers are always set with irqs disabled.
586  */
587 static void posix_cpu_timer_kick_nohz(void)
588 {
589         if (context_tracking_is_enabled())
590                 schedule_work(&nohz_kick_work);
591 }
592
593 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
594 {
595         if (!task_cputime_zero(&tsk->cputime_expires))
596                 return false;
597
598         if (tsk->signal->cputimer.running)
599                 return false;
600
601         return true;
602 }
603 #else
604 static inline void posix_cpu_timer_kick_nohz(void) { }
605 #endif
606
607 /*
608  * Guts of sys_timer_settime for CPU timers.
609  * This is called with the timer locked and interrupts disabled.
610  * If we return TIMER_RETRY, it's necessary to release the timer's lock
611  * and try again.  (This happens when the timer is in the middle of firing.)
612  */
613 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
614                                struct itimerspec *new, struct itimerspec *old)
615 {
616         struct task_struct *p = timer->it.cpu.task;
617         unsigned long long old_expires, new_expires, old_incr, val;
618         int ret;
619
620         WARN_ON_ONCE(p == NULL);
621
622         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
623
624         read_lock(&tasklist_lock);
625         /*
626          * We need the tasklist_lock to protect against reaping that
627          * clears p->sighand.  If p has just been reaped, we can no
628          * longer get any information about it at all.
629          */
630         if (unlikely(p->sighand == NULL)) {
631                 read_unlock(&tasklist_lock);
632                 return -ESRCH;
633         }
634
635         /*
636          * Disarm any old timer after extracting its expiry time.
637          */
638         BUG_ON(!irqs_disabled());
639
640         ret = 0;
641         old_incr = timer->it.cpu.incr;
642         spin_lock(&p->sighand->siglock);
643         old_expires = timer->it.cpu.expires;
644         if (unlikely(timer->it.cpu.firing)) {
645                 timer->it.cpu.firing = -1;
646                 ret = TIMER_RETRY;
647         } else
648                 list_del_init(&timer->it.cpu.entry);
649
650         /*
651          * We need to sample the current value to convert the new
652          * value from to relative and absolute, and to convert the
653          * old value from absolute to relative.  To set a process
654          * timer, we need a sample to balance the thread expiry
655          * times (in arm_timer).  With an absolute time, we must
656          * check if it's already passed.  In short, we need a sample.
657          */
658         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
659                 cpu_clock_sample(timer->it_clock, p, &val);
660         } else {
661                 cpu_timer_sample_group(timer->it_clock, p, &val);
662         }
663
664         if (old) {
665                 if (old_expires == 0) {
666                         old->it_value.tv_sec = 0;
667                         old->it_value.tv_nsec = 0;
668                 } else {
669                         /*
670                          * Update the timer in case it has
671                          * overrun already.  If it has,
672                          * we'll report it as having overrun
673                          * and with the next reloaded timer
674                          * already ticking, though we are
675                          * swallowing that pending
676                          * notification here to install the
677                          * new setting.
678                          */
679                         bump_cpu_timer(timer, val);
680                         if (val < timer->it.cpu.expires) {
681                                 old_expires = timer->it.cpu.expires - val;
682                                 sample_to_timespec(timer->it_clock,
683                                                    old_expires,
684                                                    &old->it_value);
685                         } else {
686                                 old->it_value.tv_nsec = 1;
687                                 old->it_value.tv_sec = 0;
688                         }
689                 }
690         }
691
692         if (unlikely(ret)) {
693                 /*
694                  * We are colliding with the timer actually firing.
695                  * Punt after filling in the timer's old value, and
696                  * disable this firing since we are already reporting
697                  * it as an overrun (thanks to bump_cpu_timer above).
698                  */
699                 spin_unlock(&p->sighand->siglock);
700                 read_unlock(&tasklist_lock);
701                 goto out;
702         }
703
704         if (new_expires != 0 && !(flags & TIMER_ABSTIME)) {
705                 new_expires += val;
706         }
707
708         /*
709          * Install the new expiry time (or zero).
710          * For a timer with no notification action, we don't actually
711          * arm the timer (we'll just fake it for timer_gettime).
712          */
713         timer->it.cpu.expires = new_expires;
714         if (new_expires != 0 && val < new_expires) {
715                 arm_timer(timer);
716         }
717
718         spin_unlock(&p->sighand->siglock);
719         read_unlock(&tasklist_lock);
720
721         /*
722          * Install the new reload setting, and
723          * set up the signal and overrun bookkeeping.
724          */
725         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
726                                                 &new->it_interval);
727
728         /*
729          * This acts as a modification timestamp for the timer,
730          * so any automatic reload attempt will punt on seeing
731          * that we have reset the timer manually.
732          */
733         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
734                 ~REQUEUE_PENDING;
735         timer->it_overrun_last = 0;
736         timer->it_overrun = -1;
737
738         if (new_expires != 0 && !(val < new_expires)) {
739                 /*
740                  * The designated time already passed, so we notify
741                  * immediately, even if the thread never runs to
742                  * accumulate more time on this clock.
743                  */
744                 cpu_timer_fire(timer);
745         }
746
747         ret = 0;
748  out:
749         if (old) {
750                 sample_to_timespec(timer->it_clock,
751                                    old_incr, &old->it_interval);
752         }
753         if (!ret)
754                 posix_cpu_timer_kick_nohz();
755         return ret;
756 }
757
758 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
759 {
760         unsigned long long now;
761         struct task_struct *p = timer->it.cpu.task;
762
763         WARN_ON_ONCE(p == NULL);
764
765         /*
766          * Easy part: convert the reload time.
767          */
768         sample_to_timespec(timer->it_clock,
769                            timer->it.cpu.incr, &itp->it_interval);
770
771         if (timer->it.cpu.expires == 0) {       /* Timer not armed at all.  */
772                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
773                 return;
774         }
775
776         /*
777          * Sample the clock to take the difference with the expiry time.
778          */
779         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
780                 cpu_clock_sample(timer->it_clock, p, &now);
781         } else {
782                 read_lock(&tasklist_lock);
783                 if (unlikely(p->sighand == NULL)) {
784                         /*
785                          * The process has been reaped.
786                          * We can't even collect a sample any more.
787                          * Call the timer disarmed, nothing else to do.
788                          */
789                         timer->it.cpu.expires = 0;
790                         sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
791                                            &itp->it_value);
792                         read_unlock(&tasklist_lock);
793                 } else {
794                         cpu_timer_sample_group(timer->it_clock, p, &now);
795                 }
796                 read_unlock(&tasklist_lock);
797         }
798
799         if (now < timer->it.cpu.expires) {
800                 sample_to_timespec(timer->it_clock,
801                                    timer->it.cpu.expires - now,
802                                    &itp->it_value);
803         } else {
804                 /*
805                  * The timer should have expired already, but the firing
806                  * hasn't taken place yet.  Say it's just about to expire.
807                  */
808                 itp->it_value.tv_nsec = 1;
809                 itp->it_value.tv_sec = 0;
810         }
811 }
812
813 static unsigned long long
814 check_timers_list(struct list_head *timers,
815                   struct list_head *firing,
816                   unsigned long long curr)
817 {
818         int maxfire = 20;
819
820         while (!list_empty(timers)) {
821                 struct cpu_timer_list *t;
822
823                 t = list_first_entry(timers, struct cpu_timer_list, entry);
824
825                 if (!--maxfire || curr < t->expires)
826                         return t->expires;
827
828                 t->firing = 1;
829                 list_move_tail(&t->entry, firing);
830         }
831
832         return 0;
833 }
834
835 /*
836  * Check for any per-thread CPU timers that have fired and move them off
837  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
838  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
839  */
840 static void check_thread_timers(struct task_struct *tsk,
841                                 struct list_head *firing)
842 {
843         struct list_head *timers = tsk->cpu_timers;
844         struct signal_struct *const sig = tsk->signal;
845         struct task_cputime *tsk_expires = &tsk->cputime_expires;
846         unsigned long long expires;
847         unsigned long soft;
848
849         expires = check_timers_list(timers, firing, prof_ticks(tsk));
850         tsk_expires->prof_exp = expires_to_cputime(expires);
851
852         expires = check_timers_list(++timers, firing, virt_ticks(tsk));
853         tsk_expires->virt_exp = expires_to_cputime(expires);
854
855         tsk_expires->sched_exp = check_timers_list(++timers, firing,
856                                                    tsk->se.sum_exec_runtime);
857
858         /*
859          * Check for the special case thread timers.
860          */
861         soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
862         if (soft != RLIM_INFINITY) {
863                 unsigned long hard =
864                         ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
865
866                 if (hard != RLIM_INFINITY &&
867                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
868                         /*
869                          * At the hard limit, we just die.
870                          * No need to calculate anything else now.
871                          */
872                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
873                         return;
874                 }
875                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
876                         /*
877                          * At the soft limit, send a SIGXCPU every second.
878                          */
879                         if (soft < hard) {
880                                 soft += USEC_PER_SEC;
881                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
882                         }
883                         printk(KERN_INFO
884                                 "RT Watchdog Timeout: %s[%d]\n",
885                                 tsk->comm, task_pid_nr(tsk));
886                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
887                 }
888         }
889 }
890
891 static void stop_process_timers(struct signal_struct *sig)
892 {
893         struct thread_group_cputimer *cputimer = &sig->cputimer;
894         unsigned long flags;
895
896         raw_spin_lock_irqsave(&cputimer->lock, flags);
897         cputimer->running = 0;
898         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
899 }
900
901 static u32 onecputick;
902
903 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
904                              unsigned long long *expires,
905                              unsigned long long cur_time, int signo)
906 {
907         if (!it->expires)
908                 return;
909
910         if (cur_time >= it->expires) {
911                 if (it->incr) {
912                         it->expires += it->incr;
913                         it->error += it->incr_error;
914                         if (it->error >= onecputick) {
915                                 it->expires -= cputime_one_jiffy;
916                                 it->error -= onecputick;
917                         }
918                 } else {
919                         it->expires = 0;
920                 }
921
922                 trace_itimer_expire(signo == SIGPROF ?
923                                     ITIMER_PROF : ITIMER_VIRTUAL,
924                                     tsk->signal->leader_pid, cur_time);
925                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
926         }
927
928         if (it->expires && (!*expires || it->expires < *expires)) {
929                 *expires = it->expires;
930         }
931 }
932
933 /*
934  * Check for any per-thread CPU timers that have fired and move them
935  * off the tsk->*_timers list onto the firing list.  Per-thread timers
936  * have already been taken off.
937  */
938 static void check_process_timers(struct task_struct *tsk,
939                                  struct list_head *firing)
940 {
941         struct signal_struct *const sig = tsk->signal;
942         unsigned long long utime, ptime, virt_expires, prof_expires;
943         unsigned long long sum_sched_runtime, sched_expires;
944         struct list_head *timers = sig->cpu_timers;
945         struct task_cputime cputime;
946         unsigned long soft;
947
948         /*
949          * Collect the current process totals.
950          */
951         thread_group_cputimer(tsk, &cputime);
952         utime = cputime_to_expires(cputime.utime);
953         ptime = utime + cputime_to_expires(cputime.stime);
954         sum_sched_runtime = cputime.sum_exec_runtime;
955
956         prof_expires = check_timers_list(timers, firing, ptime);
957         virt_expires = check_timers_list(++timers, firing, utime);
958         sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
959
960         /*
961          * Check for the special case process timers.
962          */
963         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
964                          SIGPROF);
965         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
966                          SIGVTALRM);
967         soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
968         if (soft != RLIM_INFINITY) {
969                 unsigned long psecs = cputime_to_secs(ptime);
970                 unsigned long hard =
971                         ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
972                 cputime_t x;
973                 if (psecs >= hard) {
974                         /*
975                          * At the hard limit, we just die.
976                          * No need to calculate anything else now.
977                          */
978                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
979                         return;
980                 }
981                 if (psecs >= soft) {
982                         /*
983                          * At the soft limit, send a SIGXCPU every second.
984                          */
985                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
986                         if (soft < hard) {
987                                 soft++;
988                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
989                         }
990                 }
991                 x = secs_to_cputime(soft);
992                 if (!prof_expires || x < prof_expires) {
993                         prof_expires = x;
994                 }
995         }
996
997         sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
998         sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
999         sig->cputime_expires.sched_exp = sched_expires;
1000         if (task_cputime_zero(&sig->cputime_expires))
1001                 stop_process_timers(sig);
1002 }
1003
1004 /*
1005  * This is called from the signal code (via do_schedule_next_timer)
1006  * when the last timer signal was delivered and we have to reload the timer.
1007  */
1008 void posix_cpu_timer_schedule(struct k_itimer *timer)
1009 {
1010         struct task_struct *p = timer->it.cpu.task;
1011         unsigned long long now;
1012
1013         WARN_ON_ONCE(p == NULL);
1014
1015         /*
1016          * Fetch the current sample and update the timer's expiry time.
1017          */
1018         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1019                 cpu_clock_sample(timer->it_clock, p, &now);
1020                 bump_cpu_timer(timer, now);
1021                 if (unlikely(p->exit_state))
1022                         goto out;
1023
1024                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1025                 spin_lock(&p->sighand->siglock);
1026         } else {
1027                 read_lock(&tasklist_lock);
1028                 if (unlikely(p->sighand == NULL)) {
1029                         /*
1030                          * The process has been reaped.
1031                          * We can't even collect a sample any more.
1032                          */
1033                         timer->it.cpu.expires = 0;
1034                         read_unlock(&tasklist_lock);
1035                         goto out;
1036                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1037                         read_unlock(&tasklist_lock);
1038                         /* Optimizations: if the process is dying, no need to rearm */
1039                         goto out;
1040                 }
1041                 spin_lock(&p->sighand->siglock);
1042                 cpu_timer_sample_group(timer->it_clock, p, &now);
1043                 bump_cpu_timer(timer, now);
1044                 /* Leave the tasklist_lock locked for the call below.  */
1045         }
1046
1047         /*
1048          * Now re-arm for the new expiry time.
1049          */
1050         BUG_ON(!irqs_disabled());
1051         arm_timer(timer);
1052         spin_unlock(&p->sighand->siglock);
1053         read_unlock(&tasklist_lock);
1054
1055         /* Kick full dynticks CPUs in case they need to tick on the new timer */
1056         posix_cpu_timer_kick_nohz();
1057
1058 out:
1059         timer->it_overrun_last = timer->it_overrun;
1060         timer->it_overrun = -1;
1061         ++timer->it_requeue_pending;
1062 }
1063
1064 /**
1065  * task_cputime_expired - Compare two task_cputime entities.
1066  *
1067  * @sample:     The task_cputime structure to be checked for expiration.
1068  * @expires:    Expiration times, against which @sample will be checked.
1069  *
1070  * Checks @sample against @expires to see if any field of @sample has expired.
1071  * Returns true if any field of the former is greater than the corresponding
1072  * field of the latter if the latter field is set.  Otherwise returns false.
1073  */
1074 static inline int task_cputime_expired(const struct task_cputime *sample,
1075                                         const struct task_cputime *expires)
1076 {
1077         if (expires->utime && sample->utime >= expires->utime)
1078                 return 1;
1079         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1080                 return 1;
1081         if (expires->sum_exec_runtime != 0 &&
1082             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1083                 return 1;
1084         return 0;
1085 }
1086
1087 /**
1088  * fastpath_timer_check - POSIX CPU timers fast path.
1089  *
1090  * @tsk:        The task (thread) being checked.
1091  *
1092  * Check the task and thread group timers.  If both are zero (there are no
1093  * timers set) return false.  Otherwise snapshot the task and thread group
1094  * timers and compare them with the corresponding expiration times.  Return
1095  * true if a timer has expired, else return false.
1096  */
1097 static inline int fastpath_timer_check(struct task_struct *tsk)
1098 {
1099         struct signal_struct *sig;
1100         cputime_t utime, stime;
1101
1102         task_cputime(tsk, &utime, &stime);
1103
1104         if (!task_cputime_zero(&tsk->cputime_expires)) {
1105                 struct task_cputime task_sample = {
1106                         .utime = utime,
1107                         .stime = stime,
1108                         .sum_exec_runtime = tsk->se.sum_exec_runtime
1109                 };
1110
1111                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1112                         return 1;
1113         }
1114
1115         sig = tsk->signal;
1116         if (sig->cputimer.running) {
1117                 struct task_cputime group_sample;
1118
1119                 raw_spin_lock(&sig->cputimer.lock);
1120                 group_sample = sig->cputimer.cputime;
1121                 raw_spin_unlock(&sig->cputimer.lock);
1122
1123                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1124                         return 1;
1125         }
1126
1127         return 0;
1128 }
1129
1130 /*
1131  * This is called from the timer interrupt handler.  The irq handler has
1132  * already updated our counts.  We need to check if any timers fire now.
1133  * Interrupts are disabled.
1134  */
1135 void run_posix_cpu_timers(struct task_struct *tsk)
1136 {
1137         LIST_HEAD(firing);
1138         struct k_itimer *timer, *next;
1139         unsigned long flags;
1140
1141         BUG_ON(!irqs_disabled());
1142
1143         /*
1144          * The fast path checks that there are no expired thread or thread
1145          * group timers.  If that's so, just return.
1146          */
1147         if (!fastpath_timer_check(tsk))
1148                 return;
1149
1150         if (!lock_task_sighand(tsk, &flags))
1151                 return;
1152         /*
1153          * Here we take off tsk->signal->cpu_timers[N] and
1154          * tsk->cpu_timers[N] all the timers that are firing, and
1155          * put them on the firing list.
1156          */
1157         check_thread_timers(tsk, &firing);
1158         /*
1159          * If there are any active process wide timers (POSIX 1.b, itimers,
1160          * RLIMIT_CPU) cputimer must be running.
1161          */
1162         if (tsk->signal->cputimer.running)
1163                 check_process_timers(tsk, &firing);
1164
1165         /*
1166          * We must release these locks before taking any timer's lock.
1167          * There is a potential race with timer deletion here, as the
1168          * siglock now protects our private firing list.  We have set
1169          * the firing flag in each timer, so that a deletion attempt
1170          * that gets the timer lock before we do will give it up and
1171          * spin until we've taken care of that timer below.
1172          */
1173         unlock_task_sighand(tsk, &flags);
1174
1175         /*
1176          * Now that all the timers on our list have the firing flag,
1177          * no one will touch their list entries but us.  We'll take
1178          * each timer's lock before clearing its firing flag, so no
1179          * timer call will interfere.
1180          */
1181         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1182                 int cpu_firing;
1183
1184                 spin_lock(&timer->it_lock);
1185                 list_del_init(&timer->it.cpu.entry);
1186                 cpu_firing = timer->it.cpu.firing;
1187                 timer->it.cpu.firing = 0;
1188                 /*
1189                  * The firing flag is -1 if we collided with a reset
1190                  * of the timer, which already reported this
1191                  * almost-firing as an overrun.  So don't generate an event.
1192                  */
1193                 if (likely(cpu_firing >= 0))
1194                         cpu_timer_fire(timer);
1195                 spin_unlock(&timer->it_lock);
1196         }
1197 }
1198
1199 /*
1200  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1201  * The tsk->sighand->siglock must be held by the caller.
1202  */
1203 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1204                            cputime_t *newval, cputime_t *oldval)
1205 {
1206         unsigned long long now;
1207
1208         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1209         cpu_timer_sample_group(clock_idx, tsk, &now);
1210
1211         if (oldval) {
1212                 /*
1213                  * We are setting itimer. The *oldval is absolute and we update
1214                  * it to be relative, *newval argument is relative and we update
1215                  * it to be absolute.
1216                  */
1217                 if (*oldval) {
1218                         if (*oldval <= now) {
1219                                 /* Just about to fire. */
1220                                 *oldval = cputime_one_jiffy;
1221                         } else {
1222                                 *oldval -= now;
1223                         }
1224                 }
1225
1226                 if (!*newval)
1227                         goto out;
1228                 *newval += now;
1229         }
1230
1231         /*
1232          * Update expiration cache if we are the earliest timer, or eventually
1233          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1234          */
1235         switch (clock_idx) {
1236         case CPUCLOCK_PROF:
1237                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1238                         tsk->signal->cputime_expires.prof_exp = *newval;
1239                 break;
1240         case CPUCLOCK_VIRT:
1241                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1242                         tsk->signal->cputime_expires.virt_exp = *newval;
1243                 break;
1244         }
1245 out:
1246         posix_cpu_timer_kick_nohz();
1247 }
1248
1249 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1250                             struct timespec *rqtp, struct itimerspec *it)
1251 {
1252         struct k_itimer timer;
1253         int error;
1254
1255         /*
1256          * Set up a temporary timer and then wait for it to go off.
1257          */
1258         memset(&timer, 0, sizeof timer);
1259         spin_lock_init(&timer.it_lock);
1260         timer.it_clock = which_clock;
1261         timer.it_overrun = -1;
1262         error = posix_cpu_timer_create(&timer);
1263         timer.it_process = current;
1264         if (!error) {
1265                 static struct itimerspec zero_it;
1266
1267                 memset(it, 0, sizeof *it);
1268                 it->it_value = *rqtp;
1269
1270                 spin_lock_irq(&timer.it_lock);
1271                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1272                 if (error) {
1273                         spin_unlock_irq(&timer.it_lock);
1274                         return error;
1275                 }
1276
1277                 while (!signal_pending(current)) {
1278                         if (timer.it.cpu.expires == 0) {
1279                                 /*
1280                                  * Our timer fired and was reset, below
1281                                  * deletion can not fail.
1282                                  */
1283                                 posix_cpu_timer_del(&timer);
1284                                 spin_unlock_irq(&timer.it_lock);
1285                                 return 0;
1286                         }
1287
1288                         /*
1289                          * Block until cpu_timer_fire (or a signal) wakes us.
1290                          */
1291                         __set_current_state(TASK_INTERRUPTIBLE);
1292                         spin_unlock_irq(&timer.it_lock);
1293                         schedule();
1294                         spin_lock_irq(&timer.it_lock);
1295                 }
1296
1297                 /*
1298                  * We were interrupted by a signal.
1299                  */
1300                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1301                 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1302                 if (!error) {
1303                         /*
1304                          * Timer is now unarmed, deletion can not fail.
1305                          */
1306                         posix_cpu_timer_del(&timer);
1307                 }
1308                 spin_unlock_irq(&timer.it_lock);
1309
1310                 while (error == TIMER_RETRY) {
1311                         /*
1312                          * We need to handle case when timer was or is in the
1313                          * middle of firing. In other cases we already freed
1314                          * resources.
1315                          */
1316                         spin_lock_irq(&timer.it_lock);
1317                         error = posix_cpu_timer_del(&timer);
1318                         spin_unlock_irq(&timer.it_lock);
1319                 }
1320
1321                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1322                         /*
1323                          * It actually did fire already.
1324                          */
1325                         return 0;
1326                 }
1327
1328                 error = -ERESTART_RESTARTBLOCK;
1329         }
1330
1331         return error;
1332 }
1333
1334 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1335
1336 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1337                             struct timespec *rqtp, struct timespec __user *rmtp)
1338 {
1339         struct restart_block *restart_block =
1340                 &current_thread_info()->restart_block;
1341         struct itimerspec it;
1342         int error;
1343
1344         /*
1345          * Diagnose required errors first.
1346          */
1347         if (CPUCLOCK_PERTHREAD(which_clock) &&
1348             (CPUCLOCK_PID(which_clock) == 0 ||
1349              CPUCLOCK_PID(which_clock) == current->pid))
1350                 return -EINVAL;
1351
1352         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1353
1354         if (error == -ERESTART_RESTARTBLOCK) {
1355
1356                 if (flags & TIMER_ABSTIME)
1357                         return -ERESTARTNOHAND;
1358                 /*
1359                  * Report back to the user the time still remaining.
1360                  */
1361                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1362                         return -EFAULT;
1363
1364                 restart_block->fn = posix_cpu_nsleep_restart;
1365                 restart_block->nanosleep.clockid = which_clock;
1366                 restart_block->nanosleep.rmtp = rmtp;
1367                 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1368         }
1369         return error;
1370 }
1371
1372 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1373 {
1374         clockid_t which_clock = restart_block->nanosleep.clockid;
1375         struct timespec t;
1376         struct itimerspec it;
1377         int error;
1378
1379         t = ns_to_timespec(restart_block->nanosleep.expires);
1380
1381         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1382
1383         if (error == -ERESTART_RESTARTBLOCK) {
1384                 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1385                 /*
1386                  * Report back to the user the time still remaining.
1387                  */
1388                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1389                         return -EFAULT;
1390
1391                 restart_block->nanosleep.expires = timespec_to_ns(&t);
1392         }
1393         return error;
1394
1395 }
1396
1397 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1398 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1399
1400 static int process_cpu_clock_getres(const clockid_t which_clock,
1401                                     struct timespec *tp)
1402 {
1403         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1404 }
1405 static int process_cpu_clock_get(const clockid_t which_clock,
1406                                  struct timespec *tp)
1407 {
1408         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1409 }
1410 static int process_cpu_timer_create(struct k_itimer *timer)
1411 {
1412         timer->it_clock = PROCESS_CLOCK;
1413         return posix_cpu_timer_create(timer);
1414 }
1415 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1416                               struct timespec *rqtp,
1417                               struct timespec __user *rmtp)
1418 {
1419         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1420 }
1421 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1422 {
1423         return -EINVAL;
1424 }
1425 static int thread_cpu_clock_getres(const clockid_t which_clock,
1426                                    struct timespec *tp)
1427 {
1428         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1429 }
1430 static int thread_cpu_clock_get(const clockid_t which_clock,
1431                                 struct timespec *tp)
1432 {
1433         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1434 }
1435 static int thread_cpu_timer_create(struct k_itimer *timer)
1436 {
1437         timer->it_clock = THREAD_CLOCK;
1438         return posix_cpu_timer_create(timer);
1439 }
1440
1441 struct k_clock clock_posix_cpu = {
1442         .clock_getres   = posix_cpu_clock_getres,
1443         .clock_set      = posix_cpu_clock_set,
1444         .clock_get      = posix_cpu_clock_get,
1445         .timer_create   = posix_cpu_timer_create,
1446         .nsleep         = posix_cpu_nsleep,
1447         .nsleep_restart = posix_cpu_nsleep_restart,
1448         .timer_set      = posix_cpu_timer_set,
1449         .timer_del      = posix_cpu_timer_del,
1450         .timer_get      = posix_cpu_timer_get,
1451 };
1452
1453 static __init int init_posix_cpu_timers(void)
1454 {
1455         struct k_clock process = {
1456                 .clock_getres   = process_cpu_clock_getres,
1457                 .clock_get      = process_cpu_clock_get,
1458                 .timer_create   = process_cpu_timer_create,
1459                 .nsleep         = process_cpu_nsleep,
1460                 .nsleep_restart = process_cpu_nsleep_restart,
1461         };
1462         struct k_clock thread = {
1463                 .clock_getres   = thread_cpu_clock_getres,
1464                 .clock_get      = thread_cpu_clock_get,
1465                 .timer_create   = thread_cpu_timer_create,
1466         };
1467         struct timespec ts;
1468
1469         posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1470         posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1471
1472         cputime_to_timespec(cputime_one_jiffy, &ts);
1473         onecputick = ts.tv_nsec;
1474         WARN_ON(ts.tv_sec != 0);
1475
1476         return 0;
1477 }
1478 __initcall(init_posix_cpu_timers);