2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
39 * Each CPU has a list of per CPU events:
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
59 int sysctl_perf_event_paranoid __read_mostly = 1;
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
64 * max perf event sample rate
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
68 static atomic64_t perf_event_id;
71 * Lock for (sysadmin-configurable) event reservations:
73 static DEFINE_SPINLOCK(perf_resource_lock);
76 * Architecture provided APIs - weak aliases:
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
86 void __weak perf_event_print_debug(void) { }
88 static DEFINE_PER_CPU(int, perf_disable_count);
90 void perf_disable(void)
92 if (!__get_cpu_var(perf_disable_count)++)
96 void perf_enable(void)
98 if (!--__get_cpu_var(perf_disable_count))
102 static void get_ctx(struct perf_event_context *ctx)
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 static void free_ctx(struct rcu_head *head)
109 struct perf_event_context *ctx;
111 ctx = container_of(head, struct perf_event_context, rcu_head);
115 static void put_ctx(struct perf_event_context *ctx)
117 if (atomic_dec_and_test(&ctx->refcount)) {
119 put_ctx(ctx->parent_ctx);
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
126 static void unclone_ctx(struct perf_event_context *ctx)
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
135 * If we inherit events we want to return the parent event id
138 static u64 primary_event_id(struct perf_event *event)
143 id = event->parent->id;
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 struct perf_event_context *ctx;
160 ctx = rcu_dereference(task->perf_event_ctxp);
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
194 struct perf_event_context *ctx;
197 ctx = perf_lock_task_context(task, &flags);
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
205 static void perf_unpin_context(struct perf_event_context *ctx)
209 raw_spin_lock_irqsave(&ctx->lock, flags);
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
215 static inline u64 perf_clock(void)
217 return cpu_clock(raw_smp_processor_id());
221 * Update the record of the current time in a context.
223 static void update_context_time(struct perf_event_context *ctx)
225 u64 now = perf_clock();
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
232 * Update the total_time_enabled and total_time_running fields for a event.
234 static void update_event_times(struct perf_event *event)
236 struct perf_event_context *ctx = event->ctx;
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
246 run_end = event->tstamp_stopped;
248 event->total_time_enabled = run_end - event->tstamp_enabled;
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
255 event->total_time_running = run_end - event->tstamp_running;
259 * Update total_time_enabled and total_time_running for all events in a group.
261 static void update_group_times(struct perf_event *leader)
263 struct perf_event *event;
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
276 return &ctx->flexible_groups;
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
286 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287 event->attach_state |= PERF_ATTACH_CONTEXT;
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
294 if (event->group_leader == event) {
295 struct list_head *list;
297 if (is_software_event(event))
298 event->group_flags |= PERF_GROUP_SOFTWARE;
300 list = ctx_group_list(event, ctx);
301 list_add_tail(&event->group_entry, list);
304 list_add_rcu(&event->event_entry, &ctx->event_list);
306 if (event->attr.inherit_stat)
310 static void perf_group_attach(struct perf_event *event)
312 struct perf_event *group_leader = event->group_leader;
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
317 if (group_leader == event)
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
336 * We can have double detach due to exit/hot-unplug + close.
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
344 if (event->attr.inherit_stat)
347 list_del_rcu(&event->event_entry);
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
352 update_group_times(event);
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
365 static void perf_group_detach(struct perf_event *event)
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
371 * We can have double detach due to exit/hot-unplug + close.
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
376 event->attach_state &= ~PERF_ATTACH_GROUP;
379 * If this is a sibling, remove it from its group.
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
406 event_sched_out(struct perf_event *event,
407 struct perf_cpu_context *cpuctx,
408 struct perf_event_context *ctx)
410 if (event->state != PERF_EVENT_STATE_ACTIVE)
413 event->state = PERF_EVENT_STATE_INACTIVE;
414 if (event->pending_disable) {
415 event->pending_disable = 0;
416 event->state = PERF_EVENT_STATE_OFF;
418 event->tstamp_stopped = ctx->time;
419 event->pmu->disable(event);
422 if (!is_software_event(event))
423 cpuctx->active_oncpu--;
425 if (event->attr.exclusive || !cpuctx->active_oncpu)
426 cpuctx->exclusive = 0;
430 group_sched_out(struct perf_event *group_event,
431 struct perf_cpu_context *cpuctx,
432 struct perf_event_context *ctx)
434 struct perf_event *event;
436 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
439 event_sched_out(group_event, cpuctx, ctx);
442 * Schedule out siblings (if any):
444 list_for_each_entry(event, &group_event->sibling_list, group_entry)
445 event_sched_out(event, cpuctx, ctx);
447 if (group_event->attr.exclusive)
448 cpuctx->exclusive = 0;
452 * Cross CPU call to remove a performance event
454 * We disable the event on the hardware level first. After that we
455 * remove it from the context list.
457 static void __perf_event_remove_from_context(void *info)
459 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 struct perf_event *event = info;
461 struct perf_event_context *ctx = event->ctx;
464 * If this is a task context, we need to check whether it is
465 * the current task context of this cpu. If not it has been
466 * scheduled out before the smp call arrived.
468 if (ctx->task && cpuctx->task_ctx != ctx)
471 raw_spin_lock(&ctx->lock);
473 * Protect the list operation against NMI by disabling the
474 * events on a global level.
478 event_sched_out(event, cpuctx, ctx);
480 list_del_event(event, ctx);
484 * Allow more per task events with respect to the
487 cpuctx->max_pertask =
488 min(perf_max_events - ctx->nr_events,
489 perf_max_events - perf_reserved_percpu);
493 raw_spin_unlock(&ctx->lock);
498 * Remove the event from a task's (or a CPU's) list of events.
500 * Must be called with ctx->mutex held.
502 * CPU events are removed with a smp call. For task events we only
503 * call when the task is on a CPU.
505 * If event->ctx is a cloned context, callers must make sure that
506 * every task struct that event->ctx->task could possibly point to
507 * remains valid. This is OK when called from perf_release since
508 * that only calls us on the top-level context, which can't be a clone.
509 * When called from perf_event_exit_task, it's OK because the
510 * context has been detached from its task.
512 static void perf_event_remove_from_context(struct perf_event *event)
514 struct perf_event_context *ctx = event->ctx;
515 struct task_struct *task = ctx->task;
519 * Per cpu events are removed via an smp call and
520 * the removal is always successful.
522 smp_call_function_single(event->cpu,
523 __perf_event_remove_from_context,
529 task_oncpu_function_call(task, __perf_event_remove_from_context,
532 raw_spin_lock_irq(&ctx->lock);
534 * If the context is active we need to retry the smp call.
536 if (ctx->nr_active && !list_empty(&event->group_entry)) {
537 raw_spin_unlock_irq(&ctx->lock);
542 * The lock prevents that this context is scheduled in so we
543 * can remove the event safely, if the call above did not
546 if (!list_empty(&event->group_entry))
547 list_del_event(event, ctx);
548 raw_spin_unlock_irq(&ctx->lock);
552 * Cross CPU call to disable a performance event
554 static void __perf_event_disable(void *info)
556 struct perf_event *event = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_event_context *ctx = event->ctx;
561 * If this is a per-task event, need to check whether this
562 * event's task is the current task on this cpu.
564 if (ctx->task && cpuctx->task_ctx != ctx)
567 raw_spin_lock(&ctx->lock);
570 * If the event is on, turn it off.
571 * If it is in error state, leave it in error state.
573 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574 update_context_time(ctx);
575 update_group_times(event);
576 if (event == event->group_leader)
577 group_sched_out(event, cpuctx, ctx);
579 event_sched_out(event, cpuctx, ctx);
580 event->state = PERF_EVENT_STATE_OFF;
583 raw_spin_unlock(&ctx->lock);
589 * If event->ctx is a cloned context, callers must make sure that
590 * every task struct that event->ctx->task could possibly point to
591 * remains valid. This condition is satisifed when called through
592 * perf_event_for_each_child or perf_event_for_each because they
593 * hold the top-level event's child_mutex, so any descendant that
594 * goes to exit will block in sync_child_event.
595 * When called from perf_pending_event it's OK because event->ctx
596 * is the current context on this CPU and preemption is disabled,
597 * hence we can't get into perf_event_task_sched_out for this context.
599 void perf_event_disable(struct perf_event *event)
601 struct perf_event_context *ctx = event->ctx;
602 struct task_struct *task = ctx->task;
606 * Disable the event on the cpu that it's on
608 smp_call_function_single(event->cpu, __perf_event_disable,
614 task_oncpu_function_call(task, __perf_event_disable, event);
616 raw_spin_lock_irq(&ctx->lock);
618 * If the event is still active, we need to retry the cross-call.
620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
621 raw_spin_unlock_irq(&ctx->lock);
626 * Since we have the lock this context can't be scheduled
627 * in, so we can change the state safely.
629 if (event->state == PERF_EVENT_STATE_INACTIVE) {
630 update_group_times(event);
631 event->state = PERF_EVENT_STATE_OFF;
634 raw_spin_unlock_irq(&ctx->lock);
638 event_sched_in(struct perf_event *event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
642 if (event->state <= PERF_EVENT_STATE_OFF)
645 event->state = PERF_EVENT_STATE_ACTIVE;
646 event->oncpu = smp_processor_id();
648 * The new state must be visible before we turn it on in the hardware:
652 if (event->pmu->enable(event)) {
653 event->state = PERF_EVENT_STATE_INACTIVE;
658 event->tstamp_running += ctx->time - event->tstamp_stopped;
660 if (!is_software_event(event))
661 cpuctx->active_oncpu++;
664 if (event->attr.exclusive)
665 cpuctx->exclusive = 1;
671 group_sched_in(struct perf_event *group_event,
672 struct perf_cpu_context *cpuctx,
673 struct perf_event_context *ctx)
675 struct perf_event *event, *partial_group = NULL;
676 const struct pmu *pmu = group_event->pmu;
680 if (group_event->state == PERF_EVENT_STATE_OFF)
683 /* Check if group transaction availabe */
690 if (event_sched_in(group_event, cpuctx, ctx)) {
692 pmu->cancel_txn(pmu);
697 * Schedule in siblings as one group (if any):
699 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700 if (event_sched_in(event, cpuctx, ctx)) {
701 partial_group = event;
709 ret = pmu->commit_txn(pmu);
711 pmu->cancel_txn(pmu);
717 * Groups can be scheduled in as one unit only, so undo any
718 * partial group before returning:
720 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
721 if (event == partial_group)
723 event_sched_out(event, cpuctx, ctx);
725 event_sched_out(group_event, cpuctx, ctx);
728 pmu->cancel_txn(pmu);
734 * Work out whether we can put this event group on the CPU now.
736 static int group_can_go_on(struct perf_event *event,
737 struct perf_cpu_context *cpuctx,
741 * Groups consisting entirely of software events can always go on.
743 if (event->group_flags & PERF_GROUP_SOFTWARE)
746 * If an exclusive group is already on, no other hardware
749 if (cpuctx->exclusive)
752 * If this group is exclusive and there are already
753 * events on the CPU, it can't go on.
755 if (event->attr.exclusive && cpuctx->active_oncpu)
758 * Otherwise, try to add it if all previous groups were able
764 static void add_event_to_ctx(struct perf_event *event,
765 struct perf_event_context *ctx)
767 list_add_event(event, ctx);
768 perf_group_attach(event);
769 event->tstamp_enabled = ctx->time;
770 event->tstamp_running = ctx->time;
771 event->tstamp_stopped = ctx->time;
775 * Cross CPU call to install and enable a performance event
777 * Must be called with ctx->mutex held
779 static void __perf_install_in_context(void *info)
781 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
782 struct perf_event *event = info;
783 struct perf_event_context *ctx = event->ctx;
784 struct perf_event *leader = event->group_leader;
788 * If this is a task context, we need to check whether it is
789 * the current task context of this cpu. If not it has been
790 * scheduled out before the smp call arrived.
791 * Or possibly this is the right context but it isn't
792 * on this cpu because it had no events.
794 if (ctx->task && cpuctx->task_ctx != ctx) {
795 if (cpuctx->task_ctx || ctx->task != current)
797 cpuctx->task_ctx = ctx;
800 raw_spin_lock(&ctx->lock);
802 update_context_time(ctx);
805 * Protect the list operation against NMI by disabling the
806 * events on a global level. NOP for non NMI based events.
810 add_event_to_ctx(event, ctx);
812 if (event->cpu != -1 && event->cpu != smp_processor_id())
816 * Don't put the event on if it is disabled or if
817 * it is in a group and the group isn't on.
819 if (event->state != PERF_EVENT_STATE_INACTIVE ||
820 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
824 * An exclusive event can't go on if there are already active
825 * hardware events, and no hardware event can go on if there
826 * is already an exclusive event on.
828 if (!group_can_go_on(event, cpuctx, 1))
831 err = event_sched_in(event, cpuctx, ctx);
835 * This event couldn't go on. If it is in a group
836 * then we have to pull the whole group off.
837 * If the event group is pinned then put it in error state.
840 group_sched_out(leader, cpuctx, ctx);
841 if (leader->attr.pinned) {
842 update_group_times(leader);
843 leader->state = PERF_EVENT_STATE_ERROR;
847 if (!err && !ctx->task && cpuctx->max_pertask)
848 cpuctx->max_pertask--;
853 raw_spin_unlock(&ctx->lock);
857 * Attach a performance event to a context
859 * First we add the event to the list with the hardware enable bit
860 * in event->hw_config cleared.
862 * If the event is attached to a task which is on a CPU we use a smp
863 * call to enable it in the task context. The task might have been
864 * scheduled away, but we check this in the smp call again.
866 * Must be called with ctx->mutex held.
869 perf_install_in_context(struct perf_event_context *ctx,
870 struct perf_event *event,
873 struct task_struct *task = ctx->task;
877 * Per cpu events are installed via an smp call and
878 * the install is always successful.
880 smp_call_function_single(cpu, __perf_install_in_context,
886 task_oncpu_function_call(task, __perf_install_in_context,
889 raw_spin_lock_irq(&ctx->lock);
891 * we need to retry the smp call.
893 if (ctx->is_active && list_empty(&event->group_entry)) {
894 raw_spin_unlock_irq(&ctx->lock);
899 * The lock prevents that this context is scheduled in so we
900 * can add the event safely, if it the call above did not
903 if (list_empty(&event->group_entry))
904 add_event_to_ctx(event, ctx);
905 raw_spin_unlock_irq(&ctx->lock);
909 * Put a event into inactive state and update time fields.
910 * Enabling the leader of a group effectively enables all
911 * the group members that aren't explicitly disabled, so we
912 * have to update their ->tstamp_enabled also.
913 * Note: this works for group members as well as group leaders
914 * since the non-leader members' sibling_lists will be empty.
916 static void __perf_event_mark_enabled(struct perf_event *event,
917 struct perf_event_context *ctx)
919 struct perf_event *sub;
921 event->state = PERF_EVENT_STATE_INACTIVE;
922 event->tstamp_enabled = ctx->time - event->total_time_enabled;
923 list_for_each_entry(sub, &event->sibling_list, group_entry)
924 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
925 sub->tstamp_enabled =
926 ctx->time - sub->total_time_enabled;
930 * Cross CPU call to enable a performance event
932 static void __perf_event_enable(void *info)
934 struct perf_event *event = info;
935 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
936 struct perf_event_context *ctx = event->ctx;
937 struct perf_event *leader = event->group_leader;
941 * If this is a per-task event, need to check whether this
942 * event's task is the current task on this cpu.
944 if (ctx->task && cpuctx->task_ctx != ctx) {
945 if (cpuctx->task_ctx || ctx->task != current)
947 cpuctx->task_ctx = ctx;
950 raw_spin_lock(&ctx->lock);
952 update_context_time(ctx);
954 if (event->state >= PERF_EVENT_STATE_INACTIVE)
956 __perf_event_mark_enabled(event, ctx);
958 if (event->cpu != -1 && event->cpu != smp_processor_id())
962 * If the event is in a group and isn't the group leader,
963 * then don't put it on unless the group is on.
965 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
968 if (!group_can_go_on(event, cpuctx, 1)) {
973 err = group_sched_in(event, cpuctx, ctx);
975 err = event_sched_in(event, cpuctx, ctx);
981 * If this event can't go on and it's part of a
982 * group, then the whole group has to come off.
985 group_sched_out(leader, cpuctx, ctx);
986 if (leader->attr.pinned) {
987 update_group_times(leader);
988 leader->state = PERF_EVENT_STATE_ERROR;
993 raw_spin_unlock(&ctx->lock);
999 * If event->ctx is a cloned context, callers must make sure that
1000 * every task struct that event->ctx->task could possibly point to
1001 * remains valid. This condition is satisfied when called through
1002 * perf_event_for_each_child or perf_event_for_each as described
1003 * for perf_event_disable.
1005 void perf_event_enable(struct perf_event *event)
1007 struct perf_event_context *ctx = event->ctx;
1008 struct task_struct *task = ctx->task;
1012 * Enable the event on the cpu that it's on
1014 smp_call_function_single(event->cpu, __perf_event_enable,
1019 raw_spin_lock_irq(&ctx->lock);
1020 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1024 * If the event is in error state, clear that first.
1025 * That way, if we see the event in error state below, we
1026 * know that it has gone back into error state, as distinct
1027 * from the task having been scheduled away before the
1028 * cross-call arrived.
1030 if (event->state == PERF_EVENT_STATE_ERROR)
1031 event->state = PERF_EVENT_STATE_OFF;
1034 raw_spin_unlock_irq(&ctx->lock);
1035 task_oncpu_function_call(task, __perf_event_enable, event);
1037 raw_spin_lock_irq(&ctx->lock);
1040 * If the context is active and the event is still off,
1041 * we need to retry the cross-call.
1043 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1047 * Since we have the lock this context can't be scheduled
1048 * in, so we can change the state safely.
1050 if (event->state == PERF_EVENT_STATE_OFF)
1051 __perf_event_mark_enabled(event, ctx);
1054 raw_spin_unlock_irq(&ctx->lock);
1057 static int perf_event_refresh(struct perf_event *event, int refresh)
1060 * not supported on inherited events
1062 if (event->attr.inherit)
1065 atomic_add(refresh, &event->event_limit);
1066 perf_event_enable(event);
1072 EVENT_FLEXIBLE = 0x1,
1074 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1077 static void ctx_sched_out(struct perf_event_context *ctx,
1078 struct perf_cpu_context *cpuctx,
1079 enum event_type_t event_type)
1081 struct perf_event *event;
1083 raw_spin_lock(&ctx->lock);
1085 if (likely(!ctx->nr_events))
1087 update_context_time(ctx);
1090 if (!ctx->nr_active)
1093 if (event_type & EVENT_PINNED)
1094 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1095 group_sched_out(event, cpuctx, ctx);
1097 if (event_type & EVENT_FLEXIBLE)
1098 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1099 group_sched_out(event, cpuctx, ctx);
1104 raw_spin_unlock(&ctx->lock);
1108 * Test whether two contexts are equivalent, i.e. whether they
1109 * have both been cloned from the same version of the same context
1110 * and they both have the same number of enabled events.
1111 * If the number of enabled events is the same, then the set
1112 * of enabled events should be the same, because these are both
1113 * inherited contexts, therefore we can't access individual events
1114 * in them directly with an fd; we can only enable/disable all
1115 * events via prctl, or enable/disable all events in a family
1116 * via ioctl, which will have the same effect on both contexts.
1118 static int context_equiv(struct perf_event_context *ctx1,
1119 struct perf_event_context *ctx2)
1121 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1122 && ctx1->parent_gen == ctx2->parent_gen
1123 && !ctx1->pin_count && !ctx2->pin_count;
1126 static void __perf_event_sync_stat(struct perf_event *event,
1127 struct perf_event *next_event)
1131 if (!event->attr.inherit_stat)
1135 * Update the event value, we cannot use perf_event_read()
1136 * because we're in the middle of a context switch and have IRQs
1137 * disabled, which upsets smp_call_function_single(), however
1138 * we know the event must be on the current CPU, therefore we
1139 * don't need to use it.
1141 switch (event->state) {
1142 case PERF_EVENT_STATE_ACTIVE:
1143 event->pmu->read(event);
1146 case PERF_EVENT_STATE_INACTIVE:
1147 update_event_times(event);
1155 * In order to keep per-task stats reliable we need to flip the event
1156 * values when we flip the contexts.
1158 value = atomic64_read(&next_event->count);
1159 value = atomic64_xchg(&event->count, value);
1160 atomic64_set(&next_event->count, value);
1162 swap(event->total_time_enabled, next_event->total_time_enabled);
1163 swap(event->total_time_running, next_event->total_time_running);
1166 * Since we swizzled the values, update the user visible data too.
1168 perf_event_update_userpage(event);
1169 perf_event_update_userpage(next_event);
1172 #define list_next_entry(pos, member) \
1173 list_entry(pos->member.next, typeof(*pos), member)
1175 static void perf_event_sync_stat(struct perf_event_context *ctx,
1176 struct perf_event_context *next_ctx)
1178 struct perf_event *event, *next_event;
1183 update_context_time(ctx);
1185 event = list_first_entry(&ctx->event_list,
1186 struct perf_event, event_entry);
1188 next_event = list_first_entry(&next_ctx->event_list,
1189 struct perf_event, event_entry);
1191 while (&event->event_entry != &ctx->event_list &&
1192 &next_event->event_entry != &next_ctx->event_list) {
1194 __perf_event_sync_stat(event, next_event);
1196 event = list_next_entry(event, event_entry);
1197 next_event = list_next_entry(next_event, event_entry);
1202 * Called from scheduler to remove the events of the current task,
1203 * with interrupts disabled.
1205 * We stop each event and update the event value in event->count.
1207 * This does not protect us against NMI, but disable()
1208 * sets the disabled bit in the control field of event _before_
1209 * accessing the event control register. If a NMI hits, then it will
1210 * not restart the event.
1212 void perf_event_task_sched_out(struct task_struct *task,
1213 struct task_struct *next)
1215 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216 struct perf_event_context *ctx = task->perf_event_ctxp;
1217 struct perf_event_context *next_ctx;
1218 struct perf_event_context *parent;
1221 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1223 if (likely(!ctx || !cpuctx->task_ctx))
1227 parent = rcu_dereference(ctx->parent_ctx);
1228 next_ctx = next->perf_event_ctxp;
1229 if (parent && next_ctx &&
1230 rcu_dereference(next_ctx->parent_ctx) == parent) {
1232 * Looks like the two contexts are clones, so we might be
1233 * able to optimize the context switch. We lock both
1234 * contexts and check that they are clones under the
1235 * lock (including re-checking that neither has been
1236 * uncloned in the meantime). It doesn't matter which
1237 * order we take the locks because no other cpu could
1238 * be trying to lock both of these tasks.
1240 raw_spin_lock(&ctx->lock);
1241 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1242 if (context_equiv(ctx, next_ctx)) {
1244 * XXX do we need a memory barrier of sorts
1245 * wrt to rcu_dereference() of perf_event_ctxp
1247 task->perf_event_ctxp = next_ctx;
1248 next->perf_event_ctxp = ctx;
1250 next_ctx->task = task;
1253 perf_event_sync_stat(ctx, next_ctx);
1255 raw_spin_unlock(&next_ctx->lock);
1256 raw_spin_unlock(&ctx->lock);
1261 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1262 cpuctx->task_ctx = NULL;
1266 static void task_ctx_sched_out(struct perf_event_context *ctx,
1267 enum event_type_t event_type)
1269 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1271 if (!cpuctx->task_ctx)
1274 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1277 ctx_sched_out(ctx, cpuctx, event_type);
1278 cpuctx->task_ctx = NULL;
1282 * Called with IRQs disabled
1284 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1286 task_ctx_sched_out(ctx, EVENT_ALL);
1290 * Called with IRQs disabled
1292 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1293 enum event_type_t event_type)
1295 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1299 ctx_pinned_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx)
1302 struct perf_event *event;
1304 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1305 if (event->state <= PERF_EVENT_STATE_OFF)
1307 if (event->cpu != -1 && event->cpu != smp_processor_id())
1310 if (group_can_go_on(event, cpuctx, 1))
1311 group_sched_in(event, cpuctx, ctx);
1314 * If this pinned group hasn't been scheduled,
1315 * put it in error state.
1317 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1318 update_group_times(event);
1319 event->state = PERF_EVENT_STATE_ERROR;
1325 ctx_flexible_sched_in(struct perf_event_context *ctx,
1326 struct perf_cpu_context *cpuctx)
1328 struct perf_event *event;
1331 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1332 /* Ignore events in OFF or ERROR state */
1333 if (event->state <= PERF_EVENT_STATE_OFF)
1336 * Listen to the 'cpu' scheduling filter constraint
1339 if (event->cpu != -1 && event->cpu != smp_processor_id())
1342 if (group_can_go_on(event, cpuctx, can_add_hw))
1343 if (group_sched_in(event, cpuctx, ctx))
1349 ctx_sched_in(struct perf_event_context *ctx,
1350 struct perf_cpu_context *cpuctx,
1351 enum event_type_t event_type)
1353 raw_spin_lock(&ctx->lock);
1355 if (likely(!ctx->nr_events))
1358 ctx->timestamp = perf_clock();
1363 * First go through the list and put on any pinned groups
1364 * in order to give them the best chance of going on.
1366 if (event_type & EVENT_PINNED)
1367 ctx_pinned_sched_in(ctx, cpuctx);
1369 /* Then walk through the lower prio flexible groups */
1370 if (event_type & EVENT_FLEXIBLE)
1371 ctx_flexible_sched_in(ctx, cpuctx);
1375 raw_spin_unlock(&ctx->lock);
1378 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1379 enum event_type_t event_type)
1381 struct perf_event_context *ctx = &cpuctx->ctx;
1383 ctx_sched_in(ctx, cpuctx, event_type);
1386 static void task_ctx_sched_in(struct task_struct *task,
1387 enum event_type_t event_type)
1389 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1390 struct perf_event_context *ctx = task->perf_event_ctxp;
1394 if (cpuctx->task_ctx == ctx)
1396 ctx_sched_in(ctx, cpuctx, event_type);
1397 cpuctx->task_ctx = ctx;
1400 * Called from scheduler to add the events of the current task
1401 * with interrupts disabled.
1403 * We restore the event value and then enable it.
1405 * This does not protect us against NMI, but enable()
1406 * sets the enabled bit in the control field of event _before_
1407 * accessing the event control register. If a NMI hits, then it will
1408 * keep the event running.
1410 void perf_event_task_sched_in(struct task_struct *task)
1412 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1413 struct perf_event_context *ctx = task->perf_event_ctxp;
1418 if (cpuctx->task_ctx == ctx)
1424 * We want to keep the following priority order:
1425 * cpu pinned (that don't need to move), task pinned,
1426 * cpu flexible, task flexible.
1428 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1430 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1431 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1432 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1434 cpuctx->task_ctx = ctx;
1439 #define MAX_INTERRUPTS (~0ULL)
1441 static void perf_log_throttle(struct perf_event *event, int enable);
1443 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1445 u64 frequency = event->attr.sample_freq;
1446 u64 sec = NSEC_PER_SEC;
1447 u64 divisor, dividend;
1449 int count_fls, nsec_fls, frequency_fls, sec_fls;
1451 count_fls = fls64(count);
1452 nsec_fls = fls64(nsec);
1453 frequency_fls = fls64(frequency);
1457 * We got @count in @nsec, with a target of sample_freq HZ
1458 * the target period becomes:
1461 * period = -------------------
1462 * @nsec * sample_freq
1467 * Reduce accuracy by one bit such that @a and @b converge
1468 * to a similar magnitude.
1470 #define REDUCE_FLS(a, b) \
1472 if (a##_fls > b##_fls) { \
1482 * Reduce accuracy until either term fits in a u64, then proceed with
1483 * the other, so that finally we can do a u64/u64 division.
1485 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1486 REDUCE_FLS(nsec, frequency);
1487 REDUCE_FLS(sec, count);
1490 if (count_fls + sec_fls > 64) {
1491 divisor = nsec * frequency;
1493 while (count_fls + sec_fls > 64) {
1494 REDUCE_FLS(count, sec);
1498 dividend = count * sec;
1500 dividend = count * sec;
1502 while (nsec_fls + frequency_fls > 64) {
1503 REDUCE_FLS(nsec, frequency);
1507 divisor = nsec * frequency;
1513 return div64_u64(dividend, divisor);
1516 static void perf_event_stop(struct perf_event *event)
1518 if (!event->pmu->stop)
1519 return event->pmu->disable(event);
1521 return event->pmu->stop(event);
1524 static int perf_event_start(struct perf_event *event)
1526 if (!event->pmu->start)
1527 return event->pmu->enable(event);
1529 return event->pmu->start(event);
1532 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1534 struct hw_perf_event *hwc = &event->hw;
1535 s64 period, sample_period;
1538 period = perf_calculate_period(event, nsec, count);
1540 delta = (s64)(period - hwc->sample_period);
1541 delta = (delta + 7) / 8; /* low pass filter */
1543 sample_period = hwc->sample_period + delta;
1548 hwc->sample_period = sample_period;
1550 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1552 perf_event_stop(event);
1553 atomic64_set(&hwc->period_left, 0);
1554 perf_event_start(event);
1559 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1561 struct perf_event *event;
1562 struct hw_perf_event *hwc;
1563 u64 interrupts, now;
1566 raw_spin_lock(&ctx->lock);
1567 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1568 if (event->state != PERF_EVENT_STATE_ACTIVE)
1571 if (event->cpu != -1 && event->cpu != smp_processor_id())
1576 interrupts = hwc->interrupts;
1577 hwc->interrupts = 0;
1580 * unthrottle events on the tick
1582 if (interrupts == MAX_INTERRUPTS) {
1583 perf_log_throttle(event, 1);
1585 event->pmu->unthrottle(event);
1589 if (!event->attr.freq || !event->attr.sample_freq)
1593 event->pmu->read(event);
1594 now = atomic64_read(&event->count);
1595 delta = now - hwc->freq_count_stamp;
1596 hwc->freq_count_stamp = now;
1599 perf_adjust_period(event, TICK_NSEC, delta);
1602 raw_spin_unlock(&ctx->lock);
1606 * Round-robin a context's events:
1608 static void rotate_ctx(struct perf_event_context *ctx)
1610 raw_spin_lock(&ctx->lock);
1612 /* Rotate the first entry last of non-pinned groups */
1613 list_rotate_left(&ctx->flexible_groups);
1615 raw_spin_unlock(&ctx->lock);
1618 void perf_event_task_tick(struct task_struct *curr)
1620 struct perf_cpu_context *cpuctx;
1621 struct perf_event_context *ctx;
1624 if (!atomic_read(&nr_events))
1627 cpuctx = &__get_cpu_var(perf_cpu_context);
1628 if (cpuctx->ctx.nr_events &&
1629 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1632 ctx = curr->perf_event_ctxp;
1633 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1636 perf_ctx_adjust_freq(&cpuctx->ctx);
1638 perf_ctx_adjust_freq(ctx);
1644 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1646 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1648 rotate_ctx(&cpuctx->ctx);
1652 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1654 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1658 static int event_enable_on_exec(struct perf_event *event,
1659 struct perf_event_context *ctx)
1661 if (!event->attr.enable_on_exec)
1664 event->attr.enable_on_exec = 0;
1665 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1668 __perf_event_mark_enabled(event, ctx);
1674 * Enable all of a task's events that have been marked enable-on-exec.
1675 * This expects task == current.
1677 static void perf_event_enable_on_exec(struct task_struct *task)
1679 struct perf_event_context *ctx;
1680 struct perf_event *event;
1681 unsigned long flags;
1685 local_irq_save(flags);
1686 ctx = task->perf_event_ctxp;
1687 if (!ctx || !ctx->nr_events)
1690 __perf_event_task_sched_out(ctx);
1692 raw_spin_lock(&ctx->lock);
1694 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1695 ret = event_enable_on_exec(event, ctx);
1700 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1701 ret = event_enable_on_exec(event, ctx);
1707 * Unclone this context if we enabled any event.
1712 raw_spin_unlock(&ctx->lock);
1714 perf_event_task_sched_in(task);
1716 local_irq_restore(flags);
1720 * Cross CPU call to read the hardware event
1722 static void __perf_event_read(void *info)
1724 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1725 struct perf_event *event = info;
1726 struct perf_event_context *ctx = event->ctx;
1729 * If this is a task context, we need to check whether it is
1730 * the current task context of this cpu. If not it has been
1731 * scheduled out before the smp call arrived. In that case
1732 * event->count would have been updated to a recent sample
1733 * when the event was scheduled out.
1735 if (ctx->task && cpuctx->task_ctx != ctx)
1738 raw_spin_lock(&ctx->lock);
1739 update_context_time(ctx);
1740 update_event_times(event);
1741 raw_spin_unlock(&ctx->lock);
1743 event->pmu->read(event);
1746 static u64 perf_event_read(struct perf_event *event)
1749 * If event is enabled and currently active on a CPU, update the
1750 * value in the event structure:
1752 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1753 smp_call_function_single(event->oncpu,
1754 __perf_event_read, event, 1);
1755 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1756 struct perf_event_context *ctx = event->ctx;
1757 unsigned long flags;
1759 raw_spin_lock_irqsave(&ctx->lock, flags);
1760 update_context_time(ctx);
1761 update_event_times(event);
1762 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1765 return atomic64_read(&event->count);
1769 * Initialize the perf_event context in a task_struct:
1772 __perf_event_init_context(struct perf_event_context *ctx,
1773 struct task_struct *task)
1775 raw_spin_lock_init(&ctx->lock);
1776 mutex_init(&ctx->mutex);
1777 INIT_LIST_HEAD(&ctx->pinned_groups);
1778 INIT_LIST_HEAD(&ctx->flexible_groups);
1779 INIT_LIST_HEAD(&ctx->event_list);
1780 atomic_set(&ctx->refcount, 1);
1784 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1786 struct perf_event_context *ctx;
1787 struct perf_cpu_context *cpuctx;
1788 struct task_struct *task;
1789 unsigned long flags;
1792 if (pid == -1 && cpu != -1) {
1793 /* Must be root to operate on a CPU event: */
1794 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1795 return ERR_PTR(-EACCES);
1797 if (cpu < 0 || cpu >= nr_cpumask_bits)
1798 return ERR_PTR(-EINVAL);
1801 * We could be clever and allow to attach a event to an
1802 * offline CPU and activate it when the CPU comes up, but
1805 if (!cpu_online(cpu))
1806 return ERR_PTR(-ENODEV);
1808 cpuctx = &per_cpu(perf_cpu_context, cpu);
1819 task = find_task_by_vpid(pid);
1821 get_task_struct(task);
1825 return ERR_PTR(-ESRCH);
1828 * Can't attach events to a dying task.
1831 if (task->flags & PF_EXITING)
1834 /* Reuse ptrace permission checks for now. */
1836 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1840 ctx = perf_lock_task_context(task, &flags);
1843 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1847 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1851 __perf_event_init_context(ctx, task);
1853 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1855 * We raced with some other task; use
1856 * the context they set.
1861 get_task_struct(task);
1864 put_task_struct(task);
1868 put_task_struct(task);
1869 return ERR_PTR(err);
1872 static void perf_event_free_filter(struct perf_event *event);
1874 static void free_event_rcu(struct rcu_head *head)
1876 struct perf_event *event;
1878 event = container_of(head, struct perf_event, rcu_head);
1880 put_pid_ns(event->ns);
1881 perf_event_free_filter(event);
1885 static void perf_pending_sync(struct perf_event *event);
1886 static void perf_mmap_data_put(struct perf_mmap_data *data);
1888 static void free_event(struct perf_event *event)
1890 perf_pending_sync(event);
1892 if (!event->parent) {
1893 atomic_dec(&nr_events);
1894 if (event->attr.mmap)
1895 atomic_dec(&nr_mmap_events);
1896 if (event->attr.comm)
1897 atomic_dec(&nr_comm_events);
1898 if (event->attr.task)
1899 atomic_dec(&nr_task_events);
1903 perf_mmap_data_put(event->data);
1908 event->destroy(event);
1910 put_ctx(event->ctx);
1911 call_rcu(&event->rcu_head, free_event_rcu);
1914 int perf_event_release_kernel(struct perf_event *event)
1916 struct perf_event_context *ctx = event->ctx;
1919 * Remove from the PMU, can't get re-enabled since we got
1920 * here because the last ref went.
1922 perf_event_disable(event);
1924 WARN_ON_ONCE(ctx->parent_ctx);
1926 * There are two ways this annotation is useful:
1928 * 1) there is a lock recursion from perf_event_exit_task
1929 * see the comment there.
1931 * 2) there is a lock-inversion with mmap_sem through
1932 * perf_event_read_group(), which takes faults while
1933 * holding ctx->mutex, however this is called after
1934 * the last filedesc died, so there is no possibility
1935 * to trigger the AB-BA case.
1937 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1938 raw_spin_lock_irq(&ctx->lock);
1939 perf_group_detach(event);
1940 list_del_event(event, ctx);
1941 raw_spin_unlock_irq(&ctx->lock);
1942 mutex_unlock(&ctx->mutex);
1944 mutex_lock(&event->owner->perf_event_mutex);
1945 list_del_init(&event->owner_entry);
1946 mutex_unlock(&event->owner->perf_event_mutex);
1947 put_task_struct(event->owner);
1953 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1956 * Called when the last reference to the file is gone.
1958 static int perf_release(struct inode *inode, struct file *file)
1960 struct perf_event *event = file->private_data;
1962 file->private_data = NULL;
1964 return perf_event_release_kernel(event);
1967 static int perf_event_read_size(struct perf_event *event)
1969 int entry = sizeof(u64); /* value */
1973 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1974 size += sizeof(u64);
1976 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1977 size += sizeof(u64);
1979 if (event->attr.read_format & PERF_FORMAT_ID)
1980 entry += sizeof(u64);
1982 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1983 nr += event->group_leader->nr_siblings;
1984 size += sizeof(u64);
1992 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1994 struct perf_event *child;
2000 mutex_lock(&event->child_mutex);
2001 total += perf_event_read(event);
2002 *enabled += event->total_time_enabled +
2003 atomic64_read(&event->child_total_time_enabled);
2004 *running += event->total_time_running +
2005 atomic64_read(&event->child_total_time_running);
2007 list_for_each_entry(child, &event->child_list, child_list) {
2008 total += perf_event_read(child);
2009 *enabled += child->total_time_enabled;
2010 *running += child->total_time_running;
2012 mutex_unlock(&event->child_mutex);
2016 EXPORT_SYMBOL_GPL(perf_event_read_value);
2018 static int perf_event_read_group(struct perf_event *event,
2019 u64 read_format, char __user *buf)
2021 struct perf_event *leader = event->group_leader, *sub;
2022 int n = 0, size = 0, ret = -EFAULT;
2023 struct perf_event_context *ctx = leader->ctx;
2025 u64 count, enabled, running;
2027 mutex_lock(&ctx->mutex);
2028 count = perf_event_read_value(leader, &enabled, &running);
2030 values[n++] = 1 + leader->nr_siblings;
2031 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2032 values[n++] = enabled;
2033 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2034 values[n++] = running;
2035 values[n++] = count;
2036 if (read_format & PERF_FORMAT_ID)
2037 values[n++] = primary_event_id(leader);
2039 size = n * sizeof(u64);
2041 if (copy_to_user(buf, values, size))
2046 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2049 values[n++] = perf_event_read_value(sub, &enabled, &running);
2050 if (read_format & PERF_FORMAT_ID)
2051 values[n++] = primary_event_id(sub);
2053 size = n * sizeof(u64);
2055 if (copy_to_user(buf + ret, values, size)) {
2063 mutex_unlock(&ctx->mutex);
2068 static int perf_event_read_one(struct perf_event *event,
2069 u64 read_format, char __user *buf)
2071 u64 enabled, running;
2075 values[n++] = perf_event_read_value(event, &enabled, &running);
2076 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2077 values[n++] = enabled;
2078 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2079 values[n++] = running;
2080 if (read_format & PERF_FORMAT_ID)
2081 values[n++] = primary_event_id(event);
2083 if (copy_to_user(buf, values, n * sizeof(u64)))
2086 return n * sizeof(u64);
2090 * Read the performance event - simple non blocking version for now
2093 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2095 u64 read_format = event->attr.read_format;
2099 * Return end-of-file for a read on a event that is in
2100 * error state (i.e. because it was pinned but it couldn't be
2101 * scheduled on to the CPU at some point).
2103 if (event->state == PERF_EVENT_STATE_ERROR)
2106 if (count < perf_event_read_size(event))
2109 WARN_ON_ONCE(event->ctx->parent_ctx);
2110 if (read_format & PERF_FORMAT_GROUP)
2111 ret = perf_event_read_group(event, read_format, buf);
2113 ret = perf_event_read_one(event, read_format, buf);
2119 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2121 struct perf_event *event = file->private_data;
2123 return perf_read_hw(event, buf, count);
2126 static unsigned int perf_poll(struct file *file, poll_table *wait)
2128 struct perf_event *event = file->private_data;
2129 struct perf_mmap_data *data;
2130 unsigned int events = POLL_HUP;
2133 data = rcu_dereference(event->data);
2135 events = atomic_xchg(&data->poll, 0);
2138 poll_wait(file, &event->waitq, wait);
2143 static void perf_event_reset(struct perf_event *event)
2145 (void)perf_event_read(event);
2146 atomic64_set(&event->count, 0);
2147 perf_event_update_userpage(event);
2151 * Holding the top-level event's child_mutex means that any
2152 * descendant process that has inherited this event will block
2153 * in sync_child_event if it goes to exit, thus satisfying the
2154 * task existence requirements of perf_event_enable/disable.
2156 static void perf_event_for_each_child(struct perf_event *event,
2157 void (*func)(struct perf_event *))
2159 struct perf_event *child;
2161 WARN_ON_ONCE(event->ctx->parent_ctx);
2162 mutex_lock(&event->child_mutex);
2164 list_for_each_entry(child, &event->child_list, child_list)
2166 mutex_unlock(&event->child_mutex);
2169 static void perf_event_for_each(struct perf_event *event,
2170 void (*func)(struct perf_event *))
2172 struct perf_event_context *ctx = event->ctx;
2173 struct perf_event *sibling;
2175 WARN_ON_ONCE(ctx->parent_ctx);
2176 mutex_lock(&ctx->mutex);
2177 event = event->group_leader;
2179 perf_event_for_each_child(event, func);
2181 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2182 perf_event_for_each_child(event, func);
2183 mutex_unlock(&ctx->mutex);
2186 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2188 struct perf_event_context *ctx = event->ctx;
2193 if (!event->attr.sample_period)
2196 size = copy_from_user(&value, arg, sizeof(value));
2197 if (size != sizeof(value))
2203 raw_spin_lock_irq(&ctx->lock);
2204 if (event->attr.freq) {
2205 if (value > sysctl_perf_event_sample_rate) {
2210 event->attr.sample_freq = value;
2212 event->attr.sample_period = value;
2213 event->hw.sample_period = value;
2216 raw_spin_unlock_irq(&ctx->lock);
2221 static const struct file_operations perf_fops;
2223 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2227 file = fget_light(fd, fput_needed);
2229 return ERR_PTR(-EBADF);
2231 if (file->f_op != &perf_fops) {
2232 fput_light(file, *fput_needed);
2234 return ERR_PTR(-EBADF);
2237 return file->private_data;
2240 static int perf_event_set_output(struct perf_event *event,
2241 struct perf_event *output_event);
2242 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2244 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2246 struct perf_event *event = file->private_data;
2247 void (*func)(struct perf_event *);
2251 case PERF_EVENT_IOC_ENABLE:
2252 func = perf_event_enable;
2254 case PERF_EVENT_IOC_DISABLE:
2255 func = perf_event_disable;
2257 case PERF_EVENT_IOC_RESET:
2258 func = perf_event_reset;
2261 case PERF_EVENT_IOC_REFRESH:
2262 return perf_event_refresh(event, arg);
2264 case PERF_EVENT_IOC_PERIOD:
2265 return perf_event_period(event, (u64 __user *)arg);
2267 case PERF_EVENT_IOC_SET_OUTPUT:
2269 struct perf_event *output_event = NULL;
2270 int fput_needed = 0;
2274 output_event = perf_fget_light(arg, &fput_needed);
2275 if (IS_ERR(output_event))
2276 return PTR_ERR(output_event);
2279 ret = perf_event_set_output(event, output_event);
2281 fput_light(output_event->filp, fput_needed);
2286 case PERF_EVENT_IOC_SET_FILTER:
2287 return perf_event_set_filter(event, (void __user *)arg);
2293 if (flags & PERF_IOC_FLAG_GROUP)
2294 perf_event_for_each(event, func);
2296 perf_event_for_each_child(event, func);
2301 int perf_event_task_enable(void)
2303 struct perf_event *event;
2305 mutex_lock(¤t->perf_event_mutex);
2306 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
2307 perf_event_for_each_child(event, perf_event_enable);
2308 mutex_unlock(¤t->perf_event_mutex);
2313 int perf_event_task_disable(void)
2315 struct perf_event *event;
2317 mutex_lock(¤t->perf_event_mutex);
2318 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
2319 perf_event_for_each_child(event, perf_event_disable);
2320 mutex_unlock(¤t->perf_event_mutex);
2325 #ifndef PERF_EVENT_INDEX_OFFSET
2326 # define PERF_EVENT_INDEX_OFFSET 0
2329 static int perf_event_index(struct perf_event *event)
2331 if (event->state != PERF_EVENT_STATE_ACTIVE)
2334 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2338 * Callers need to ensure there can be no nesting of this function, otherwise
2339 * the seqlock logic goes bad. We can not serialize this because the arch
2340 * code calls this from NMI context.
2342 void perf_event_update_userpage(struct perf_event *event)
2344 struct perf_event_mmap_page *userpg;
2345 struct perf_mmap_data *data;
2348 data = rcu_dereference(event->data);
2352 userpg = data->user_page;
2355 * Disable preemption so as to not let the corresponding user-space
2356 * spin too long if we get preempted.
2361 userpg->index = perf_event_index(event);
2362 userpg->offset = atomic64_read(&event->count);
2363 if (event->state == PERF_EVENT_STATE_ACTIVE)
2364 userpg->offset -= atomic64_read(&event->hw.prev_count);
2366 userpg->time_enabled = event->total_time_enabled +
2367 atomic64_read(&event->child_total_time_enabled);
2369 userpg->time_running = event->total_time_running +
2370 atomic64_read(&event->child_total_time_running);
2379 #ifndef CONFIG_PERF_USE_VMALLOC
2382 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2385 static struct page *
2386 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2388 if (pgoff > data->nr_pages)
2392 return virt_to_page(data->user_page);
2394 return virt_to_page(data->data_pages[pgoff - 1]);
2397 static void *perf_mmap_alloc_page(int cpu)
2402 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2403 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2407 return page_address(page);
2410 static struct perf_mmap_data *
2411 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2413 struct perf_mmap_data *data;
2417 size = sizeof(struct perf_mmap_data);
2418 size += nr_pages * sizeof(void *);
2420 data = kzalloc(size, GFP_KERNEL);
2424 data->user_page = perf_mmap_alloc_page(event->cpu);
2425 if (!data->user_page)
2426 goto fail_user_page;
2428 for (i = 0; i < nr_pages; i++) {
2429 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2430 if (!data->data_pages[i])
2431 goto fail_data_pages;
2434 data->nr_pages = nr_pages;
2439 for (i--; i >= 0; i--)
2440 free_page((unsigned long)data->data_pages[i]);
2442 free_page((unsigned long)data->user_page);
2451 static void perf_mmap_free_page(unsigned long addr)
2453 struct page *page = virt_to_page((void *)addr);
2455 page->mapping = NULL;
2459 static void perf_mmap_data_free(struct perf_mmap_data *data)
2463 perf_mmap_free_page((unsigned long)data->user_page);
2464 for (i = 0; i < data->nr_pages; i++)
2465 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2469 static inline int page_order(struct perf_mmap_data *data)
2477 * Back perf_mmap() with vmalloc memory.
2479 * Required for architectures that have d-cache aliasing issues.
2482 static inline int page_order(struct perf_mmap_data *data)
2484 return data->page_order;
2487 static struct page *
2488 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2490 if (pgoff > (1UL << page_order(data)))
2493 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2496 static void perf_mmap_unmark_page(void *addr)
2498 struct page *page = vmalloc_to_page(addr);
2500 page->mapping = NULL;
2503 static void perf_mmap_data_free_work(struct work_struct *work)
2505 struct perf_mmap_data *data;
2509 data = container_of(work, struct perf_mmap_data, work);
2510 nr = 1 << page_order(data);
2512 base = data->user_page;
2513 for (i = 0; i < nr + 1; i++)
2514 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2520 static void perf_mmap_data_free(struct perf_mmap_data *data)
2522 schedule_work(&data->work);
2525 static struct perf_mmap_data *
2526 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2528 struct perf_mmap_data *data;
2532 size = sizeof(struct perf_mmap_data);
2533 size += sizeof(void *);
2535 data = kzalloc(size, GFP_KERNEL);
2539 INIT_WORK(&data->work, perf_mmap_data_free_work);
2541 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2545 data->user_page = all_buf;
2546 data->data_pages[0] = all_buf + PAGE_SIZE;
2547 data->page_order = ilog2(nr_pages);
2561 static unsigned long perf_data_size(struct perf_mmap_data *data)
2563 return data->nr_pages << (PAGE_SHIFT + page_order(data));
2566 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2568 struct perf_event *event = vma->vm_file->private_data;
2569 struct perf_mmap_data *data;
2570 int ret = VM_FAULT_SIGBUS;
2572 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2573 if (vmf->pgoff == 0)
2579 data = rcu_dereference(event->data);
2583 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2586 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2590 get_page(vmf->page);
2591 vmf->page->mapping = vma->vm_file->f_mapping;
2592 vmf->page->index = vmf->pgoff;
2602 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2604 long max_size = perf_data_size(data);
2606 if (event->attr.watermark) {
2607 data->watermark = min_t(long, max_size,
2608 event->attr.wakeup_watermark);
2611 if (!data->watermark)
2612 data->watermark = max_size / 2;
2614 atomic_set(&data->refcount, 1);
2615 rcu_assign_pointer(event->data, data);
2618 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2620 struct perf_mmap_data *data;
2622 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2623 perf_mmap_data_free(data);
2626 static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
2628 struct perf_mmap_data *data;
2631 data = rcu_dereference(event->data);
2633 if (!atomic_inc_not_zero(&data->refcount))
2641 static void perf_mmap_data_put(struct perf_mmap_data *data)
2643 if (!atomic_dec_and_test(&data->refcount))
2646 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2649 static void perf_mmap_open(struct vm_area_struct *vma)
2651 struct perf_event *event = vma->vm_file->private_data;
2653 atomic_inc(&event->mmap_count);
2656 static void perf_mmap_close(struct vm_area_struct *vma)
2658 struct perf_event *event = vma->vm_file->private_data;
2660 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2661 unsigned long size = perf_data_size(event->data);
2662 struct user_struct *user = event->mmap_user;
2663 struct perf_mmap_data *data = event->data;
2665 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2666 vma->vm_mm->locked_vm -= event->mmap_locked;
2667 rcu_assign_pointer(event->data, NULL);
2668 mutex_unlock(&event->mmap_mutex);
2670 perf_mmap_data_put(data);
2675 static const struct vm_operations_struct perf_mmap_vmops = {
2676 .open = perf_mmap_open,
2677 .close = perf_mmap_close,
2678 .fault = perf_mmap_fault,
2679 .page_mkwrite = perf_mmap_fault,
2682 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2684 struct perf_event *event = file->private_data;
2685 unsigned long user_locked, user_lock_limit;
2686 struct user_struct *user = current_user();
2687 unsigned long locked, lock_limit;
2688 struct perf_mmap_data *data;
2689 unsigned long vma_size;
2690 unsigned long nr_pages;
2691 long user_extra, extra;
2695 * Don't allow mmap() of inherited per-task counters. This would
2696 * create a performance issue due to all children writing to the
2699 if (event->cpu == -1 && event->attr.inherit)
2702 if (!(vma->vm_flags & VM_SHARED))
2705 vma_size = vma->vm_end - vma->vm_start;
2706 nr_pages = (vma_size / PAGE_SIZE) - 1;
2709 * If we have data pages ensure they're a power-of-two number, so we
2710 * can do bitmasks instead of modulo.
2712 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2715 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2718 if (vma->vm_pgoff != 0)
2721 WARN_ON_ONCE(event->ctx->parent_ctx);
2722 mutex_lock(&event->mmap_mutex);
2724 if (event->data->nr_pages == nr_pages)
2725 atomic_inc(&event->data->refcount);
2731 user_extra = nr_pages + 1;
2732 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2735 * Increase the limit linearly with more CPUs:
2737 user_lock_limit *= num_online_cpus();
2739 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2742 if (user_locked > user_lock_limit)
2743 extra = user_locked - user_lock_limit;
2745 lock_limit = rlimit(RLIMIT_MEMLOCK);
2746 lock_limit >>= PAGE_SHIFT;
2747 locked = vma->vm_mm->locked_vm + extra;
2749 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2750 !capable(CAP_IPC_LOCK)) {
2755 WARN_ON(event->data);
2757 data = perf_mmap_data_alloc(event, nr_pages);
2763 perf_mmap_data_init(event, data);
2764 if (vma->vm_flags & VM_WRITE)
2765 event->data->writable = 1;
2767 atomic_long_add(user_extra, &user->locked_vm);
2768 event->mmap_locked = extra;
2769 event->mmap_user = get_current_user();
2770 vma->vm_mm->locked_vm += event->mmap_locked;
2774 atomic_inc(&event->mmap_count);
2775 mutex_unlock(&event->mmap_mutex);
2777 vma->vm_flags |= VM_RESERVED;
2778 vma->vm_ops = &perf_mmap_vmops;
2783 static int perf_fasync(int fd, struct file *filp, int on)
2785 struct inode *inode = filp->f_path.dentry->d_inode;
2786 struct perf_event *event = filp->private_data;
2789 mutex_lock(&inode->i_mutex);
2790 retval = fasync_helper(fd, filp, on, &event->fasync);
2791 mutex_unlock(&inode->i_mutex);
2799 static const struct file_operations perf_fops = {
2800 .llseek = no_llseek,
2801 .release = perf_release,
2804 .unlocked_ioctl = perf_ioctl,
2805 .compat_ioctl = perf_ioctl,
2807 .fasync = perf_fasync,
2813 * If there's data, ensure we set the poll() state and publish everything
2814 * to user-space before waking everybody up.
2817 void perf_event_wakeup(struct perf_event *event)
2819 wake_up_all(&event->waitq);
2821 if (event->pending_kill) {
2822 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2823 event->pending_kill = 0;
2830 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2832 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2833 * single linked list and use cmpxchg() to add entries lockless.
2836 static void perf_pending_event(struct perf_pending_entry *entry)
2838 struct perf_event *event = container_of(entry,
2839 struct perf_event, pending);
2841 if (event->pending_disable) {
2842 event->pending_disable = 0;
2843 __perf_event_disable(event);
2846 if (event->pending_wakeup) {
2847 event->pending_wakeup = 0;
2848 perf_event_wakeup(event);
2852 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2854 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2858 static void perf_pending_queue(struct perf_pending_entry *entry,
2859 void (*func)(struct perf_pending_entry *))
2861 struct perf_pending_entry **head;
2863 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2868 head = &get_cpu_var(perf_pending_head);
2871 entry->next = *head;
2872 } while (cmpxchg(head, entry->next, entry) != entry->next);
2874 set_perf_event_pending();
2876 put_cpu_var(perf_pending_head);
2879 static int __perf_pending_run(void)
2881 struct perf_pending_entry *list;
2884 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2885 while (list != PENDING_TAIL) {
2886 void (*func)(struct perf_pending_entry *);
2887 struct perf_pending_entry *entry = list;
2894 * Ensure we observe the unqueue before we issue the wakeup,
2895 * so that we won't be waiting forever.
2896 * -- see perf_not_pending().
2907 static inline int perf_not_pending(struct perf_event *event)
2910 * If we flush on whatever cpu we run, there is a chance we don't
2914 __perf_pending_run();
2918 * Ensure we see the proper queue state before going to sleep
2919 * so that we do not miss the wakeup. -- see perf_pending_handle()
2922 return event->pending.next == NULL;
2925 static void perf_pending_sync(struct perf_event *event)
2927 wait_event(event->waitq, perf_not_pending(event));
2930 void perf_event_do_pending(void)
2932 __perf_pending_run();
2936 * Callchain support -- arch specific
2939 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2945 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2951 * We assume there is only KVM supporting the callbacks.
2952 * Later on, we might change it to a list if there is
2953 * another virtualization implementation supporting the callbacks.
2955 struct perf_guest_info_callbacks *perf_guest_cbs;
2957 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2959 perf_guest_cbs = cbs;
2962 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2964 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2966 perf_guest_cbs = NULL;
2969 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2974 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2975 unsigned long offset, unsigned long head)
2979 if (!data->writable)
2982 mask = perf_data_size(data) - 1;
2984 offset = (offset - tail) & mask;
2985 head = (head - tail) & mask;
2987 if ((int)(head - offset) < 0)
2993 static void perf_output_wakeup(struct perf_output_handle *handle)
2995 atomic_set(&handle->data->poll, POLL_IN);
2998 handle->event->pending_wakeup = 1;
2999 perf_pending_queue(&handle->event->pending,
3000 perf_pending_event);
3002 perf_event_wakeup(handle->event);
3006 * We need to ensure a later event_id doesn't publish a head when a former
3007 * event isn't done writing. However since we need to deal with NMIs we
3008 * cannot fully serialize things.
3010 * We only publish the head (and generate a wakeup) when the outer-most
3013 static void perf_output_get_handle(struct perf_output_handle *handle)
3015 struct perf_mmap_data *data = handle->data;
3018 local_inc(&data->nest);
3019 handle->wakeup = local_read(&data->wakeup);
3022 static void perf_output_put_handle(struct perf_output_handle *handle)
3024 struct perf_mmap_data *data = handle->data;
3028 head = local_read(&data->head);
3031 * IRQ/NMI can happen here, which means we can miss a head update.
3034 if (!local_dec_and_test(&data->nest))
3038 * Publish the known good head. Rely on the full barrier implied
3039 * by atomic_dec_and_test() order the data->head read and this
3042 data->user_page->data_head = head;
3045 * Now check if we missed an update, rely on the (compiler)
3046 * barrier in atomic_dec_and_test() to re-read data->head.
3048 if (unlikely(head != local_read(&data->head))) {
3049 local_inc(&data->nest);
3053 if (handle->wakeup != local_read(&data->wakeup))
3054 perf_output_wakeup(handle);
3060 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3061 const void *buf, unsigned int len)
3064 unsigned long size = min_t(unsigned long, handle->size, len);
3066 memcpy(handle->addr, buf, size);
3069 handle->addr += size;
3071 handle->size -= size;
3072 if (!handle->size) {
3073 struct perf_mmap_data *data = handle->data;
3076 handle->page &= data->nr_pages - 1;
3077 handle->addr = data->data_pages[handle->page];
3078 handle->size = PAGE_SIZE << page_order(data);
3083 int perf_output_begin(struct perf_output_handle *handle,
3084 struct perf_event *event, unsigned int size,
3085 int nmi, int sample)
3087 struct perf_mmap_data *data;
3088 unsigned long tail, offset, head;
3091 struct perf_event_header header;
3098 * For inherited events we send all the output towards the parent.
3101 event = event->parent;
3103 data = rcu_dereference(event->data);
3107 handle->data = data;
3108 handle->event = event;
3110 handle->sample = sample;
3112 if (!data->nr_pages)
3115 have_lost = local_read(&data->lost);
3117 size += sizeof(lost_event);
3119 perf_output_get_handle(handle);
3123 * Userspace could choose to issue a mb() before updating the
3124 * tail pointer. So that all reads will be completed before the
3127 tail = ACCESS_ONCE(data->user_page->data_tail);
3129 offset = head = local_read(&data->head);
3131 if (unlikely(!perf_output_space(data, tail, offset, head)))
3133 } while (local_cmpxchg(&data->head, offset, head) != offset);
3135 if (head - local_read(&data->wakeup) > data->watermark)
3136 local_add(data->watermark, &data->wakeup);
3138 handle->page = offset >> (PAGE_SHIFT + page_order(data));
3139 handle->page &= data->nr_pages - 1;
3140 handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3141 handle->addr = data->data_pages[handle->page];
3142 handle->addr += handle->size;
3143 handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3146 lost_event.header.type = PERF_RECORD_LOST;
3147 lost_event.header.misc = 0;
3148 lost_event.header.size = sizeof(lost_event);
3149 lost_event.id = event->id;
3150 lost_event.lost = local_xchg(&data->lost, 0);
3152 perf_output_put(handle, lost_event);
3158 local_inc(&data->lost);
3159 perf_output_put_handle(handle);
3166 void perf_output_end(struct perf_output_handle *handle)
3168 struct perf_event *event = handle->event;
3169 struct perf_mmap_data *data = handle->data;
3171 int wakeup_events = event->attr.wakeup_events;
3173 if (handle->sample && wakeup_events) {
3174 int events = local_inc_return(&data->events);
3175 if (events >= wakeup_events) {
3176 local_sub(wakeup_events, &data->events);
3177 local_inc(&data->wakeup);
3181 perf_output_put_handle(handle);
3185 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3188 * only top level events have the pid namespace they were created in
3191 event = event->parent;
3193 return task_tgid_nr_ns(p, event->ns);
3196 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3199 * only top level events have the pid namespace they were created in
3202 event = event->parent;
3204 return task_pid_nr_ns(p, event->ns);
3207 static void perf_output_read_one(struct perf_output_handle *handle,
3208 struct perf_event *event)
3210 u64 read_format = event->attr.read_format;
3214 values[n++] = atomic64_read(&event->count);
3215 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3216 values[n++] = event->total_time_enabled +
3217 atomic64_read(&event->child_total_time_enabled);
3219 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3220 values[n++] = event->total_time_running +
3221 atomic64_read(&event->child_total_time_running);
3223 if (read_format & PERF_FORMAT_ID)
3224 values[n++] = primary_event_id(event);
3226 perf_output_copy(handle, values, n * sizeof(u64));
3230 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3232 static void perf_output_read_group(struct perf_output_handle *handle,
3233 struct perf_event *event)
3235 struct perf_event *leader = event->group_leader, *sub;
3236 u64 read_format = event->attr.read_format;
3240 values[n++] = 1 + leader->nr_siblings;
3242 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3243 values[n++] = leader->total_time_enabled;
3245 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3246 values[n++] = leader->total_time_running;
3248 if (leader != event)
3249 leader->pmu->read(leader);
3251 values[n++] = atomic64_read(&leader->count);
3252 if (read_format & PERF_FORMAT_ID)
3253 values[n++] = primary_event_id(leader);
3255 perf_output_copy(handle, values, n * sizeof(u64));
3257 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3261 sub->pmu->read(sub);
3263 values[n++] = atomic64_read(&sub->count);
3264 if (read_format & PERF_FORMAT_ID)
3265 values[n++] = primary_event_id(sub);
3267 perf_output_copy(handle, values, n * sizeof(u64));
3271 static void perf_output_read(struct perf_output_handle *handle,
3272 struct perf_event *event)
3274 if (event->attr.read_format & PERF_FORMAT_GROUP)
3275 perf_output_read_group(handle, event);
3277 perf_output_read_one(handle, event);
3280 void perf_output_sample(struct perf_output_handle *handle,
3281 struct perf_event_header *header,
3282 struct perf_sample_data *data,
3283 struct perf_event *event)
3285 u64 sample_type = data->type;
3287 perf_output_put(handle, *header);
3289 if (sample_type & PERF_SAMPLE_IP)
3290 perf_output_put(handle, data->ip);
3292 if (sample_type & PERF_SAMPLE_TID)
3293 perf_output_put(handle, data->tid_entry);
3295 if (sample_type & PERF_SAMPLE_TIME)
3296 perf_output_put(handle, data->time);
3298 if (sample_type & PERF_SAMPLE_ADDR)
3299 perf_output_put(handle, data->addr);
3301 if (sample_type & PERF_SAMPLE_ID)
3302 perf_output_put(handle, data->id);
3304 if (sample_type & PERF_SAMPLE_STREAM_ID)
3305 perf_output_put(handle, data->stream_id);
3307 if (sample_type & PERF_SAMPLE_CPU)
3308 perf_output_put(handle, data->cpu_entry);
3310 if (sample_type & PERF_SAMPLE_PERIOD)
3311 perf_output_put(handle, data->period);
3313 if (sample_type & PERF_SAMPLE_READ)
3314 perf_output_read(handle, event);
3316 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3317 if (data->callchain) {
3320 if (data->callchain)
3321 size += data->callchain->nr;
3323 size *= sizeof(u64);
3325 perf_output_copy(handle, data->callchain, size);
3328 perf_output_put(handle, nr);
3332 if (sample_type & PERF_SAMPLE_RAW) {
3334 perf_output_put(handle, data->raw->size);
3335 perf_output_copy(handle, data->raw->data,
3342 .size = sizeof(u32),
3345 perf_output_put(handle, raw);
3350 void perf_prepare_sample(struct perf_event_header *header,
3351 struct perf_sample_data *data,
3352 struct perf_event *event,
3353 struct pt_regs *regs)
3355 u64 sample_type = event->attr.sample_type;
3357 data->type = sample_type;
3359 header->type = PERF_RECORD_SAMPLE;
3360 header->size = sizeof(*header);
3363 header->misc |= perf_misc_flags(regs);
3365 if (sample_type & PERF_SAMPLE_IP) {
3366 data->ip = perf_instruction_pointer(regs);
3368 header->size += sizeof(data->ip);
3371 if (sample_type & PERF_SAMPLE_TID) {
3372 /* namespace issues */
3373 data->tid_entry.pid = perf_event_pid(event, current);
3374 data->tid_entry.tid = perf_event_tid(event, current);
3376 header->size += sizeof(data->tid_entry);
3379 if (sample_type & PERF_SAMPLE_TIME) {
3380 data->time = perf_clock();
3382 header->size += sizeof(data->time);
3385 if (sample_type & PERF_SAMPLE_ADDR)
3386 header->size += sizeof(data->addr);
3388 if (sample_type & PERF_SAMPLE_ID) {
3389 data->id = primary_event_id(event);
3391 header->size += sizeof(data->id);
3394 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3395 data->stream_id = event->id;
3397 header->size += sizeof(data->stream_id);
3400 if (sample_type & PERF_SAMPLE_CPU) {
3401 data->cpu_entry.cpu = raw_smp_processor_id();
3402 data->cpu_entry.reserved = 0;
3404 header->size += sizeof(data->cpu_entry);
3407 if (sample_type & PERF_SAMPLE_PERIOD)
3408 header->size += sizeof(data->period);
3410 if (sample_type & PERF_SAMPLE_READ)
3411 header->size += perf_event_read_size(event);
3413 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3416 data->callchain = perf_callchain(regs);
3418 if (data->callchain)
3419 size += data->callchain->nr;
3421 header->size += size * sizeof(u64);
3424 if (sample_type & PERF_SAMPLE_RAW) {
3425 int size = sizeof(u32);
3428 size += data->raw->size;
3430 size += sizeof(u32);
3432 WARN_ON_ONCE(size & (sizeof(u64)-1));
3433 header->size += size;
3437 static void perf_event_output(struct perf_event *event, int nmi,
3438 struct perf_sample_data *data,
3439 struct pt_regs *regs)
3441 struct perf_output_handle handle;
3442 struct perf_event_header header;
3444 perf_prepare_sample(&header, data, event, regs);
3446 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3449 perf_output_sample(&handle, &header, data, event);
3451 perf_output_end(&handle);
3458 struct perf_read_event {
3459 struct perf_event_header header;
3466 perf_event_read_event(struct perf_event *event,
3467 struct task_struct *task)
3469 struct perf_output_handle handle;
3470 struct perf_read_event read_event = {
3472 .type = PERF_RECORD_READ,
3474 .size = sizeof(read_event) + perf_event_read_size(event),
3476 .pid = perf_event_pid(event, task),
3477 .tid = perf_event_tid(event, task),
3481 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3485 perf_output_put(&handle, read_event);
3486 perf_output_read(&handle, event);
3488 perf_output_end(&handle);
3492 * task tracking -- fork/exit
3494 * enabled by: attr.comm | attr.mmap | attr.task
3497 struct perf_task_event {
3498 struct task_struct *task;
3499 struct perf_event_context *task_ctx;
3502 struct perf_event_header header;
3512 static void perf_event_task_output(struct perf_event *event,
3513 struct perf_task_event *task_event)
3515 struct perf_output_handle handle;
3516 struct task_struct *task = task_event->task;
3519 size = task_event->event_id.header.size;
3520 ret = perf_output_begin(&handle, event, size, 0, 0);
3525 task_event->event_id.pid = perf_event_pid(event, task);
3526 task_event->event_id.ppid = perf_event_pid(event, current);
3528 task_event->event_id.tid = perf_event_tid(event, task);
3529 task_event->event_id.ptid = perf_event_tid(event, current);
3531 perf_output_put(&handle, task_event->event_id);
3533 perf_output_end(&handle);
3536 static int perf_event_task_match(struct perf_event *event)
3538 if (event->state < PERF_EVENT_STATE_INACTIVE)
3541 if (event->cpu != -1 && event->cpu != smp_processor_id())
3544 if (event->attr.comm || event->attr.mmap || event->attr.task)
3550 static void perf_event_task_ctx(struct perf_event_context *ctx,
3551 struct perf_task_event *task_event)
3553 struct perf_event *event;
3555 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3556 if (perf_event_task_match(event))
3557 perf_event_task_output(event, task_event);
3561 static void perf_event_task_event(struct perf_task_event *task_event)
3563 struct perf_cpu_context *cpuctx;
3564 struct perf_event_context *ctx = task_event->task_ctx;
3567 cpuctx = &get_cpu_var(perf_cpu_context);
3568 perf_event_task_ctx(&cpuctx->ctx, task_event);
3570 ctx = rcu_dereference(current->perf_event_ctxp);
3572 perf_event_task_ctx(ctx, task_event);
3573 put_cpu_var(perf_cpu_context);
3577 static void perf_event_task(struct task_struct *task,
3578 struct perf_event_context *task_ctx,
3581 struct perf_task_event task_event;
3583 if (!atomic_read(&nr_comm_events) &&
3584 !atomic_read(&nr_mmap_events) &&
3585 !atomic_read(&nr_task_events))
3588 task_event = (struct perf_task_event){
3590 .task_ctx = task_ctx,
3593 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3595 .size = sizeof(task_event.event_id),
3601 .time = perf_clock(),
3605 perf_event_task_event(&task_event);
3608 void perf_event_fork(struct task_struct *task)
3610 perf_event_task(task, NULL, 1);
3617 struct perf_comm_event {
3618 struct task_struct *task;
3623 struct perf_event_header header;
3630 static void perf_event_comm_output(struct perf_event *event,
3631 struct perf_comm_event *comm_event)
3633 struct perf_output_handle handle;
3634 int size = comm_event->event_id.header.size;
3635 int ret = perf_output_begin(&handle, event, size, 0, 0);
3640 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3641 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3643 perf_output_put(&handle, comm_event->event_id);
3644 perf_output_copy(&handle, comm_event->comm,
3645 comm_event->comm_size);
3646 perf_output_end(&handle);
3649 static int perf_event_comm_match(struct perf_event *event)
3651 if (event->state < PERF_EVENT_STATE_INACTIVE)
3654 if (event->cpu != -1 && event->cpu != smp_processor_id())
3657 if (event->attr.comm)
3663 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3664 struct perf_comm_event *comm_event)
3666 struct perf_event *event;
3668 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3669 if (perf_event_comm_match(event))
3670 perf_event_comm_output(event, comm_event);
3674 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3676 struct perf_cpu_context *cpuctx;
3677 struct perf_event_context *ctx;
3679 char comm[TASK_COMM_LEN];
3681 memset(comm, 0, sizeof(comm));
3682 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3683 size = ALIGN(strlen(comm)+1, sizeof(u64));
3685 comm_event->comm = comm;
3686 comm_event->comm_size = size;
3688 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3691 cpuctx = &get_cpu_var(perf_cpu_context);
3692 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3693 ctx = rcu_dereference(current->perf_event_ctxp);
3695 perf_event_comm_ctx(ctx, comm_event);
3696 put_cpu_var(perf_cpu_context);
3700 void perf_event_comm(struct task_struct *task)
3702 struct perf_comm_event comm_event;
3704 if (task->perf_event_ctxp)
3705 perf_event_enable_on_exec(task);
3707 if (!atomic_read(&nr_comm_events))
3710 comm_event = (struct perf_comm_event){
3716 .type = PERF_RECORD_COMM,
3725 perf_event_comm_event(&comm_event);
3732 struct perf_mmap_event {
3733 struct vm_area_struct *vma;
3735 const char *file_name;
3739 struct perf_event_header header;
3749 static void perf_event_mmap_output(struct perf_event *event,
3750 struct perf_mmap_event *mmap_event)
3752 struct perf_output_handle handle;
3753 int size = mmap_event->event_id.header.size;
3754 int ret = perf_output_begin(&handle, event, size, 0, 0);
3759 mmap_event->event_id.pid = perf_event_pid(event, current);
3760 mmap_event->event_id.tid = perf_event_tid(event, current);
3762 perf_output_put(&handle, mmap_event->event_id);
3763 perf_output_copy(&handle, mmap_event->file_name,
3764 mmap_event->file_size);
3765 perf_output_end(&handle);
3768 static int perf_event_mmap_match(struct perf_event *event,
3769 struct perf_mmap_event *mmap_event)
3771 if (event->state < PERF_EVENT_STATE_INACTIVE)
3774 if (event->cpu != -1 && event->cpu != smp_processor_id())
3777 if (event->attr.mmap)
3783 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3784 struct perf_mmap_event *mmap_event)
3786 struct perf_event *event;
3788 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3789 if (perf_event_mmap_match(event, mmap_event))
3790 perf_event_mmap_output(event, mmap_event);
3794 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3796 struct perf_cpu_context *cpuctx;
3797 struct perf_event_context *ctx;
3798 struct vm_area_struct *vma = mmap_event->vma;
3799 struct file *file = vma->vm_file;
3805 memset(tmp, 0, sizeof(tmp));
3809 * d_path works from the end of the buffer backwards, so we
3810 * need to add enough zero bytes after the string to handle
3811 * the 64bit alignment we do later.
3813 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3815 name = strncpy(tmp, "//enomem", sizeof(tmp));
3818 name = d_path(&file->f_path, buf, PATH_MAX);
3820 name = strncpy(tmp, "//toolong", sizeof(tmp));
3824 if (arch_vma_name(mmap_event->vma)) {
3825 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3831 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3835 name = strncpy(tmp, "//anon", sizeof(tmp));
3840 size = ALIGN(strlen(name)+1, sizeof(u64));
3842 mmap_event->file_name = name;
3843 mmap_event->file_size = size;
3845 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3848 cpuctx = &get_cpu_var(perf_cpu_context);
3849 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3850 ctx = rcu_dereference(current->perf_event_ctxp);
3852 perf_event_mmap_ctx(ctx, mmap_event);
3853 put_cpu_var(perf_cpu_context);
3859 void __perf_event_mmap(struct vm_area_struct *vma)
3861 struct perf_mmap_event mmap_event;
3863 if (!atomic_read(&nr_mmap_events))
3866 mmap_event = (struct perf_mmap_event){
3872 .type = PERF_RECORD_MMAP,
3873 .misc = PERF_RECORD_MISC_USER,
3878 .start = vma->vm_start,
3879 .len = vma->vm_end - vma->vm_start,
3880 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3884 perf_event_mmap_event(&mmap_event);
3888 * IRQ throttle logging
3891 static void perf_log_throttle(struct perf_event *event, int enable)
3893 struct perf_output_handle handle;
3897 struct perf_event_header header;
3901 } throttle_event = {
3903 .type = PERF_RECORD_THROTTLE,
3905 .size = sizeof(throttle_event),
3907 .time = perf_clock(),
3908 .id = primary_event_id(event),
3909 .stream_id = event->id,
3913 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3915 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3919 perf_output_put(&handle, throttle_event);
3920 perf_output_end(&handle);
3924 * Generic event overflow handling, sampling.
3927 static int __perf_event_overflow(struct perf_event *event, int nmi,
3928 int throttle, struct perf_sample_data *data,
3929 struct pt_regs *regs)
3931 int events = atomic_read(&event->event_limit);
3932 struct hw_perf_event *hwc = &event->hw;
3935 throttle = (throttle && event->pmu->unthrottle != NULL);
3940 if (hwc->interrupts != MAX_INTERRUPTS) {
3942 if (HZ * hwc->interrupts >
3943 (u64)sysctl_perf_event_sample_rate) {
3944 hwc->interrupts = MAX_INTERRUPTS;
3945 perf_log_throttle(event, 0);
3950 * Keep re-disabling events even though on the previous
3951 * pass we disabled it - just in case we raced with a
3952 * sched-in and the event got enabled again:
3958 if (event->attr.freq) {
3959 u64 now = perf_clock();
3960 s64 delta = now - hwc->freq_time_stamp;
3962 hwc->freq_time_stamp = now;
3964 if (delta > 0 && delta < 2*TICK_NSEC)
3965 perf_adjust_period(event, delta, hwc->last_period);
3969 * XXX event_limit might not quite work as expected on inherited
3973 event->pending_kill = POLL_IN;
3974 if (events && atomic_dec_and_test(&event->event_limit)) {
3976 event->pending_kill = POLL_HUP;
3978 event->pending_disable = 1;
3979 perf_pending_queue(&event->pending,
3980 perf_pending_event);
3982 perf_event_disable(event);
3985 if (event->overflow_handler)
3986 event->overflow_handler(event, nmi, data, regs);
3988 perf_event_output(event, nmi, data, regs);
3993 int perf_event_overflow(struct perf_event *event, int nmi,
3994 struct perf_sample_data *data,
3995 struct pt_regs *regs)
3997 return __perf_event_overflow(event, nmi, 1, data, regs);
4001 * Generic software event infrastructure
4005 * We directly increment event->count and keep a second value in
4006 * event->hw.period_left to count intervals. This period event
4007 * is kept in the range [-sample_period, 0] so that we can use the
4011 static u64 perf_swevent_set_period(struct perf_event *event)
4013 struct hw_perf_event *hwc = &event->hw;
4014 u64 period = hwc->last_period;
4018 hwc->last_period = hwc->sample_period;
4021 old = val = atomic64_read(&hwc->period_left);
4025 nr = div64_u64(period + val, period);
4026 offset = nr * period;
4028 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
4034 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4035 int nmi, struct perf_sample_data *data,
4036 struct pt_regs *regs)
4038 struct hw_perf_event *hwc = &event->hw;
4041 data->period = event->hw.last_period;
4043 overflow = perf_swevent_set_period(event);
4045 if (hwc->interrupts == MAX_INTERRUPTS)
4048 for (; overflow; overflow--) {
4049 if (__perf_event_overflow(event, nmi, throttle,
4052 * We inhibit the overflow from happening when
4053 * hwc->interrupts == MAX_INTERRUPTS.
4061 static void perf_swevent_add(struct perf_event *event, u64 nr,
4062 int nmi, struct perf_sample_data *data,
4063 struct pt_regs *regs)
4065 struct hw_perf_event *hwc = &event->hw;
4067 atomic64_add(nr, &event->count);
4072 if (!hwc->sample_period)
4075 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4076 return perf_swevent_overflow(event, 1, nmi, data, regs);
4078 if (atomic64_add_negative(nr, &hwc->period_left))
4081 perf_swevent_overflow(event, 0, nmi, data, regs);
4084 static int perf_exclude_event(struct perf_event *event,
4085 struct pt_regs *regs)
4088 if (event->attr.exclude_user && user_mode(regs))
4091 if (event->attr.exclude_kernel && !user_mode(regs))
4098 static int perf_swevent_match(struct perf_event *event,
4099 enum perf_type_id type,
4101 struct perf_sample_data *data,
4102 struct pt_regs *regs)
4104 if (event->attr.type != type)
4107 if (event->attr.config != event_id)
4110 if (perf_exclude_event(event, regs))
4116 static inline u64 swevent_hash(u64 type, u32 event_id)
4118 u64 val = event_id | (type << 32);
4120 return hash_64(val, SWEVENT_HLIST_BITS);
4123 static inline struct hlist_head *
4124 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4126 u64 hash = swevent_hash(type, event_id);
4128 return &hlist->heads[hash];
4131 /* For the read side: events when they trigger */
4132 static inline struct hlist_head *
4133 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4135 struct swevent_hlist *hlist;
4137 hlist = rcu_dereference(ctx->swevent_hlist);
4141 return __find_swevent_head(hlist, type, event_id);
4144 /* For the event head insertion and removal in the hlist */
4145 static inline struct hlist_head *
4146 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4148 struct swevent_hlist *hlist;
4149 u32 event_id = event->attr.config;
4150 u64 type = event->attr.type;
4153 * Event scheduling is always serialized against hlist allocation
4154 * and release. Which makes the protected version suitable here.
4155 * The context lock guarantees that.
4157 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4158 lockdep_is_held(&event->ctx->lock));
4162 return __find_swevent_head(hlist, type, event_id);
4165 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4167 struct perf_sample_data *data,
4168 struct pt_regs *regs)
4170 struct perf_cpu_context *cpuctx;
4171 struct perf_event *event;
4172 struct hlist_node *node;
4173 struct hlist_head *head;
4175 cpuctx = &__get_cpu_var(perf_cpu_context);
4179 head = find_swevent_head_rcu(cpuctx, type, event_id);
4184 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4185 if (perf_swevent_match(event, type, event_id, data, regs))
4186 perf_swevent_add(event, nr, nmi, data, regs);
4192 int perf_swevent_get_recursion_context(void)
4194 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4201 else if (in_softirq())
4206 if (cpuctx->recursion[rctx])
4209 cpuctx->recursion[rctx]++;
4214 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4216 void perf_swevent_put_recursion_context(int rctx)
4218 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4220 cpuctx->recursion[rctx]--;
4222 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4225 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4226 struct pt_regs *regs, u64 addr)
4228 struct perf_sample_data data;
4231 preempt_disable_notrace();
4232 rctx = perf_swevent_get_recursion_context();
4236 perf_sample_data_init(&data, addr);
4238 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4240 perf_swevent_put_recursion_context(rctx);
4241 preempt_enable_notrace();
4244 static void perf_swevent_read(struct perf_event *event)
4248 static int perf_swevent_enable(struct perf_event *event)
4250 struct hw_perf_event *hwc = &event->hw;
4251 struct perf_cpu_context *cpuctx;
4252 struct hlist_head *head;
4254 cpuctx = &__get_cpu_var(perf_cpu_context);
4256 if (hwc->sample_period) {
4257 hwc->last_period = hwc->sample_period;
4258 perf_swevent_set_period(event);
4261 head = find_swevent_head(cpuctx, event);
4262 if (WARN_ON_ONCE(!head))
4265 hlist_add_head_rcu(&event->hlist_entry, head);
4270 static void perf_swevent_disable(struct perf_event *event)
4272 hlist_del_rcu(&event->hlist_entry);
4275 static void perf_swevent_void(struct perf_event *event)
4279 static int perf_swevent_int(struct perf_event *event)
4284 static const struct pmu perf_ops_generic = {
4285 .enable = perf_swevent_enable,
4286 .disable = perf_swevent_disable,
4287 .start = perf_swevent_int,
4288 .stop = perf_swevent_void,
4289 .read = perf_swevent_read,
4290 .unthrottle = perf_swevent_void, /* hwc->interrupts already reset */
4294 * hrtimer based swevent callback
4297 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4299 enum hrtimer_restart ret = HRTIMER_RESTART;
4300 struct perf_sample_data data;
4301 struct pt_regs *regs;
4302 struct perf_event *event;
4305 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4306 event->pmu->read(event);
4308 perf_sample_data_init(&data, 0);
4309 data.period = event->hw.last_period;
4310 regs = get_irq_regs();
4312 if (regs && !perf_exclude_event(event, regs)) {
4313 if (!(event->attr.exclude_idle && current->pid == 0))
4314 if (perf_event_overflow(event, 0, &data, regs))
4315 ret = HRTIMER_NORESTART;
4318 period = max_t(u64, 10000, event->hw.sample_period);
4319 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4324 static void perf_swevent_start_hrtimer(struct perf_event *event)
4326 struct hw_perf_event *hwc = &event->hw;
4328 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4329 hwc->hrtimer.function = perf_swevent_hrtimer;
4330 if (hwc->sample_period) {
4333 if (hwc->remaining) {
4334 if (hwc->remaining < 0)
4337 period = hwc->remaining;
4340 period = max_t(u64, 10000, hwc->sample_period);
4342 __hrtimer_start_range_ns(&hwc->hrtimer,
4343 ns_to_ktime(period), 0,
4344 HRTIMER_MODE_REL, 0);
4348 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4350 struct hw_perf_event *hwc = &event->hw;
4352 if (hwc->sample_period) {
4353 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4354 hwc->remaining = ktime_to_ns(remaining);
4356 hrtimer_cancel(&hwc->hrtimer);
4361 * Software event: cpu wall time clock
4364 static void cpu_clock_perf_event_update(struct perf_event *event)
4366 int cpu = raw_smp_processor_id();
4370 now = cpu_clock(cpu);
4371 prev = atomic64_xchg(&event->hw.prev_count, now);
4372 atomic64_add(now - prev, &event->count);
4375 static int cpu_clock_perf_event_enable(struct perf_event *event)
4377 struct hw_perf_event *hwc = &event->hw;
4378 int cpu = raw_smp_processor_id();
4380 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4381 perf_swevent_start_hrtimer(event);
4386 static void cpu_clock_perf_event_disable(struct perf_event *event)
4388 perf_swevent_cancel_hrtimer(event);
4389 cpu_clock_perf_event_update(event);
4392 static void cpu_clock_perf_event_read(struct perf_event *event)
4394 cpu_clock_perf_event_update(event);
4397 static const struct pmu perf_ops_cpu_clock = {
4398 .enable = cpu_clock_perf_event_enable,
4399 .disable = cpu_clock_perf_event_disable,
4400 .read = cpu_clock_perf_event_read,
4404 * Software event: task time clock
4407 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4412 prev = atomic64_xchg(&event->hw.prev_count, now);
4414 atomic64_add(delta, &event->count);
4417 static int task_clock_perf_event_enable(struct perf_event *event)
4419 struct hw_perf_event *hwc = &event->hw;
4422 now = event->ctx->time;
4424 atomic64_set(&hwc->prev_count, now);
4426 perf_swevent_start_hrtimer(event);
4431 static void task_clock_perf_event_disable(struct perf_event *event)
4433 perf_swevent_cancel_hrtimer(event);
4434 task_clock_perf_event_update(event, event->ctx->time);
4438 static void task_clock_perf_event_read(struct perf_event *event)
4443 update_context_time(event->ctx);
4444 time = event->ctx->time;
4446 u64 now = perf_clock();
4447 u64 delta = now - event->ctx->timestamp;
4448 time = event->ctx->time + delta;
4451 task_clock_perf_event_update(event, time);
4454 static const struct pmu perf_ops_task_clock = {
4455 .enable = task_clock_perf_event_enable,
4456 .disable = task_clock_perf_event_disable,
4457 .read = task_clock_perf_event_read,
4460 /* Deref the hlist from the update side */
4461 static inline struct swevent_hlist *
4462 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4464 return rcu_dereference_protected(cpuctx->swevent_hlist,
4465 lockdep_is_held(&cpuctx->hlist_mutex));
4468 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4470 struct swevent_hlist *hlist;
4472 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4476 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4478 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4483 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4484 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4487 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4489 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4491 mutex_lock(&cpuctx->hlist_mutex);
4493 if (!--cpuctx->hlist_refcount)
4494 swevent_hlist_release(cpuctx);
4496 mutex_unlock(&cpuctx->hlist_mutex);
4499 static void swevent_hlist_put(struct perf_event *event)
4503 if (event->cpu != -1) {
4504 swevent_hlist_put_cpu(event, event->cpu);
4508 for_each_possible_cpu(cpu)
4509 swevent_hlist_put_cpu(event, cpu);
4512 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4514 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4517 mutex_lock(&cpuctx->hlist_mutex);
4519 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4520 struct swevent_hlist *hlist;
4522 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4527 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4529 cpuctx->hlist_refcount++;
4531 mutex_unlock(&cpuctx->hlist_mutex);
4536 static int swevent_hlist_get(struct perf_event *event)
4539 int cpu, failed_cpu;
4541 if (event->cpu != -1)
4542 return swevent_hlist_get_cpu(event, event->cpu);
4545 for_each_possible_cpu(cpu) {
4546 err = swevent_hlist_get_cpu(event, cpu);
4556 for_each_possible_cpu(cpu) {
4557 if (cpu == failed_cpu)
4559 swevent_hlist_put_cpu(event, cpu);
4566 #ifdef CONFIG_EVENT_TRACING
4568 static const struct pmu perf_ops_tracepoint = {
4569 .enable = perf_trace_enable,
4570 .disable = perf_trace_disable,
4571 .start = perf_swevent_int,
4572 .stop = perf_swevent_void,
4573 .read = perf_swevent_read,
4574 .unthrottle = perf_swevent_void,
4577 static int perf_tp_filter_match(struct perf_event *event,
4578 struct perf_sample_data *data)
4580 void *record = data->raw->data;
4582 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4587 static int perf_tp_event_match(struct perf_event *event,
4588 struct perf_sample_data *data,
4589 struct pt_regs *regs)
4592 * All tracepoints are from kernel-space.
4594 if (event->attr.exclude_kernel)
4597 if (!perf_tp_filter_match(event, data))
4603 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4604 struct pt_regs *regs, struct hlist_head *head)
4606 struct perf_sample_data data;
4607 struct perf_event *event;
4608 struct hlist_node *node;
4610 struct perf_raw_record raw = {
4615 perf_sample_data_init(&data, addr);
4619 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4620 if (perf_tp_event_match(event, &data, regs))
4621 perf_swevent_add(event, count, 1, &data, regs);
4625 EXPORT_SYMBOL_GPL(perf_tp_event);
4627 static void tp_perf_event_destroy(struct perf_event *event)
4629 perf_trace_destroy(event);
4632 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4637 * Raw tracepoint data is a severe data leak, only allow root to
4640 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4641 perf_paranoid_tracepoint_raw() &&
4642 !capable(CAP_SYS_ADMIN))
4643 return ERR_PTR(-EPERM);
4645 err = perf_trace_init(event);
4649 event->destroy = tp_perf_event_destroy;
4651 return &perf_ops_tracepoint;
4654 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4659 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4662 filter_str = strndup_user(arg, PAGE_SIZE);
4663 if (IS_ERR(filter_str))
4664 return PTR_ERR(filter_str);
4666 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4672 static void perf_event_free_filter(struct perf_event *event)
4674 ftrace_profile_free_filter(event);
4679 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4684 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4689 static void perf_event_free_filter(struct perf_event *event)
4693 #endif /* CONFIG_EVENT_TRACING */
4695 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4696 static void bp_perf_event_destroy(struct perf_event *event)
4698 release_bp_slot(event);
4701 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4705 err = register_perf_hw_breakpoint(bp);
4707 return ERR_PTR(err);
4709 bp->destroy = bp_perf_event_destroy;
4711 return &perf_ops_bp;
4714 void perf_bp_event(struct perf_event *bp, void *data)
4716 struct perf_sample_data sample;
4717 struct pt_regs *regs = data;
4719 perf_sample_data_init(&sample, bp->attr.bp_addr);
4721 if (!perf_exclude_event(bp, regs))
4722 perf_swevent_add(bp, 1, 1, &sample, regs);
4725 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4730 void perf_bp_event(struct perf_event *bp, void *regs)
4735 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4737 static void sw_perf_event_destroy(struct perf_event *event)
4739 u64 event_id = event->attr.config;
4741 WARN_ON(event->parent);
4743 atomic_dec(&perf_swevent_enabled[event_id]);
4744 swevent_hlist_put(event);
4747 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4749 const struct pmu *pmu = NULL;
4750 u64 event_id = event->attr.config;
4753 * Software events (currently) can't in general distinguish
4754 * between user, kernel and hypervisor events.
4755 * However, context switches and cpu migrations are considered
4756 * to be kernel events, and page faults are never hypervisor
4760 case PERF_COUNT_SW_CPU_CLOCK:
4761 pmu = &perf_ops_cpu_clock;
4764 case PERF_COUNT_SW_TASK_CLOCK:
4766 * If the user instantiates this as a per-cpu event,
4767 * use the cpu_clock event instead.
4769 if (event->ctx->task)
4770 pmu = &perf_ops_task_clock;
4772 pmu = &perf_ops_cpu_clock;
4775 case PERF_COUNT_SW_PAGE_FAULTS:
4776 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4777 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4778 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4779 case PERF_COUNT_SW_CPU_MIGRATIONS:
4780 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4781 case PERF_COUNT_SW_EMULATION_FAULTS:
4782 if (!event->parent) {
4785 err = swevent_hlist_get(event);
4787 return ERR_PTR(err);
4789 atomic_inc(&perf_swevent_enabled[event_id]);
4790 event->destroy = sw_perf_event_destroy;
4792 pmu = &perf_ops_generic;
4800 * Allocate and initialize a event structure
4802 static struct perf_event *
4803 perf_event_alloc(struct perf_event_attr *attr,
4805 struct perf_event_context *ctx,
4806 struct perf_event *group_leader,
4807 struct perf_event *parent_event,
4808 perf_overflow_handler_t overflow_handler,
4811 const struct pmu *pmu;
4812 struct perf_event *event;
4813 struct hw_perf_event *hwc;
4816 event = kzalloc(sizeof(*event), gfpflags);
4818 return ERR_PTR(-ENOMEM);
4821 * Single events are their own group leaders, with an
4822 * empty sibling list:
4825 group_leader = event;
4827 mutex_init(&event->child_mutex);
4828 INIT_LIST_HEAD(&event->child_list);
4830 INIT_LIST_HEAD(&event->group_entry);
4831 INIT_LIST_HEAD(&event->event_entry);
4832 INIT_LIST_HEAD(&event->sibling_list);
4833 init_waitqueue_head(&event->waitq);
4835 mutex_init(&event->mmap_mutex);
4838 event->attr = *attr;
4839 event->group_leader = group_leader;
4844 event->parent = parent_event;
4846 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4847 event->id = atomic64_inc_return(&perf_event_id);
4849 event->state = PERF_EVENT_STATE_INACTIVE;
4851 if (!overflow_handler && parent_event)
4852 overflow_handler = parent_event->overflow_handler;
4854 event->overflow_handler = overflow_handler;
4857 event->state = PERF_EVENT_STATE_OFF;
4862 hwc->sample_period = attr->sample_period;
4863 if (attr->freq && attr->sample_freq)
4864 hwc->sample_period = 1;
4865 hwc->last_period = hwc->sample_period;
4867 atomic64_set(&hwc->period_left, hwc->sample_period);
4870 * we currently do not support PERF_FORMAT_GROUP on inherited events
4872 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4875 switch (attr->type) {
4877 case PERF_TYPE_HARDWARE:
4878 case PERF_TYPE_HW_CACHE:
4879 pmu = hw_perf_event_init(event);
4882 case PERF_TYPE_SOFTWARE:
4883 pmu = sw_perf_event_init(event);
4886 case PERF_TYPE_TRACEPOINT:
4887 pmu = tp_perf_event_init(event);
4890 case PERF_TYPE_BREAKPOINT:
4891 pmu = bp_perf_event_init(event);
4902 else if (IS_ERR(pmu))
4907 put_pid_ns(event->ns);
4909 return ERR_PTR(err);
4914 if (!event->parent) {
4915 atomic_inc(&nr_events);
4916 if (event->attr.mmap)
4917 atomic_inc(&nr_mmap_events);
4918 if (event->attr.comm)
4919 atomic_inc(&nr_comm_events);
4920 if (event->attr.task)
4921 atomic_inc(&nr_task_events);
4927 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4928 struct perf_event_attr *attr)
4933 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4937 * zero the full structure, so that a short copy will be nice.
4939 memset(attr, 0, sizeof(*attr));
4941 ret = get_user(size, &uattr->size);
4945 if (size > PAGE_SIZE) /* silly large */
4948 if (!size) /* abi compat */
4949 size = PERF_ATTR_SIZE_VER0;
4951 if (size < PERF_ATTR_SIZE_VER0)
4955 * If we're handed a bigger struct than we know of,
4956 * ensure all the unknown bits are 0 - i.e. new
4957 * user-space does not rely on any kernel feature
4958 * extensions we dont know about yet.
4960 if (size > sizeof(*attr)) {
4961 unsigned char __user *addr;
4962 unsigned char __user *end;
4965 addr = (void __user *)uattr + sizeof(*attr);
4966 end = (void __user *)uattr + size;
4968 for (; addr < end; addr++) {
4969 ret = get_user(val, addr);
4975 size = sizeof(*attr);
4978 ret = copy_from_user(attr, uattr, size);
4983 * If the type exists, the corresponding creation will verify
4986 if (attr->type >= PERF_TYPE_MAX)
4989 if (attr->__reserved_1)
4992 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4995 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5002 put_user(sizeof(*attr), &uattr->size);
5008 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5010 struct perf_mmap_data *data = NULL, *old_data = NULL;
5016 /* don't allow circular references */
5017 if (event == output_event)
5021 * Don't allow cross-cpu buffers
5023 if (output_event->cpu != event->cpu)
5027 * If its not a per-cpu buffer, it must be the same task.
5029 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5033 mutex_lock(&event->mmap_mutex);
5034 /* Can't redirect output if we've got an active mmap() */
5035 if (atomic_read(&event->mmap_count))
5039 /* get the buffer we want to redirect to */
5040 data = perf_mmap_data_get(output_event);
5045 old_data = event->data;
5046 rcu_assign_pointer(event->data, data);
5049 mutex_unlock(&event->mmap_mutex);
5052 perf_mmap_data_put(old_data);
5058 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5060 * @attr_uptr: event_id type attributes for monitoring/sampling
5063 * @group_fd: group leader event fd
5065 SYSCALL_DEFINE5(perf_event_open,
5066 struct perf_event_attr __user *, attr_uptr,
5067 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5069 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5070 struct perf_event_attr attr;
5071 struct perf_event_context *ctx;
5072 struct file *event_file = NULL;
5073 struct file *group_file = NULL;
5075 int fput_needed = 0;
5078 /* for future expandability... */
5079 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5082 err = perf_copy_attr(attr_uptr, &attr);
5086 if (!attr.exclude_kernel) {
5087 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5092 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5096 event_fd = get_unused_fd_flags(O_RDWR);
5101 * Get the target context (task or percpu):
5103 ctx = find_get_context(pid, cpu);
5109 if (group_fd != -1) {
5110 group_leader = perf_fget_light(group_fd, &fput_needed);
5111 if (IS_ERR(group_leader)) {
5112 err = PTR_ERR(group_leader);
5113 goto err_put_context;
5115 group_file = group_leader->filp;
5116 if (flags & PERF_FLAG_FD_OUTPUT)
5117 output_event = group_leader;
5118 if (flags & PERF_FLAG_FD_NO_GROUP)
5119 group_leader = NULL;
5123 * Look up the group leader (we will attach this event to it):
5129 * Do not allow a recursive hierarchy (this new sibling
5130 * becoming part of another group-sibling):
5132 if (group_leader->group_leader != group_leader)
5133 goto err_put_context;
5135 * Do not allow to attach to a group in a different
5136 * task or CPU context:
5138 if (group_leader->ctx != ctx)
5139 goto err_put_context;
5141 * Only a group leader can be exclusive or pinned
5143 if (attr.exclusive || attr.pinned)
5144 goto err_put_context;
5147 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5148 NULL, NULL, GFP_KERNEL);
5149 if (IS_ERR(event)) {
5150 err = PTR_ERR(event);
5151 goto err_put_context;
5155 err = perf_event_set_output(event, output_event);
5157 goto err_free_put_context;
5160 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5161 if (IS_ERR(event_file)) {
5162 err = PTR_ERR(event_file);
5163 goto err_free_put_context;
5166 event->filp = event_file;
5167 WARN_ON_ONCE(ctx->parent_ctx);
5168 mutex_lock(&ctx->mutex);
5169 perf_install_in_context(ctx, event, cpu);
5171 mutex_unlock(&ctx->mutex);
5173 event->owner = current;
5174 get_task_struct(current);
5175 mutex_lock(¤t->perf_event_mutex);
5176 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
5177 mutex_unlock(¤t->perf_event_mutex);
5180 * Drop the reference on the group_event after placing the
5181 * new event on the sibling_list. This ensures destruction
5182 * of the group leader will find the pointer to itself in
5183 * perf_group_detach().
5185 fput_light(group_file, fput_needed);
5186 fd_install(event_fd, event_file);
5189 err_free_put_context:
5192 fput_light(group_file, fput_needed);
5195 put_unused_fd(event_fd);
5200 * perf_event_create_kernel_counter
5202 * @attr: attributes of the counter to create
5203 * @cpu: cpu in which the counter is bound
5204 * @pid: task to profile
5207 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5209 perf_overflow_handler_t overflow_handler)
5211 struct perf_event *event;
5212 struct perf_event_context *ctx;
5216 * Get the target context (task or percpu):
5219 ctx = find_get_context(pid, cpu);
5225 event = perf_event_alloc(attr, cpu, ctx, NULL,
5226 NULL, overflow_handler, GFP_KERNEL);
5227 if (IS_ERR(event)) {
5228 err = PTR_ERR(event);
5229 goto err_put_context;
5233 WARN_ON_ONCE(ctx->parent_ctx);
5234 mutex_lock(&ctx->mutex);
5235 perf_install_in_context(ctx, event, cpu);
5237 mutex_unlock(&ctx->mutex);
5239 event->owner = current;
5240 get_task_struct(current);
5241 mutex_lock(¤t->perf_event_mutex);
5242 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
5243 mutex_unlock(¤t->perf_event_mutex);
5250 return ERR_PTR(err);
5252 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5255 * inherit a event from parent task to child task:
5257 static struct perf_event *
5258 inherit_event(struct perf_event *parent_event,
5259 struct task_struct *parent,
5260 struct perf_event_context *parent_ctx,
5261 struct task_struct *child,
5262 struct perf_event *group_leader,
5263 struct perf_event_context *child_ctx)
5265 struct perf_event *child_event;
5268 * Instead of creating recursive hierarchies of events,
5269 * we link inherited events back to the original parent,
5270 * which has a filp for sure, which we use as the reference
5273 if (parent_event->parent)
5274 parent_event = parent_event->parent;
5276 child_event = perf_event_alloc(&parent_event->attr,
5277 parent_event->cpu, child_ctx,
5278 group_leader, parent_event,
5280 if (IS_ERR(child_event))
5285 * Make the child state follow the state of the parent event,
5286 * not its attr.disabled bit. We hold the parent's mutex,
5287 * so we won't race with perf_event_{en, dis}able_family.
5289 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5290 child_event->state = PERF_EVENT_STATE_INACTIVE;
5292 child_event->state = PERF_EVENT_STATE_OFF;
5294 if (parent_event->attr.freq) {
5295 u64 sample_period = parent_event->hw.sample_period;
5296 struct hw_perf_event *hwc = &child_event->hw;
5298 hwc->sample_period = sample_period;
5299 hwc->last_period = sample_period;
5301 atomic64_set(&hwc->period_left, sample_period);
5304 child_event->overflow_handler = parent_event->overflow_handler;
5307 * Link it up in the child's context:
5309 add_event_to_ctx(child_event, child_ctx);
5312 * Get a reference to the parent filp - we will fput it
5313 * when the child event exits. This is safe to do because
5314 * we are in the parent and we know that the filp still
5315 * exists and has a nonzero count:
5317 atomic_long_inc(&parent_event->filp->f_count);
5320 * Link this into the parent event's child list
5322 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5323 mutex_lock(&parent_event->child_mutex);
5324 list_add_tail(&child_event->child_list, &parent_event->child_list);
5325 mutex_unlock(&parent_event->child_mutex);
5330 static int inherit_group(struct perf_event *parent_event,
5331 struct task_struct *parent,
5332 struct perf_event_context *parent_ctx,
5333 struct task_struct *child,
5334 struct perf_event_context *child_ctx)
5336 struct perf_event *leader;
5337 struct perf_event *sub;
5338 struct perf_event *child_ctr;
5340 leader = inherit_event(parent_event, parent, parent_ctx,
5341 child, NULL, child_ctx);
5343 return PTR_ERR(leader);
5344 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5345 child_ctr = inherit_event(sub, parent, parent_ctx,
5346 child, leader, child_ctx);
5347 if (IS_ERR(child_ctr))
5348 return PTR_ERR(child_ctr);
5353 static void sync_child_event(struct perf_event *child_event,
5354 struct task_struct *child)
5356 struct perf_event *parent_event = child_event->parent;
5359 if (child_event->attr.inherit_stat)
5360 perf_event_read_event(child_event, child);
5362 child_val = atomic64_read(&child_event->count);
5365 * Add back the child's count to the parent's count:
5367 atomic64_add(child_val, &parent_event->count);
5368 atomic64_add(child_event->total_time_enabled,
5369 &parent_event->child_total_time_enabled);
5370 atomic64_add(child_event->total_time_running,
5371 &parent_event->child_total_time_running);
5374 * Remove this event from the parent's list
5376 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5377 mutex_lock(&parent_event->child_mutex);
5378 list_del_init(&child_event->child_list);
5379 mutex_unlock(&parent_event->child_mutex);
5382 * Release the parent event, if this was the last
5385 fput(parent_event->filp);
5389 __perf_event_exit_task(struct perf_event *child_event,
5390 struct perf_event_context *child_ctx,
5391 struct task_struct *child)
5393 struct perf_event *parent_event;
5395 perf_event_remove_from_context(child_event);
5397 parent_event = child_event->parent;
5399 * It can happen that parent exits first, and has events
5400 * that are still around due to the child reference. These
5401 * events need to be zapped - but otherwise linger.
5404 sync_child_event(child_event, child);
5405 free_event(child_event);
5410 * When a child task exits, feed back event values to parent events.
5412 void perf_event_exit_task(struct task_struct *child)
5414 struct perf_event *child_event, *tmp;
5415 struct perf_event_context *child_ctx;
5416 unsigned long flags;
5418 if (likely(!child->perf_event_ctxp)) {
5419 perf_event_task(child, NULL, 0);
5423 local_irq_save(flags);
5425 * We can't reschedule here because interrupts are disabled,
5426 * and either child is current or it is a task that can't be
5427 * scheduled, so we are now safe from rescheduling changing
5430 child_ctx = child->perf_event_ctxp;
5431 __perf_event_task_sched_out(child_ctx);
5434 * Take the context lock here so that if find_get_context is
5435 * reading child->perf_event_ctxp, we wait until it has
5436 * incremented the context's refcount before we do put_ctx below.
5438 raw_spin_lock(&child_ctx->lock);
5439 child->perf_event_ctxp = NULL;
5441 * If this context is a clone; unclone it so it can't get
5442 * swapped to another process while we're removing all
5443 * the events from it.
5445 unclone_ctx(child_ctx);
5446 update_context_time(child_ctx);
5447 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5450 * Report the task dead after unscheduling the events so that we
5451 * won't get any samples after PERF_RECORD_EXIT. We can however still
5452 * get a few PERF_RECORD_READ events.
5454 perf_event_task(child, child_ctx, 0);
5457 * We can recurse on the same lock type through:
5459 * __perf_event_exit_task()
5460 * sync_child_event()
5461 * fput(parent_event->filp)
5463 * mutex_lock(&ctx->mutex)
5465 * But since its the parent context it won't be the same instance.
5467 mutex_lock(&child_ctx->mutex);
5470 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5472 __perf_event_exit_task(child_event, child_ctx, child);
5474 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5476 __perf_event_exit_task(child_event, child_ctx, child);
5479 * If the last event was a group event, it will have appended all
5480 * its siblings to the list, but we obtained 'tmp' before that which
5481 * will still point to the list head terminating the iteration.
5483 if (!list_empty(&child_ctx->pinned_groups) ||
5484 !list_empty(&child_ctx->flexible_groups))
5487 mutex_unlock(&child_ctx->mutex);
5492 static void perf_free_event(struct perf_event *event,
5493 struct perf_event_context *ctx)
5495 struct perf_event *parent = event->parent;
5497 if (WARN_ON_ONCE(!parent))
5500 mutex_lock(&parent->child_mutex);
5501 list_del_init(&event->child_list);
5502 mutex_unlock(&parent->child_mutex);
5506 perf_group_detach(event);
5507 list_del_event(event, ctx);
5512 * free an unexposed, unused context as created by inheritance by
5513 * init_task below, used by fork() in case of fail.
5515 void perf_event_free_task(struct task_struct *task)
5517 struct perf_event_context *ctx = task->perf_event_ctxp;
5518 struct perf_event *event, *tmp;
5523 mutex_lock(&ctx->mutex);
5525 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5526 perf_free_event(event, ctx);
5528 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5530 perf_free_event(event, ctx);
5532 if (!list_empty(&ctx->pinned_groups) ||
5533 !list_empty(&ctx->flexible_groups))
5536 mutex_unlock(&ctx->mutex);
5542 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5543 struct perf_event_context *parent_ctx,
5544 struct task_struct *child,
5548 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5550 if (!event->attr.inherit) {
5557 * This is executed from the parent task context, so
5558 * inherit events that have been marked for cloning.
5559 * First allocate and initialize a context for the
5563 child_ctx = kzalloc(sizeof(struct perf_event_context),
5568 __perf_event_init_context(child_ctx, child);
5569 child->perf_event_ctxp = child_ctx;
5570 get_task_struct(child);
5573 ret = inherit_group(event, parent, parent_ctx,
5584 * Initialize the perf_event context in task_struct
5586 int perf_event_init_task(struct task_struct *child)
5588 struct perf_event_context *child_ctx, *parent_ctx;
5589 struct perf_event_context *cloned_ctx;
5590 struct perf_event *event;
5591 struct task_struct *parent = current;
5592 int inherited_all = 1;
5595 child->perf_event_ctxp = NULL;
5597 mutex_init(&child->perf_event_mutex);
5598 INIT_LIST_HEAD(&child->perf_event_list);
5600 if (likely(!parent->perf_event_ctxp))
5604 * If the parent's context is a clone, pin it so it won't get
5607 parent_ctx = perf_pin_task_context(parent);
5610 * No need to check if parent_ctx != NULL here; since we saw
5611 * it non-NULL earlier, the only reason for it to become NULL
5612 * is if we exit, and since we're currently in the middle of
5613 * a fork we can't be exiting at the same time.
5617 * Lock the parent list. No need to lock the child - not PID
5618 * hashed yet and not running, so nobody can access it.
5620 mutex_lock(&parent_ctx->mutex);
5623 * We dont have to disable NMIs - we are only looking at
5624 * the list, not manipulating it:
5626 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5627 ret = inherit_task_group(event, parent, parent_ctx, child,
5633 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5634 ret = inherit_task_group(event, parent, parent_ctx, child,
5640 child_ctx = child->perf_event_ctxp;
5642 if (child_ctx && inherited_all) {
5644 * Mark the child context as a clone of the parent
5645 * context, or of whatever the parent is a clone of.
5646 * Note that if the parent is a clone, it could get
5647 * uncloned at any point, but that doesn't matter
5648 * because the list of events and the generation
5649 * count can't have changed since we took the mutex.
5651 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5653 child_ctx->parent_ctx = cloned_ctx;
5654 child_ctx->parent_gen = parent_ctx->parent_gen;
5656 child_ctx->parent_ctx = parent_ctx;
5657 child_ctx->parent_gen = parent_ctx->generation;
5659 get_ctx(child_ctx->parent_ctx);
5662 mutex_unlock(&parent_ctx->mutex);
5664 perf_unpin_context(parent_ctx);
5669 static void __init perf_event_init_all_cpus(void)
5672 struct perf_cpu_context *cpuctx;
5674 for_each_possible_cpu(cpu) {
5675 cpuctx = &per_cpu(perf_cpu_context, cpu);
5676 mutex_init(&cpuctx->hlist_mutex);
5677 __perf_event_init_context(&cpuctx->ctx, NULL);
5681 static void __cpuinit perf_event_init_cpu(int cpu)
5683 struct perf_cpu_context *cpuctx;
5685 cpuctx = &per_cpu(perf_cpu_context, cpu);
5687 spin_lock(&perf_resource_lock);
5688 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5689 spin_unlock(&perf_resource_lock);
5691 mutex_lock(&cpuctx->hlist_mutex);
5692 if (cpuctx->hlist_refcount > 0) {
5693 struct swevent_hlist *hlist;
5695 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5696 WARN_ON_ONCE(!hlist);
5697 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5699 mutex_unlock(&cpuctx->hlist_mutex);
5702 #ifdef CONFIG_HOTPLUG_CPU
5703 static void __perf_event_exit_cpu(void *info)
5705 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5706 struct perf_event_context *ctx = &cpuctx->ctx;
5707 struct perf_event *event, *tmp;
5709 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5710 __perf_event_remove_from_context(event);
5711 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5712 __perf_event_remove_from_context(event);
5714 static void perf_event_exit_cpu(int cpu)
5716 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5717 struct perf_event_context *ctx = &cpuctx->ctx;
5719 mutex_lock(&cpuctx->hlist_mutex);
5720 swevent_hlist_release(cpuctx);
5721 mutex_unlock(&cpuctx->hlist_mutex);
5723 mutex_lock(&ctx->mutex);
5724 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5725 mutex_unlock(&ctx->mutex);
5728 static inline void perf_event_exit_cpu(int cpu) { }
5731 static int __cpuinit
5732 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5734 unsigned int cpu = (long)hcpu;
5738 case CPU_UP_PREPARE:
5739 case CPU_UP_PREPARE_FROZEN:
5740 perf_event_init_cpu(cpu);
5743 case CPU_DOWN_PREPARE:
5744 case CPU_DOWN_PREPARE_FROZEN:
5745 perf_event_exit_cpu(cpu);
5756 * This has to have a higher priority than migration_notifier in sched.c.
5758 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5759 .notifier_call = perf_cpu_notify,
5763 void __init perf_event_init(void)
5765 perf_event_init_all_cpus();
5766 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5767 (void *)(long)smp_processor_id());
5768 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5769 (void *)(long)smp_processor_id());
5770 register_cpu_notifier(&perf_cpu_nb);
5773 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5774 struct sysdev_class_attribute *attr,
5777 return sprintf(buf, "%d\n", perf_reserved_percpu);
5781 perf_set_reserve_percpu(struct sysdev_class *class,
5782 struct sysdev_class_attribute *attr,
5786 struct perf_cpu_context *cpuctx;
5790 err = strict_strtoul(buf, 10, &val);
5793 if (val > perf_max_events)
5796 spin_lock(&perf_resource_lock);
5797 perf_reserved_percpu = val;
5798 for_each_online_cpu(cpu) {
5799 cpuctx = &per_cpu(perf_cpu_context, cpu);
5800 raw_spin_lock_irq(&cpuctx->ctx.lock);
5801 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5802 perf_max_events - perf_reserved_percpu);
5803 cpuctx->max_pertask = mpt;
5804 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5806 spin_unlock(&perf_resource_lock);
5811 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5812 struct sysdev_class_attribute *attr,
5815 return sprintf(buf, "%d\n", perf_overcommit);
5819 perf_set_overcommit(struct sysdev_class *class,
5820 struct sysdev_class_attribute *attr,
5821 const char *buf, size_t count)
5826 err = strict_strtoul(buf, 10, &val);
5832 spin_lock(&perf_resource_lock);
5833 perf_overcommit = val;
5834 spin_unlock(&perf_resource_lock);
5839 static SYSDEV_CLASS_ATTR(
5842 perf_show_reserve_percpu,
5843 perf_set_reserve_percpu
5846 static SYSDEV_CLASS_ATTR(
5849 perf_show_overcommit,
5853 static struct attribute *perfclass_attrs[] = {
5854 &attr_reserve_percpu.attr,
5855 &attr_overcommit.attr,
5859 static struct attribute_group perfclass_attr_group = {
5860 .attrs = perfclass_attrs,
5861 .name = "perf_events",
5864 static int __init perf_event_sysfs_init(void)
5866 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5867 &perfclass_attr_group);
5869 device_initcall(perf_event_sysfs_init);