2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/bootmem.h>
28 #include <linux/hash.h>
30 #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
31 static struct hlist_head *pid_hash[PIDTYPE_MAX];
32 static int pidhash_shift;
34 int pid_max = PID_MAX_DEFAULT;
37 #define RESERVED_PIDS 300
39 int pid_max_min = RESERVED_PIDS + 1;
40 int pid_max_max = PID_MAX_LIMIT;
42 #define PIDMAP_ENTRIES ((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8)
43 #define BITS_PER_PAGE (PAGE_SIZE*8)
44 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
45 #define mk_pid(map, off) (((map) - pidmap_array)*BITS_PER_PAGE + (off))
46 #define find_next_offset(map, off) \
47 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
50 * PID-map pages start out as NULL, they get allocated upon
51 * first use and are never deallocated. This way a low pid_max
52 * value does not cause lots of bitmaps to be allocated, but
53 * the scheme scales to up to 4 million PIDs, runtime.
55 typedef struct pidmap {
60 static pidmap_t pidmap_array[PIDMAP_ENTRIES] =
61 { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } };
63 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
65 fastcall void free_pidmap(int pid)
67 pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE;
68 int offset = pid & BITS_PER_PAGE_MASK;
70 clear_bit(offset, map->page);
71 atomic_inc(&map->nr_free);
74 int alloc_pidmap(void)
76 int i, offset, max_scan, pid, last = last_pid;
82 offset = pid & BITS_PER_PAGE_MASK;
83 map = &pidmap_array[pid/BITS_PER_PAGE];
84 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
85 for (i = 0; i <= max_scan; ++i) {
86 if (unlikely(!map->page)) {
87 unsigned long page = get_zeroed_page(GFP_KERNEL);
89 * Free the page if someone raced with us
92 spin_lock(&pidmap_lock);
96 map->page = (void *)page;
97 spin_unlock(&pidmap_lock);
98 if (unlikely(!map->page))
101 if (likely(atomic_read(&map->nr_free))) {
103 if (!test_and_set_bit(offset, map->page)) {
104 atomic_dec(&map->nr_free);
108 offset = find_next_offset(map, offset);
109 pid = mk_pid(map, offset);
111 * find_next_offset() found a bit, the pid from it
112 * is in-bounds, and if we fell back to the last
113 * bitmap block and the final block was the same
114 * as the starting point, pid is before last_pid.
116 } while (offset < BITS_PER_PAGE && pid < pid_max &&
117 (i != max_scan || pid < last ||
118 !((last+1) & BITS_PER_PAGE_MASK)));
120 if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) {
124 map = &pidmap_array[0];
125 offset = RESERVED_PIDS;
126 if (unlikely(last == offset))
129 pid = mk_pid(map, offset);
134 struct pid * fastcall find_pid(enum pid_type type, int nr)
136 struct hlist_node *elem;
139 hlist_for_each_entry_rcu(pid, elem,
140 &pid_hash[type][pid_hashfn(nr)], pid_chain) {
147 int fastcall attach_pid(task_t *task, enum pid_type type, int nr)
149 struct pid *pid, *task_pid;
151 task_pid = &task->pids[type];
152 pid = find_pid(type, nr);
155 INIT_LIST_HEAD(&task_pid->pid_list);
156 hlist_add_head_rcu(&task_pid->pid_chain,
157 &pid_hash[type][pid_hashfn(nr)]);
159 INIT_HLIST_NODE(&task_pid->pid_chain);
160 list_add_tail_rcu(&task_pid->pid_list, &pid->pid_list);
166 static fastcall int __detach_pid(task_t *task, enum pid_type type)
168 struct pid *pid, *pid_next;
171 pid = &task->pids[type];
172 if (!hlist_unhashed(&pid->pid_chain)) {
174 if (list_empty(&pid->pid_list)) {
176 hlist_del_rcu(&pid->pid_chain);
178 pid_next = list_entry(pid->pid_list.next,
179 struct pid, pid_list);
180 /* insert next pid from pid_list to hash */
181 hlist_replace_rcu(&pid->pid_chain,
182 &pid_next->pid_chain);
186 list_del_rcu(&pid->pid_list);
192 void fastcall detach_pid(task_t *task, enum pid_type type)
196 nr = __detach_pid(task, type);
200 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
201 if (tmp != type && find_pid(tmp, nr))
207 task_t *find_task_by_pid_type(int type, int nr)
211 pid = find_pid(type, nr);
215 return pid_task(&pid->pid_list, type);
218 EXPORT_SYMBOL(find_task_by_pid_type);
221 * The pid hash table is scaled according to the amount of memory in the
222 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
225 void __init pidhash_init(void)
227 int i, j, pidhash_size;
228 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
230 pidhash_shift = max(4, fls(megabytes * 4));
231 pidhash_shift = min(12, pidhash_shift);
232 pidhash_size = 1 << pidhash_shift;
234 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
235 pidhash_size, pidhash_shift,
236 PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head));
238 for (i = 0; i < PIDTYPE_MAX; i++) {
239 pid_hash[i] = alloc_bootmem(pidhash_size *
240 sizeof(*(pid_hash[i])));
242 panic("Could not alloc pidhash!\n");
243 for (j = 0; j < pidhash_size; j++)
244 INIT_HLIST_HEAD(&pid_hash[i][j]);
248 void __init pidmap_init(void)
250 pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL);
251 /* Reserve PID 0. We never call free_pidmap(0) */
252 set_bit(0, pidmap_array->page);
253 atomic_dec(&pidmap_array->nr_free);