posix-timers: Consolidate posix_cpu_clock_get()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24         cputime_t cputime = secs_to_cputime(rlim_new);
25
26         spin_lock_irq(&task->sighand->siglock);
27         set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28         spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33         int error = 0;
34         struct task_struct *p;
35         const pid_t pid = CPUCLOCK_PID(which_clock);
36
37         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38                 return -EINVAL;
39
40         if (pid == 0)
41                 return 0;
42
43         rcu_read_lock();
44         p = find_task_by_vpid(pid);
45         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46                    same_thread_group(p, current) : has_group_leader_pid(p))) {
47                 error = -EINVAL;
48         }
49         rcu_read_unlock();
50
51         return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57         unsigned long long ret;
58
59         ret = 0;                /* high half always zero when .cpu used */
60         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61                 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62         } else {
63                 ret = cputime_to_expires(timespec_to_cputime(tp));
64         }
65         return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69                                unsigned long long expires,
70                                struct timespec *tp)
71 {
72         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73                 *tp = ns_to_timespec(expires);
74         else
75                 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83                            unsigned long long now)
84 {
85         int i;
86         unsigned long long delta, incr;
87
88         if (timer->it.cpu.incr == 0)
89                 return;
90
91         if (now < timer->it.cpu.expires)
92                 return;
93
94         incr = timer->it.cpu.incr;
95         delta = now + incr - timer->it.cpu.expires;
96
97         /* Don't use (incr*2 < delta), incr*2 might overflow. */
98         for (i = 0; incr < delta - incr; i++)
99                 incr = incr << 1;
100
101         for (; i >= 0; incr >>= 1, i--) {
102                 if (delta < incr)
103                         continue;
104
105                 timer->it.cpu.expires += incr;
106                 timer->it_overrun += 1 << i;
107                 delta -= incr;
108         }
109 }
110
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:    The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122                 return 1;
123         return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128         cputime_t utime, stime;
129
130         task_cputime(p, &utime, &stime);
131
132         return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136         cputime_t utime;
137
138         task_cputime(p, &utime, NULL);
139
140         return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146         int error = check_clock(which_clock);
147         if (!error) {
148                 tp->tv_sec = 0;
149                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151                         /*
152                          * If sched_clock is using a cycle counter, we
153                          * don't have any idea of its true resolution
154                          * exported, but it is much more than 1s/HZ.
155                          */
156                         tp->tv_nsec = 1;
157                 }
158         }
159         return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165         /*
166          * You can never reset a CPU clock, but we check for other errors
167          * in the call before failing with EPERM.
168          */
169         int error = check_clock(which_clock);
170         if (error == 0) {
171                 error = -EPERM;
172         }
173         return error;
174 }
175
176
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181                             unsigned long long *sample)
182 {
183         switch (CPUCLOCK_WHICH(which_clock)) {
184         default:
185                 return -EINVAL;
186         case CPUCLOCK_PROF:
187                 *sample = prof_ticks(p);
188                 break;
189         case CPUCLOCK_VIRT:
190                 *sample = virt_ticks(p);
191                 break;
192         case CPUCLOCK_SCHED:
193                 *sample = task_sched_runtime(p);
194                 break;
195         }
196         return 0;
197 }
198
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201         if (b->utime > a->utime)
202                 a->utime = b->utime;
203
204         if (b->stime > a->stime)
205                 a->stime = b->stime;
206
207         if (b->sum_exec_runtime > a->sum_exec_runtime)
208                 a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214         struct task_cputime sum;
215         unsigned long flags;
216
217         if (!cputimer->running) {
218                 /*
219                  * The POSIX timer interface allows for absolute time expiry
220                  * values through the TIMER_ABSTIME flag, therefore we have
221                  * to synchronize the timer to the clock every time we start
222                  * it.
223                  */
224                 thread_group_cputime(tsk, &sum);
225                 raw_spin_lock_irqsave(&cputimer->lock, flags);
226                 cputimer->running = 1;
227                 update_gt_cputime(&cputimer->cputime, &sum);
228         } else
229                 raw_spin_lock_irqsave(&cputimer->lock, flags);
230         *times = cputimer->cputime;
231         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233
234 /*
235  * Sample a process (thread group) clock for the given group_leader task.
236  * Must be called with tasklist_lock held for reading.
237  */
238 static int cpu_clock_sample_group(const clockid_t which_clock,
239                                   struct task_struct *p,
240                                   unsigned long long *sample)
241 {
242         struct task_cputime cputime;
243
244         switch (CPUCLOCK_WHICH(which_clock)) {
245         default:
246                 return -EINVAL;
247         case CPUCLOCK_PROF:
248                 thread_group_cputime(p, &cputime);
249                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
250                 break;
251         case CPUCLOCK_VIRT:
252                 thread_group_cputime(p, &cputime);
253                 *sample = cputime_to_expires(cputime.utime);
254                 break;
255         case CPUCLOCK_SCHED:
256                 thread_group_cputime(p, &cputime);
257                 *sample = cputime.sum_exec_runtime;
258                 break;
259         }
260         return 0;
261 }
262
263 static int posix_cpu_clock_get_task(struct task_struct *tsk,
264                                     const clockid_t which_clock,
265                                     struct timespec *tp)
266 {
267         int err = -EINVAL;
268         unsigned long long rtn;
269
270         if (CPUCLOCK_PERTHREAD(which_clock)) {
271                 if (same_thread_group(tsk, current))
272                         err = cpu_clock_sample(which_clock, tsk, &rtn);
273         } else {
274                 read_lock(&tasklist_lock);
275
276                 if (tsk->sighand && (tsk == current || thread_group_leader(tsk)))
277                         err = cpu_clock_sample_group(which_clock, tsk, &rtn);
278
279                 read_unlock(&tasklist_lock);
280         }
281
282         if (!err)
283                 sample_to_timespec(which_clock, rtn, tp);
284
285         return err;
286 }
287
288
289 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
290 {
291         const pid_t pid = CPUCLOCK_PID(which_clock);
292         int err = -EINVAL;
293
294         if (pid == 0) {
295                 /*
296                  * Special case constant value for our own clocks.
297                  * We don't have to do any lookup to find ourselves.
298                  */
299                 err = posix_cpu_clock_get_task(current, which_clock, tp);
300         } else {
301                 /*
302                  * Find the given PID, and validate that the caller
303                  * should be able to see it.
304                  */
305                 struct task_struct *p;
306                 rcu_read_lock();
307                 p = find_task_by_vpid(pid);
308                 if (p)
309                         err = posix_cpu_clock_get_task(p, which_clock, tp);
310                 rcu_read_unlock();
311         }
312
313         return err;
314 }
315
316
317 /*
318  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
320  * new timer already all-zeros initialized.
321  */
322 static int posix_cpu_timer_create(struct k_itimer *new_timer)
323 {
324         int ret = 0;
325         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
326         struct task_struct *p;
327
328         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
329                 return -EINVAL;
330
331         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
332
333         rcu_read_lock();
334         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
335                 if (pid == 0) {
336                         p = current;
337                 } else {
338                         p = find_task_by_vpid(pid);
339                         if (p && !same_thread_group(p, current))
340                                 p = NULL;
341                 }
342         } else {
343                 if (pid == 0) {
344                         p = current->group_leader;
345                 } else {
346                         p = find_task_by_vpid(pid);
347                         if (p && !has_group_leader_pid(p))
348                                 p = NULL;
349                 }
350         }
351         new_timer->it.cpu.task = p;
352         if (p) {
353                 get_task_struct(p);
354         } else {
355                 ret = -EINVAL;
356         }
357         rcu_read_unlock();
358
359         return ret;
360 }
361
362 /*
363  * Clean up a CPU-clock timer that is about to be destroyed.
364  * This is called from timer deletion with the timer already locked.
365  * If we return TIMER_RETRY, it's necessary to release the timer's lock
366  * and try again.  (This happens when the timer is in the middle of firing.)
367  */
368 static int posix_cpu_timer_del(struct k_itimer *timer)
369 {
370         struct task_struct *p = timer->it.cpu.task;
371         int ret = 0;
372
373         WARN_ON_ONCE(p == NULL);
374
375         read_lock(&tasklist_lock);
376         if (unlikely(p->sighand == NULL)) {
377                 /*
378                  * We raced with the reaping of the task.
379                  * The deletion should have cleared us off the list.
380                  */
381                 BUG_ON(!list_empty(&timer->it.cpu.entry));
382         } else {
383                 spin_lock(&p->sighand->siglock);
384                 if (timer->it.cpu.firing)
385                         ret = TIMER_RETRY;
386                 else
387                         list_del(&timer->it.cpu.entry);
388                 spin_unlock(&p->sighand->siglock);
389         }
390         read_unlock(&tasklist_lock);
391
392         if (!ret)
393                 put_task_struct(p);
394
395         return ret;
396 }
397
398 static void cleanup_timers_list(struct list_head *head)
399 {
400         struct cpu_timer_list *timer, *next;
401
402         list_for_each_entry_safe(timer, next, head, entry)
403                 list_del_init(&timer->entry);
404 }
405
406 /*
407  * Clean out CPU timers still ticking when a thread exited.  The task
408  * pointer is cleared, and the expiry time is replaced with the residual
409  * time for later timer_gettime calls to return.
410  * This must be called with the siglock held.
411  */
412 static void cleanup_timers(struct list_head *head)
413 {
414         cleanup_timers_list(head);
415         cleanup_timers_list(++head);
416         cleanup_timers_list(++head);
417 }
418
419 /*
420  * These are both called with the siglock held, when the current thread
421  * is being reaped.  When the final (leader) thread in the group is reaped,
422  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
423  */
424 void posix_cpu_timers_exit(struct task_struct *tsk)
425 {
426         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
427                                                 sizeof(unsigned long long));
428         cleanup_timers(tsk->cpu_timers);
429
430 }
431 void posix_cpu_timers_exit_group(struct task_struct *tsk)
432 {
433         cleanup_timers(tsk->signal->cpu_timers);
434 }
435
436 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
437 {
438         return expires == 0 || expires > new_exp;
439 }
440
441 /*
442  * Insert the timer on the appropriate list before any timers that
443  * expire later.  This must be called with the tasklist_lock held
444  * for reading, interrupts disabled and p->sighand->siglock taken.
445  */
446 static void arm_timer(struct k_itimer *timer)
447 {
448         struct task_struct *p = timer->it.cpu.task;
449         struct list_head *head, *listpos;
450         struct task_cputime *cputime_expires;
451         struct cpu_timer_list *const nt = &timer->it.cpu;
452         struct cpu_timer_list *next;
453
454         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
455                 head = p->cpu_timers;
456                 cputime_expires = &p->cputime_expires;
457         } else {
458                 head = p->signal->cpu_timers;
459                 cputime_expires = &p->signal->cputime_expires;
460         }
461         head += CPUCLOCK_WHICH(timer->it_clock);
462
463         listpos = head;
464         list_for_each_entry(next, head, entry) {
465                 if (nt->expires < next->expires)
466                         break;
467                 listpos = &next->entry;
468         }
469         list_add(&nt->entry, listpos);
470
471         if (listpos == head) {
472                 unsigned long long exp = nt->expires;
473
474                 /*
475                  * We are the new earliest-expiring POSIX 1.b timer, hence
476                  * need to update expiration cache. Take into account that
477                  * for process timers we share expiration cache with itimers
478                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
479                  */
480
481                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
482                 case CPUCLOCK_PROF:
483                         if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
484                                 cputime_expires->prof_exp = expires_to_cputime(exp);
485                         break;
486                 case CPUCLOCK_VIRT:
487                         if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
488                                 cputime_expires->virt_exp = expires_to_cputime(exp);
489                         break;
490                 case CPUCLOCK_SCHED:
491                         if (cputime_expires->sched_exp == 0 ||
492                             cputime_expires->sched_exp > exp)
493                                 cputime_expires->sched_exp = exp;
494                         break;
495                 }
496         }
497 }
498
499 /*
500  * The timer is locked, fire it and arrange for its reload.
501  */
502 static void cpu_timer_fire(struct k_itimer *timer)
503 {
504         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
505                 /*
506                  * User don't want any signal.
507                  */
508                 timer->it.cpu.expires = 0;
509         } else if (unlikely(timer->sigq == NULL)) {
510                 /*
511                  * This a special case for clock_nanosleep,
512                  * not a normal timer from sys_timer_create.
513                  */
514                 wake_up_process(timer->it_process);
515                 timer->it.cpu.expires = 0;
516         } else if (timer->it.cpu.incr == 0) {
517                 /*
518                  * One-shot timer.  Clear it as soon as it's fired.
519                  */
520                 posix_timer_event(timer, 0);
521                 timer->it.cpu.expires = 0;
522         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
523                 /*
524                  * The signal did not get queued because the signal
525                  * was ignored, so we won't get any callback to
526                  * reload the timer.  But we need to keep it
527                  * ticking in case the signal is deliverable next time.
528                  */
529                 posix_cpu_timer_schedule(timer);
530         }
531 }
532
533 /*
534  * Sample a process (thread group) timer for the given group_leader task.
535  * Must be called with tasklist_lock held for reading.
536  */
537 static int cpu_timer_sample_group(const clockid_t which_clock,
538                                   struct task_struct *p,
539                                   unsigned long long *sample)
540 {
541         struct task_cputime cputime;
542
543         thread_group_cputimer(p, &cputime);
544         switch (CPUCLOCK_WHICH(which_clock)) {
545         default:
546                 return -EINVAL;
547         case CPUCLOCK_PROF:
548                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
549                 break;
550         case CPUCLOCK_VIRT:
551                 *sample = cputime_to_expires(cputime.utime);
552                 break;
553         case CPUCLOCK_SCHED:
554                 *sample = cputime.sum_exec_runtime + task_delta_exec(p);
555                 break;
556         }
557         return 0;
558 }
559
560 #ifdef CONFIG_NO_HZ_FULL
561 static void nohz_kick_work_fn(struct work_struct *work)
562 {
563         tick_nohz_full_kick_all();
564 }
565
566 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
567
568 /*
569  * We need the IPIs to be sent from sane process context.
570  * The posix cpu timers are always set with irqs disabled.
571  */
572 static void posix_cpu_timer_kick_nohz(void)
573 {
574         if (context_tracking_is_enabled())
575                 schedule_work(&nohz_kick_work);
576 }
577
578 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
579 {
580         if (!task_cputime_zero(&tsk->cputime_expires))
581                 return false;
582
583         if (tsk->signal->cputimer.running)
584                 return false;
585
586         return true;
587 }
588 #else
589 static inline void posix_cpu_timer_kick_nohz(void) { }
590 #endif
591
592 /*
593  * Guts of sys_timer_settime for CPU timers.
594  * This is called with the timer locked and interrupts disabled.
595  * If we return TIMER_RETRY, it's necessary to release the timer's lock
596  * and try again.  (This happens when the timer is in the middle of firing.)
597  */
598 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
599                                struct itimerspec *new, struct itimerspec *old)
600 {
601         struct task_struct *p = timer->it.cpu.task;
602         unsigned long long old_expires, new_expires, old_incr, val;
603         int ret;
604
605         WARN_ON_ONCE(p == NULL);
606
607         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
608
609         read_lock(&tasklist_lock);
610         /*
611          * We need the tasklist_lock to protect against reaping that
612          * clears p->sighand.  If p has just been reaped, we can no
613          * longer get any information about it at all.
614          */
615         if (unlikely(p->sighand == NULL)) {
616                 read_unlock(&tasklist_lock);
617                 return -ESRCH;
618         }
619
620         /*
621          * Disarm any old timer after extracting its expiry time.
622          */
623         BUG_ON(!irqs_disabled());
624
625         ret = 0;
626         old_incr = timer->it.cpu.incr;
627         spin_lock(&p->sighand->siglock);
628         old_expires = timer->it.cpu.expires;
629         if (unlikely(timer->it.cpu.firing)) {
630                 timer->it.cpu.firing = -1;
631                 ret = TIMER_RETRY;
632         } else
633                 list_del_init(&timer->it.cpu.entry);
634
635         /*
636          * We need to sample the current value to convert the new
637          * value from to relative and absolute, and to convert the
638          * old value from absolute to relative.  To set a process
639          * timer, we need a sample to balance the thread expiry
640          * times (in arm_timer).  With an absolute time, we must
641          * check if it's already passed.  In short, we need a sample.
642          */
643         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
644                 cpu_clock_sample(timer->it_clock, p, &val);
645         } else {
646                 cpu_timer_sample_group(timer->it_clock, p, &val);
647         }
648
649         if (old) {
650                 if (old_expires == 0) {
651                         old->it_value.tv_sec = 0;
652                         old->it_value.tv_nsec = 0;
653                 } else {
654                         /*
655                          * Update the timer in case it has
656                          * overrun already.  If it has,
657                          * we'll report it as having overrun
658                          * and with the next reloaded timer
659                          * already ticking, though we are
660                          * swallowing that pending
661                          * notification here to install the
662                          * new setting.
663                          */
664                         bump_cpu_timer(timer, val);
665                         if (val < timer->it.cpu.expires) {
666                                 old_expires = timer->it.cpu.expires - val;
667                                 sample_to_timespec(timer->it_clock,
668                                                    old_expires,
669                                                    &old->it_value);
670                         } else {
671                                 old->it_value.tv_nsec = 1;
672                                 old->it_value.tv_sec = 0;
673                         }
674                 }
675         }
676
677         if (unlikely(ret)) {
678                 /*
679                  * We are colliding with the timer actually firing.
680                  * Punt after filling in the timer's old value, and
681                  * disable this firing since we are already reporting
682                  * it as an overrun (thanks to bump_cpu_timer above).
683                  */
684                 spin_unlock(&p->sighand->siglock);
685                 read_unlock(&tasklist_lock);
686                 goto out;
687         }
688
689         if (new_expires != 0 && !(flags & TIMER_ABSTIME)) {
690                 new_expires += val;
691         }
692
693         /*
694          * Install the new expiry time (or zero).
695          * For a timer with no notification action, we don't actually
696          * arm the timer (we'll just fake it for timer_gettime).
697          */
698         timer->it.cpu.expires = new_expires;
699         if (new_expires != 0 && val < new_expires) {
700                 arm_timer(timer);
701         }
702
703         spin_unlock(&p->sighand->siglock);
704         read_unlock(&tasklist_lock);
705
706         /*
707          * Install the new reload setting, and
708          * set up the signal and overrun bookkeeping.
709          */
710         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
711                                                 &new->it_interval);
712
713         /*
714          * This acts as a modification timestamp for the timer,
715          * so any automatic reload attempt will punt on seeing
716          * that we have reset the timer manually.
717          */
718         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
719                 ~REQUEUE_PENDING;
720         timer->it_overrun_last = 0;
721         timer->it_overrun = -1;
722
723         if (new_expires != 0 && !(val < new_expires)) {
724                 /*
725                  * The designated time already passed, so we notify
726                  * immediately, even if the thread never runs to
727                  * accumulate more time on this clock.
728                  */
729                 cpu_timer_fire(timer);
730         }
731
732         ret = 0;
733  out:
734         if (old) {
735                 sample_to_timespec(timer->it_clock,
736                                    old_incr, &old->it_interval);
737         }
738         if (!ret)
739                 posix_cpu_timer_kick_nohz();
740         return ret;
741 }
742
743 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
744 {
745         unsigned long long now;
746         struct task_struct *p = timer->it.cpu.task;
747
748         WARN_ON_ONCE(p == NULL);
749
750         /*
751          * Easy part: convert the reload time.
752          */
753         sample_to_timespec(timer->it_clock,
754                            timer->it.cpu.incr, &itp->it_interval);
755
756         if (timer->it.cpu.expires == 0) {       /* Timer not armed at all.  */
757                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
758                 return;
759         }
760
761         /*
762          * Sample the clock to take the difference with the expiry time.
763          */
764         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
765                 cpu_clock_sample(timer->it_clock, p, &now);
766         } else {
767                 read_lock(&tasklist_lock);
768                 if (unlikely(p->sighand == NULL)) {
769                         /*
770                          * The process has been reaped.
771                          * We can't even collect a sample any more.
772                          * Call the timer disarmed, nothing else to do.
773                          */
774                         timer->it.cpu.expires = 0;
775                         sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
776                                            &itp->it_value);
777                         read_unlock(&tasklist_lock);
778                 } else {
779                         cpu_timer_sample_group(timer->it_clock, p, &now);
780                 }
781                 read_unlock(&tasklist_lock);
782         }
783
784         if (now < timer->it.cpu.expires) {
785                 sample_to_timespec(timer->it_clock,
786                                    timer->it.cpu.expires - now,
787                                    &itp->it_value);
788         } else {
789                 /*
790                  * The timer should have expired already, but the firing
791                  * hasn't taken place yet.  Say it's just about to expire.
792                  */
793                 itp->it_value.tv_nsec = 1;
794                 itp->it_value.tv_sec = 0;
795         }
796 }
797
798 static unsigned long long
799 check_timers_list(struct list_head *timers,
800                   struct list_head *firing,
801                   unsigned long long curr)
802 {
803         int maxfire = 20;
804
805         while (!list_empty(timers)) {
806                 struct cpu_timer_list *t;
807
808                 t = list_first_entry(timers, struct cpu_timer_list, entry);
809
810                 if (!--maxfire || curr < t->expires)
811                         return t->expires;
812
813                 t->firing = 1;
814                 list_move_tail(&t->entry, firing);
815         }
816
817         return 0;
818 }
819
820 /*
821  * Check for any per-thread CPU timers that have fired and move them off
822  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
823  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
824  */
825 static void check_thread_timers(struct task_struct *tsk,
826                                 struct list_head *firing)
827 {
828         struct list_head *timers = tsk->cpu_timers;
829         struct signal_struct *const sig = tsk->signal;
830         struct task_cputime *tsk_expires = &tsk->cputime_expires;
831         unsigned long long expires;
832         unsigned long soft;
833
834         expires = check_timers_list(timers, firing, prof_ticks(tsk));
835         tsk_expires->prof_exp = expires_to_cputime(expires);
836
837         expires = check_timers_list(++timers, firing, virt_ticks(tsk));
838         tsk_expires->virt_exp = expires_to_cputime(expires);
839
840         tsk_expires->sched_exp = check_timers_list(++timers, firing,
841                                                    tsk->se.sum_exec_runtime);
842
843         /*
844          * Check for the special case thread timers.
845          */
846         soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
847         if (soft != RLIM_INFINITY) {
848                 unsigned long hard =
849                         ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
850
851                 if (hard != RLIM_INFINITY &&
852                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
853                         /*
854                          * At the hard limit, we just die.
855                          * No need to calculate anything else now.
856                          */
857                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
858                         return;
859                 }
860                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
861                         /*
862                          * At the soft limit, send a SIGXCPU every second.
863                          */
864                         if (soft < hard) {
865                                 soft += USEC_PER_SEC;
866                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
867                         }
868                         printk(KERN_INFO
869                                 "RT Watchdog Timeout: %s[%d]\n",
870                                 tsk->comm, task_pid_nr(tsk));
871                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
872                 }
873         }
874 }
875
876 static void stop_process_timers(struct signal_struct *sig)
877 {
878         struct thread_group_cputimer *cputimer = &sig->cputimer;
879         unsigned long flags;
880
881         raw_spin_lock_irqsave(&cputimer->lock, flags);
882         cputimer->running = 0;
883         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
884 }
885
886 static u32 onecputick;
887
888 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
889                              unsigned long long *expires,
890                              unsigned long long cur_time, int signo)
891 {
892         if (!it->expires)
893                 return;
894
895         if (cur_time >= it->expires) {
896                 if (it->incr) {
897                         it->expires += it->incr;
898                         it->error += it->incr_error;
899                         if (it->error >= onecputick) {
900                                 it->expires -= cputime_one_jiffy;
901                                 it->error -= onecputick;
902                         }
903                 } else {
904                         it->expires = 0;
905                 }
906
907                 trace_itimer_expire(signo == SIGPROF ?
908                                     ITIMER_PROF : ITIMER_VIRTUAL,
909                                     tsk->signal->leader_pid, cur_time);
910                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
911         }
912
913         if (it->expires && (!*expires || it->expires < *expires)) {
914                 *expires = it->expires;
915         }
916 }
917
918 /*
919  * Check for any per-thread CPU timers that have fired and move them
920  * off the tsk->*_timers list onto the firing list.  Per-thread timers
921  * have already been taken off.
922  */
923 static void check_process_timers(struct task_struct *tsk,
924                                  struct list_head *firing)
925 {
926         struct signal_struct *const sig = tsk->signal;
927         unsigned long long utime, ptime, virt_expires, prof_expires;
928         unsigned long long sum_sched_runtime, sched_expires;
929         struct list_head *timers = sig->cpu_timers;
930         struct task_cputime cputime;
931         unsigned long soft;
932
933         /*
934          * Collect the current process totals.
935          */
936         thread_group_cputimer(tsk, &cputime);
937         utime = cputime_to_expires(cputime.utime);
938         ptime = utime + cputime_to_expires(cputime.stime);
939         sum_sched_runtime = cputime.sum_exec_runtime;
940
941         prof_expires = check_timers_list(timers, firing, ptime);
942         virt_expires = check_timers_list(++timers, firing, utime);
943         sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
944
945         /*
946          * Check for the special case process timers.
947          */
948         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
949                          SIGPROF);
950         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
951                          SIGVTALRM);
952         soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
953         if (soft != RLIM_INFINITY) {
954                 unsigned long psecs = cputime_to_secs(ptime);
955                 unsigned long hard =
956                         ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
957                 cputime_t x;
958                 if (psecs >= hard) {
959                         /*
960                          * At the hard limit, we just die.
961                          * No need to calculate anything else now.
962                          */
963                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
964                         return;
965                 }
966                 if (psecs >= soft) {
967                         /*
968                          * At the soft limit, send a SIGXCPU every second.
969                          */
970                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
971                         if (soft < hard) {
972                                 soft++;
973                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
974                         }
975                 }
976                 x = secs_to_cputime(soft);
977                 if (!prof_expires || x < prof_expires) {
978                         prof_expires = x;
979                 }
980         }
981
982         sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
983         sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
984         sig->cputime_expires.sched_exp = sched_expires;
985         if (task_cputime_zero(&sig->cputime_expires))
986                 stop_process_timers(sig);
987 }
988
989 /*
990  * This is called from the signal code (via do_schedule_next_timer)
991  * when the last timer signal was delivered and we have to reload the timer.
992  */
993 void posix_cpu_timer_schedule(struct k_itimer *timer)
994 {
995         struct task_struct *p = timer->it.cpu.task;
996         unsigned long long now;
997
998         WARN_ON_ONCE(p == NULL);
999
1000         /*
1001          * Fetch the current sample and update the timer's expiry time.
1002          */
1003         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1004                 cpu_clock_sample(timer->it_clock, p, &now);
1005                 bump_cpu_timer(timer, now);
1006                 if (unlikely(p->exit_state))
1007                         goto out;
1008
1009                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1010                 spin_lock(&p->sighand->siglock);
1011         } else {
1012                 read_lock(&tasklist_lock);
1013                 if (unlikely(p->sighand == NULL)) {
1014                         /*
1015                          * The process has been reaped.
1016                          * We can't even collect a sample any more.
1017                          */
1018                         timer->it.cpu.expires = 0;
1019                         read_unlock(&tasklist_lock);
1020                         goto out;
1021                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1022                         read_unlock(&tasklist_lock);
1023                         /* Optimizations: if the process is dying, no need to rearm */
1024                         goto out;
1025                 }
1026                 spin_lock(&p->sighand->siglock);
1027                 cpu_timer_sample_group(timer->it_clock, p, &now);
1028                 bump_cpu_timer(timer, now);
1029                 /* Leave the tasklist_lock locked for the call below.  */
1030         }
1031
1032         /*
1033          * Now re-arm for the new expiry time.
1034          */
1035         BUG_ON(!irqs_disabled());
1036         arm_timer(timer);
1037         spin_unlock(&p->sighand->siglock);
1038         read_unlock(&tasklist_lock);
1039
1040         /* Kick full dynticks CPUs in case they need to tick on the new timer */
1041         posix_cpu_timer_kick_nohz();
1042
1043 out:
1044         timer->it_overrun_last = timer->it_overrun;
1045         timer->it_overrun = -1;
1046         ++timer->it_requeue_pending;
1047 }
1048
1049 /**
1050  * task_cputime_expired - Compare two task_cputime entities.
1051  *
1052  * @sample:     The task_cputime structure to be checked for expiration.
1053  * @expires:    Expiration times, against which @sample will be checked.
1054  *
1055  * Checks @sample against @expires to see if any field of @sample has expired.
1056  * Returns true if any field of the former is greater than the corresponding
1057  * field of the latter if the latter field is set.  Otherwise returns false.
1058  */
1059 static inline int task_cputime_expired(const struct task_cputime *sample,
1060                                         const struct task_cputime *expires)
1061 {
1062         if (expires->utime && sample->utime >= expires->utime)
1063                 return 1;
1064         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1065                 return 1;
1066         if (expires->sum_exec_runtime != 0 &&
1067             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1068                 return 1;
1069         return 0;
1070 }
1071
1072 /**
1073  * fastpath_timer_check - POSIX CPU timers fast path.
1074  *
1075  * @tsk:        The task (thread) being checked.
1076  *
1077  * Check the task and thread group timers.  If both are zero (there are no
1078  * timers set) return false.  Otherwise snapshot the task and thread group
1079  * timers and compare them with the corresponding expiration times.  Return
1080  * true if a timer has expired, else return false.
1081  */
1082 static inline int fastpath_timer_check(struct task_struct *tsk)
1083 {
1084         struct signal_struct *sig;
1085         cputime_t utime, stime;
1086
1087         task_cputime(tsk, &utime, &stime);
1088
1089         if (!task_cputime_zero(&tsk->cputime_expires)) {
1090                 struct task_cputime task_sample = {
1091                         .utime = utime,
1092                         .stime = stime,
1093                         .sum_exec_runtime = tsk->se.sum_exec_runtime
1094                 };
1095
1096                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1097                         return 1;
1098         }
1099
1100         sig = tsk->signal;
1101         if (sig->cputimer.running) {
1102                 struct task_cputime group_sample;
1103
1104                 raw_spin_lock(&sig->cputimer.lock);
1105                 group_sample = sig->cputimer.cputime;
1106                 raw_spin_unlock(&sig->cputimer.lock);
1107
1108                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1109                         return 1;
1110         }
1111
1112         return 0;
1113 }
1114
1115 /*
1116  * This is called from the timer interrupt handler.  The irq handler has
1117  * already updated our counts.  We need to check if any timers fire now.
1118  * Interrupts are disabled.
1119  */
1120 void run_posix_cpu_timers(struct task_struct *tsk)
1121 {
1122         LIST_HEAD(firing);
1123         struct k_itimer *timer, *next;
1124         unsigned long flags;
1125
1126         BUG_ON(!irqs_disabled());
1127
1128         /*
1129          * The fast path checks that there are no expired thread or thread
1130          * group timers.  If that's so, just return.
1131          */
1132         if (!fastpath_timer_check(tsk))
1133                 return;
1134
1135         if (!lock_task_sighand(tsk, &flags))
1136                 return;
1137         /*
1138          * Here we take off tsk->signal->cpu_timers[N] and
1139          * tsk->cpu_timers[N] all the timers that are firing, and
1140          * put them on the firing list.
1141          */
1142         check_thread_timers(tsk, &firing);
1143         /*
1144          * If there are any active process wide timers (POSIX 1.b, itimers,
1145          * RLIMIT_CPU) cputimer must be running.
1146          */
1147         if (tsk->signal->cputimer.running)
1148                 check_process_timers(tsk, &firing);
1149
1150         /*
1151          * We must release these locks before taking any timer's lock.
1152          * There is a potential race with timer deletion here, as the
1153          * siglock now protects our private firing list.  We have set
1154          * the firing flag in each timer, so that a deletion attempt
1155          * that gets the timer lock before we do will give it up and
1156          * spin until we've taken care of that timer below.
1157          */
1158         unlock_task_sighand(tsk, &flags);
1159
1160         /*
1161          * Now that all the timers on our list have the firing flag,
1162          * no one will touch their list entries but us.  We'll take
1163          * each timer's lock before clearing its firing flag, so no
1164          * timer call will interfere.
1165          */
1166         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1167                 int cpu_firing;
1168
1169                 spin_lock(&timer->it_lock);
1170                 list_del_init(&timer->it.cpu.entry);
1171                 cpu_firing = timer->it.cpu.firing;
1172                 timer->it.cpu.firing = 0;
1173                 /*
1174                  * The firing flag is -1 if we collided with a reset
1175                  * of the timer, which already reported this
1176                  * almost-firing as an overrun.  So don't generate an event.
1177                  */
1178                 if (likely(cpu_firing >= 0))
1179                         cpu_timer_fire(timer);
1180                 spin_unlock(&timer->it_lock);
1181         }
1182 }
1183
1184 /*
1185  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1186  * The tsk->sighand->siglock must be held by the caller.
1187  */
1188 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1189                            cputime_t *newval, cputime_t *oldval)
1190 {
1191         unsigned long long now;
1192
1193         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1194         cpu_timer_sample_group(clock_idx, tsk, &now);
1195
1196         if (oldval) {
1197                 /*
1198                  * We are setting itimer. The *oldval is absolute and we update
1199                  * it to be relative, *newval argument is relative and we update
1200                  * it to be absolute.
1201                  */
1202                 if (*oldval) {
1203                         if (*oldval <= now) {
1204                                 /* Just about to fire. */
1205                                 *oldval = cputime_one_jiffy;
1206                         } else {
1207                                 *oldval -= now;
1208                         }
1209                 }
1210
1211                 if (!*newval)
1212                         goto out;
1213                 *newval += now;
1214         }
1215
1216         /*
1217          * Update expiration cache if we are the earliest timer, or eventually
1218          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1219          */
1220         switch (clock_idx) {
1221         case CPUCLOCK_PROF:
1222                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1223                         tsk->signal->cputime_expires.prof_exp = *newval;
1224                 break;
1225         case CPUCLOCK_VIRT:
1226                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1227                         tsk->signal->cputime_expires.virt_exp = *newval;
1228                 break;
1229         }
1230 out:
1231         posix_cpu_timer_kick_nohz();
1232 }
1233
1234 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1235                             struct timespec *rqtp, struct itimerspec *it)
1236 {
1237         struct k_itimer timer;
1238         int error;
1239
1240         /*
1241          * Set up a temporary timer and then wait for it to go off.
1242          */
1243         memset(&timer, 0, sizeof timer);
1244         spin_lock_init(&timer.it_lock);
1245         timer.it_clock = which_clock;
1246         timer.it_overrun = -1;
1247         error = posix_cpu_timer_create(&timer);
1248         timer.it_process = current;
1249         if (!error) {
1250                 static struct itimerspec zero_it;
1251
1252                 memset(it, 0, sizeof *it);
1253                 it->it_value = *rqtp;
1254
1255                 spin_lock_irq(&timer.it_lock);
1256                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1257                 if (error) {
1258                         spin_unlock_irq(&timer.it_lock);
1259                         return error;
1260                 }
1261
1262                 while (!signal_pending(current)) {
1263                         if (timer.it.cpu.expires == 0) {
1264                                 /*
1265                                  * Our timer fired and was reset, below
1266                                  * deletion can not fail.
1267                                  */
1268                                 posix_cpu_timer_del(&timer);
1269                                 spin_unlock_irq(&timer.it_lock);
1270                                 return 0;
1271                         }
1272
1273                         /*
1274                          * Block until cpu_timer_fire (or a signal) wakes us.
1275                          */
1276                         __set_current_state(TASK_INTERRUPTIBLE);
1277                         spin_unlock_irq(&timer.it_lock);
1278                         schedule();
1279                         spin_lock_irq(&timer.it_lock);
1280                 }
1281
1282                 /*
1283                  * We were interrupted by a signal.
1284                  */
1285                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1286                 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1287                 if (!error) {
1288                         /*
1289                          * Timer is now unarmed, deletion can not fail.
1290                          */
1291                         posix_cpu_timer_del(&timer);
1292                 }
1293                 spin_unlock_irq(&timer.it_lock);
1294
1295                 while (error == TIMER_RETRY) {
1296                         /*
1297                          * We need to handle case when timer was or is in the
1298                          * middle of firing. In other cases we already freed
1299                          * resources.
1300                          */
1301                         spin_lock_irq(&timer.it_lock);
1302                         error = posix_cpu_timer_del(&timer);
1303                         spin_unlock_irq(&timer.it_lock);
1304                 }
1305
1306                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1307                         /*
1308                          * It actually did fire already.
1309                          */
1310                         return 0;
1311                 }
1312
1313                 error = -ERESTART_RESTARTBLOCK;
1314         }
1315
1316         return error;
1317 }
1318
1319 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1320
1321 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1322                             struct timespec *rqtp, struct timespec __user *rmtp)
1323 {
1324         struct restart_block *restart_block =
1325                 &current_thread_info()->restart_block;
1326         struct itimerspec it;
1327         int error;
1328
1329         /*
1330          * Diagnose required errors first.
1331          */
1332         if (CPUCLOCK_PERTHREAD(which_clock) &&
1333             (CPUCLOCK_PID(which_clock) == 0 ||
1334              CPUCLOCK_PID(which_clock) == current->pid))
1335                 return -EINVAL;
1336
1337         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1338
1339         if (error == -ERESTART_RESTARTBLOCK) {
1340
1341                 if (flags & TIMER_ABSTIME)
1342                         return -ERESTARTNOHAND;
1343                 /*
1344                  * Report back to the user the time still remaining.
1345                  */
1346                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1347                         return -EFAULT;
1348
1349                 restart_block->fn = posix_cpu_nsleep_restart;
1350                 restart_block->nanosleep.clockid = which_clock;
1351                 restart_block->nanosleep.rmtp = rmtp;
1352                 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1353         }
1354         return error;
1355 }
1356
1357 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1358 {
1359         clockid_t which_clock = restart_block->nanosleep.clockid;
1360         struct timespec t;
1361         struct itimerspec it;
1362         int error;
1363
1364         t = ns_to_timespec(restart_block->nanosleep.expires);
1365
1366         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1367
1368         if (error == -ERESTART_RESTARTBLOCK) {
1369                 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1370                 /*
1371                  * Report back to the user the time still remaining.
1372                  */
1373                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1374                         return -EFAULT;
1375
1376                 restart_block->nanosleep.expires = timespec_to_ns(&t);
1377         }
1378         return error;
1379
1380 }
1381
1382 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1383 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1384
1385 static int process_cpu_clock_getres(const clockid_t which_clock,
1386                                     struct timespec *tp)
1387 {
1388         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1389 }
1390 static int process_cpu_clock_get(const clockid_t which_clock,
1391                                  struct timespec *tp)
1392 {
1393         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1394 }
1395 static int process_cpu_timer_create(struct k_itimer *timer)
1396 {
1397         timer->it_clock = PROCESS_CLOCK;
1398         return posix_cpu_timer_create(timer);
1399 }
1400 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1401                               struct timespec *rqtp,
1402                               struct timespec __user *rmtp)
1403 {
1404         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1405 }
1406 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1407 {
1408         return -EINVAL;
1409 }
1410 static int thread_cpu_clock_getres(const clockid_t which_clock,
1411                                    struct timespec *tp)
1412 {
1413         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1414 }
1415 static int thread_cpu_clock_get(const clockid_t which_clock,
1416                                 struct timespec *tp)
1417 {
1418         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1419 }
1420 static int thread_cpu_timer_create(struct k_itimer *timer)
1421 {
1422         timer->it_clock = THREAD_CLOCK;
1423         return posix_cpu_timer_create(timer);
1424 }
1425
1426 struct k_clock clock_posix_cpu = {
1427         .clock_getres   = posix_cpu_clock_getres,
1428         .clock_set      = posix_cpu_clock_set,
1429         .clock_get      = posix_cpu_clock_get,
1430         .timer_create   = posix_cpu_timer_create,
1431         .nsleep         = posix_cpu_nsleep,
1432         .nsleep_restart = posix_cpu_nsleep_restart,
1433         .timer_set      = posix_cpu_timer_set,
1434         .timer_del      = posix_cpu_timer_del,
1435         .timer_get      = posix_cpu_timer_get,
1436 };
1437
1438 static __init int init_posix_cpu_timers(void)
1439 {
1440         struct k_clock process = {
1441                 .clock_getres   = process_cpu_clock_getres,
1442                 .clock_get      = process_cpu_clock_get,
1443                 .timer_create   = process_cpu_timer_create,
1444                 .nsleep         = process_cpu_nsleep,
1445                 .nsleep_restart = process_cpu_nsleep_restart,
1446         };
1447         struct k_clock thread = {
1448                 .clock_getres   = thread_cpu_clock_getres,
1449                 .clock_get      = thread_cpu_clock_get,
1450                 .timer_create   = thread_cpu_timer_create,
1451         };
1452         struct timespec ts;
1453
1454         posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1455         posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1456
1457         cputime_to_timespec(cputime_one_jiffy, &ts);
1458         onecputick = ts.tv_nsec;
1459         WARN_ON(ts.tv_sec != 0);
1460
1461         return 0;
1462 }
1463 __initcall(init_posix_cpu_timers);