2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
35 #include <asm/irq_regs.h>
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
53 int sysctl_perf_event_paranoid __read_mostly = 1;
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
58 * max perf event sample rate
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62 static atomic64_t perf_event_id;
64 void __weak perf_event_print_debug(void) { }
66 extern __weak const char *perf_pmu_name(void)
71 void perf_pmu_disable(struct pmu *pmu)
73 int *count = this_cpu_ptr(pmu->pmu_disable_count);
75 pmu->pmu_disable(pmu);
78 void perf_pmu_enable(struct pmu *pmu)
80 int *count = this_cpu_ptr(pmu->pmu_disable_count);
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
92 static void perf_pmu_rotate_start(struct pmu *pmu)
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 struct list_head *head = &__get_cpu_var(rotation_list);
97 WARN_ON(!irqs_disabled());
99 if (list_empty(&cpuctx->rotation_list))
100 list_add(&cpuctx->rotation_list, head);
103 static void get_ctx(struct perf_event_context *ctx)
105 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
108 static void free_ctx(struct rcu_head *head)
110 struct perf_event_context *ctx;
112 ctx = container_of(head, struct perf_event_context, rcu_head);
116 static void put_ctx(struct perf_event_context *ctx)
118 if (atomic_dec_and_test(&ctx->refcount)) {
120 put_ctx(ctx->parent_ctx);
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
127 static void unclone_ctx(struct perf_event_context *ctx)
129 if (ctx->parent_ctx) {
130 put_ctx(ctx->parent_ctx);
131 ctx->parent_ctx = NULL;
136 * If we inherit events we want to return the parent event id
139 static u64 primary_event_id(struct perf_event *event)
144 id = event->parent->id;
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 struct perf_event_context *ctx;
161 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 raw_spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
196 struct perf_event_context *ctx;
199 ctx = perf_lock_task_context(task, ctxn, &flags);
202 raw_spin_unlock_irqrestore(&ctx->lock, flags);
207 static void perf_unpin_context(struct perf_event_context *ctx)
211 raw_spin_lock_irqsave(&ctx->lock, flags);
213 raw_spin_unlock_irqrestore(&ctx->lock, flags);
217 static inline u64 perf_clock(void)
219 return local_clock();
223 * Update the record of the current time in a context.
225 static void update_context_time(struct perf_event_context *ctx)
227 u64 now = perf_clock();
229 ctx->time += now - ctx->timestamp;
230 ctx->timestamp = now;
234 * Update the total_time_enabled and total_time_running fields for a event.
236 static void update_event_times(struct perf_event *event)
238 struct perf_event_context *ctx = event->ctx;
241 if (event->state < PERF_EVENT_STATE_INACTIVE ||
242 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248 run_end = event->tstamp_stopped;
250 event->total_time_enabled = run_end - event->tstamp_enabled;
252 if (event->state == PERF_EVENT_STATE_INACTIVE)
253 run_end = event->tstamp_stopped;
257 event->total_time_running = run_end - event->tstamp_running;
261 * Update total_time_enabled and total_time_running for all events in a group.
263 static void update_group_times(struct perf_event *leader)
265 struct perf_event *event;
267 update_event_times(leader);
268 list_for_each_entry(event, &leader->sibling_list, group_entry)
269 update_event_times(event);
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 if (event->attr.pinned)
276 return &ctx->pinned_groups;
278 return &ctx->flexible_groups;
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289 event->attach_state |= PERF_ATTACH_CONTEXT;
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
296 if (event->group_leader == event) {
297 struct list_head *list;
299 if (is_software_event(event))
300 event->group_flags |= PERF_GROUP_SOFTWARE;
302 list = ctx_group_list(event, ctx);
303 list_add_tail(&event->group_entry, list);
306 list_add_rcu(&event->event_entry, &ctx->event_list);
308 perf_pmu_rotate_start(ctx->pmu);
310 if (event->attr.inherit_stat)
314 static void perf_group_attach(struct perf_event *event)
316 struct perf_event *group_leader = event->group_leader;
319 * We can have double attach due to group movement in perf_event_open.
321 if (event->attach_state & PERF_ATTACH_GROUP)
324 event->attach_state |= PERF_ATTACH_GROUP;
326 if (group_leader == event)
329 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330 !is_software_event(event))
331 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
333 list_add_tail(&event->group_entry, &group_leader->sibling_list);
334 group_leader->nr_siblings++;
338 * Remove a event from the lists for its context.
339 * Must be called with ctx->mutex and ctx->lock held.
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
345 * We can have double detach due to exit/hot-unplug + close.
347 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
350 event->attach_state &= ~PERF_ATTACH_CONTEXT;
353 if (event->attr.inherit_stat)
356 list_del_rcu(&event->event_entry);
358 if (event->group_leader == event)
359 list_del_init(&event->group_entry);
361 update_group_times(event);
364 * If event was in error state, then keep it
365 * that way, otherwise bogus counts will be
366 * returned on read(). The only way to get out
367 * of error state is by explicit re-enabling
370 if (event->state > PERF_EVENT_STATE_OFF)
371 event->state = PERF_EVENT_STATE_OFF;
374 static void perf_group_detach(struct perf_event *event)
376 struct perf_event *sibling, *tmp;
377 struct list_head *list = NULL;
380 * We can have double detach due to exit/hot-unplug + close.
382 if (!(event->attach_state & PERF_ATTACH_GROUP))
385 event->attach_state &= ~PERF_ATTACH_GROUP;
388 * If this is a sibling, remove it from its group.
390 if (event->group_leader != event) {
391 list_del_init(&event->group_entry);
392 event->group_leader->nr_siblings--;
396 if (!list_empty(&event->group_entry))
397 list = &event->group_entry;
400 * If this was a group event with sibling events then
401 * upgrade the siblings to singleton events by adding them
402 * to whatever list we are on.
404 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406 list_move_tail(&sibling->group_entry, list);
407 sibling->group_leader = sibling;
409 /* Inherit group flags from the previous leader */
410 sibling->group_flags = event->group_flags;
415 event_filter_match(struct perf_event *event)
417 return event->cpu == -1 || event->cpu == smp_processor_id();
421 __event_sched_out(struct perf_event *event,
422 struct perf_cpu_context *cpuctx,
423 struct perf_event_context *ctx)
427 * An event which could not be activated because of
428 * filter mismatch still needs to have its timings
429 * maintained, otherwise bogus information is return
430 * via read() for time_enabled, time_running:
432 if (event->state == PERF_EVENT_STATE_INACTIVE
433 && !event_filter_match(event)) {
434 delta = ctx->time - event->tstamp_stopped;
435 event->tstamp_running += delta;
436 event->tstamp_stopped = ctx->time;
439 if (event->state != PERF_EVENT_STATE_ACTIVE)
442 event->state = PERF_EVENT_STATE_INACTIVE;
443 if (event->pending_disable) {
444 event->pending_disable = 0;
445 event->state = PERF_EVENT_STATE_OFF;
447 event->pmu->del(event, 0);
450 if (!is_software_event(event))
451 cpuctx->active_oncpu--;
453 if (event->attr.exclusive || !cpuctx->active_oncpu)
454 cpuctx->exclusive = 0;
459 event_sched_out(struct perf_event *event,
460 struct perf_cpu_context *cpuctx,
461 struct perf_event_context *ctx)
465 ret = __event_sched_out(event, cpuctx, ctx);
467 event->tstamp_stopped = ctx->time;
471 group_sched_out(struct perf_event *group_event,
472 struct perf_cpu_context *cpuctx,
473 struct perf_event_context *ctx)
475 struct perf_event *event;
476 int state = group_event->state;
478 event_sched_out(group_event, cpuctx, ctx);
481 * Schedule out siblings (if any):
483 list_for_each_entry(event, &group_event->sibling_list, group_entry)
484 event_sched_out(event, cpuctx, ctx);
486 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
487 cpuctx->exclusive = 0;
490 static inline struct perf_cpu_context *
491 __get_cpu_context(struct perf_event_context *ctx)
493 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
497 * Cross CPU call to remove a performance event
499 * We disable the event on the hardware level first. After that we
500 * remove it from the context list.
502 static void __perf_event_remove_from_context(void *info)
504 struct perf_event *event = info;
505 struct perf_event_context *ctx = event->ctx;
506 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
509 * If this is a task context, we need to check whether it is
510 * the current task context of this cpu. If not it has been
511 * scheduled out before the smp call arrived.
513 if (ctx->task && cpuctx->task_ctx != ctx)
516 raw_spin_lock(&ctx->lock);
518 event_sched_out(event, cpuctx, ctx);
520 list_del_event(event, ctx);
522 raw_spin_unlock(&ctx->lock);
527 * Remove the event from a task's (or a CPU's) list of events.
529 * Must be called with ctx->mutex held.
531 * CPU events are removed with a smp call. For task events we only
532 * call when the task is on a CPU.
534 * If event->ctx is a cloned context, callers must make sure that
535 * every task struct that event->ctx->task could possibly point to
536 * remains valid. This is OK when called from perf_release since
537 * that only calls us on the top-level context, which can't be a clone.
538 * When called from perf_event_exit_task, it's OK because the
539 * context has been detached from its task.
541 static void perf_event_remove_from_context(struct perf_event *event)
543 struct perf_event_context *ctx = event->ctx;
544 struct task_struct *task = ctx->task;
548 * Per cpu events are removed via an smp call and
549 * the removal is always successful.
551 smp_call_function_single(event->cpu,
552 __perf_event_remove_from_context,
558 task_oncpu_function_call(task, __perf_event_remove_from_context,
561 raw_spin_lock_irq(&ctx->lock);
563 * If the context is active we need to retry the smp call.
565 if (ctx->nr_active && !list_empty(&event->group_entry)) {
566 raw_spin_unlock_irq(&ctx->lock);
571 * The lock prevents that this context is scheduled in so we
572 * can remove the event safely, if the call above did not
575 if (!list_empty(&event->group_entry))
576 list_del_event(event, ctx);
577 raw_spin_unlock_irq(&ctx->lock);
581 * Cross CPU call to disable a performance event
583 static void __perf_event_disable(void *info)
585 struct perf_event *event = info;
586 struct perf_event_context *ctx = event->ctx;
587 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
590 * If this is a per-task event, need to check whether this
591 * event's task is the current task on this cpu.
593 if (ctx->task && cpuctx->task_ctx != ctx)
596 raw_spin_lock(&ctx->lock);
599 * If the event is on, turn it off.
600 * If it is in error state, leave it in error state.
602 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
603 update_context_time(ctx);
604 update_group_times(event);
605 if (event == event->group_leader)
606 group_sched_out(event, cpuctx, ctx);
608 event_sched_out(event, cpuctx, ctx);
609 event->state = PERF_EVENT_STATE_OFF;
612 raw_spin_unlock(&ctx->lock);
618 * If event->ctx is a cloned context, callers must make sure that
619 * every task struct that event->ctx->task could possibly point to
620 * remains valid. This condition is satisifed when called through
621 * perf_event_for_each_child or perf_event_for_each because they
622 * hold the top-level event's child_mutex, so any descendant that
623 * goes to exit will block in sync_child_event.
624 * When called from perf_pending_event it's OK because event->ctx
625 * is the current context on this CPU and preemption is disabled,
626 * hence we can't get into perf_event_task_sched_out for this context.
628 void perf_event_disable(struct perf_event *event)
630 struct perf_event_context *ctx = event->ctx;
631 struct task_struct *task = ctx->task;
635 * Disable the event on the cpu that it's on
637 smp_call_function_single(event->cpu, __perf_event_disable,
643 task_oncpu_function_call(task, __perf_event_disable, event);
645 raw_spin_lock_irq(&ctx->lock);
647 * If the event is still active, we need to retry the cross-call.
649 if (event->state == PERF_EVENT_STATE_ACTIVE) {
650 raw_spin_unlock_irq(&ctx->lock);
655 * Since we have the lock this context can't be scheduled
656 * in, so we can change the state safely.
658 if (event->state == PERF_EVENT_STATE_INACTIVE) {
659 update_group_times(event);
660 event->state = PERF_EVENT_STATE_OFF;
663 raw_spin_unlock_irq(&ctx->lock);
667 __event_sched_in(struct perf_event *event,
668 struct perf_cpu_context *cpuctx,
669 struct perf_event_context *ctx)
671 if (event->state <= PERF_EVENT_STATE_OFF)
674 event->state = PERF_EVENT_STATE_ACTIVE;
675 event->oncpu = smp_processor_id();
677 * The new state must be visible before we turn it on in the hardware:
681 if (event->pmu->add(event, PERF_EF_START)) {
682 event->state = PERF_EVENT_STATE_INACTIVE;
687 if (!is_software_event(event))
688 cpuctx->active_oncpu++;
691 if (event->attr.exclusive)
692 cpuctx->exclusive = 1;
698 event_sched_in(struct perf_event *event,
699 struct perf_cpu_context *cpuctx,
700 struct perf_event_context *ctx)
702 int ret = __event_sched_in(event, cpuctx, ctx);
705 event->tstamp_running += ctx->time - event->tstamp_stopped;
710 group_commit_event_sched_in(struct perf_event *group_event,
711 struct perf_cpu_context *cpuctx,
712 struct perf_event_context *ctx)
714 struct perf_event *event;
717 group_event->tstamp_running += now - group_event->tstamp_stopped;
719 * Schedule in siblings as one group (if any):
721 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
722 event->tstamp_running += now - event->tstamp_stopped;
727 group_sched_in(struct perf_event *group_event,
728 struct perf_cpu_context *cpuctx,
729 struct perf_event_context *ctx)
731 struct perf_event *event, *partial_group = NULL;
732 struct pmu *pmu = group_event->pmu;
734 if (group_event->state == PERF_EVENT_STATE_OFF)
740 * use __event_sched_in() to delay updating tstamp_running
741 * until the transaction is committed. In case of failure
742 * we will keep an unmodified tstamp_running which is a
743 * requirement to get correct timing information
745 if (__event_sched_in(group_event, cpuctx, ctx)) {
746 pmu->cancel_txn(pmu);
751 * Schedule in siblings as one group (if any):
753 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
754 if (__event_sched_in(event, cpuctx, ctx)) {
755 partial_group = event;
760 if (!pmu->commit_txn(pmu)) {
761 /* commit tstamp_running */
762 group_commit_event_sched_in(group_event, cpuctx, ctx);
767 * Groups can be scheduled in as one unit only, so undo any
768 * partial group before returning:
770 * use __event_sched_out() to avoid updating tstamp_stopped
771 * because the event never actually ran
773 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
774 if (event == partial_group)
776 __event_sched_out(event, cpuctx, ctx);
778 __event_sched_out(group_event, cpuctx, ctx);
780 pmu->cancel_txn(pmu);
786 * Work out whether we can put this event group on the CPU now.
788 static int group_can_go_on(struct perf_event *event,
789 struct perf_cpu_context *cpuctx,
793 * Groups consisting entirely of software events can always go on.
795 if (event->group_flags & PERF_GROUP_SOFTWARE)
798 * If an exclusive group is already on, no other hardware
801 if (cpuctx->exclusive)
804 * If this group is exclusive and there are already
805 * events on the CPU, it can't go on.
807 if (event->attr.exclusive && cpuctx->active_oncpu)
810 * Otherwise, try to add it if all previous groups were able
816 static void add_event_to_ctx(struct perf_event *event,
817 struct perf_event_context *ctx)
819 list_add_event(event, ctx);
820 perf_group_attach(event);
821 event->tstamp_enabled = ctx->time;
822 event->tstamp_running = ctx->time;
823 event->tstamp_stopped = ctx->time;
827 * Cross CPU call to install and enable a performance event
829 * Must be called with ctx->mutex held
831 static void __perf_install_in_context(void *info)
833 struct perf_event *event = info;
834 struct perf_event_context *ctx = event->ctx;
835 struct perf_event *leader = event->group_leader;
836 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
840 * If this is a task context, we need to check whether it is
841 * the current task context of this cpu. If not it has been
842 * scheduled out before the smp call arrived.
843 * Or possibly this is the right context but it isn't
844 * on this cpu because it had no events.
846 if (ctx->task && cpuctx->task_ctx != ctx) {
847 if (cpuctx->task_ctx || ctx->task != current)
849 cpuctx->task_ctx = ctx;
852 raw_spin_lock(&ctx->lock);
854 update_context_time(ctx);
856 add_event_to_ctx(event, ctx);
858 if (event->cpu != -1 && event->cpu != smp_processor_id())
862 * Don't put the event on if it is disabled or if
863 * it is in a group and the group isn't on.
865 if (event->state != PERF_EVENT_STATE_INACTIVE ||
866 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
870 * An exclusive event can't go on if there are already active
871 * hardware events, and no hardware event can go on if there
872 * is already an exclusive event on.
874 if (!group_can_go_on(event, cpuctx, 1))
877 err = event_sched_in(event, cpuctx, ctx);
881 * This event couldn't go on. If it is in a group
882 * then we have to pull the whole group off.
883 * If the event group is pinned then put it in error state.
886 group_sched_out(leader, cpuctx, ctx);
887 if (leader->attr.pinned) {
888 update_group_times(leader);
889 leader->state = PERF_EVENT_STATE_ERROR;
894 raw_spin_unlock(&ctx->lock);
898 * Attach a performance event to a context
900 * First we add the event to the list with the hardware enable bit
901 * in event->hw_config cleared.
903 * If the event is attached to a task which is on a CPU we use a smp
904 * call to enable it in the task context. The task might have been
905 * scheduled away, but we check this in the smp call again.
907 * Must be called with ctx->mutex held.
910 perf_install_in_context(struct perf_event_context *ctx,
911 struct perf_event *event,
914 struct task_struct *task = ctx->task;
920 * Per cpu events are installed via an smp call and
921 * the install is always successful.
923 smp_call_function_single(cpu, __perf_install_in_context,
929 task_oncpu_function_call(task, __perf_install_in_context,
932 raw_spin_lock_irq(&ctx->lock);
934 * we need to retry the smp call.
936 if (ctx->is_active && list_empty(&event->group_entry)) {
937 raw_spin_unlock_irq(&ctx->lock);
942 * The lock prevents that this context is scheduled in so we
943 * can add the event safely, if it the call above did not
946 if (list_empty(&event->group_entry))
947 add_event_to_ctx(event, ctx);
948 raw_spin_unlock_irq(&ctx->lock);
952 * Put a event into inactive state and update time fields.
953 * Enabling the leader of a group effectively enables all
954 * the group members that aren't explicitly disabled, so we
955 * have to update their ->tstamp_enabled also.
956 * Note: this works for group members as well as group leaders
957 * since the non-leader members' sibling_lists will be empty.
959 static void __perf_event_mark_enabled(struct perf_event *event,
960 struct perf_event_context *ctx)
962 struct perf_event *sub;
964 event->state = PERF_EVENT_STATE_INACTIVE;
965 event->tstamp_enabled = ctx->time - event->total_time_enabled;
966 list_for_each_entry(sub, &event->sibling_list, group_entry) {
967 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
968 sub->tstamp_enabled =
969 ctx->time - sub->total_time_enabled;
975 * Cross CPU call to enable a performance event
977 static void __perf_event_enable(void *info)
979 struct perf_event *event = info;
980 struct perf_event_context *ctx = event->ctx;
981 struct perf_event *leader = event->group_leader;
982 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
986 * If this is a per-task event, need to check whether this
987 * event's task is the current task on this cpu.
989 if (ctx->task && cpuctx->task_ctx != ctx) {
990 if (cpuctx->task_ctx || ctx->task != current)
992 cpuctx->task_ctx = ctx;
995 raw_spin_lock(&ctx->lock);
997 update_context_time(ctx);
999 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1001 __perf_event_mark_enabled(event, ctx);
1003 if (event->cpu != -1 && event->cpu != smp_processor_id())
1007 * If the event is in a group and isn't the group leader,
1008 * then don't put it on unless the group is on.
1010 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1013 if (!group_can_go_on(event, cpuctx, 1)) {
1016 if (event == leader)
1017 err = group_sched_in(event, cpuctx, ctx);
1019 err = event_sched_in(event, cpuctx, ctx);
1024 * If this event can't go on and it's part of a
1025 * group, then the whole group has to come off.
1027 if (leader != event)
1028 group_sched_out(leader, cpuctx, ctx);
1029 if (leader->attr.pinned) {
1030 update_group_times(leader);
1031 leader->state = PERF_EVENT_STATE_ERROR;
1036 raw_spin_unlock(&ctx->lock);
1042 * If event->ctx is a cloned context, callers must make sure that
1043 * every task struct that event->ctx->task could possibly point to
1044 * remains valid. This condition is satisfied when called through
1045 * perf_event_for_each_child or perf_event_for_each as described
1046 * for perf_event_disable.
1048 void perf_event_enable(struct perf_event *event)
1050 struct perf_event_context *ctx = event->ctx;
1051 struct task_struct *task = ctx->task;
1055 * Enable the event on the cpu that it's on
1057 smp_call_function_single(event->cpu, __perf_event_enable,
1062 raw_spin_lock_irq(&ctx->lock);
1063 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1067 * If the event is in error state, clear that first.
1068 * That way, if we see the event in error state below, we
1069 * know that it has gone back into error state, as distinct
1070 * from the task having been scheduled away before the
1071 * cross-call arrived.
1073 if (event->state == PERF_EVENT_STATE_ERROR)
1074 event->state = PERF_EVENT_STATE_OFF;
1077 raw_spin_unlock_irq(&ctx->lock);
1078 task_oncpu_function_call(task, __perf_event_enable, event);
1080 raw_spin_lock_irq(&ctx->lock);
1083 * If the context is active and the event is still off,
1084 * we need to retry the cross-call.
1086 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1090 * Since we have the lock this context can't be scheduled
1091 * in, so we can change the state safely.
1093 if (event->state == PERF_EVENT_STATE_OFF)
1094 __perf_event_mark_enabled(event, ctx);
1097 raw_spin_unlock_irq(&ctx->lock);
1100 static int perf_event_refresh(struct perf_event *event, int refresh)
1103 * not supported on inherited events
1105 if (event->attr.inherit)
1108 atomic_add(refresh, &event->event_limit);
1109 perf_event_enable(event);
1115 EVENT_FLEXIBLE = 0x1,
1117 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1120 static void ctx_sched_out(struct perf_event_context *ctx,
1121 struct perf_cpu_context *cpuctx,
1122 enum event_type_t event_type)
1124 struct perf_event *event;
1126 raw_spin_lock(&ctx->lock);
1127 perf_pmu_disable(ctx->pmu);
1129 if (likely(!ctx->nr_events))
1131 update_context_time(ctx);
1133 if (!ctx->nr_active)
1136 if (event_type & EVENT_PINNED) {
1137 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1138 group_sched_out(event, cpuctx, ctx);
1141 if (event_type & EVENT_FLEXIBLE) {
1142 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1143 group_sched_out(event, cpuctx, ctx);
1146 perf_pmu_enable(ctx->pmu);
1147 raw_spin_unlock(&ctx->lock);
1151 * Test whether two contexts are equivalent, i.e. whether they
1152 * have both been cloned from the same version of the same context
1153 * and they both have the same number of enabled events.
1154 * If the number of enabled events is the same, then the set
1155 * of enabled events should be the same, because these are both
1156 * inherited contexts, therefore we can't access individual events
1157 * in them directly with an fd; we can only enable/disable all
1158 * events via prctl, or enable/disable all events in a family
1159 * via ioctl, which will have the same effect on both contexts.
1161 static int context_equiv(struct perf_event_context *ctx1,
1162 struct perf_event_context *ctx2)
1164 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1165 && ctx1->parent_gen == ctx2->parent_gen
1166 && !ctx1->pin_count && !ctx2->pin_count;
1169 static void __perf_event_sync_stat(struct perf_event *event,
1170 struct perf_event *next_event)
1174 if (!event->attr.inherit_stat)
1178 * Update the event value, we cannot use perf_event_read()
1179 * because we're in the middle of a context switch and have IRQs
1180 * disabled, which upsets smp_call_function_single(), however
1181 * we know the event must be on the current CPU, therefore we
1182 * don't need to use it.
1184 switch (event->state) {
1185 case PERF_EVENT_STATE_ACTIVE:
1186 event->pmu->read(event);
1189 case PERF_EVENT_STATE_INACTIVE:
1190 update_event_times(event);
1198 * In order to keep per-task stats reliable we need to flip the event
1199 * values when we flip the contexts.
1201 value = local64_read(&next_event->count);
1202 value = local64_xchg(&event->count, value);
1203 local64_set(&next_event->count, value);
1205 swap(event->total_time_enabled, next_event->total_time_enabled);
1206 swap(event->total_time_running, next_event->total_time_running);
1209 * Since we swizzled the values, update the user visible data too.
1211 perf_event_update_userpage(event);
1212 perf_event_update_userpage(next_event);
1215 #define list_next_entry(pos, member) \
1216 list_entry(pos->member.next, typeof(*pos), member)
1218 static void perf_event_sync_stat(struct perf_event_context *ctx,
1219 struct perf_event_context *next_ctx)
1221 struct perf_event *event, *next_event;
1226 update_context_time(ctx);
1228 event = list_first_entry(&ctx->event_list,
1229 struct perf_event, event_entry);
1231 next_event = list_first_entry(&next_ctx->event_list,
1232 struct perf_event, event_entry);
1234 while (&event->event_entry != &ctx->event_list &&
1235 &next_event->event_entry != &next_ctx->event_list) {
1237 __perf_event_sync_stat(event, next_event);
1239 event = list_next_entry(event, event_entry);
1240 next_event = list_next_entry(next_event, event_entry);
1244 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1245 struct task_struct *next)
1247 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1248 struct perf_event_context *next_ctx;
1249 struct perf_event_context *parent;
1250 struct perf_cpu_context *cpuctx;
1256 cpuctx = __get_cpu_context(ctx);
1257 if (!cpuctx->task_ctx)
1261 parent = rcu_dereference(ctx->parent_ctx);
1262 next_ctx = next->perf_event_ctxp[ctxn];
1263 if (parent && next_ctx &&
1264 rcu_dereference(next_ctx->parent_ctx) == parent) {
1266 * Looks like the two contexts are clones, so we might be
1267 * able to optimize the context switch. We lock both
1268 * contexts and check that they are clones under the
1269 * lock (including re-checking that neither has been
1270 * uncloned in the meantime). It doesn't matter which
1271 * order we take the locks because no other cpu could
1272 * be trying to lock both of these tasks.
1274 raw_spin_lock(&ctx->lock);
1275 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1276 if (context_equiv(ctx, next_ctx)) {
1278 * XXX do we need a memory barrier of sorts
1279 * wrt to rcu_dereference() of perf_event_ctxp
1281 task->perf_event_ctxp[ctxn] = next_ctx;
1282 next->perf_event_ctxp[ctxn] = ctx;
1284 next_ctx->task = task;
1287 perf_event_sync_stat(ctx, next_ctx);
1289 raw_spin_unlock(&next_ctx->lock);
1290 raw_spin_unlock(&ctx->lock);
1295 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1296 cpuctx->task_ctx = NULL;
1300 #define for_each_task_context_nr(ctxn) \
1301 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1304 * Called from scheduler to remove the events of the current task,
1305 * with interrupts disabled.
1307 * We stop each event and update the event value in event->count.
1309 * This does not protect us against NMI, but disable()
1310 * sets the disabled bit in the control field of event _before_
1311 * accessing the event control register. If a NMI hits, then it will
1312 * not restart the event.
1314 void perf_event_task_sched_out(struct task_struct *task,
1315 struct task_struct *next)
1319 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1321 for_each_task_context_nr(ctxn)
1322 perf_event_context_sched_out(task, ctxn, next);
1325 static void task_ctx_sched_out(struct perf_event_context *ctx,
1326 enum event_type_t event_type)
1328 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1330 if (!cpuctx->task_ctx)
1333 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1336 ctx_sched_out(ctx, cpuctx, event_type);
1337 cpuctx->task_ctx = NULL;
1341 * Called with IRQs disabled
1343 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1345 task_ctx_sched_out(ctx, EVENT_ALL);
1349 * Called with IRQs disabled
1351 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1352 enum event_type_t event_type)
1354 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1358 ctx_pinned_sched_in(struct perf_event_context *ctx,
1359 struct perf_cpu_context *cpuctx)
1361 struct perf_event *event;
1363 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1364 if (event->state <= PERF_EVENT_STATE_OFF)
1366 if (event->cpu != -1 && event->cpu != smp_processor_id())
1369 if (group_can_go_on(event, cpuctx, 1))
1370 group_sched_in(event, cpuctx, ctx);
1373 * If this pinned group hasn't been scheduled,
1374 * put it in error state.
1376 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1377 update_group_times(event);
1378 event->state = PERF_EVENT_STATE_ERROR;
1384 ctx_flexible_sched_in(struct perf_event_context *ctx,
1385 struct perf_cpu_context *cpuctx)
1387 struct perf_event *event;
1390 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1391 /* Ignore events in OFF or ERROR state */
1392 if (event->state <= PERF_EVENT_STATE_OFF)
1395 * Listen to the 'cpu' scheduling filter constraint
1398 if (event->cpu != -1 && event->cpu != smp_processor_id())
1401 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1402 if (group_sched_in(event, cpuctx, ctx))
1409 ctx_sched_in(struct perf_event_context *ctx,
1410 struct perf_cpu_context *cpuctx,
1411 enum event_type_t event_type)
1413 raw_spin_lock(&ctx->lock);
1415 if (likely(!ctx->nr_events))
1418 ctx->timestamp = perf_clock();
1421 * First go through the list and put on any pinned groups
1422 * in order to give them the best chance of going on.
1424 if (event_type & EVENT_PINNED)
1425 ctx_pinned_sched_in(ctx, cpuctx);
1427 /* Then walk through the lower prio flexible groups */
1428 if (event_type & EVENT_FLEXIBLE)
1429 ctx_flexible_sched_in(ctx, cpuctx);
1432 raw_spin_unlock(&ctx->lock);
1435 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1436 enum event_type_t event_type)
1438 struct perf_event_context *ctx = &cpuctx->ctx;
1440 ctx_sched_in(ctx, cpuctx, event_type);
1443 static void task_ctx_sched_in(struct perf_event_context *ctx,
1444 enum event_type_t event_type)
1446 struct perf_cpu_context *cpuctx;
1448 cpuctx = __get_cpu_context(ctx);
1449 if (cpuctx->task_ctx == ctx)
1452 ctx_sched_in(ctx, cpuctx, event_type);
1453 cpuctx->task_ctx = ctx;
1456 void perf_event_context_sched_in(struct perf_event_context *ctx)
1458 struct perf_cpu_context *cpuctx;
1460 cpuctx = __get_cpu_context(ctx);
1461 if (cpuctx->task_ctx == ctx)
1464 perf_pmu_disable(ctx->pmu);
1466 * We want to keep the following priority order:
1467 * cpu pinned (that don't need to move), task pinned,
1468 * cpu flexible, task flexible.
1470 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1472 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1473 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1474 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1476 cpuctx->task_ctx = ctx;
1479 * Since these rotations are per-cpu, we need to ensure the
1480 * cpu-context we got scheduled on is actually rotating.
1482 perf_pmu_rotate_start(ctx->pmu);
1483 perf_pmu_enable(ctx->pmu);
1487 * Called from scheduler to add the events of the current task
1488 * with interrupts disabled.
1490 * We restore the event value and then enable it.
1492 * This does not protect us against NMI, but enable()
1493 * sets the enabled bit in the control field of event _before_
1494 * accessing the event control register. If a NMI hits, then it will
1495 * keep the event running.
1497 void perf_event_task_sched_in(struct task_struct *task)
1499 struct perf_event_context *ctx;
1502 for_each_task_context_nr(ctxn) {
1503 ctx = task->perf_event_ctxp[ctxn];
1507 perf_event_context_sched_in(ctx);
1511 #define MAX_INTERRUPTS (~0ULL)
1513 static void perf_log_throttle(struct perf_event *event, int enable);
1515 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1517 u64 frequency = event->attr.sample_freq;
1518 u64 sec = NSEC_PER_SEC;
1519 u64 divisor, dividend;
1521 int count_fls, nsec_fls, frequency_fls, sec_fls;
1523 count_fls = fls64(count);
1524 nsec_fls = fls64(nsec);
1525 frequency_fls = fls64(frequency);
1529 * We got @count in @nsec, with a target of sample_freq HZ
1530 * the target period becomes:
1533 * period = -------------------
1534 * @nsec * sample_freq
1539 * Reduce accuracy by one bit such that @a and @b converge
1540 * to a similar magnitude.
1542 #define REDUCE_FLS(a, b) \
1544 if (a##_fls > b##_fls) { \
1554 * Reduce accuracy until either term fits in a u64, then proceed with
1555 * the other, so that finally we can do a u64/u64 division.
1557 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1558 REDUCE_FLS(nsec, frequency);
1559 REDUCE_FLS(sec, count);
1562 if (count_fls + sec_fls > 64) {
1563 divisor = nsec * frequency;
1565 while (count_fls + sec_fls > 64) {
1566 REDUCE_FLS(count, sec);
1570 dividend = count * sec;
1572 dividend = count * sec;
1574 while (nsec_fls + frequency_fls > 64) {
1575 REDUCE_FLS(nsec, frequency);
1579 divisor = nsec * frequency;
1585 return div64_u64(dividend, divisor);
1588 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1590 struct hw_perf_event *hwc = &event->hw;
1591 s64 period, sample_period;
1594 period = perf_calculate_period(event, nsec, count);
1596 delta = (s64)(period - hwc->sample_period);
1597 delta = (delta + 7) / 8; /* low pass filter */
1599 sample_period = hwc->sample_period + delta;
1604 hwc->sample_period = sample_period;
1606 if (local64_read(&hwc->period_left) > 8*sample_period) {
1607 event->pmu->stop(event, PERF_EF_UPDATE);
1608 local64_set(&hwc->period_left, 0);
1609 event->pmu->start(event, PERF_EF_RELOAD);
1613 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1615 struct perf_event *event;
1616 struct hw_perf_event *hwc;
1617 u64 interrupts, now;
1620 raw_spin_lock(&ctx->lock);
1621 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1622 if (event->state != PERF_EVENT_STATE_ACTIVE)
1625 if (event->cpu != -1 && event->cpu != smp_processor_id())
1630 interrupts = hwc->interrupts;
1631 hwc->interrupts = 0;
1634 * unthrottle events on the tick
1636 if (interrupts == MAX_INTERRUPTS) {
1637 perf_log_throttle(event, 1);
1638 event->pmu->start(event, 0);
1641 if (!event->attr.freq || !event->attr.sample_freq)
1644 event->pmu->read(event);
1645 now = local64_read(&event->count);
1646 delta = now - hwc->freq_count_stamp;
1647 hwc->freq_count_stamp = now;
1650 perf_adjust_period(event, period, delta);
1652 raw_spin_unlock(&ctx->lock);
1656 * Round-robin a context's events:
1658 static void rotate_ctx(struct perf_event_context *ctx)
1660 raw_spin_lock(&ctx->lock);
1662 /* Rotate the first entry last of non-pinned groups */
1663 list_rotate_left(&ctx->flexible_groups);
1665 raw_spin_unlock(&ctx->lock);
1669 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1670 * because they're strictly cpu affine and rotate_start is called with IRQs
1671 * disabled, while rotate_context is called from IRQ context.
1673 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1675 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1676 struct perf_event_context *ctx = NULL;
1677 int rotate = 0, remove = 1;
1679 if (cpuctx->ctx.nr_events) {
1681 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1685 ctx = cpuctx->task_ctx;
1686 if (ctx && ctx->nr_events) {
1688 if (ctx->nr_events != ctx->nr_active)
1692 perf_pmu_disable(cpuctx->ctx.pmu);
1693 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1695 perf_ctx_adjust_freq(ctx, interval);
1700 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1702 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1704 rotate_ctx(&cpuctx->ctx);
1708 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1710 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1714 list_del_init(&cpuctx->rotation_list);
1716 perf_pmu_enable(cpuctx->ctx.pmu);
1719 void perf_event_task_tick(void)
1721 struct list_head *head = &__get_cpu_var(rotation_list);
1722 struct perf_cpu_context *cpuctx, *tmp;
1724 WARN_ON(!irqs_disabled());
1726 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1727 if (cpuctx->jiffies_interval == 1 ||
1728 !(jiffies % cpuctx->jiffies_interval))
1729 perf_rotate_context(cpuctx);
1733 static int event_enable_on_exec(struct perf_event *event,
1734 struct perf_event_context *ctx)
1736 if (!event->attr.enable_on_exec)
1739 event->attr.enable_on_exec = 0;
1740 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1743 __perf_event_mark_enabled(event, ctx);
1749 * Enable all of a task's events that have been marked enable-on-exec.
1750 * This expects task == current.
1752 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1754 struct perf_event *event;
1755 unsigned long flags;
1759 local_irq_save(flags);
1760 if (!ctx || !ctx->nr_events)
1763 task_ctx_sched_out(ctx, EVENT_ALL);
1765 raw_spin_lock(&ctx->lock);
1767 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1768 ret = event_enable_on_exec(event, ctx);
1773 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1774 ret = event_enable_on_exec(event, ctx);
1780 * Unclone this context if we enabled any event.
1785 raw_spin_unlock(&ctx->lock);
1787 perf_event_context_sched_in(ctx);
1789 local_irq_restore(flags);
1793 * Cross CPU call to read the hardware event
1795 static void __perf_event_read(void *info)
1797 struct perf_event *event = info;
1798 struct perf_event_context *ctx = event->ctx;
1799 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1802 * If this is a task context, we need to check whether it is
1803 * the current task context of this cpu. If not it has been
1804 * scheduled out before the smp call arrived. In that case
1805 * event->count would have been updated to a recent sample
1806 * when the event was scheduled out.
1808 if (ctx->task && cpuctx->task_ctx != ctx)
1811 raw_spin_lock(&ctx->lock);
1812 update_context_time(ctx);
1813 update_event_times(event);
1814 raw_spin_unlock(&ctx->lock);
1816 event->pmu->read(event);
1819 static inline u64 perf_event_count(struct perf_event *event)
1821 return local64_read(&event->count) + atomic64_read(&event->child_count);
1824 static u64 perf_event_read(struct perf_event *event)
1827 * If event is enabled and currently active on a CPU, update the
1828 * value in the event structure:
1830 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1831 smp_call_function_single(event->oncpu,
1832 __perf_event_read, event, 1);
1833 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1834 struct perf_event_context *ctx = event->ctx;
1835 unsigned long flags;
1837 raw_spin_lock_irqsave(&ctx->lock, flags);
1839 * may read while context is not active
1840 * (e.g., thread is blocked), in that case
1841 * we cannot update context time
1844 update_context_time(ctx);
1845 update_event_times(event);
1846 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1849 return perf_event_count(event);
1856 struct callchain_cpus_entries {
1857 struct rcu_head rcu_head;
1858 struct perf_callchain_entry *cpu_entries[0];
1861 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1862 static atomic_t nr_callchain_events;
1863 static DEFINE_MUTEX(callchain_mutex);
1864 struct callchain_cpus_entries *callchain_cpus_entries;
1867 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1868 struct pt_regs *regs)
1872 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1873 struct pt_regs *regs)
1877 static void release_callchain_buffers_rcu(struct rcu_head *head)
1879 struct callchain_cpus_entries *entries;
1882 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1884 for_each_possible_cpu(cpu)
1885 kfree(entries->cpu_entries[cpu]);
1890 static void release_callchain_buffers(void)
1892 struct callchain_cpus_entries *entries;
1894 entries = callchain_cpus_entries;
1895 rcu_assign_pointer(callchain_cpus_entries, NULL);
1896 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1899 static int alloc_callchain_buffers(void)
1903 struct callchain_cpus_entries *entries;
1906 * We can't use the percpu allocation API for data that can be
1907 * accessed from NMI. Use a temporary manual per cpu allocation
1908 * until that gets sorted out.
1910 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1911 num_possible_cpus();
1913 entries = kzalloc(size, GFP_KERNEL);
1917 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1919 for_each_possible_cpu(cpu) {
1920 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1922 if (!entries->cpu_entries[cpu])
1926 rcu_assign_pointer(callchain_cpus_entries, entries);
1931 for_each_possible_cpu(cpu)
1932 kfree(entries->cpu_entries[cpu]);
1938 static int get_callchain_buffers(void)
1943 mutex_lock(&callchain_mutex);
1945 count = atomic_inc_return(&nr_callchain_events);
1946 if (WARN_ON_ONCE(count < 1)) {
1952 /* If the allocation failed, give up */
1953 if (!callchain_cpus_entries)
1958 err = alloc_callchain_buffers();
1960 release_callchain_buffers();
1962 mutex_unlock(&callchain_mutex);
1967 static void put_callchain_buffers(void)
1969 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1970 release_callchain_buffers();
1971 mutex_unlock(&callchain_mutex);
1975 static int get_recursion_context(int *recursion)
1983 else if (in_softirq())
1988 if (recursion[rctx])
1997 static inline void put_recursion_context(int *recursion, int rctx)
2003 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2006 struct callchain_cpus_entries *entries;
2008 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2012 entries = rcu_dereference(callchain_cpus_entries);
2016 cpu = smp_processor_id();
2018 return &entries->cpu_entries[cpu][*rctx];
2022 put_callchain_entry(int rctx)
2024 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2027 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2030 struct perf_callchain_entry *entry;
2033 entry = get_callchain_entry(&rctx);
2042 if (!user_mode(regs)) {
2043 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2044 perf_callchain_kernel(entry, regs);
2046 regs = task_pt_regs(current);
2052 perf_callchain_store(entry, PERF_CONTEXT_USER);
2053 perf_callchain_user(entry, regs);
2057 put_callchain_entry(rctx);
2063 * Initialize the perf_event context in a task_struct:
2065 static void __perf_event_init_context(struct perf_event_context *ctx)
2067 raw_spin_lock_init(&ctx->lock);
2068 mutex_init(&ctx->mutex);
2069 INIT_LIST_HEAD(&ctx->pinned_groups);
2070 INIT_LIST_HEAD(&ctx->flexible_groups);
2071 INIT_LIST_HEAD(&ctx->event_list);
2072 atomic_set(&ctx->refcount, 1);
2075 static struct perf_event_context *
2076 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2078 struct perf_event_context *ctx;
2080 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2084 __perf_event_init_context(ctx);
2087 get_task_struct(task);
2094 static struct task_struct *
2095 find_lively_task_by_vpid(pid_t vpid)
2097 struct task_struct *task;
2104 task = find_task_by_vpid(vpid);
2106 get_task_struct(task);
2110 return ERR_PTR(-ESRCH);
2113 * Can't attach events to a dying task.
2116 if (task->flags & PF_EXITING)
2119 /* Reuse ptrace permission checks for now. */
2121 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2126 put_task_struct(task);
2127 return ERR_PTR(err);
2131 static struct perf_event_context *
2132 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2134 struct perf_event_context *ctx;
2135 struct perf_cpu_context *cpuctx;
2136 unsigned long flags;
2139 if (!task && cpu != -1) {
2140 /* Must be root to operate on a CPU event: */
2141 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2142 return ERR_PTR(-EACCES);
2144 if (cpu < 0 || cpu >= nr_cpumask_bits)
2145 return ERR_PTR(-EINVAL);
2148 * We could be clever and allow to attach a event to an
2149 * offline CPU and activate it when the CPU comes up, but
2152 if (!cpu_online(cpu))
2153 return ERR_PTR(-ENODEV);
2155 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2163 ctxn = pmu->task_ctx_nr;
2168 ctx = perf_lock_task_context(task, ctxn, &flags);
2171 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2175 ctx = alloc_perf_context(pmu, task);
2182 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2184 * We raced with some other task; use
2185 * the context they set.
2187 put_task_struct(task);
2196 return ERR_PTR(err);
2199 static void perf_event_free_filter(struct perf_event *event);
2201 static void free_event_rcu(struct rcu_head *head)
2203 struct perf_event *event;
2205 event = container_of(head, struct perf_event, rcu_head);
2207 put_pid_ns(event->ns);
2208 perf_event_free_filter(event);
2212 static void perf_buffer_put(struct perf_buffer *buffer);
2214 static void free_event(struct perf_event *event)
2216 irq_work_sync(&event->pending);
2218 if (!event->parent) {
2219 atomic_dec(&nr_events);
2220 if (event->attr.mmap || event->attr.mmap_data)
2221 atomic_dec(&nr_mmap_events);
2222 if (event->attr.comm)
2223 atomic_dec(&nr_comm_events);
2224 if (event->attr.task)
2225 atomic_dec(&nr_task_events);
2226 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2227 put_callchain_buffers();
2230 if (event->buffer) {
2231 perf_buffer_put(event->buffer);
2232 event->buffer = NULL;
2236 event->destroy(event);
2239 put_ctx(event->ctx);
2241 call_rcu(&event->rcu_head, free_event_rcu);
2244 int perf_event_release_kernel(struct perf_event *event)
2246 struct perf_event_context *ctx = event->ctx;
2249 * Remove from the PMU, can't get re-enabled since we got
2250 * here because the last ref went.
2252 perf_event_disable(event);
2254 WARN_ON_ONCE(ctx->parent_ctx);
2256 * There are two ways this annotation is useful:
2258 * 1) there is a lock recursion from perf_event_exit_task
2259 * see the comment there.
2261 * 2) there is a lock-inversion with mmap_sem through
2262 * perf_event_read_group(), which takes faults while
2263 * holding ctx->mutex, however this is called after
2264 * the last filedesc died, so there is no possibility
2265 * to trigger the AB-BA case.
2267 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2268 raw_spin_lock_irq(&ctx->lock);
2269 perf_group_detach(event);
2270 list_del_event(event, ctx);
2271 raw_spin_unlock_irq(&ctx->lock);
2272 mutex_unlock(&ctx->mutex);
2274 mutex_lock(&event->owner->perf_event_mutex);
2275 list_del_init(&event->owner_entry);
2276 mutex_unlock(&event->owner->perf_event_mutex);
2277 put_task_struct(event->owner);
2283 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2286 * Called when the last reference to the file is gone.
2288 static int perf_release(struct inode *inode, struct file *file)
2290 struct perf_event *event = file->private_data;
2292 file->private_data = NULL;
2294 return perf_event_release_kernel(event);
2297 static int perf_event_read_size(struct perf_event *event)
2299 int entry = sizeof(u64); /* value */
2303 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2304 size += sizeof(u64);
2306 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2307 size += sizeof(u64);
2309 if (event->attr.read_format & PERF_FORMAT_ID)
2310 entry += sizeof(u64);
2312 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2313 nr += event->group_leader->nr_siblings;
2314 size += sizeof(u64);
2322 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2324 struct perf_event *child;
2330 mutex_lock(&event->child_mutex);
2331 total += perf_event_read(event);
2332 *enabled += event->total_time_enabled +
2333 atomic64_read(&event->child_total_time_enabled);
2334 *running += event->total_time_running +
2335 atomic64_read(&event->child_total_time_running);
2337 list_for_each_entry(child, &event->child_list, child_list) {
2338 total += perf_event_read(child);
2339 *enabled += child->total_time_enabled;
2340 *running += child->total_time_running;
2342 mutex_unlock(&event->child_mutex);
2346 EXPORT_SYMBOL_GPL(perf_event_read_value);
2348 static int perf_event_read_group(struct perf_event *event,
2349 u64 read_format, char __user *buf)
2351 struct perf_event *leader = event->group_leader, *sub;
2352 int n = 0, size = 0, ret = -EFAULT;
2353 struct perf_event_context *ctx = leader->ctx;
2355 u64 count, enabled, running;
2357 mutex_lock(&ctx->mutex);
2358 count = perf_event_read_value(leader, &enabled, &running);
2360 values[n++] = 1 + leader->nr_siblings;
2361 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2362 values[n++] = enabled;
2363 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2364 values[n++] = running;
2365 values[n++] = count;
2366 if (read_format & PERF_FORMAT_ID)
2367 values[n++] = primary_event_id(leader);
2369 size = n * sizeof(u64);
2371 if (copy_to_user(buf, values, size))
2376 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2379 values[n++] = perf_event_read_value(sub, &enabled, &running);
2380 if (read_format & PERF_FORMAT_ID)
2381 values[n++] = primary_event_id(sub);
2383 size = n * sizeof(u64);
2385 if (copy_to_user(buf + ret, values, size)) {
2393 mutex_unlock(&ctx->mutex);
2398 static int perf_event_read_one(struct perf_event *event,
2399 u64 read_format, char __user *buf)
2401 u64 enabled, running;
2405 values[n++] = perf_event_read_value(event, &enabled, &running);
2406 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2407 values[n++] = enabled;
2408 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2409 values[n++] = running;
2410 if (read_format & PERF_FORMAT_ID)
2411 values[n++] = primary_event_id(event);
2413 if (copy_to_user(buf, values, n * sizeof(u64)))
2416 return n * sizeof(u64);
2420 * Read the performance event - simple non blocking version for now
2423 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2425 u64 read_format = event->attr.read_format;
2429 * Return end-of-file for a read on a event that is in
2430 * error state (i.e. because it was pinned but it couldn't be
2431 * scheduled on to the CPU at some point).
2433 if (event->state == PERF_EVENT_STATE_ERROR)
2436 if (count < perf_event_read_size(event))
2439 WARN_ON_ONCE(event->ctx->parent_ctx);
2440 if (read_format & PERF_FORMAT_GROUP)
2441 ret = perf_event_read_group(event, read_format, buf);
2443 ret = perf_event_read_one(event, read_format, buf);
2449 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2451 struct perf_event *event = file->private_data;
2453 return perf_read_hw(event, buf, count);
2456 static unsigned int perf_poll(struct file *file, poll_table *wait)
2458 struct perf_event *event = file->private_data;
2459 struct perf_buffer *buffer;
2460 unsigned int events = POLL_HUP;
2463 buffer = rcu_dereference(event->buffer);
2465 events = atomic_xchg(&buffer->poll, 0);
2468 poll_wait(file, &event->waitq, wait);
2473 static void perf_event_reset(struct perf_event *event)
2475 (void)perf_event_read(event);
2476 local64_set(&event->count, 0);
2477 perf_event_update_userpage(event);
2481 * Holding the top-level event's child_mutex means that any
2482 * descendant process that has inherited this event will block
2483 * in sync_child_event if it goes to exit, thus satisfying the
2484 * task existence requirements of perf_event_enable/disable.
2486 static void perf_event_for_each_child(struct perf_event *event,
2487 void (*func)(struct perf_event *))
2489 struct perf_event *child;
2491 WARN_ON_ONCE(event->ctx->parent_ctx);
2492 mutex_lock(&event->child_mutex);
2494 list_for_each_entry(child, &event->child_list, child_list)
2496 mutex_unlock(&event->child_mutex);
2499 static void perf_event_for_each(struct perf_event *event,
2500 void (*func)(struct perf_event *))
2502 struct perf_event_context *ctx = event->ctx;
2503 struct perf_event *sibling;
2505 WARN_ON_ONCE(ctx->parent_ctx);
2506 mutex_lock(&ctx->mutex);
2507 event = event->group_leader;
2509 perf_event_for_each_child(event, func);
2511 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2512 perf_event_for_each_child(event, func);
2513 mutex_unlock(&ctx->mutex);
2516 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2518 struct perf_event_context *ctx = event->ctx;
2523 if (!event->attr.sample_period)
2526 size = copy_from_user(&value, arg, sizeof(value));
2527 if (size != sizeof(value))
2533 raw_spin_lock_irq(&ctx->lock);
2534 if (event->attr.freq) {
2535 if (value > sysctl_perf_event_sample_rate) {
2540 event->attr.sample_freq = value;
2542 event->attr.sample_period = value;
2543 event->hw.sample_period = value;
2546 raw_spin_unlock_irq(&ctx->lock);
2551 static const struct file_operations perf_fops;
2553 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2557 file = fget_light(fd, fput_needed);
2559 return ERR_PTR(-EBADF);
2561 if (file->f_op != &perf_fops) {
2562 fput_light(file, *fput_needed);
2564 return ERR_PTR(-EBADF);
2567 return file->private_data;
2570 static int perf_event_set_output(struct perf_event *event,
2571 struct perf_event *output_event);
2572 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2574 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2576 struct perf_event *event = file->private_data;
2577 void (*func)(struct perf_event *);
2581 case PERF_EVENT_IOC_ENABLE:
2582 func = perf_event_enable;
2584 case PERF_EVENT_IOC_DISABLE:
2585 func = perf_event_disable;
2587 case PERF_EVENT_IOC_RESET:
2588 func = perf_event_reset;
2591 case PERF_EVENT_IOC_REFRESH:
2592 return perf_event_refresh(event, arg);
2594 case PERF_EVENT_IOC_PERIOD:
2595 return perf_event_period(event, (u64 __user *)arg);
2597 case PERF_EVENT_IOC_SET_OUTPUT:
2599 struct perf_event *output_event = NULL;
2600 int fput_needed = 0;
2604 output_event = perf_fget_light(arg, &fput_needed);
2605 if (IS_ERR(output_event))
2606 return PTR_ERR(output_event);
2609 ret = perf_event_set_output(event, output_event);
2611 fput_light(output_event->filp, fput_needed);
2616 case PERF_EVENT_IOC_SET_FILTER:
2617 return perf_event_set_filter(event, (void __user *)arg);
2623 if (flags & PERF_IOC_FLAG_GROUP)
2624 perf_event_for_each(event, func);
2626 perf_event_for_each_child(event, func);
2631 int perf_event_task_enable(void)
2633 struct perf_event *event;
2635 mutex_lock(¤t->perf_event_mutex);
2636 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
2637 perf_event_for_each_child(event, perf_event_enable);
2638 mutex_unlock(¤t->perf_event_mutex);
2643 int perf_event_task_disable(void)
2645 struct perf_event *event;
2647 mutex_lock(¤t->perf_event_mutex);
2648 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
2649 perf_event_for_each_child(event, perf_event_disable);
2650 mutex_unlock(¤t->perf_event_mutex);
2655 #ifndef PERF_EVENT_INDEX_OFFSET
2656 # define PERF_EVENT_INDEX_OFFSET 0
2659 static int perf_event_index(struct perf_event *event)
2661 if (event->hw.state & PERF_HES_STOPPED)
2664 if (event->state != PERF_EVENT_STATE_ACTIVE)
2667 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2671 * Callers need to ensure there can be no nesting of this function, otherwise
2672 * the seqlock logic goes bad. We can not serialize this because the arch
2673 * code calls this from NMI context.
2675 void perf_event_update_userpage(struct perf_event *event)
2677 struct perf_event_mmap_page *userpg;
2678 struct perf_buffer *buffer;
2681 buffer = rcu_dereference(event->buffer);
2685 userpg = buffer->user_page;
2688 * Disable preemption so as to not let the corresponding user-space
2689 * spin too long if we get preempted.
2694 userpg->index = perf_event_index(event);
2695 userpg->offset = perf_event_count(event);
2696 if (event->state == PERF_EVENT_STATE_ACTIVE)
2697 userpg->offset -= local64_read(&event->hw.prev_count);
2699 userpg->time_enabled = event->total_time_enabled +
2700 atomic64_read(&event->child_total_time_enabled);
2702 userpg->time_running = event->total_time_running +
2703 atomic64_read(&event->child_total_time_running);
2712 static unsigned long perf_data_size(struct perf_buffer *buffer);
2715 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2717 long max_size = perf_data_size(buffer);
2720 buffer->watermark = min(max_size, watermark);
2722 if (!buffer->watermark)
2723 buffer->watermark = max_size / 2;
2725 if (flags & PERF_BUFFER_WRITABLE)
2726 buffer->writable = 1;
2728 atomic_set(&buffer->refcount, 1);
2731 #ifndef CONFIG_PERF_USE_VMALLOC
2734 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2737 static struct page *
2738 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2740 if (pgoff > buffer->nr_pages)
2744 return virt_to_page(buffer->user_page);
2746 return virt_to_page(buffer->data_pages[pgoff - 1]);
2749 static void *perf_mmap_alloc_page(int cpu)
2754 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2755 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2759 return page_address(page);
2762 static struct perf_buffer *
2763 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2765 struct perf_buffer *buffer;
2769 size = sizeof(struct perf_buffer);
2770 size += nr_pages * sizeof(void *);
2772 buffer = kzalloc(size, GFP_KERNEL);
2776 buffer->user_page = perf_mmap_alloc_page(cpu);
2777 if (!buffer->user_page)
2778 goto fail_user_page;
2780 for (i = 0; i < nr_pages; i++) {
2781 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2782 if (!buffer->data_pages[i])
2783 goto fail_data_pages;
2786 buffer->nr_pages = nr_pages;
2788 perf_buffer_init(buffer, watermark, flags);
2793 for (i--; i >= 0; i--)
2794 free_page((unsigned long)buffer->data_pages[i]);
2796 free_page((unsigned long)buffer->user_page);
2805 static void perf_mmap_free_page(unsigned long addr)
2807 struct page *page = virt_to_page((void *)addr);
2809 page->mapping = NULL;
2813 static void perf_buffer_free(struct perf_buffer *buffer)
2817 perf_mmap_free_page((unsigned long)buffer->user_page);
2818 for (i = 0; i < buffer->nr_pages; i++)
2819 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2823 static inline int page_order(struct perf_buffer *buffer)
2831 * Back perf_mmap() with vmalloc memory.
2833 * Required for architectures that have d-cache aliasing issues.
2836 static inline int page_order(struct perf_buffer *buffer)
2838 return buffer->page_order;
2841 static struct page *
2842 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2844 if (pgoff > (1UL << page_order(buffer)))
2847 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2850 static void perf_mmap_unmark_page(void *addr)
2852 struct page *page = vmalloc_to_page(addr);
2854 page->mapping = NULL;
2857 static void perf_buffer_free_work(struct work_struct *work)
2859 struct perf_buffer *buffer;
2863 buffer = container_of(work, struct perf_buffer, work);
2864 nr = 1 << page_order(buffer);
2866 base = buffer->user_page;
2867 for (i = 0; i < nr + 1; i++)
2868 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2874 static void perf_buffer_free(struct perf_buffer *buffer)
2876 schedule_work(&buffer->work);
2879 static struct perf_buffer *
2880 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2882 struct perf_buffer *buffer;
2886 size = sizeof(struct perf_buffer);
2887 size += sizeof(void *);
2889 buffer = kzalloc(size, GFP_KERNEL);
2893 INIT_WORK(&buffer->work, perf_buffer_free_work);
2895 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2899 buffer->user_page = all_buf;
2900 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2901 buffer->page_order = ilog2(nr_pages);
2902 buffer->nr_pages = 1;
2904 perf_buffer_init(buffer, watermark, flags);
2917 static unsigned long perf_data_size(struct perf_buffer *buffer)
2919 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2922 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2924 struct perf_event *event = vma->vm_file->private_data;
2925 struct perf_buffer *buffer;
2926 int ret = VM_FAULT_SIGBUS;
2928 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2929 if (vmf->pgoff == 0)
2935 buffer = rcu_dereference(event->buffer);
2939 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2942 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2946 get_page(vmf->page);
2947 vmf->page->mapping = vma->vm_file->f_mapping;
2948 vmf->page->index = vmf->pgoff;
2957 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2959 struct perf_buffer *buffer;
2961 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2962 perf_buffer_free(buffer);
2965 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2967 struct perf_buffer *buffer;
2970 buffer = rcu_dereference(event->buffer);
2972 if (!atomic_inc_not_zero(&buffer->refcount))
2980 static void perf_buffer_put(struct perf_buffer *buffer)
2982 if (!atomic_dec_and_test(&buffer->refcount))
2985 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2988 static void perf_mmap_open(struct vm_area_struct *vma)
2990 struct perf_event *event = vma->vm_file->private_data;
2992 atomic_inc(&event->mmap_count);
2995 static void perf_mmap_close(struct vm_area_struct *vma)
2997 struct perf_event *event = vma->vm_file->private_data;
2999 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3000 unsigned long size = perf_data_size(event->buffer);
3001 struct user_struct *user = event->mmap_user;
3002 struct perf_buffer *buffer = event->buffer;
3004 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3005 vma->vm_mm->locked_vm -= event->mmap_locked;
3006 rcu_assign_pointer(event->buffer, NULL);
3007 mutex_unlock(&event->mmap_mutex);
3009 perf_buffer_put(buffer);
3014 static const struct vm_operations_struct perf_mmap_vmops = {
3015 .open = perf_mmap_open,
3016 .close = perf_mmap_close,
3017 .fault = perf_mmap_fault,
3018 .page_mkwrite = perf_mmap_fault,
3021 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3023 struct perf_event *event = file->private_data;
3024 unsigned long user_locked, user_lock_limit;
3025 struct user_struct *user = current_user();
3026 unsigned long locked, lock_limit;
3027 struct perf_buffer *buffer;
3028 unsigned long vma_size;
3029 unsigned long nr_pages;
3030 long user_extra, extra;
3031 int ret = 0, flags = 0;
3034 * Don't allow mmap() of inherited per-task counters. This would
3035 * create a performance issue due to all children writing to the
3038 if (event->cpu == -1 && event->attr.inherit)
3041 if (!(vma->vm_flags & VM_SHARED))
3044 vma_size = vma->vm_end - vma->vm_start;
3045 nr_pages = (vma_size / PAGE_SIZE) - 1;
3048 * If we have buffer pages ensure they're a power-of-two number, so we
3049 * can do bitmasks instead of modulo.
3051 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3054 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3057 if (vma->vm_pgoff != 0)
3060 WARN_ON_ONCE(event->ctx->parent_ctx);
3061 mutex_lock(&event->mmap_mutex);
3062 if (event->buffer) {
3063 if (event->buffer->nr_pages == nr_pages)
3064 atomic_inc(&event->buffer->refcount);
3070 user_extra = nr_pages + 1;
3071 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3074 * Increase the limit linearly with more CPUs:
3076 user_lock_limit *= num_online_cpus();
3078 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3081 if (user_locked > user_lock_limit)
3082 extra = user_locked - user_lock_limit;
3084 lock_limit = rlimit(RLIMIT_MEMLOCK);
3085 lock_limit >>= PAGE_SHIFT;
3086 locked = vma->vm_mm->locked_vm + extra;
3088 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3089 !capable(CAP_IPC_LOCK)) {
3094 WARN_ON(event->buffer);
3096 if (vma->vm_flags & VM_WRITE)
3097 flags |= PERF_BUFFER_WRITABLE;
3099 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3105 rcu_assign_pointer(event->buffer, buffer);
3107 atomic_long_add(user_extra, &user->locked_vm);
3108 event->mmap_locked = extra;
3109 event->mmap_user = get_current_user();
3110 vma->vm_mm->locked_vm += event->mmap_locked;
3114 atomic_inc(&event->mmap_count);
3115 mutex_unlock(&event->mmap_mutex);
3117 vma->vm_flags |= VM_RESERVED;
3118 vma->vm_ops = &perf_mmap_vmops;
3123 static int perf_fasync(int fd, struct file *filp, int on)
3125 struct inode *inode = filp->f_path.dentry->d_inode;
3126 struct perf_event *event = filp->private_data;
3129 mutex_lock(&inode->i_mutex);
3130 retval = fasync_helper(fd, filp, on, &event->fasync);
3131 mutex_unlock(&inode->i_mutex);
3139 static const struct file_operations perf_fops = {
3140 .llseek = no_llseek,
3141 .release = perf_release,
3144 .unlocked_ioctl = perf_ioctl,
3145 .compat_ioctl = perf_ioctl,
3147 .fasync = perf_fasync,
3153 * If there's data, ensure we set the poll() state and publish everything
3154 * to user-space before waking everybody up.
3157 void perf_event_wakeup(struct perf_event *event)
3159 wake_up_all(&event->waitq);
3161 if (event->pending_kill) {
3162 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3163 event->pending_kill = 0;
3167 static void perf_pending_event(struct irq_work *entry)
3169 struct perf_event *event = container_of(entry,
3170 struct perf_event, pending);
3172 if (event->pending_disable) {
3173 event->pending_disable = 0;
3174 __perf_event_disable(event);
3177 if (event->pending_wakeup) {
3178 event->pending_wakeup = 0;
3179 perf_event_wakeup(event);
3184 * We assume there is only KVM supporting the callbacks.
3185 * Later on, we might change it to a list if there is
3186 * another virtualization implementation supporting the callbacks.
3188 struct perf_guest_info_callbacks *perf_guest_cbs;
3190 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3192 perf_guest_cbs = cbs;
3195 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3197 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3199 perf_guest_cbs = NULL;
3202 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3207 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3208 unsigned long offset, unsigned long head)
3212 if (!buffer->writable)
3215 mask = perf_data_size(buffer) - 1;
3217 offset = (offset - tail) & mask;
3218 head = (head - tail) & mask;
3220 if ((int)(head - offset) < 0)
3226 static void perf_output_wakeup(struct perf_output_handle *handle)
3228 atomic_set(&handle->buffer->poll, POLL_IN);
3231 handle->event->pending_wakeup = 1;
3232 irq_work_queue(&handle->event->pending);
3234 perf_event_wakeup(handle->event);
3238 * We need to ensure a later event_id doesn't publish a head when a former
3239 * event isn't done writing. However since we need to deal with NMIs we
3240 * cannot fully serialize things.
3242 * We only publish the head (and generate a wakeup) when the outer-most
3245 static void perf_output_get_handle(struct perf_output_handle *handle)
3247 struct perf_buffer *buffer = handle->buffer;
3250 local_inc(&buffer->nest);
3251 handle->wakeup = local_read(&buffer->wakeup);
3254 static void perf_output_put_handle(struct perf_output_handle *handle)
3256 struct perf_buffer *buffer = handle->buffer;
3260 head = local_read(&buffer->head);
3263 * IRQ/NMI can happen here, which means we can miss a head update.
3266 if (!local_dec_and_test(&buffer->nest))
3270 * Publish the known good head. Rely on the full barrier implied
3271 * by atomic_dec_and_test() order the buffer->head read and this
3274 buffer->user_page->data_head = head;
3277 * Now check if we missed an update, rely on the (compiler)
3278 * barrier in atomic_dec_and_test() to re-read buffer->head.
3280 if (unlikely(head != local_read(&buffer->head))) {
3281 local_inc(&buffer->nest);
3285 if (handle->wakeup != local_read(&buffer->wakeup))
3286 perf_output_wakeup(handle);
3292 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3293 const void *buf, unsigned int len)
3296 unsigned long size = min_t(unsigned long, handle->size, len);
3298 memcpy(handle->addr, buf, size);
3301 handle->addr += size;
3303 handle->size -= size;
3304 if (!handle->size) {
3305 struct perf_buffer *buffer = handle->buffer;
3308 handle->page &= buffer->nr_pages - 1;
3309 handle->addr = buffer->data_pages[handle->page];
3310 handle->size = PAGE_SIZE << page_order(buffer);
3315 int perf_output_begin(struct perf_output_handle *handle,
3316 struct perf_event *event, unsigned int size,
3317 int nmi, int sample)
3319 struct perf_buffer *buffer;
3320 unsigned long tail, offset, head;
3323 struct perf_event_header header;
3330 * For inherited events we send all the output towards the parent.
3333 event = event->parent;
3335 buffer = rcu_dereference(event->buffer);
3339 handle->buffer = buffer;
3340 handle->event = event;
3342 handle->sample = sample;
3344 if (!buffer->nr_pages)
3347 have_lost = local_read(&buffer->lost);
3349 size += sizeof(lost_event);
3351 perf_output_get_handle(handle);
3355 * Userspace could choose to issue a mb() before updating the
3356 * tail pointer. So that all reads will be completed before the
3359 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3361 offset = head = local_read(&buffer->head);
3363 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3365 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3367 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3368 local_add(buffer->watermark, &buffer->wakeup);
3370 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3371 handle->page &= buffer->nr_pages - 1;
3372 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3373 handle->addr = buffer->data_pages[handle->page];
3374 handle->addr += handle->size;
3375 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3378 lost_event.header.type = PERF_RECORD_LOST;
3379 lost_event.header.misc = 0;
3380 lost_event.header.size = sizeof(lost_event);
3381 lost_event.id = event->id;
3382 lost_event.lost = local_xchg(&buffer->lost, 0);
3384 perf_output_put(handle, lost_event);
3390 local_inc(&buffer->lost);
3391 perf_output_put_handle(handle);
3398 void perf_output_end(struct perf_output_handle *handle)
3400 struct perf_event *event = handle->event;
3401 struct perf_buffer *buffer = handle->buffer;
3403 int wakeup_events = event->attr.wakeup_events;
3405 if (handle->sample && wakeup_events) {
3406 int events = local_inc_return(&buffer->events);
3407 if (events >= wakeup_events) {
3408 local_sub(wakeup_events, &buffer->events);
3409 local_inc(&buffer->wakeup);
3413 perf_output_put_handle(handle);
3417 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3420 * only top level events have the pid namespace they were created in
3423 event = event->parent;
3425 return task_tgid_nr_ns(p, event->ns);
3428 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3431 * only top level events have the pid namespace they were created in
3434 event = event->parent;
3436 return task_pid_nr_ns(p, event->ns);
3439 static void perf_output_read_one(struct perf_output_handle *handle,
3440 struct perf_event *event)
3442 u64 read_format = event->attr.read_format;
3446 values[n++] = perf_event_count(event);
3447 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3448 values[n++] = event->total_time_enabled +
3449 atomic64_read(&event->child_total_time_enabled);
3451 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3452 values[n++] = event->total_time_running +
3453 atomic64_read(&event->child_total_time_running);
3455 if (read_format & PERF_FORMAT_ID)
3456 values[n++] = primary_event_id(event);
3458 perf_output_copy(handle, values, n * sizeof(u64));
3462 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3464 static void perf_output_read_group(struct perf_output_handle *handle,
3465 struct perf_event *event)
3467 struct perf_event *leader = event->group_leader, *sub;
3468 u64 read_format = event->attr.read_format;
3472 values[n++] = 1 + leader->nr_siblings;
3474 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3475 values[n++] = leader->total_time_enabled;
3477 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3478 values[n++] = leader->total_time_running;
3480 if (leader != event)
3481 leader->pmu->read(leader);
3483 values[n++] = perf_event_count(leader);
3484 if (read_format & PERF_FORMAT_ID)
3485 values[n++] = primary_event_id(leader);
3487 perf_output_copy(handle, values, n * sizeof(u64));
3489 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3493 sub->pmu->read(sub);
3495 values[n++] = perf_event_count(sub);
3496 if (read_format & PERF_FORMAT_ID)
3497 values[n++] = primary_event_id(sub);
3499 perf_output_copy(handle, values, n * sizeof(u64));
3503 static void perf_output_read(struct perf_output_handle *handle,
3504 struct perf_event *event)
3506 if (event->attr.read_format & PERF_FORMAT_GROUP)
3507 perf_output_read_group(handle, event);
3509 perf_output_read_one(handle, event);
3512 void perf_output_sample(struct perf_output_handle *handle,
3513 struct perf_event_header *header,
3514 struct perf_sample_data *data,
3515 struct perf_event *event)
3517 u64 sample_type = data->type;
3519 perf_output_put(handle, *header);
3521 if (sample_type & PERF_SAMPLE_IP)
3522 perf_output_put(handle, data->ip);
3524 if (sample_type & PERF_SAMPLE_TID)
3525 perf_output_put(handle, data->tid_entry);
3527 if (sample_type & PERF_SAMPLE_TIME)
3528 perf_output_put(handle, data->time);
3530 if (sample_type & PERF_SAMPLE_ADDR)
3531 perf_output_put(handle, data->addr);
3533 if (sample_type & PERF_SAMPLE_ID)
3534 perf_output_put(handle, data->id);
3536 if (sample_type & PERF_SAMPLE_STREAM_ID)
3537 perf_output_put(handle, data->stream_id);
3539 if (sample_type & PERF_SAMPLE_CPU)
3540 perf_output_put(handle, data->cpu_entry);
3542 if (sample_type & PERF_SAMPLE_PERIOD)
3543 perf_output_put(handle, data->period);
3545 if (sample_type & PERF_SAMPLE_READ)
3546 perf_output_read(handle, event);
3548 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3549 if (data->callchain) {
3552 if (data->callchain)
3553 size += data->callchain->nr;
3555 size *= sizeof(u64);
3557 perf_output_copy(handle, data->callchain, size);
3560 perf_output_put(handle, nr);
3564 if (sample_type & PERF_SAMPLE_RAW) {
3566 perf_output_put(handle, data->raw->size);
3567 perf_output_copy(handle, data->raw->data,
3574 .size = sizeof(u32),
3577 perf_output_put(handle, raw);
3582 void perf_prepare_sample(struct perf_event_header *header,
3583 struct perf_sample_data *data,
3584 struct perf_event *event,
3585 struct pt_regs *regs)
3587 u64 sample_type = event->attr.sample_type;
3589 data->type = sample_type;
3591 header->type = PERF_RECORD_SAMPLE;
3592 header->size = sizeof(*header);
3595 header->misc |= perf_misc_flags(regs);
3597 if (sample_type & PERF_SAMPLE_IP) {
3598 data->ip = perf_instruction_pointer(regs);
3600 header->size += sizeof(data->ip);
3603 if (sample_type & PERF_SAMPLE_TID) {
3604 /* namespace issues */
3605 data->tid_entry.pid = perf_event_pid(event, current);
3606 data->tid_entry.tid = perf_event_tid(event, current);
3608 header->size += sizeof(data->tid_entry);
3611 if (sample_type & PERF_SAMPLE_TIME) {
3612 data->time = perf_clock();
3614 header->size += sizeof(data->time);
3617 if (sample_type & PERF_SAMPLE_ADDR)
3618 header->size += sizeof(data->addr);
3620 if (sample_type & PERF_SAMPLE_ID) {
3621 data->id = primary_event_id(event);
3623 header->size += sizeof(data->id);
3626 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3627 data->stream_id = event->id;
3629 header->size += sizeof(data->stream_id);
3632 if (sample_type & PERF_SAMPLE_CPU) {
3633 data->cpu_entry.cpu = raw_smp_processor_id();
3634 data->cpu_entry.reserved = 0;
3636 header->size += sizeof(data->cpu_entry);
3639 if (sample_type & PERF_SAMPLE_PERIOD)
3640 header->size += sizeof(data->period);
3642 if (sample_type & PERF_SAMPLE_READ)
3643 header->size += perf_event_read_size(event);
3645 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3648 data->callchain = perf_callchain(regs);
3650 if (data->callchain)
3651 size += data->callchain->nr;
3653 header->size += size * sizeof(u64);
3656 if (sample_type & PERF_SAMPLE_RAW) {
3657 int size = sizeof(u32);
3660 size += data->raw->size;
3662 size += sizeof(u32);
3664 WARN_ON_ONCE(size & (sizeof(u64)-1));
3665 header->size += size;
3669 static void perf_event_output(struct perf_event *event, int nmi,
3670 struct perf_sample_data *data,
3671 struct pt_regs *regs)
3673 struct perf_output_handle handle;
3674 struct perf_event_header header;
3676 /* protect the callchain buffers */
3679 perf_prepare_sample(&header, data, event, regs);
3681 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3684 perf_output_sample(&handle, &header, data, event);
3686 perf_output_end(&handle);
3696 struct perf_read_event {
3697 struct perf_event_header header;
3704 perf_event_read_event(struct perf_event *event,
3705 struct task_struct *task)
3707 struct perf_output_handle handle;
3708 struct perf_read_event read_event = {
3710 .type = PERF_RECORD_READ,
3712 .size = sizeof(read_event) + perf_event_read_size(event),
3714 .pid = perf_event_pid(event, task),
3715 .tid = perf_event_tid(event, task),
3719 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3723 perf_output_put(&handle, read_event);
3724 perf_output_read(&handle, event);
3726 perf_output_end(&handle);
3730 * task tracking -- fork/exit
3732 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3735 struct perf_task_event {
3736 struct task_struct *task;
3737 struct perf_event_context *task_ctx;
3740 struct perf_event_header header;
3750 static void perf_event_task_output(struct perf_event *event,
3751 struct perf_task_event *task_event)
3753 struct perf_output_handle handle;
3754 struct task_struct *task = task_event->task;
3757 size = task_event->event_id.header.size;
3758 ret = perf_output_begin(&handle, event, size, 0, 0);
3763 task_event->event_id.pid = perf_event_pid(event, task);
3764 task_event->event_id.ppid = perf_event_pid(event, current);
3766 task_event->event_id.tid = perf_event_tid(event, task);
3767 task_event->event_id.ptid = perf_event_tid(event, current);
3769 perf_output_put(&handle, task_event->event_id);
3771 perf_output_end(&handle);
3774 static int perf_event_task_match(struct perf_event *event)
3776 if (event->state < PERF_EVENT_STATE_INACTIVE)
3779 if (event->cpu != -1 && event->cpu != smp_processor_id())
3782 if (event->attr.comm || event->attr.mmap ||
3783 event->attr.mmap_data || event->attr.task)
3789 static void perf_event_task_ctx(struct perf_event_context *ctx,
3790 struct perf_task_event *task_event)
3792 struct perf_event *event;
3794 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3795 if (perf_event_task_match(event))
3796 perf_event_task_output(event, task_event);
3800 static void perf_event_task_event(struct perf_task_event *task_event)
3802 struct perf_cpu_context *cpuctx;
3803 struct perf_event_context *ctx;
3808 list_for_each_entry_rcu(pmu, &pmus, entry) {
3809 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3810 perf_event_task_ctx(&cpuctx->ctx, task_event);
3812 ctx = task_event->task_ctx;
3814 ctxn = pmu->task_ctx_nr;
3817 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3820 perf_event_task_ctx(ctx, task_event);
3822 put_cpu_ptr(pmu->pmu_cpu_context);
3827 static void perf_event_task(struct task_struct *task,
3828 struct perf_event_context *task_ctx,
3831 struct perf_task_event task_event;
3833 if (!atomic_read(&nr_comm_events) &&
3834 !atomic_read(&nr_mmap_events) &&
3835 !atomic_read(&nr_task_events))
3838 task_event = (struct perf_task_event){
3840 .task_ctx = task_ctx,
3843 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3845 .size = sizeof(task_event.event_id),
3851 .time = perf_clock(),
3855 perf_event_task_event(&task_event);
3858 void perf_event_fork(struct task_struct *task)
3860 perf_event_task(task, NULL, 1);
3867 struct perf_comm_event {
3868 struct task_struct *task;
3873 struct perf_event_header header;
3880 static void perf_event_comm_output(struct perf_event *event,
3881 struct perf_comm_event *comm_event)
3883 struct perf_output_handle handle;
3884 int size = comm_event->event_id.header.size;
3885 int ret = perf_output_begin(&handle, event, size, 0, 0);
3890 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3891 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3893 perf_output_put(&handle, comm_event->event_id);
3894 perf_output_copy(&handle, comm_event->comm,
3895 comm_event->comm_size);
3896 perf_output_end(&handle);
3899 static int perf_event_comm_match(struct perf_event *event)
3901 if (event->state < PERF_EVENT_STATE_INACTIVE)
3904 if (event->cpu != -1 && event->cpu != smp_processor_id())
3907 if (event->attr.comm)
3913 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3914 struct perf_comm_event *comm_event)
3916 struct perf_event *event;
3918 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3919 if (perf_event_comm_match(event))
3920 perf_event_comm_output(event, comm_event);
3924 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3926 struct perf_cpu_context *cpuctx;
3927 struct perf_event_context *ctx;
3928 char comm[TASK_COMM_LEN];
3933 memset(comm, 0, sizeof(comm));
3934 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3935 size = ALIGN(strlen(comm)+1, sizeof(u64));
3937 comm_event->comm = comm;
3938 comm_event->comm_size = size;
3940 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3943 list_for_each_entry_rcu(pmu, &pmus, entry) {
3944 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3945 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3947 ctxn = pmu->task_ctx_nr;
3951 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3953 perf_event_comm_ctx(ctx, comm_event);
3955 put_cpu_ptr(pmu->pmu_cpu_context);
3960 void perf_event_comm(struct task_struct *task)
3962 struct perf_comm_event comm_event;
3963 struct perf_event_context *ctx;
3966 for_each_task_context_nr(ctxn) {
3967 ctx = task->perf_event_ctxp[ctxn];
3971 perf_event_enable_on_exec(ctx);
3974 if (!atomic_read(&nr_comm_events))
3977 comm_event = (struct perf_comm_event){
3983 .type = PERF_RECORD_COMM,
3992 perf_event_comm_event(&comm_event);
3999 struct perf_mmap_event {
4000 struct vm_area_struct *vma;
4002 const char *file_name;
4006 struct perf_event_header header;
4016 static void perf_event_mmap_output(struct perf_event *event,
4017 struct perf_mmap_event *mmap_event)
4019 struct perf_output_handle handle;
4020 int size = mmap_event->event_id.header.size;
4021 int ret = perf_output_begin(&handle, event, size, 0, 0);
4026 mmap_event->event_id.pid = perf_event_pid(event, current);
4027 mmap_event->event_id.tid = perf_event_tid(event, current);
4029 perf_output_put(&handle, mmap_event->event_id);
4030 perf_output_copy(&handle, mmap_event->file_name,
4031 mmap_event->file_size);
4032 perf_output_end(&handle);
4035 static int perf_event_mmap_match(struct perf_event *event,
4036 struct perf_mmap_event *mmap_event,
4039 if (event->state < PERF_EVENT_STATE_INACTIVE)
4042 if (event->cpu != -1 && event->cpu != smp_processor_id())
4045 if ((!executable && event->attr.mmap_data) ||
4046 (executable && event->attr.mmap))
4052 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4053 struct perf_mmap_event *mmap_event,
4056 struct perf_event *event;
4058 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4059 if (perf_event_mmap_match(event, mmap_event, executable))
4060 perf_event_mmap_output(event, mmap_event);
4064 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4066 struct perf_cpu_context *cpuctx;
4067 struct perf_event_context *ctx;
4068 struct vm_area_struct *vma = mmap_event->vma;
4069 struct file *file = vma->vm_file;
4077 memset(tmp, 0, sizeof(tmp));
4081 * d_path works from the end of the buffer backwards, so we
4082 * need to add enough zero bytes after the string to handle
4083 * the 64bit alignment we do later.
4085 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4087 name = strncpy(tmp, "//enomem", sizeof(tmp));
4090 name = d_path(&file->f_path, buf, PATH_MAX);
4092 name = strncpy(tmp, "//toolong", sizeof(tmp));
4096 if (arch_vma_name(mmap_event->vma)) {
4097 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4103 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4105 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4106 vma->vm_end >= vma->vm_mm->brk) {
4107 name = strncpy(tmp, "[heap]", sizeof(tmp));
4109 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4110 vma->vm_end >= vma->vm_mm->start_stack) {
4111 name = strncpy(tmp, "[stack]", sizeof(tmp));
4115 name = strncpy(tmp, "//anon", sizeof(tmp));
4120 size = ALIGN(strlen(name)+1, sizeof(u64));
4122 mmap_event->file_name = name;
4123 mmap_event->file_size = size;
4125 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4128 list_for_each_entry_rcu(pmu, &pmus, entry) {
4129 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4130 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4131 vma->vm_flags & VM_EXEC);
4133 ctxn = pmu->task_ctx_nr;
4137 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4139 perf_event_mmap_ctx(ctx, mmap_event,
4140 vma->vm_flags & VM_EXEC);
4143 put_cpu_ptr(pmu->pmu_cpu_context);
4150 void perf_event_mmap(struct vm_area_struct *vma)
4152 struct perf_mmap_event mmap_event;
4154 if (!atomic_read(&nr_mmap_events))
4157 mmap_event = (struct perf_mmap_event){
4163 .type = PERF_RECORD_MMAP,
4164 .misc = PERF_RECORD_MISC_USER,
4169 .start = vma->vm_start,
4170 .len = vma->vm_end - vma->vm_start,
4171 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4175 perf_event_mmap_event(&mmap_event);
4179 * IRQ throttle logging
4182 static void perf_log_throttle(struct perf_event *event, int enable)
4184 struct perf_output_handle handle;
4188 struct perf_event_header header;
4192 } throttle_event = {
4194 .type = PERF_RECORD_THROTTLE,
4196 .size = sizeof(throttle_event),
4198 .time = perf_clock(),
4199 .id = primary_event_id(event),
4200 .stream_id = event->id,
4204 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4206 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4210 perf_output_put(&handle, throttle_event);
4211 perf_output_end(&handle);
4215 * Generic event overflow handling, sampling.
4218 static int __perf_event_overflow(struct perf_event *event, int nmi,
4219 int throttle, struct perf_sample_data *data,
4220 struct pt_regs *regs)
4222 int events = atomic_read(&event->event_limit);
4223 struct hw_perf_event *hwc = &event->hw;
4229 if (hwc->interrupts != MAX_INTERRUPTS) {
4231 if (HZ * hwc->interrupts >
4232 (u64)sysctl_perf_event_sample_rate) {
4233 hwc->interrupts = MAX_INTERRUPTS;
4234 perf_log_throttle(event, 0);
4239 * Keep re-disabling events even though on the previous
4240 * pass we disabled it - just in case we raced with a
4241 * sched-in and the event got enabled again:
4247 if (event->attr.freq) {
4248 u64 now = perf_clock();
4249 s64 delta = now - hwc->freq_time_stamp;
4251 hwc->freq_time_stamp = now;
4253 if (delta > 0 && delta < 2*TICK_NSEC)
4254 perf_adjust_period(event, delta, hwc->last_period);
4258 * XXX event_limit might not quite work as expected on inherited
4262 event->pending_kill = POLL_IN;
4263 if (events && atomic_dec_and_test(&event->event_limit)) {
4265 event->pending_kill = POLL_HUP;
4267 event->pending_disable = 1;
4268 irq_work_queue(&event->pending);
4270 perf_event_disable(event);
4273 if (event->overflow_handler)
4274 event->overflow_handler(event, nmi, data, regs);
4276 perf_event_output(event, nmi, data, regs);
4281 int perf_event_overflow(struct perf_event *event, int nmi,
4282 struct perf_sample_data *data,
4283 struct pt_regs *regs)
4285 return __perf_event_overflow(event, nmi, 1, data, regs);
4289 * Generic software event infrastructure
4292 struct swevent_htable {
4293 struct swevent_hlist *swevent_hlist;
4294 struct mutex hlist_mutex;
4297 /* Recursion avoidance in each contexts */
4298 int recursion[PERF_NR_CONTEXTS];
4301 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4304 * We directly increment event->count and keep a second value in
4305 * event->hw.period_left to count intervals. This period event
4306 * is kept in the range [-sample_period, 0] so that we can use the
4310 static u64 perf_swevent_set_period(struct perf_event *event)
4312 struct hw_perf_event *hwc = &event->hw;
4313 u64 period = hwc->last_period;
4317 hwc->last_period = hwc->sample_period;
4320 old = val = local64_read(&hwc->period_left);
4324 nr = div64_u64(period + val, period);
4325 offset = nr * period;
4327 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4333 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4334 int nmi, struct perf_sample_data *data,
4335 struct pt_regs *regs)
4337 struct hw_perf_event *hwc = &event->hw;
4340 data->period = event->hw.last_period;
4342 overflow = perf_swevent_set_period(event);
4344 if (hwc->interrupts == MAX_INTERRUPTS)
4347 for (; overflow; overflow--) {
4348 if (__perf_event_overflow(event, nmi, throttle,
4351 * We inhibit the overflow from happening when
4352 * hwc->interrupts == MAX_INTERRUPTS.
4360 static void perf_swevent_event(struct perf_event *event, u64 nr,
4361 int nmi, struct perf_sample_data *data,
4362 struct pt_regs *regs)
4364 struct hw_perf_event *hwc = &event->hw;
4366 local64_add(nr, &event->count);
4371 if (!hwc->sample_period)
4374 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4375 return perf_swevent_overflow(event, 1, nmi, data, regs);
4377 if (local64_add_negative(nr, &hwc->period_left))
4380 perf_swevent_overflow(event, 0, nmi, data, regs);
4383 static int perf_exclude_event(struct perf_event *event,
4384 struct pt_regs *regs)
4386 if (event->hw.state & PERF_HES_STOPPED)
4390 if (event->attr.exclude_user && user_mode(regs))
4393 if (event->attr.exclude_kernel && !user_mode(regs))
4400 static int perf_swevent_match(struct perf_event *event,
4401 enum perf_type_id type,
4403 struct perf_sample_data *data,
4404 struct pt_regs *regs)
4406 if (event->attr.type != type)
4409 if (event->attr.config != event_id)
4412 if (perf_exclude_event(event, regs))
4418 static inline u64 swevent_hash(u64 type, u32 event_id)
4420 u64 val = event_id | (type << 32);
4422 return hash_64(val, SWEVENT_HLIST_BITS);
4425 static inline struct hlist_head *
4426 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4428 u64 hash = swevent_hash(type, event_id);
4430 return &hlist->heads[hash];
4433 /* For the read side: events when they trigger */
4434 static inline struct hlist_head *
4435 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4437 struct swevent_hlist *hlist;
4439 hlist = rcu_dereference(swhash->swevent_hlist);
4443 return __find_swevent_head(hlist, type, event_id);
4446 /* For the event head insertion and removal in the hlist */
4447 static inline struct hlist_head *
4448 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4450 struct swevent_hlist *hlist;
4451 u32 event_id = event->attr.config;
4452 u64 type = event->attr.type;
4455 * Event scheduling is always serialized against hlist allocation
4456 * and release. Which makes the protected version suitable here.
4457 * The context lock guarantees that.
4459 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4460 lockdep_is_held(&event->ctx->lock));
4464 return __find_swevent_head(hlist, type, event_id);
4467 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4469 struct perf_sample_data *data,
4470 struct pt_regs *regs)
4472 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4473 struct perf_event *event;
4474 struct hlist_node *node;
4475 struct hlist_head *head;
4478 head = find_swevent_head_rcu(swhash, type, event_id);
4482 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4483 if (perf_swevent_match(event, type, event_id, data, regs))
4484 perf_swevent_event(event, nr, nmi, data, regs);
4490 int perf_swevent_get_recursion_context(void)
4492 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4494 return get_recursion_context(swhash->recursion);
4496 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4498 void inline perf_swevent_put_recursion_context(int rctx)
4500 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4502 put_recursion_context(swhash->recursion, rctx);
4505 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4506 struct pt_regs *regs, u64 addr)
4508 struct perf_sample_data data;
4511 preempt_disable_notrace();
4512 rctx = perf_swevent_get_recursion_context();
4516 perf_sample_data_init(&data, addr);
4518 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4520 perf_swevent_put_recursion_context(rctx);
4521 preempt_enable_notrace();
4524 static void perf_swevent_read(struct perf_event *event)
4528 static int perf_swevent_add(struct perf_event *event, int flags)
4530 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4531 struct hw_perf_event *hwc = &event->hw;
4532 struct hlist_head *head;
4534 if (hwc->sample_period) {
4535 hwc->last_period = hwc->sample_period;
4536 perf_swevent_set_period(event);
4539 hwc->state = !(flags & PERF_EF_START);
4541 head = find_swevent_head(swhash, event);
4542 if (WARN_ON_ONCE(!head))
4545 hlist_add_head_rcu(&event->hlist_entry, head);
4550 static void perf_swevent_del(struct perf_event *event, int flags)
4552 hlist_del_rcu(&event->hlist_entry);
4555 static void perf_swevent_start(struct perf_event *event, int flags)
4557 event->hw.state = 0;
4560 static void perf_swevent_stop(struct perf_event *event, int flags)
4562 event->hw.state = PERF_HES_STOPPED;
4565 /* Deref the hlist from the update side */
4566 static inline struct swevent_hlist *
4567 swevent_hlist_deref(struct swevent_htable *swhash)
4569 return rcu_dereference_protected(swhash->swevent_hlist,
4570 lockdep_is_held(&swhash->hlist_mutex));
4573 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4575 struct swevent_hlist *hlist;
4577 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4581 static void swevent_hlist_release(struct swevent_htable *swhash)
4583 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4588 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4589 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4592 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4594 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4596 mutex_lock(&swhash->hlist_mutex);
4598 if (!--swhash->hlist_refcount)
4599 swevent_hlist_release(swhash);
4601 mutex_unlock(&swhash->hlist_mutex);
4604 static void swevent_hlist_put(struct perf_event *event)
4608 if (event->cpu != -1) {
4609 swevent_hlist_put_cpu(event, event->cpu);
4613 for_each_possible_cpu(cpu)
4614 swevent_hlist_put_cpu(event, cpu);
4617 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4619 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4622 mutex_lock(&swhash->hlist_mutex);
4624 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4625 struct swevent_hlist *hlist;
4627 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4632 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4634 swhash->hlist_refcount++;
4636 mutex_unlock(&swhash->hlist_mutex);
4641 static int swevent_hlist_get(struct perf_event *event)
4644 int cpu, failed_cpu;
4646 if (event->cpu != -1)
4647 return swevent_hlist_get_cpu(event, event->cpu);
4650 for_each_possible_cpu(cpu) {
4651 err = swevent_hlist_get_cpu(event, cpu);
4661 for_each_possible_cpu(cpu) {
4662 if (cpu == failed_cpu)
4664 swevent_hlist_put_cpu(event, cpu);
4671 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4673 static void sw_perf_event_destroy(struct perf_event *event)
4675 u64 event_id = event->attr.config;
4677 WARN_ON(event->parent);
4679 atomic_dec(&perf_swevent_enabled[event_id]);
4680 swevent_hlist_put(event);
4683 static int perf_swevent_init(struct perf_event *event)
4685 int event_id = event->attr.config;
4687 if (event->attr.type != PERF_TYPE_SOFTWARE)
4691 case PERF_COUNT_SW_CPU_CLOCK:
4692 case PERF_COUNT_SW_TASK_CLOCK:
4699 if (event_id > PERF_COUNT_SW_MAX)
4702 if (!event->parent) {
4705 err = swevent_hlist_get(event);
4709 atomic_inc(&perf_swevent_enabled[event_id]);
4710 event->destroy = sw_perf_event_destroy;
4716 static struct pmu perf_swevent = {
4717 .task_ctx_nr = perf_sw_context,
4719 .event_init = perf_swevent_init,
4720 .add = perf_swevent_add,
4721 .del = perf_swevent_del,
4722 .start = perf_swevent_start,
4723 .stop = perf_swevent_stop,
4724 .read = perf_swevent_read,
4727 #ifdef CONFIG_EVENT_TRACING
4729 static int perf_tp_filter_match(struct perf_event *event,
4730 struct perf_sample_data *data)
4732 void *record = data->raw->data;
4734 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4739 static int perf_tp_event_match(struct perf_event *event,
4740 struct perf_sample_data *data,
4741 struct pt_regs *regs)
4744 * All tracepoints are from kernel-space.
4746 if (event->attr.exclude_kernel)
4749 if (!perf_tp_filter_match(event, data))
4755 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4756 struct pt_regs *regs, struct hlist_head *head, int rctx)
4758 struct perf_sample_data data;
4759 struct perf_event *event;
4760 struct hlist_node *node;
4762 struct perf_raw_record raw = {
4767 perf_sample_data_init(&data, addr);
4770 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4771 if (perf_tp_event_match(event, &data, regs))
4772 perf_swevent_event(event, count, 1, &data, regs);
4775 perf_swevent_put_recursion_context(rctx);
4777 EXPORT_SYMBOL_GPL(perf_tp_event);
4779 static void tp_perf_event_destroy(struct perf_event *event)
4781 perf_trace_destroy(event);
4784 static int perf_tp_event_init(struct perf_event *event)
4788 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4792 * Raw tracepoint data is a severe data leak, only allow root to
4795 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4796 perf_paranoid_tracepoint_raw() &&
4797 !capable(CAP_SYS_ADMIN))
4800 err = perf_trace_init(event);
4804 event->destroy = tp_perf_event_destroy;
4809 static struct pmu perf_tracepoint = {
4810 .task_ctx_nr = perf_sw_context,
4812 .event_init = perf_tp_event_init,
4813 .add = perf_trace_add,
4814 .del = perf_trace_del,
4815 .start = perf_swevent_start,
4816 .stop = perf_swevent_stop,
4817 .read = perf_swevent_read,
4820 static inline void perf_tp_register(void)
4822 perf_pmu_register(&perf_tracepoint);
4825 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4830 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4833 filter_str = strndup_user(arg, PAGE_SIZE);
4834 if (IS_ERR(filter_str))
4835 return PTR_ERR(filter_str);
4837 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4843 static void perf_event_free_filter(struct perf_event *event)
4845 ftrace_profile_free_filter(event);
4850 static inline void perf_tp_register(void)
4854 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4859 static void perf_event_free_filter(struct perf_event *event)
4863 #endif /* CONFIG_EVENT_TRACING */
4865 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4866 void perf_bp_event(struct perf_event *bp, void *data)
4868 struct perf_sample_data sample;
4869 struct pt_regs *regs = data;
4871 perf_sample_data_init(&sample, bp->attr.bp_addr);
4873 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4874 perf_swevent_event(bp, 1, 1, &sample, regs);
4879 * hrtimer based swevent callback
4882 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4884 enum hrtimer_restart ret = HRTIMER_RESTART;
4885 struct perf_sample_data data;
4886 struct pt_regs *regs;
4887 struct perf_event *event;
4890 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4891 event->pmu->read(event);
4893 perf_sample_data_init(&data, 0);
4894 data.period = event->hw.last_period;
4895 regs = get_irq_regs();
4897 if (regs && !perf_exclude_event(event, regs)) {
4898 if (!(event->attr.exclude_idle && current->pid == 0))
4899 if (perf_event_overflow(event, 0, &data, regs))
4900 ret = HRTIMER_NORESTART;
4903 period = max_t(u64, 10000, event->hw.sample_period);
4904 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4909 static void perf_swevent_start_hrtimer(struct perf_event *event)
4911 struct hw_perf_event *hwc = &event->hw;
4913 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4914 hwc->hrtimer.function = perf_swevent_hrtimer;
4915 if (hwc->sample_period) {
4916 s64 period = local64_read(&hwc->period_left);
4922 local64_set(&hwc->period_left, 0);
4924 period = max_t(u64, 10000, hwc->sample_period);
4926 __hrtimer_start_range_ns(&hwc->hrtimer,
4927 ns_to_ktime(period), 0,
4928 HRTIMER_MODE_REL_PINNED, 0);
4932 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4934 struct hw_perf_event *hwc = &event->hw;
4936 if (hwc->sample_period) {
4937 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4938 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4940 hrtimer_cancel(&hwc->hrtimer);
4945 * Software event: cpu wall time clock
4948 static void cpu_clock_event_update(struct perf_event *event)
4953 now = local_clock();
4954 prev = local64_xchg(&event->hw.prev_count, now);
4955 local64_add(now - prev, &event->count);
4958 static void cpu_clock_event_start(struct perf_event *event, int flags)
4960 local64_set(&event->hw.prev_count, local_clock());
4961 perf_swevent_start_hrtimer(event);
4964 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4966 perf_swevent_cancel_hrtimer(event);
4967 cpu_clock_event_update(event);
4970 static int cpu_clock_event_add(struct perf_event *event, int flags)
4972 if (flags & PERF_EF_START)
4973 cpu_clock_event_start(event, flags);
4978 static void cpu_clock_event_del(struct perf_event *event, int flags)
4980 cpu_clock_event_stop(event, flags);
4983 static void cpu_clock_event_read(struct perf_event *event)
4985 cpu_clock_event_update(event);
4988 static int cpu_clock_event_init(struct perf_event *event)
4990 if (event->attr.type != PERF_TYPE_SOFTWARE)
4993 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4999 static struct pmu perf_cpu_clock = {
5000 .task_ctx_nr = perf_sw_context,
5002 .event_init = cpu_clock_event_init,
5003 .add = cpu_clock_event_add,
5004 .del = cpu_clock_event_del,
5005 .start = cpu_clock_event_start,
5006 .stop = cpu_clock_event_stop,
5007 .read = cpu_clock_event_read,
5011 * Software event: task time clock
5014 static void task_clock_event_update(struct perf_event *event, u64 now)
5019 prev = local64_xchg(&event->hw.prev_count, now);
5021 local64_add(delta, &event->count);
5024 static void task_clock_event_start(struct perf_event *event, int flags)
5026 local64_set(&event->hw.prev_count, event->ctx->time);
5027 perf_swevent_start_hrtimer(event);
5030 static void task_clock_event_stop(struct perf_event *event, int flags)
5032 perf_swevent_cancel_hrtimer(event);
5033 task_clock_event_update(event, event->ctx->time);
5036 static int task_clock_event_add(struct perf_event *event, int flags)
5038 if (flags & PERF_EF_START)
5039 task_clock_event_start(event, flags);
5044 static void task_clock_event_del(struct perf_event *event, int flags)
5046 task_clock_event_stop(event, PERF_EF_UPDATE);
5049 static void task_clock_event_read(struct perf_event *event)
5054 update_context_time(event->ctx);
5055 time = event->ctx->time;
5057 u64 now = perf_clock();
5058 u64 delta = now - event->ctx->timestamp;
5059 time = event->ctx->time + delta;
5062 task_clock_event_update(event, time);
5065 static int task_clock_event_init(struct perf_event *event)
5067 if (event->attr.type != PERF_TYPE_SOFTWARE)
5070 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5076 static struct pmu perf_task_clock = {
5077 .task_ctx_nr = perf_sw_context,
5079 .event_init = task_clock_event_init,
5080 .add = task_clock_event_add,
5081 .del = task_clock_event_del,
5082 .start = task_clock_event_start,
5083 .stop = task_clock_event_stop,
5084 .read = task_clock_event_read,
5087 static void perf_pmu_nop_void(struct pmu *pmu)
5091 static int perf_pmu_nop_int(struct pmu *pmu)
5096 static void perf_pmu_start_txn(struct pmu *pmu)
5098 perf_pmu_disable(pmu);
5101 static int perf_pmu_commit_txn(struct pmu *pmu)
5103 perf_pmu_enable(pmu);
5107 static void perf_pmu_cancel_txn(struct pmu *pmu)
5109 perf_pmu_enable(pmu);
5113 * Ensures all contexts with the same task_ctx_nr have the same
5114 * pmu_cpu_context too.
5116 static void *find_pmu_context(int ctxn)
5123 list_for_each_entry(pmu, &pmus, entry) {
5124 if (pmu->task_ctx_nr == ctxn)
5125 return pmu->pmu_cpu_context;
5131 static void free_pmu_context(void * __percpu cpu_context)
5135 mutex_lock(&pmus_lock);
5137 * Like a real lame refcount.
5139 list_for_each_entry(pmu, &pmus, entry) {
5140 if (pmu->pmu_cpu_context == cpu_context)
5144 free_percpu(cpu_context);
5146 mutex_unlock(&pmus_lock);
5149 int perf_pmu_register(struct pmu *pmu)
5153 mutex_lock(&pmus_lock);
5155 pmu->pmu_disable_count = alloc_percpu(int);
5156 if (!pmu->pmu_disable_count)
5159 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5160 if (pmu->pmu_cpu_context)
5161 goto got_cpu_context;
5163 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5164 if (!pmu->pmu_cpu_context)
5167 for_each_possible_cpu(cpu) {
5168 struct perf_cpu_context *cpuctx;
5170 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5171 __perf_event_init_context(&cpuctx->ctx);
5172 cpuctx->ctx.type = cpu_context;
5173 cpuctx->ctx.pmu = pmu;
5174 cpuctx->jiffies_interval = 1;
5175 INIT_LIST_HEAD(&cpuctx->rotation_list);
5179 if (!pmu->start_txn) {
5180 if (pmu->pmu_enable) {
5182 * If we have pmu_enable/pmu_disable calls, install
5183 * transaction stubs that use that to try and batch
5184 * hardware accesses.
5186 pmu->start_txn = perf_pmu_start_txn;
5187 pmu->commit_txn = perf_pmu_commit_txn;
5188 pmu->cancel_txn = perf_pmu_cancel_txn;
5190 pmu->start_txn = perf_pmu_nop_void;
5191 pmu->commit_txn = perf_pmu_nop_int;
5192 pmu->cancel_txn = perf_pmu_nop_void;
5196 if (!pmu->pmu_enable) {
5197 pmu->pmu_enable = perf_pmu_nop_void;
5198 pmu->pmu_disable = perf_pmu_nop_void;
5201 list_add_rcu(&pmu->entry, &pmus);
5204 mutex_unlock(&pmus_lock);
5209 free_percpu(pmu->pmu_disable_count);
5213 void perf_pmu_unregister(struct pmu *pmu)
5215 mutex_lock(&pmus_lock);
5216 list_del_rcu(&pmu->entry);
5217 mutex_unlock(&pmus_lock);
5220 * We dereference the pmu list under both SRCU and regular RCU, so
5221 * synchronize against both of those.
5223 synchronize_srcu(&pmus_srcu);
5226 free_percpu(pmu->pmu_disable_count);
5227 free_pmu_context(pmu->pmu_cpu_context);
5230 struct pmu *perf_init_event(struct perf_event *event)
5232 struct pmu *pmu = NULL;
5235 idx = srcu_read_lock(&pmus_srcu);
5236 list_for_each_entry_rcu(pmu, &pmus, entry) {
5237 int ret = pmu->event_init(event);
5241 if (ret != -ENOENT) {
5246 pmu = ERR_PTR(-ENOENT);
5248 srcu_read_unlock(&pmus_srcu, idx);
5254 * Allocate and initialize a event structure
5256 static struct perf_event *
5257 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5258 struct perf_event *group_leader,
5259 struct perf_event *parent_event,
5260 perf_overflow_handler_t overflow_handler)
5263 struct perf_event *event;
5264 struct hw_perf_event *hwc;
5267 event = kzalloc(sizeof(*event), GFP_KERNEL);
5269 return ERR_PTR(-ENOMEM);
5272 * Single events are their own group leaders, with an
5273 * empty sibling list:
5276 group_leader = event;
5278 mutex_init(&event->child_mutex);
5279 INIT_LIST_HEAD(&event->child_list);
5281 INIT_LIST_HEAD(&event->group_entry);
5282 INIT_LIST_HEAD(&event->event_entry);
5283 INIT_LIST_HEAD(&event->sibling_list);
5284 init_waitqueue_head(&event->waitq);
5285 init_irq_work(&event->pending, perf_pending_event);
5287 mutex_init(&event->mmap_mutex);
5290 event->attr = *attr;
5291 event->group_leader = group_leader;
5295 event->parent = parent_event;
5297 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5298 event->id = atomic64_inc_return(&perf_event_id);
5300 event->state = PERF_EVENT_STATE_INACTIVE;
5302 if (!overflow_handler && parent_event)
5303 overflow_handler = parent_event->overflow_handler;
5305 event->overflow_handler = overflow_handler;
5308 event->state = PERF_EVENT_STATE_OFF;
5313 hwc->sample_period = attr->sample_period;
5314 if (attr->freq && attr->sample_freq)
5315 hwc->sample_period = 1;
5316 hwc->last_period = hwc->sample_period;
5318 local64_set(&hwc->period_left, hwc->sample_period);
5321 * we currently do not support PERF_FORMAT_GROUP on inherited events
5323 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5326 pmu = perf_init_event(event);
5332 else if (IS_ERR(pmu))
5337 put_pid_ns(event->ns);
5339 return ERR_PTR(err);
5344 if (!event->parent) {
5345 atomic_inc(&nr_events);
5346 if (event->attr.mmap || event->attr.mmap_data)
5347 atomic_inc(&nr_mmap_events);
5348 if (event->attr.comm)
5349 atomic_inc(&nr_comm_events);
5350 if (event->attr.task)
5351 atomic_inc(&nr_task_events);
5352 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5353 err = get_callchain_buffers();
5356 return ERR_PTR(err);
5364 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5365 struct perf_event_attr *attr)
5370 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5374 * zero the full structure, so that a short copy will be nice.
5376 memset(attr, 0, sizeof(*attr));
5378 ret = get_user(size, &uattr->size);
5382 if (size > PAGE_SIZE) /* silly large */
5385 if (!size) /* abi compat */
5386 size = PERF_ATTR_SIZE_VER0;
5388 if (size < PERF_ATTR_SIZE_VER0)
5392 * If we're handed a bigger struct than we know of,
5393 * ensure all the unknown bits are 0 - i.e. new
5394 * user-space does not rely on any kernel feature
5395 * extensions we dont know about yet.
5397 if (size > sizeof(*attr)) {
5398 unsigned char __user *addr;
5399 unsigned char __user *end;
5402 addr = (void __user *)uattr + sizeof(*attr);
5403 end = (void __user *)uattr + size;
5405 for (; addr < end; addr++) {
5406 ret = get_user(val, addr);
5412 size = sizeof(*attr);
5415 ret = copy_from_user(attr, uattr, size);
5420 * If the type exists, the corresponding creation will verify
5423 if (attr->type >= PERF_TYPE_MAX)
5426 if (attr->__reserved_1)
5429 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5432 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5439 put_user(sizeof(*attr), &uattr->size);
5445 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5447 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5453 /* don't allow circular references */
5454 if (event == output_event)
5458 * Don't allow cross-cpu buffers
5460 if (output_event->cpu != event->cpu)
5464 * If its not a per-cpu buffer, it must be the same task.
5466 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5470 mutex_lock(&event->mmap_mutex);
5471 /* Can't redirect output if we've got an active mmap() */
5472 if (atomic_read(&event->mmap_count))
5476 /* get the buffer we want to redirect to */
5477 buffer = perf_buffer_get(output_event);
5482 old_buffer = event->buffer;
5483 rcu_assign_pointer(event->buffer, buffer);
5486 mutex_unlock(&event->mmap_mutex);
5489 perf_buffer_put(old_buffer);
5495 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5497 * @attr_uptr: event_id type attributes for monitoring/sampling
5500 * @group_fd: group leader event fd
5502 SYSCALL_DEFINE5(perf_event_open,
5503 struct perf_event_attr __user *, attr_uptr,
5504 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5506 struct perf_event *group_leader = NULL, *output_event = NULL;
5507 struct perf_event *event, *sibling;
5508 struct perf_event_attr attr;
5509 struct perf_event_context *ctx;
5510 struct file *event_file = NULL;
5511 struct file *group_file = NULL;
5512 struct task_struct *task = NULL;
5516 int fput_needed = 0;
5519 /* for future expandability... */
5520 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5523 err = perf_copy_attr(attr_uptr, &attr);
5527 if (!attr.exclude_kernel) {
5528 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5533 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5537 event_fd = get_unused_fd_flags(O_RDWR);
5541 if (group_fd != -1) {
5542 group_leader = perf_fget_light(group_fd, &fput_needed);
5543 if (IS_ERR(group_leader)) {
5544 err = PTR_ERR(group_leader);
5547 group_file = group_leader->filp;
5548 if (flags & PERF_FLAG_FD_OUTPUT)
5549 output_event = group_leader;
5550 if (flags & PERF_FLAG_FD_NO_GROUP)
5551 group_leader = NULL;
5554 event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5555 if (IS_ERR(event)) {
5556 err = PTR_ERR(event);
5561 * Special case software events and allow them to be part of
5562 * any hardware group.
5567 (is_software_event(event) != is_software_event(group_leader))) {
5568 if (is_software_event(event)) {
5570 * If event and group_leader are not both a software
5571 * event, and event is, then group leader is not.
5573 * Allow the addition of software events to !software
5574 * groups, this is safe because software events never
5577 pmu = group_leader->pmu;
5578 } else if (is_software_event(group_leader) &&
5579 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5581 * In case the group is a pure software group, and we
5582 * try to add a hardware event, move the whole group to
5583 * the hardware context.
5590 task = find_lively_task_by_vpid(pid);
5592 err = PTR_ERR(task);
5598 * Get the target context (task or percpu):
5600 ctx = find_get_context(pmu, task, cpu);
5607 * Look up the group leader (we will attach this event to it):
5613 * Do not allow a recursive hierarchy (this new sibling
5614 * becoming part of another group-sibling):
5616 if (group_leader->group_leader != group_leader)
5619 * Do not allow to attach to a group in a different
5620 * task or CPU context:
5623 if (group_leader->ctx->type != ctx->type)
5626 if (group_leader->ctx != ctx)
5631 * Only a group leader can be exclusive or pinned
5633 if (attr.exclusive || attr.pinned)
5638 err = perf_event_set_output(event, output_event);
5643 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5644 if (IS_ERR(event_file)) {
5645 err = PTR_ERR(event_file);
5650 struct perf_event_context *gctx = group_leader->ctx;
5652 mutex_lock(&gctx->mutex);
5653 perf_event_remove_from_context(group_leader);
5654 list_for_each_entry(sibling, &group_leader->sibling_list,
5656 perf_event_remove_from_context(sibling);
5659 mutex_unlock(&gctx->mutex);
5663 event->filp = event_file;
5664 WARN_ON_ONCE(ctx->parent_ctx);
5665 mutex_lock(&ctx->mutex);
5668 perf_install_in_context(ctx, group_leader, cpu);
5670 list_for_each_entry(sibling, &group_leader->sibling_list,
5672 perf_install_in_context(ctx, sibling, cpu);
5677 perf_install_in_context(ctx, event, cpu);
5679 mutex_unlock(&ctx->mutex);
5681 event->owner = current;
5682 get_task_struct(current);
5683 mutex_lock(¤t->perf_event_mutex);
5684 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
5685 mutex_unlock(¤t->perf_event_mutex);
5688 * Drop the reference on the group_event after placing the
5689 * new event on the sibling_list. This ensures destruction
5690 * of the group leader will find the pointer to itself in
5691 * perf_group_detach().
5693 fput_light(group_file, fput_needed);
5694 fd_install(event_fd, event_file);
5701 put_task_struct(task);
5703 fput_light(group_file, fput_needed);
5706 put_unused_fd(event_fd);
5711 * perf_event_create_kernel_counter
5713 * @attr: attributes of the counter to create
5714 * @cpu: cpu in which the counter is bound
5715 * @task: task to profile (NULL for percpu)
5718 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5719 struct task_struct *task,
5720 perf_overflow_handler_t overflow_handler)
5722 struct perf_event_context *ctx;
5723 struct perf_event *event;
5727 * Get the target context (task or percpu):
5730 event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5731 if (IS_ERR(event)) {
5732 err = PTR_ERR(event);
5736 ctx = find_get_context(event->pmu, task, cpu);
5743 WARN_ON_ONCE(ctx->parent_ctx);
5744 mutex_lock(&ctx->mutex);
5745 perf_install_in_context(ctx, event, cpu);
5747 mutex_unlock(&ctx->mutex);
5749 event->owner = current;
5750 get_task_struct(current);
5751 mutex_lock(¤t->perf_event_mutex);
5752 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
5753 mutex_unlock(¤t->perf_event_mutex);
5760 return ERR_PTR(err);
5762 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5764 static void sync_child_event(struct perf_event *child_event,
5765 struct task_struct *child)
5767 struct perf_event *parent_event = child_event->parent;
5770 if (child_event->attr.inherit_stat)
5771 perf_event_read_event(child_event, child);
5773 child_val = perf_event_count(child_event);
5776 * Add back the child's count to the parent's count:
5778 atomic64_add(child_val, &parent_event->child_count);
5779 atomic64_add(child_event->total_time_enabled,
5780 &parent_event->child_total_time_enabled);
5781 atomic64_add(child_event->total_time_running,
5782 &parent_event->child_total_time_running);
5785 * Remove this event from the parent's list
5787 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5788 mutex_lock(&parent_event->child_mutex);
5789 list_del_init(&child_event->child_list);
5790 mutex_unlock(&parent_event->child_mutex);
5793 * Release the parent event, if this was the last
5796 fput(parent_event->filp);
5800 __perf_event_exit_task(struct perf_event *child_event,
5801 struct perf_event_context *child_ctx,
5802 struct task_struct *child)
5804 struct perf_event *parent_event;
5806 perf_event_remove_from_context(child_event);
5808 parent_event = child_event->parent;
5810 * It can happen that parent exits first, and has events
5811 * that are still around due to the child reference. These
5812 * events need to be zapped - but otherwise linger.
5815 sync_child_event(child_event, child);
5816 free_event(child_event);
5820 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5822 struct perf_event *child_event, *tmp;
5823 struct perf_event_context *child_ctx;
5824 unsigned long flags;
5826 if (likely(!child->perf_event_ctxp[ctxn])) {
5827 perf_event_task(child, NULL, 0);
5831 local_irq_save(flags);
5833 * We can't reschedule here because interrupts are disabled,
5834 * and either child is current or it is a task that can't be
5835 * scheduled, so we are now safe from rescheduling changing
5838 child_ctx = child->perf_event_ctxp[ctxn];
5839 __perf_event_task_sched_out(child_ctx);
5842 * Take the context lock here so that if find_get_context is
5843 * reading child->perf_event_ctxp, we wait until it has
5844 * incremented the context's refcount before we do put_ctx below.
5846 raw_spin_lock(&child_ctx->lock);
5847 child->perf_event_ctxp[ctxn] = NULL;
5849 * If this context is a clone; unclone it so it can't get
5850 * swapped to another process while we're removing all
5851 * the events from it.
5853 unclone_ctx(child_ctx);
5854 update_context_time(child_ctx);
5855 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5858 * Report the task dead after unscheduling the events so that we
5859 * won't get any samples after PERF_RECORD_EXIT. We can however still
5860 * get a few PERF_RECORD_READ events.
5862 perf_event_task(child, child_ctx, 0);
5865 * We can recurse on the same lock type through:
5867 * __perf_event_exit_task()
5868 * sync_child_event()
5869 * fput(parent_event->filp)
5871 * mutex_lock(&ctx->mutex)
5873 * But since its the parent context it won't be the same instance.
5875 mutex_lock(&child_ctx->mutex);
5878 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5880 __perf_event_exit_task(child_event, child_ctx, child);
5882 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5884 __perf_event_exit_task(child_event, child_ctx, child);
5887 * If the last event was a group event, it will have appended all
5888 * its siblings to the list, but we obtained 'tmp' before that which
5889 * will still point to the list head terminating the iteration.
5891 if (!list_empty(&child_ctx->pinned_groups) ||
5892 !list_empty(&child_ctx->flexible_groups))
5895 mutex_unlock(&child_ctx->mutex);
5901 * When a child task exits, feed back event values to parent events.
5903 void perf_event_exit_task(struct task_struct *child)
5907 for_each_task_context_nr(ctxn)
5908 perf_event_exit_task_context(child, ctxn);
5911 static void perf_free_event(struct perf_event *event,
5912 struct perf_event_context *ctx)
5914 struct perf_event *parent = event->parent;
5916 if (WARN_ON_ONCE(!parent))
5919 mutex_lock(&parent->child_mutex);
5920 list_del_init(&event->child_list);
5921 mutex_unlock(&parent->child_mutex);
5925 perf_group_detach(event);
5926 list_del_event(event, ctx);
5931 * free an unexposed, unused context as created by inheritance by
5932 * perf_event_init_task below, used by fork() in case of fail.
5934 void perf_event_free_task(struct task_struct *task)
5936 struct perf_event_context *ctx;
5937 struct perf_event *event, *tmp;
5940 for_each_task_context_nr(ctxn) {
5941 ctx = task->perf_event_ctxp[ctxn];
5945 mutex_lock(&ctx->mutex);
5947 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5949 perf_free_event(event, ctx);
5951 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5953 perf_free_event(event, ctx);
5955 if (!list_empty(&ctx->pinned_groups) ||
5956 !list_empty(&ctx->flexible_groups))
5959 mutex_unlock(&ctx->mutex);
5965 void perf_event_delayed_put(struct task_struct *task)
5969 for_each_task_context_nr(ctxn)
5970 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5974 * inherit a event from parent task to child task:
5976 static struct perf_event *
5977 inherit_event(struct perf_event *parent_event,
5978 struct task_struct *parent,
5979 struct perf_event_context *parent_ctx,
5980 struct task_struct *child,
5981 struct perf_event *group_leader,
5982 struct perf_event_context *child_ctx)
5984 struct perf_event *child_event;
5985 unsigned long flags;
5988 * Instead of creating recursive hierarchies of events,
5989 * we link inherited events back to the original parent,
5990 * which has a filp for sure, which we use as the reference
5993 if (parent_event->parent)
5994 parent_event = parent_event->parent;
5996 child_event = perf_event_alloc(&parent_event->attr,
5998 group_leader, parent_event,
6000 if (IS_ERR(child_event))
6005 * Make the child state follow the state of the parent event,
6006 * not its attr.disabled bit. We hold the parent's mutex,
6007 * so we won't race with perf_event_{en, dis}able_family.
6009 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6010 child_event->state = PERF_EVENT_STATE_INACTIVE;
6012 child_event->state = PERF_EVENT_STATE_OFF;
6014 if (parent_event->attr.freq) {
6015 u64 sample_period = parent_event->hw.sample_period;
6016 struct hw_perf_event *hwc = &child_event->hw;
6018 hwc->sample_period = sample_period;
6019 hwc->last_period = sample_period;
6021 local64_set(&hwc->period_left, sample_period);
6024 child_event->ctx = child_ctx;
6025 child_event->overflow_handler = parent_event->overflow_handler;
6028 * Link it up in the child's context:
6030 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6031 add_event_to_ctx(child_event, child_ctx);
6032 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6035 * Get a reference to the parent filp - we will fput it
6036 * when the child event exits. This is safe to do because
6037 * we are in the parent and we know that the filp still
6038 * exists and has a nonzero count:
6040 atomic_long_inc(&parent_event->filp->f_count);
6043 * Link this into the parent event's child list
6045 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6046 mutex_lock(&parent_event->child_mutex);
6047 list_add_tail(&child_event->child_list, &parent_event->child_list);
6048 mutex_unlock(&parent_event->child_mutex);
6053 static int inherit_group(struct perf_event *parent_event,
6054 struct task_struct *parent,
6055 struct perf_event_context *parent_ctx,
6056 struct task_struct *child,
6057 struct perf_event_context *child_ctx)
6059 struct perf_event *leader;
6060 struct perf_event *sub;
6061 struct perf_event *child_ctr;
6063 leader = inherit_event(parent_event, parent, parent_ctx,
6064 child, NULL, child_ctx);
6066 return PTR_ERR(leader);
6067 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6068 child_ctr = inherit_event(sub, parent, parent_ctx,
6069 child, leader, child_ctx);
6070 if (IS_ERR(child_ctr))
6071 return PTR_ERR(child_ctr);
6077 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6078 struct perf_event_context *parent_ctx,
6079 struct task_struct *child, int ctxn,
6083 struct perf_event_context *child_ctx;
6085 if (!event->attr.inherit) {
6090 child_ctx = child->perf_event_ctxp[ctxn];
6093 * This is executed from the parent task context, so
6094 * inherit events that have been marked for cloning.
6095 * First allocate and initialize a context for the
6099 child_ctx = alloc_perf_context(event->pmu, child);
6103 child->perf_event_ctxp[ctxn] = child_ctx;
6106 ret = inherit_group(event, parent, parent_ctx,
6116 * Initialize the perf_event context in task_struct
6118 int perf_event_init_context(struct task_struct *child, int ctxn)
6120 struct perf_event_context *child_ctx, *parent_ctx;
6121 struct perf_event_context *cloned_ctx;
6122 struct perf_event *event;
6123 struct task_struct *parent = current;
6124 int inherited_all = 1;
6127 child->perf_event_ctxp[ctxn] = NULL;
6129 mutex_init(&child->perf_event_mutex);
6130 INIT_LIST_HEAD(&child->perf_event_list);
6132 if (likely(!parent->perf_event_ctxp[ctxn]))
6136 * If the parent's context is a clone, pin it so it won't get
6139 parent_ctx = perf_pin_task_context(parent, ctxn);
6142 * No need to check if parent_ctx != NULL here; since we saw
6143 * it non-NULL earlier, the only reason for it to become NULL
6144 * is if we exit, and since we're currently in the middle of
6145 * a fork we can't be exiting at the same time.
6149 * Lock the parent list. No need to lock the child - not PID
6150 * hashed yet and not running, so nobody can access it.
6152 mutex_lock(&parent_ctx->mutex);
6155 * We dont have to disable NMIs - we are only looking at
6156 * the list, not manipulating it:
6158 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6159 ret = inherit_task_group(event, parent, parent_ctx,
6160 child, ctxn, &inherited_all);
6165 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6166 ret = inherit_task_group(event, parent, parent_ctx,
6167 child, ctxn, &inherited_all);
6172 child_ctx = child->perf_event_ctxp[ctxn];
6174 if (child_ctx && inherited_all) {
6176 * Mark the child context as a clone of the parent
6177 * context, or of whatever the parent is a clone of.
6178 * Note that if the parent is a clone, it could get
6179 * uncloned at any point, but that doesn't matter
6180 * because the list of events and the generation
6181 * count can't have changed since we took the mutex.
6183 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6185 child_ctx->parent_ctx = cloned_ctx;
6186 child_ctx->parent_gen = parent_ctx->parent_gen;
6188 child_ctx->parent_ctx = parent_ctx;
6189 child_ctx->parent_gen = parent_ctx->generation;
6191 get_ctx(child_ctx->parent_ctx);
6194 mutex_unlock(&parent_ctx->mutex);
6196 perf_unpin_context(parent_ctx);
6202 * Initialize the perf_event context in task_struct
6204 int perf_event_init_task(struct task_struct *child)
6208 for_each_task_context_nr(ctxn) {
6209 ret = perf_event_init_context(child, ctxn);
6217 static void __init perf_event_init_all_cpus(void)
6219 struct swevent_htable *swhash;
6222 for_each_possible_cpu(cpu) {
6223 swhash = &per_cpu(swevent_htable, cpu);
6224 mutex_init(&swhash->hlist_mutex);
6225 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6229 static void __cpuinit perf_event_init_cpu(int cpu)
6231 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6233 mutex_lock(&swhash->hlist_mutex);
6234 if (swhash->hlist_refcount > 0) {
6235 struct swevent_hlist *hlist;
6237 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6239 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6241 mutex_unlock(&swhash->hlist_mutex);
6244 #ifdef CONFIG_HOTPLUG_CPU
6245 static void perf_pmu_rotate_stop(struct pmu *pmu)
6247 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6249 WARN_ON(!irqs_disabled());
6251 list_del_init(&cpuctx->rotation_list);
6254 static void __perf_event_exit_context(void *__info)
6256 struct perf_event_context *ctx = __info;
6257 struct perf_event *event, *tmp;
6259 perf_pmu_rotate_stop(ctx->pmu);
6261 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6262 __perf_event_remove_from_context(event);
6263 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6264 __perf_event_remove_from_context(event);
6267 static void perf_event_exit_cpu_context(int cpu)
6269 struct perf_event_context *ctx;
6273 idx = srcu_read_lock(&pmus_srcu);
6274 list_for_each_entry_rcu(pmu, &pmus, entry) {
6275 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6277 mutex_lock(&ctx->mutex);
6278 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6279 mutex_unlock(&ctx->mutex);
6281 srcu_read_unlock(&pmus_srcu, idx);
6284 static void perf_event_exit_cpu(int cpu)
6286 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6288 mutex_lock(&swhash->hlist_mutex);
6289 swevent_hlist_release(swhash);
6290 mutex_unlock(&swhash->hlist_mutex);
6292 perf_event_exit_cpu_context(cpu);
6295 static inline void perf_event_exit_cpu(int cpu) { }
6298 static int __cpuinit
6299 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6301 unsigned int cpu = (long)hcpu;
6303 switch (action & ~CPU_TASKS_FROZEN) {
6305 case CPU_UP_PREPARE:
6306 case CPU_DOWN_FAILED:
6307 perf_event_init_cpu(cpu);
6310 case CPU_UP_CANCELED:
6311 case CPU_DOWN_PREPARE:
6312 perf_event_exit_cpu(cpu);
6322 void __init perf_event_init(void)
6324 perf_event_init_all_cpus();
6325 init_srcu_struct(&pmus_srcu);
6326 perf_pmu_register(&perf_swevent);
6327 perf_pmu_register(&perf_cpu_clock);
6328 perf_pmu_register(&perf_task_clock);
6330 perf_cpu_notifier(perf_cpu_notify);