perf_counter: Simplify context cleanup
[profile/ivi/kernel-adaptation-intel-automotive.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51  * Lock for (sysadmin-configurable) counter reservations:
52  */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56  * Architecture provided APIs - weak aliases:
57  */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60         return NULL;
61 }
62
63 void __weak hw_perf_disable(void)               { barrier(); }
64 void __weak hw_perf_enable(void)                { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68                struct perf_cpu_context *cpuctx,
69                struct perf_counter_context *ctx, int cpu)
70 {
71         return 0;
72 }
73
74 void __weak perf_counter_print_debug(void)      { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80         __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85         return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90         __perf_disable();
91         hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96         if (__perf_enable())
97                 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102         atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107         if (atomic_dec_and_test(&ctx->refcount)) {
108                 if (ctx->parent_ctx)
109                         put_ctx(ctx->parent_ctx);
110                 kfree(ctx);
111         }
112 }
113
114 /*
115  * Add a counter from the lists for its context.
116  * Must be called with ctx->mutex and ctx->lock held.
117  */
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
120 {
121         struct perf_counter *group_leader = counter->group_leader;
122
123         /*
124          * Depending on whether it is a standalone or sibling counter,
125          * add it straight to the context's counter list, or to the group
126          * leader's sibling list:
127          */
128         if (group_leader == counter)
129                 list_add_tail(&counter->list_entry, &ctx->counter_list);
130         else {
131                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132                 group_leader->nr_siblings++;
133         }
134
135         list_add_rcu(&counter->event_entry, &ctx->event_list);
136         ctx->nr_counters++;
137         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
138                 ctx->nr_enabled++;
139 }
140
141 /*
142  * Remove a counter from the lists for its context.
143  * Must be called with ctx->mutex and ctx->lock held.
144  */
145 static void
146 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
147 {
148         struct perf_counter *sibling, *tmp;
149
150         if (list_empty(&counter->list_entry))
151                 return;
152         ctx->nr_counters--;
153         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
154                 ctx->nr_enabled--;
155
156         list_del_init(&counter->list_entry);
157         list_del_rcu(&counter->event_entry);
158
159         if (counter->group_leader != counter)
160                 counter->group_leader->nr_siblings--;
161
162         /*
163          * If this was a group counter with sibling counters then
164          * upgrade the siblings to singleton counters by adding them
165          * to the context list directly:
166          */
167         list_for_each_entry_safe(sibling, tmp,
168                                  &counter->sibling_list, list_entry) {
169
170                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
171                 sibling->group_leader = sibling;
172         }
173 }
174
175 static void
176 counter_sched_out(struct perf_counter *counter,
177                   struct perf_cpu_context *cpuctx,
178                   struct perf_counter_context *ctx)
179 {
180         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
181                 return;
182
183         counter->state = PERF_COUNTER_STATE_INACTIVE;
184         counter->tstamp_stopped = ctx->time;
185         counter->pmu->disable(counter);
186         counter->oncpu = -1;
187
188         if (!is_software_counter(counter))
189                 cpuctx->active_oncpu--;
190         ctx->nr_active--;
191         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
192                 cpuctx->exclusive = 0;
193 }
194
195 static void
196 group_sched_out(struct perf_counter *group_counter,
197                 struct perf_cpu_context *cpuctx,
198                 struct perf_counter_context *ctx)
199 {
200         struct perf_counter *counter;
201
202         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
203                 return;
204
205         counter_sched_out(group_counter, cpuctx, ctx);
206
207         /*
208          * Schedule out siblings (if any):
209          */
210         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
211                 counter_sched_out(counter, cpuctx, ctx);
212
213         if (group_counter->hw_event.exclusive)
214                 cpuctx->exclusive = 0;
215 }
216
217 /*
218  * Mark this context as not being a clone of another.
219  * Called when counters are added to or removed from this context.
220  * We also increment our generation number so that anything that
221  * was cloned from this context before this will not match anything
222  * cloned from this context after this.
223  */
224 static void unclone_ctx(struct perf_counter_context *ctx)
225 {
226         ++ctx->generation;
227         if (!ctx->parent_ctx)
228                 return;
229         put_ctx(ctx->parent_ctx);
230         ctx->parent_ctx = NULL;
231 }
232
233 /*
234  * Cross CPU call to remove a performance counter
235  *
236  * We disable the counter on the hardware level first. After that we
237  * remove it from the context list.
238  */
239 static void __perf_counter_remove_from_context(void *info)
240 {
241         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
242         struct perf_counter *counter = info;
243         struct perf_counter_context *ctx = counter->ctx;
244         unsigned long flags;
245
246         /*
247          * If this is a task context, we need to check whether it is
248          * the current task context of this cpu. If not it has been
249          * scheduled out before the smp call arrived.
250          */
251         if (ctx->task && cpuctx->task_ctx != ctx)
252                 return;
253
254         spin_lock_irqsave(&ctx->lock, flags);
255         /*
256          * Protect the list operation against NMI by disabling the
257          * counters on a global level.
258          */
259         perf_disable();
260
261         counter_sched_out(counter, cpuctx, ctx);
262
263         list_del_counter(counter, ctx);
264
265         if (!ctx->task) {
266                 /*
267                  * Allow more per task counters with respect to the
268                  * reservation:
269                  */
270                 cpuctx->max_pertask =
271                         min(perf_max_counters - ctx->nr_counters,
272                             perf_max_counters - perf_reserved_percpu);
273         }
274
275         perf_enable();
276         spin_unlock_irqrestore(&ctx->lock, flags);
277 }
278
279
280 /*
281  * Remove the counter from a task's (or a CPU's) list of counters.
282  *
283  * Must be called with ctx->mutex held.
284  *
285  * CPU counters are removed with a smp call. For task counters we only
286  * call when the task is on a CPU.
287  */
288 static void perf_counter_remove_from_context(struct perf_counter *counter)
289 {
290         struct perf_counter_context *ctx = counter->ctx;
291         struct task_struct *task = ctx->task;
292
293         unclone_ctx(ctx);
294         if (!task) {
295                 /*
296                  * Per cpu counters are removed via an smp call and
297                  * the removal is always sucessful.
298                  */
299                 smp_call_function_single(counter->cpu,
300                                          __perf_counter_remove_from_context,
301                                          counter, 1);
302                 return;
303         }
304
305 retry:
306         task_oncpu_function_call(task, __perf_counter_remove_from_context,
307                                  counter);
308
309         spin_lock_irq(&ctx->lock);
310         /*
311          * If the context is active we need to retry the smp call.
312          */
313         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
314                 spin_unlock_irq(&ctx->lock);
315                 goto retry;
316         }
317
318         /*
319          * The lock prevents that this context is scheduled in so we
320          * can remove the counter safely, if the call above did not
321          * succeed.
322          */
323         if (!list_empty(&counter->list_entry)) {
324                 list_del_counter(counter, ctx);
325         }
326         spin_unlock_irq(&ctx->lock);
327 }
328
329 static inline u64 perf_clock(void)
330 {
331         return cpu_clock(smp_processor_id());
332 }
333
334 /*
335  * Update the record of the current time in a context.
336  */
337 static void update_context_time(struct perf_counter_context *ctx)
338 {
339         u64 now = perf_clock();
340
341         ctx->time += now - ctx->timestamp;
342         ctx->timestamp = now;
343 }
344
345 /*
346  * Update the total_time_enabled and total_time_running fields for a counter.
347  */
348 static void update_counter_times(struct perf_counter *counter)
349 {
350         struct perf_counter_context *ctx = counter->ctx;
351         u64 run_end;
352
353         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
354                 return;
355
356         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
357
358         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
359                 run_end = counter->tstamp_stopped;
360         else
361                 run_end = ctx->time;
362
363         counter->total_time_running = run_end - counter->tstamp_running;
364 }
365
366 /*
367  * Update total_time_enabled and total_time_running for all counters in a group.
368  */
369 static void update_group_times(struct perf_counter *leader)
370 {
371         struct perf_counter *counter;
372
373         update_counter_times(leader);
374         list_for_each_entry(counter, &leader->sibling_list, list_entry)
375                 update_counter_times(counter);
376 }
377
378 /*
379  * Cross CPU call to disable a performance counter
380  */
381 static void __perf_counter_disable(void *info)
382 {
383         struct perf_counter *counter = info;
384         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
385         struct perf_counter_context *ctx = counter->ctx;
386         unsigned long flags;
387
388         /*
389          * If this is a per-task counter, need to check whether this
390          * counter's task is the current task on this cpu.
391          */
392         if (ctx->task && cpuctx->task_ctx != ctx)
393                 return;
394
395         spin_lock_irqsave(&ctx->lock, flags);
396
397         /*
398          * If the counter is on, turn it off.
399          * If it is in error state, leave it in error state.
400          */
401         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
402                 update_context_time(ctx);
403                 update_counter_times(counter);
404                 if (counter == counter->group_leader)
405                         group_sched_out(counter, cpuctx, ctx);
406                 else
407                         counter_sched_out(counter, cpuctx, ctx);
408                 counter->state = PERF_COUNTER_STATE_OFF;
409                 ctx->nr_enabled--;
410         }
411
412         spin_unlock_irqrestore(&ctx->lock, flags);
413 }
414
415 /*
416  * Disable a counter.
417  */
418 static void perf_counter_disable(struct perf_counter *counter)
419 {
420         struct perf_counter_context *ctx = counter->ctx;
421         struct task_struct *task = ctx->task;
422
423         if (!task) {
424                 /*
425                  * Disable the counter on the cpu that it's on
426                  */
427                 smp_call_function_single(counter->cpu, __perf_counter_disable,
428                                          counter, 1);
429                 return;
430         }
431
432  retry:
433         task_oncpu_function_call(task, __perf_counter_disable, counter);
434
435         spin_lock_irq(&ctx->lock);
436         /*
437          * If the counter is still active, we need to retry the cross-call.
438          */
439         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
440                 spin_unlock_irq(&ctx->lock);
441                 goto retry;
442         }
443
444         /*
445          * Since we have the lock this context can't be scheduled
446          * in, so we can change the state safely.
447          */
448         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
449                 update_counter_times(counter);
450                 counter->state = PERF_COUNTER_STATE_OFF;
451                 ctx->nr_enabled--;
452         }
453
454         spin_unlock_irq(&ctx->lock);
455 }
456
457 static int
458 counter_sched_in(struct perf_counter *counter,
459                  struct perf_cpu_context *cpuctx,
460                  struct perf_counter_context *ctx,
461                  int cpu)
462 {
463         if (counter->state <= PERF_COUNTER_STATE_OFF)
464                 return 0;
465
466         counter->state = PERF_COUNTER_STATE_ACTIVE;
467         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
468         /*
469          * The new state must be visible before we turn it on in the hardware:
470          */
471         smp_wmb();
472
473         if (counter->pmu->enable(counter)) {
474                 counter->state = PERF_COUNTER_STATE_INACTIVE;
475                 counter->oncpu = -1;
476                 return -EAGAIN;
477         }
478
479         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
480
481         if (!is_software_counter(counter))
482                 cpuctx->active_oncpu++;
483         ctx->nr_active++;
484
485         if (counter->hw_event.exclusive)
486                 cpuctx->exclusive = 1;
487
488         return 0;
489 }
490
491 static int
492 group_sched_in(struct perf_counter *group_counter,
493                struct perf_cpu_context *cpuctx,
494                struct perf_counter_context *ctx,
495                int cpu)
496 {
497         struct perf_counter *counter, *partial_group;
498         int ret;
499
500         if (group_counter->state == PERF_COUNTER_STATE_OFF)
501                 return 0;
502
503         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
504         if (ret)
505                 return ret < 0 ? ret : 0;
506
507         group_counter->prev_state = group_counter->state;
508         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
509                 return -EAGAIN;
510
511         /*
512          * Schedule in siblings as one group (if any):
513          */
514         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
515                 counter->prev_state = counter->state;
516                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
517                         partial_group = counter;
518                         goto group_error;
519                 }
520         }
521
522         return 0;
523
524 group_error:
525         /*
526          * Groups can be scheduled in as one unit only, so undo any
527          * partial group before returning:
528          */
529         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
530                 if (counter == partial_group)
531                         break;
532                 counter_sched_out(counter, cpuctx, ctx);
533         }
534         counter_sched_out(group_counter, cpuctx, ctx);
535
536         return -EAGAIN;
537 }
538
539 /*
540  * Return 1 for a group consisting entirely of software counters,
541  * 0 if the group contains any hardware counters.
542  */
543 static int is_software_only_group(struct perf_counter *leader)
544 {
545         struct perf_counter *counter;
546
547         if (!is_software_counter(leader))
548                 return 0;
549
550         list_for_each_entry(counter, &leader->sibling_list, list_entry)
551                 if (!is_software_counter(counter))
552                         return 0;
553
554         return 1;
555 }
556
557 /*
558  * Work out whether we can put this counter group on the CPU now.
559  */
560 static int group_can_go_on(struct perf_counter *counter,
561                            struct perf_cpu_context *cpuctx,
562                            int can_add_hw)
563 {
564         /*
565          * Groups consisting entirely of software counters can always go on.
566          */
567         if (is_software_only_group(counter))
568                 return 1;
569         /*
570          * If an exclusive group is already on, no other hardware
571          * counters can go on.
572          */
573         if (cpuctx->exclusive)
574                 return 0;
575         /*
576          * If this group is exclusive and there are already
577          * counters on the CPU, it can't go on.
578          */
579         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
580                 return 0;
581         /*
582          * Otherwise, try to add it if all previous groups were able
583          * to go on.
584          */
585         return can_add_hw;
586 }
587
588 static void add_counter_to_ctx(struct perf_counter *counter,
589                                struct perf_counter_context *ctx)
590 {
591         list_add_counter(counter, ctx);
592         counter->prev_state = PERF_COUNTER_STATE_OFF;
593         counter->tstamp_enabled = ctx->time;
594         counter->tstamp_running = ctx->time;
595         counter->tstamp_stopped = ctx->time;
596 }
597
598 /*
599  * Cross CPU call to install and enable a performance counter
600  *
601  * Must be called with ctx->mutex held
602  */
603 static void __perf_install_in_context(void *info)
604 {
605         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
606         struct perf_counter *counter = info;
607         struct perf_counter_context *ctx = counter->ctx;
608         struct perf_counter *leader = counter->group_leader;
609         int cpu = smp_processor_id();
610         unsigned long flags;
611         int err;
612
613         /*
614          * If this is a task context, we need to check whether it is
615          * the current task context of this cpu. If not it has been
616          * scheduled out before the smp call arrived.
617          * Or possibly this is the right context but it isn't
618          * on this cpu because it had no counters.
619          */
620         if (ctx->task && cpuctx->task_ctx != ctx) {
621                 if (cpuctx->task_ctx || ctx->task != current)
622                         return;
623                 cpuctx->task_ctx = ctx;
624         }
625
626         spin_lock_irqsave(&ctx->lock, flags);
627         ctx->is_active = 1;
628         update_context_time(ctx);
629
630         /*
631          * Protect the list operation against NMI by disabling the
632          * counters on a global level. NOP for non NMI based counters.
633          */
634         perf_disable();
635
636         add_counter_to_ctx(counter, ctx);
637
638         /*
639          * Don't put the counter on if it is disabled or if
640          * it is in a group and the group isn't on.
641          */
642         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
643             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
644                 goto unlock;
645
646         /*
647          * An exclusive counter can't go on if there are already active
648          * hardware counters, and no hardware counter can go on if there
649          * is already an exclusive counter on.
650          */
651         if (!group_can_go_on(counter, cpuctx, 1))
652                 err = -EEXIST;
653         else
654                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
655
656         if (err) {
657                 /*
658                  * This counter couldn't go on.  If it is in a group
659                  * then we have to pull the whole group off.
660                  * If the counter group is pinned then put it in error state.
661                  */
662                 if (leader != counter)
663                         group_sched_out(leader, cpuctx, ctx);
664                 if (leader->hw_event.pinned) {
665                         update_group_times(leader);
666                         leader->state = PERF_COUNTER_STATE_ERROR;
667                 }
668         }
669
670         if (!err && !ctx->task && cpuctx->max_pertask)
671                 cpuctx->max_pertask--;
672
673  unlock:
674         perf_enable();
675
676         spin_unlock_irqrestore(&ctx->lock, flags);
677 }
678
679 /*
680  * Attach a performance counter to a context
681  *
682  * First we add the counter to the list with the hardware enable bit
683  * in counter->hw_config cleared.
684  *
685  * If the counter is attached to a task which is on a CPU we use a smp
686  * call to enable it in the task context. The task might have been
687  * scheduled away, but we check this in the smp call again.
688  *
689  * Must be called with ctx->mutex held.
690  */
691 static void
692 perf_install_in_context(struct perf_counter_context *ctx,
693                         struct perf_counter *counter,
694                         int cpu)
695 {
696         struct task_struct *task = ctx->task;
697
698         if (!task) {
699                 /*
700                  * Per cpu counters are installed via an smp call and
701                  * the install is always sucessful.
702                  */
703                 smp_call_function_single(cpu, __perf_install_in_context,
704                                          counter, 1);
705                 return;
706         }
707
708 retry:
709         task_oncpu_function_call(task, __perf_install_in_context,
710                                  counter);
711
712         spin_lock_irq(&ctx->lock);
713         /*
714          * we need to retry the smp call.
715          */
716         if (ctx->is_active && list_empty(&counter->list_entry)) {
717                 spin_unlock_irq(&ctx->lock);
718                 goto retry;
719         }
720
721         /*
722          * The lock prevents that this context is scheduled in so we
723          * can add the counter safely, if it the call above did not
724          * succeed.
725          */
726         if (list_empty(&counter->list_entry))
727                 add_counter_to_ctx(counter, ctx);
728         spin_unlock_irq(&ctx->lock);
729 }
730
731 /*
732  * Cross CPU call to enable a performance counter
733  */
734 static void __perf_counter_enable(void *info)
735 {
736         struct perf_counter *counter = info;
737         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738         struct perf_counter_context *ctx = counter->ctx;
739         struct perf_counter *leader = counter->group_leader;
740         unsigned long flags;
741         int err;
742
743         /*
744          * If this is a per-task counter, need to check whether this
745          * counter's task is the current task on this cpu.
746          */
747         if (ctx->task && cpuctx->task_ctx != ctx) {
748                 if (cpuctx->task_ctx || ctx->task != current)
749                         return;
750                 cpuctx->task_ctx = ctx;
751         }
752
753         spin_lock_irqsave(&ctx->lock, flags);
754         ctx->is_active = 1;
755         update_context_time(ctx);
756
757         counter->prev_state = counter->state;
758         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
759                 goto unlock;
760         counter->state = PERF_COUNTER_STATE_INACTIVE;
761         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
762         ctx->nr_enabled++;
763
764         /*
765          * If the counter is in a group and isn't the group leader,
766          * then don't put it on unless the group is on.
767          */
768         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
769                 goto unlock;
770
771         if (!group_can_go_on(counter, cpuctx, 1)) {
772                 err = -EEXIST;
773         } else {
774                 perf_disable();
775                 if (counter == leader)
776                         err = group_sched_in(counter, cpuctx, ctx,
777                                              smp_processor_id());
778                 else
779                         err = counter_sched_in(counter, cpuctx, ctx,
780                                                smp_processor_id());
781                 perf_enable();
782         }
783
784         if (err) {
785                 /*
786                  * If this counter can't go on and it's part of a
787                  * group, then the whole group has to come off.
788                  */
789                 if (leader != counter)
790                         group_sched_out(leader, cpuctx, ctx);
791                 if (leader->hw_event.pinned) {
792                         update_group_times(leader);
793                         leader->state = PERF_COUNTER_STATE_ERROR;
794                 }
795         }
796
797  unlock:
798         spin_unlock_irqrestore(&ctx->lock, flags);
799 }
800
801 /*
802  * Enable a counter.
803  */
804 static void perf_counter_enable(struct perf_counter *counter)
805 {
806         struct perf_counter_context *ctx = counter->ctx;
807         struct task_struct *task = ctx->task;
808
809         if (!task) {
810                 /*
811                  * Enable the counter on the cpu that it's on
812                  */
813                 smp_call_function_single(counter->cpu, __perf_counter_enable,
814                                          counter, 1);
815                 return;
816         }
817
818         spin_lock_irq(&ctx->lock);
819         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
820                 goto out;
821
822         /*
823          * If the counter is in error state, clear that first.
824          * That way, if we see the counter in error state below, we
825          * know that it has gone back into error state, as distinct
826          * from the task having been scheduled away before the
827          * cross-call arrived.
828          */
829         if (counter->state == PERF_COUNTER_STATE_ERROR)
830                 counter->state = PERF_COUNTER_STATE_OFF;
831
832  retry:
833         spin_unlock_irq(&ctx->lock);
834         task_oncpu_function_call(task, __perf_counter_enable, counter);
835
836         spin_lock_irq(&ctx->lock);
837
838         /*
839          * If the context is active and the counter is still off,
840          * we need to retry the cross-call.
841          */
842         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
843                 goto retry;
844
845         /*
846          * Since we have the lock this context can't be scheduled
847          * in, so we can change the state safely.
848          */
849         if (counter->state == PERF_COUNTER_STATE_OFF) {
850                 counter->state = PERF_COUNTER_STATE_INACTIVE;
851                 counter->tstamp_enabled =
852                         ctx->time - counter->total_time_enabled;
853                 ctx->nr_enabled++;
854         }
855  out:
856         spin_unlock_irq(&ctx->lock);
857 }
858
859 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
860 {
861         /*
862          * not supported on inherited counters
863          */
864         if (counter->hw_event.inherit)
865                 return -EINVAL;
866
867         atomic_add(refresh, &counter->event_limit);
868         perf_counter_enable(counter);
869
870         return 0;
871 }
872
873 void __perf_counter_sched_out(struct perf_counter_context *ctx,
874                               struct perf_cpu_context *cpuctx)
875 {
876         struct perf_counter *counter;
877
878         spin_lock(&ctx->lock);
879         ctx->is_active = 0;
880         if (likely(!ctx->nr_counters))
881                 goto out;
882         update_context_time(ctx);
883
884         perf_disable();
885         if (ctx->nr_active) {
886                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
887                         if (counter != counter->group_leader)
888                                 counter_sched_out(counter, cpuctx, ctx);
889                         else
890                                 group_sched_out(counter, cpuctx, ctx);
891                 }
892         }
893         perf_enable();
894  out:
895         spin_unlock(&ctx->lock);
896 }
897
898 /*
899  * Test whether two contexts are equivalent, i.e. whether they
900  * have both been cloned from the same version of the same context
901  * and they both have the same number of enabled counters.
902  * If the number of enabled counters is the same, then the set
903  * of enabled counters should be the same, because these are both
904  * inherited contexts, therefore we can't access individual counters
905  * in them directly with an fd; we can only enable/disable all
906  * counters via prctl, or enable/disable all counters in a family
907  * via ioctl, which will have the same effect on both contexts.
908  */
909 static int context_equiv(struct perf_counter_context *ctx1,
910                          struct perf_counter_context *ctx2)
911 {
912         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
913                 && ctx1->parent_gen == ctx2->parent_gen
914                 && ctx1->nr_enabled == ctx2->nr_enabled;
915 }
916
917 /*
918  * Called from scheduler to remove the counters of the current task,
919  * with interrupts disabled.
920  *
921  * We stop each counter and update the counter value in counter->count.
922  *
923  * This does not protect us against NMI, but disable()
924  * sets the disabled bit in the control field of counter _before_
925  * accessing the counter control register. If a NMI hits, then it will
926  * not restart the counter.
927  */
928 void perf_counter_task_sched_out(struct task_struct *task,
929                                  struct task_struct *next, int cpu)
930 {
931         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
932         struct perf_counter_context *ctx = task->perf_counter_ctxp;
933         struct perf_counter_context *next_ctx;
934         struct pt_regs *regs;
935
936         if (likely(!ctx || !cpuctx->task_ctx))
937                 return;
938
939         update_context_time(ctx);
940
941         regs = task_pt_regs(task);
942         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
943
944         next_ctx = next->perf_counter_ctxp;
945         if (next_ctx && context_equiv(ctx, next_ctx)) {
946                 task->perf_counter_ctxp = next_ctx;
947                 next->perf_counter_ctxp = ctx;
948                 ctx->task = next;
949                 next_ctx->task = task;
950                 return;
951         }
952
953         __perf_counter_sched_out(ctx, cpuctx);
954
955         cpuctx->task_ctx = NULL;
956 }
957
958 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
959 {
960         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
961
962         if (!cpuctx->task_ctx)
963                 return;
964         __perf_counter_sched_out(ctx, cpuctx);
965         cpuctx->task_ctx = NULL;
966 }
967
968 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
969 {
970         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
971 }
972
973 static void
974 __perf_counter_sched_in(struct perf_counter_context *ctx,
975                         struct perf_cpu_context *cpuctx, int cpu)
976 {
977         struct perf_counter *counter;
978         int can_add_hw = 1;
979
980         spin_lock(&ctx->lock);
981         ctx->is_active = 1;
982         if (likely(!ctx->nr_counters))
983                 goto out;
984
985         ctx->timestamp = perf_clock();
986
987         perf_disable();
988
989         /*
990          * First go through the list and put on any pinned groups
991          * in order to give them the best chance of going on.
992          */
993         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
995                     !counter->hw_event.pinned)
996                         continue;
997                 if (counter->cpu != -1 && counter->cpu != cpu)
998                         continue;
999
1000                 if (counter != counter->group_leader)
1001                         counter_sched_in(counter, cpuctx, ctx, cpu);
1002                 else {
1003                         if (group_can_go_on(counter, cpuctx, 1))
1004                                 group_sched_in(counter, cpuctx, ctx, cpu);
1005                 }
1006
1007                 /*
1008                  * If this pinned group hasn't been scheduled,
1009                  * put it in error state.
1010                  */
1011                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1012                         update_group_times(counter);
1013                         counter->state = PERF_COUNTER_STATE_ERROR;
1014                 }
1015         }
1016
1017         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1018                 /*
1019                  * Ignore counters in OFF or ERROR state, and
1020                  * ignore pinned counters since we did them already.
1021                  */
1022                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1023                     counter->hw_event.pinned)
1024                         continue;
1025
1026                 /*
1027                  * Listen to the 'cpu' scheduling filter constraint
1028                  * of counters:
1029                  */
1030                 if (counter->cpu != -1 && counter->cpu != cpu)
1031                         continue;
1032
1033                 if (counter != counter->group_leader) {
1034                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1035                                 can_add_hw = 0;
1036                 } else {
1037                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1038                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1039                                         can_add_hw = 0;
1040                         }
1041                 }
1042         }
1043         perf_enable();
1044  out:
1045         spin_unlock(&ctx->lock);
1046 }
1047
1048 /*
1049  * Called from scheduler to add the counters of the current task
1050  * with interrupts disabled.
1051  *
1052  * We restore the counter value and then enable it.
1053  *
1054  * This does not protect us against NMI, but enable()
1055  * sets the enabled bit in the control field of counter _before_
1056  * accessing the counter control register. If a NMI hits, then it will
1057  * keep the counter running.
1058  */
1059 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1060 {
1061         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1062         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1063
1064         if (likely(!ctx))
1065                 return;
1066         if (cpuctx->task_ctx == ctx)
1067                 return;
1068         __perf_counter_sched_in(ctx, cpuctx, cpu);
1069         cpuctx->task_ctx = ctx;
1070 }
1071
1072 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1073 {
1074         struct perf_counter_context *ctx = &cpuctx->ctx;
1075
1076         __perf_counter_sched_in(ctx, cpuctx, cpu);
1077 }
1078
1079 int perf_counter_task_disable(void)
1080 {
1081         struct task_struct *curr = current;
1082         struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1083         struct perf_counter *counter;
1084         unsigned long flags;
1085
1086         if (!ctx || !ctx->nr_counters)
1087                 return 0;
1088
1089         local_irq_save(flags);
1090
1091         __perf_counter_task_sched_out(ctx);
1092
1093         spin_lock(&ctx->lock);
1094
1095         /*
1096          * Disable all the counters:
1097          */
1098         perf_disable();
1099
1100         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1101                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
1102                         update_group_times(counter);
1103                         counter->state = PERF_COUNTER_STATE_OFF;
1104                 }
1105         }
1106
1107         perf_enable();
1108
1109         spin_unlock_irqrestore(&ctx->lock, flags);
1110
1111         return 0;
1112 }
1113
1114 int perf_counter_task_enable(void)
1115 {
1116         struct task_struct *curr = current;
1117         struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1118         struct perf_counter *counter;
1119         unsigned long flags;
1120         int cpu;
1121
1122         if (!ctx || !ctx->nr_counters)
1123                 return 0;
1124
1125         local_irq_save(flags);
1126         cpu = smp_processor_id();
1127
1128         __perf_counter_task_sched_out(ctx);
1129
1130         spin_lock(&ctx->lock);
1131
1132         /*
1133          * Disable all the counters:
1134          */
1135         perf_disable();
1136
1137         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1138                 if (counter->state > PERF_COUNTER_STATE_OFF)
1139                         continue;
1140                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1141                 counter->tstamp_enabled =
1142                         ctx->time - counter->total_time_enabled;
1143                 counter->hw_event.disabled = 0;
1144         }
1145         perf_enable();
1146
1147         spin_unlock(&ctx->lock);
1148
1149         perf_counter_task_sched_in(curr, cpu);
1150
1151         local_irq_restore(flags);
1152
1153         return 0;
1154 }
1155
1156 static void perf_log_period(struct perf_counter *counter, u64 period);
1157
1158 static void perf_adjust_freq(struct perf_counter_context *ctx)
1159 {
1160         struct perf_counter *counter;
1161         u64 irq_period;
1162         u64 events, period;
1163         s64 delta;
1164
1165         spin_lock(&ctx->lock);
1166         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1167                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1168                         continue;
1169
1170                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1171                         continue;
1172
1173                 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1174                 period = div64_u64(events, counter->hw_event.irq_freq);
1175
1176                 delta = (s64)(1 + period - counter->hw.irq_period);
1177                 delta >>= 1;
1178
1179                 irq_period = counter->hw.irq_period + delta;
1180
1181                 if (!irq_period)
1182                         irq_period = 1;
1183
1184                 perf_log_period(counter, irq_period);
1185
1186                 counter->hw.irq_period = irq_period;
1187                 counter->hw.interrupts = 0;
1188         }
1189         spin_unlock(&ctx->lock);
1190 }
1191
1192 /*
1193  * Round-robin a context's counters:
1194  */
1195 static void rotate_ctx(struct perf_counter_context *ctx)
1196 {
1197         struct perf_counter *counter;
1198
1199         if (!ctx->nr_counters)
1200                 return;
1201
1202         spin_lock(&ctx->lock);
1203         /*
1204          * Rotate the first entry last (works just fine for group counters too):
1205          */
1206         perf_disable();
1207         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1208                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1209                 break;
1210         }
1211         perf_enable();
1212
1213         spin_unlock(&ctx->lock);
1214 }
1215
1216 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1217 {
1218         struct perf_cpu_context *cpuctx;
1219         struct perf_counter_context *ctx;
1220
1221         if (!atomic_read(&nr_counters))
1222                 return;
1223
1224         cpuctx = &per_cpu(perf_cpu_context, cpu);
1225         ctx = curr->perf_counter_ctxp;
1226
1227         perf_adjust_freq(&cpuctx->ctx);
1228         if (ctx)
1229                 perf_adjust_freq(ctx);
1230
1231         perf_counter_cpu_sched_out(cpuctx);
1232         if (ctx)
1233                 __perf_counter_task_sched_out(ctx);
1234
1235         rotate_ctx(&cpuctx->ctx);
1236         if (ctx)
1237                 rotate_ctx(ctx);
1238
1239         perf_counter_cpu_sched_in(cpuctx, cpu);
1240         if (ctx)
1241                 perf_counter_task_sched_in(curr, cpu);
1242 }
1243
1244 /*
1245  * Cross CPU call to read the hardware counter
1246  */
1247 static void __read(void *info)
1248 {
1249         struct perf_counter *counter = info;
1250         struct perf_counter_context *ctx = counter->ctx;
1251         unsigned long flags;
1252
1253         local_irq_save(flags);
1254         if (ctx->is_active)
1255                 update_context_time(ctx);
1256         counter->pmu->read(counter);
1257         update_counter_times(counter);
1258         local_irq_restore(flags);
1259 }
1260
1261 static u64 perf_counter_read(struct perf_counter *counter)
1262 {
1263         /*
1264          * If counter is enabled and currently active on a CPU, update the
1265          * value in the counter structure:
1266          */
1267         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1268                 smp_call_function_single(counter->oncpu,
1269                                          __read, counter, 1);
1270         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1271                 update_counter_times(counter);
1272         }
1273
1274         return atomic64_read(&counter->count);
1275 }
1276
1277 /*
1278  * Initialize the perf_counter context in a task_struct:
1279  */
1280 static void
1281 __perf_counter_init_context(struct perf_counter_context *ctx,
1282                             struct task_struct *task)
1283 {
1284         memset(ctx, 0, sizeof(*ctx));
1285         spin_lock_init(&ctx->lock);
1286         mutex_init(&ctx->mutex);
1287         INIT_LIST_HEAD(&ctx->counter_list);
1288         INIT_LIST_HEAD(&ctx->event_list);
1289         atomic_set(&ctx->refcount, 1);
1290         ctx->task = task;
1291 }
1292
1293 static void put_context(struct perf_counter_context *ctx)
1294 {
1295         if (ctx->task)
1296                 put_task_struct(ctx->task);
1297 }
1298
1299 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1300 {
1301         struct perf_cpu_context *cpuctx;
1302         struct perf_counter_context *ctx;
1303         struct perf_counter_context *tctx;
1304         struct task_struct *task;
1305
1306         /*
1307          * If cpu is not a wildcard then this is a percpu counter:
1308          */
1309         if (cpu != -1) {
1310                 /* Must be root to operate on a CPU counter: */
1311                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1312                         return ERR_PTR(-EACCES);
1313
1314                 if (cpu < 0 || cpu > num_possible_cpus())
1315                         return ERR_PTR(-EINVAL);
1316
1317                 /*
1318                  * We could be clever and allow to attach a counter to an
1319                  * offline CPU and activate it when the CPU comes up, but
1320                  * that's for later.
1321                  */
1322                 if (!cpu_isset(cpu, cpu_online_map))
1323                         return ERR_PTR(-ENODEV);
1324
1325                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1326                 ctx = &cpuctx->ctx;
1327
1328                 return ctx;
1329         }
1330
1331         rcu_read_lock();
1332         if (!pid)
1333                 task = current;
1334         else
1335                 task = find_task_by_vpid(pid);
1336         if (task)
1337                 get_task_struct(task);
1338         rcu_read_unlock();
1339
1340         if (!task)
1341                 return ERR_PTR(-ESRCH);
1342
1343         /* Reuse ptrace permission checks for now. */
1344         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1345                 put_task_struct(task);
1346                 return ERR_PTR(-EACCES);
1347         }
1348
1349         ctx = task->perf_counter_ctxp;
1350         if (!ctx) {
1351                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1352                 if (!ctx) {
1353                         put_task_struct(task);
1354                         return ERR_PTR(-ENOMEM);
1355                 }
1356                 __perf_counter_init_context(ctx, task);
1357                 /*
1358                  * Make sure other cpus see correct values for *ctx
1359                  * once task->perf_counter_ctxp is visible to them.
1360                  */
1361                 smp_wmb();
1362                 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1363                 if (tctx) {
1364                         /*
1365                          * We raced with some other task; use
1366                          * the context they set.
1367                          */
1368                         kfree(ctx);
1369                         ctx = tctx;
1370                 }
1371         }
1372
1373         return ctx;
1374 }
1375
1376 static void free_counter_rcu(struct rcu_head *head)
1377 {
1378         struct perf_counter *counter;
1379
1380         counter = container_of(head, struct perf_counter, rcu_head);
1381         put_ctx(counter->ctx);
1382         kfree(counter);
1383 }
1384
1385 static void perf_pending_sync(struct perf_counter *counter);
1386
1387 static void free_counter(struct perf_counter *counter)
1388 {
1389         perf_pending_sync(counter);
1390
1391         atomic_dec(&nr_counters);
1392         if (counter->hw_event.mmap)
1393                 atomic_dec(&nr_mmap_tracking);
1394         if (counter->hw_event.munmap)
1395                 atomic_dec(&nr_munmap_tracking);
1396         if (counter->hw_event.comm)
1397                 atomic_dec(&nr_comm_tracking);
1398
1399         if (counter->destroy)
1400                 counter->destroy(counter);
1401
1402         call_rcu(&counter->rcu_head, free_counter_rcu);
1403 }
1404
1405 /*
1406  * Called when the last reference to the file is gone.
1407  */
1408 static int perf_release(struct inode *inode, struct file *file)
1409 {
1410         struct perf_counter *counter = file->private_data;
1411         struct perf_counter_context *ctx = counter->ctx;
1412
1413         file->private_data = NULL;
1414
1415         mutex_lock(&ctx->mutex);
1416         perf_counter_remove_from_context(counter);
1417         mutex_unlock(&ctx->mutex);
1418
1419         free_counter(counter);
1420         put_context(ctx);
1421
1422         return 0;
1423 }
1424
1425 /*
1426  * Read the performance counter - simple non blocking version for now
1427  */
1428 static ssize_t
1429 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1430 {
1431         u64 values[3];
1432         int n;
1433
1434         /*
1435          * Return end-of-file for a read on a counter that is in
1436          * error state (i.e. because it was pinned but it couldn't be
1437          * scheduled on to the CPU at some point).
1438          */
1439         if (counter->state == PERF_COUNTER_STATE_ERROR)
1440                 return 0;
1441
1442         mutex_lock(&counter->child_mutex);
1443         values[0] = perf_counter_read(counter);
1444         n = 1;
1445         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1446                 values[n++] = counter->total_time_enabled +
1447                         atomic64_read(&counter->child_total_time_enabled);
1448         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1449                 values[n++] = counter->total_time_running +
1450                         atomic64_read(&counter->child_total_time_running);
1451         mutex_unlock(&counter->child_mutex);
1452
1453         if (count < n * sizeof(u64))
1454                 return -EINVAL;
1455         count = n * sizeof(u64);
1456
1457         if (copy_to_user(buf, values, count))
1458                 return -EFAULT;
1459
1460         return count;
1461 }
1462
1463 static ssize_t
1464 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1465 {
1466         struct perf_counter *counter = file->private_data;
1467
1468         return perf_read_hw(counter, buf, count);
1469 }
1470
1471 static unsigned int perf_poll(struct file *file, poll_table *wait)
1472 {
1473         struct perf_counter *counter = file->private_data;
1474         struct perf_mmap_data *data;
1475         unsigned int events = POLL_HUP;
1476
1477         rcu_read_lock();
1478         data = rcu_dereference(counter->data);
1479         if (data)
1480                 events = atomic_xchg(&data->poll, 0);
1481         rcu_read_unlock();
1482
1483         poll_wait(file, &counter->waitq, wait);
1484
1485         return events;
1486 }
1487
1488 static void perf_counter_reset(struct perf_counter *counter)
1489 {
1490         (void)perf_counter_read(counter);
1491         atomic64_set(&counter->count, 0);
1492         perf_counter_update_userpage(counter);
1493 }
1494
1495 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1496                                           void (*func)(struct perf_counter *))
1497 {
1498         struct perf_counter_context *ctx = counter->ctx;
1499         struct perf_counter *sibling;
1500
1501         mutex_lock(&ctx->mutex);
1502         counter = counter->group_leader;
1503
1504         func(counter);
1505         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1506                 func(sibling);
1507         mutex_unlock(&ctx->mutex);
1508 }
1509
1510 static void perf_counter_for_each_child(struct perf_counter *counter,
1511                                         void (*func)(struct perf_counter *))
1512 {
1513         struct perf_counter *child;
1514
1515         mutex_lock(&counter->child_mutex);
1516         func(counter);
1517         list_for_each_entry(child, &counter->child_list, child_list)
1518                 func(child);
1519         mutex_unlock(&counter->child_mutex);
1520 }
1521
1522 static void perf_counter_for_each(struct perf_counter *counter,
1523                                   void (*func)(struct perf_counter *))
1524 {
1525         struct perf_counter *child;
1526
1527         mutex_lock(&counter->child_mutex);
1528         perf_counter_for_each_sibling(counter, func);
1529         list_for_each_entry(child, &counter->child_list, child_list)
1530                 perf_counter_for_each_sibling(child, func);
1531         mutex_unlock(&counter->child_mutex);
1532 }
1533
1534 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1535 {
1536         struct perf_counter *counter = file->private_data;
1537         void (*func)(struct perf_counter *);
1538         u32 flags = arg;
1539
1540         switch (cmd) {
1541         case PERF_COUNTER_IOC_ENABLE:
1542                 func = perf_counter_enable;
1543                 break;
1544         case PERF_COUNTER_IOC_DISABLE:
1545                 func = perf_counter_disable;
1546                 break;
1547         case PERF_COUNTER_IOC_RESET:
1548                 func = perf_counter_reset;
1549                 break;
1550
1551         case PERF_COUNTER_IOC_REFRESH:
1552                 return perf_counter_refresh(counter, arg);
1553         default:
1554                 return -ENOTTY;
1555         }
1556
1557         if (flags & PERF_IOC_FLAG_GROUP)
1558                 perf_counter_for_each(counter, func);
1559         else
1560                 perf_counter_for_each_child(counter, func);
1561
1562         return 0;
1563 }
1564
1565 /*
1566  * Callers need to ensure there can be no nesting of this function, otherwise
1567  * the seqlock logic goes bad. We can not serialize this because the arch
1568  * code calls this from NMI context.
1569  */
1570 void perf_counter_update_userpage(struct perf_counter *counter)
1571 {
1572         struct perf_mmap_data *data;
1573         struct perf_counter_mmap_page *userpg;
1574
1575         rcu_read_lock();
1576         data = rcu_dereference(counter->data);
1577         if (!data)
1578                 goto unlock;
1579
1580         userpg = data->user_page;
1581
1582         /*
1583          * Disable preemption so as to not let the corresponding user-space
1584          * spin too long if we get preempted.
1585          */
1586         preempt_disable();
1587         ++userpg->lock;
1588         barrier();
1589         userpg->index = counter->hw.idx;
1590         userpg->offset = atomic64_read(&counter->count);
1591         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1592                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1593
1594         barrier();
1595         ++userpg->lock;
1596         preempt_enable();
1597 unlock:
1598         rcu_read_unlock();
1599 }
1600
1601 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1602 {
1603         struct perf_counter *counter = vma->vm_file->private_data;
1604         struct perf_mmap_data *data;
1605         int ret = VM_FAULT_SIGBUS;
1606
1607         rcu_read_lock();
1608         data = rcu_dereference(counter->data);
1609         if (!data)
1610                 goto unlock;
1611
1612         if (vmf->pgoff == 0) {
1613                 vmf->page = virt_to_page(data->user_page);
1614         } else {
1615                 int nr = vmf->pgoff - 1;
1616
1617                 if ((unsigned)nr > data->nr_pages)
1618                         goto unlock;
1619
1620                 vmf->page = virt_to_page(data->data_pages[nr]);
1621         }
1622         get_page(vmf->page);
1623         ret = 0;
1624 unlock:
1625         rcu_read_unlock();
1626
1627         return ret;
1628 }
1629
1630 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1631 {
1632         struct perf_mmap_data *data;
1633         unsigned long size;
1634         int i;
1635
1636         WARN_ON(atomic_read(&counter->mmap_count));
1637
1638         size = sizeof(struct perf_mmap_data);
1639         size += nr_pages * sizeof(void *);
1640
1641         data = kzalloc(size, GFP_KERNEL);
1642         if (!data)
1643                 goto fail;
1644
1645         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1646         if (!data->user_page)
1647                 goto fail_user_page;
1648
1649         for (i = 0; i < nr_pages; i++) {
1650                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1651                 if (!data->data_pages[i])
1652                         goto fail_data_pages;
1653         }
1654
1655         data->nr_pages = nr_pages;
1656         atomic_set(&data->lock, -1);
1657
1658         rcu_assign_pointer(counter->data, data);
1659
1660         return 0;
1661
1662 fail_data_pages:
1663         for (i--; i >= 0; i--)
1664                 free_page((unsigned long)data->data_pages[i]);
1665
1666         free_page((unsigned long)data->user_page);
1667
1668 fail_user_page:
1669         kfree(data);
1670
1671 fail:
1672         return -ENOMEM;
1673 }
1674
1675 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1676 {
1677         struct perf_mmap_data *data = container_of(rcu_head,
1678                         struct perf_mmap_data, rcu_head);
1679         int i;
1680
1681         free_page((unsigned long)data->user_page);
1682         for (i = 0; i < data->nr_pages; i++)
1683                 free_page((unsigned long)data->data_pages[i]);
1684         kfree(data);
1685 }
1686
1687 static void perf_mmap_data_free(struct perf_counter *counter)
1688 {
1689         struct perf_mmap_data *data = counter->data;
1690
1691         WARN_ON(atomic_read(&counter->mmap_count));
1692
1693         rcu_assign_pointer(counter->data, NULL);
1694         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1695 }
1696
1697 static void perf_mmap_open(struct vm_area_struct *vma)
1698 {
1699         struct perf_counter *counter = vma->vm_file->private_data;
1700
1701         atomic_inc(&counter->mmap_count);
1702 }
1703
1704 static void perf_mmap_close(struct vm_area_struct *vma)
1705 {
1706         struct perf_counter *counter = vma->vm_file->private_data;
1707
1708         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1709                                       &counter->mmap_mutex)) {
1710                 struct user_struct *user = current_user();
1711
1712                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1713                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1714                 perf_mmap_data_free(counter);
1715                 mutex_unlock(&counter->mmap_mutex);
1716         }
1717 }
1718
1719 static struct vm_operations_struct perf_mmap_vmops = {
1720         .open  = perf_mmap_open,
1721         .close = perf_mmap_close,
1722         .fault = perf_mmap_fault,
1723 };
1724
1725 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1726 {
1727         struct perf_counter *counter = file->private_data;
1728         struct user_struct *user = current_user();
1729         unsigned long vma_size;
1730         unsigned long nr_pages;
1731         unsigned long user_locked, user_lock_limit;
1732         unsigned long locked, lock_limit;
1733         long user_extra, extra;
1734         int ret = 0;
1735
1736         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1737                 return -EINVAL;
1738
1739         vma_size = vma->vm_end - vma->vm_start;
1740         nr_pages = (vma_size / PAGE_SIZE) - 1;
1741
1742         /*
1743          * If we have data pages ensure they're a power-of-two number, so we
1744          * can do bitmasks instead of modulo.
1745          */
1746         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1747                 return -EINVAL;
1748
1749         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1750                 return -EINVAL;
1751
1752         if (vma->vm_pgoff != 0)
1753                 return -EINVAL;
1754
1755         mutex_lock(&counter->mmap_mutex);
1756         if (atomic_inc_not_zero(&counter->mmap_count)) {
1757                 if (nr_pages != counter->data->nr_pages)
1758                         ret = -EINVAL;
1759                 goto unlock;
1760         }
1761
1762         user_extra = nr_pages + 1;
1763         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1764         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1765
1766         extra = 0;
1767         if (user_locked > user_lock_limit)
1768                 extra = user_locked - user_lock_limit;
1769
1770         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1771         lock_limit >>= PAGE_SHIFT;
1772         locked = vma->vm_mm->locked_vm + extra;
1773
1774         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1775                 ret = -EPERM;
1776                 goto unlock;
1777         }
1778
1779         WARN_ON(counter->data);
1780         ret = perf_mmap_data_alloc(counter, nr_pages);
1781         if (ret)
1782                 goto unlock;
1783
1784         atomic_set(&counter->mmap_count, 1);
1785         atomic_long_add(user_extra, &user->locked_vm);
1786         vma->vm_mm->locked_vm += extra;
1787         counter->data->nr_locked = extra;
1788 unlock:
1789         mutex_unlock(&counter->mmap_mutex);
1790
1791         vma->vm_flags &= ~VM_MAYWRITE;
1792         vma->vm_flags |= VM_RESERVED;
1793         vma->vm_ops = &perf_mmap_vmops;
1794
1795         return ret;
1796 }
1797
1798 static int perf_fasync(int fd, struct file *filp, int on)
1799 {
1800         struct perf_counter *counter = filp->private_data;
1801         struct inode *inode = filp->f_path.dentry->d_inode;
1802         int retval;
1803
1804         mutex_lock(&inode->i_mutex);
1805         retval = fasync_helper(fd, filp, on, &counter->fasync);
1806         mutex_unlock(&inode->i_mutex);
1807
1808         if (retval < 0)
1809                 return retval;
1810
1811         return 0;
1812 }
1813
1814 static const struct file_operations perf_fops = {
1815         .release                = perf_release,
1816         .read                   = perf_read,
1817         .poll                   = perf_poll,
1818         .unlocked_ioctl         = perf_ioctl,
1819         .compat_ioctl           = perf_ioctl,
1820         .mmap                   = perf_mmap,
1821         .fasync                 = perf_fasync,
1822 };
1823
1824 /*
1825  * Perf counter wakeup
1826  *
1827  * If there's data, ensure we set the poll() state and publish everything
1828  * to user-space before waking everybody up.
1829  */
1830
1831 void perf_counter_wakeup(struct perf_counter *counter)
1832 {
1833         wake_up_all(&counter->waitq);
1834
1835         if (counter->pending_kill) {
1836                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1837                 counter->pending_kill = 0;
1838         }
1839 }
1840
1841 /*
1842  * Pending wakeups
1843  *
1844  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1845  *
1846  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1847  * single linked list and use cmpxchg() to add entries lockless.
1848  */
1849
1850 static void perf_pending_counter(struct perf_pending_entry *entry)
1851 {
1852         struct perf_counter *counter = container_of(entry,
1853                         struct perf_counter, pending);
1854
1855         if (counter->pending_disable) {
1856                 counter->pending_disable = 0;
1857                 perf_counter_disable(counter);
1858         }
1859
1860         if (counter->pending_wakeup) {
1861                 counter->pending_wakeup = 0;
1862                 perf_counter_wakeup(counter);
1863         }
1864 }
1865
1866 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1867
1868 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1869         PENDING_TAIL,
1870 };
1871
1872 static void perf_pending_queue(struct perf_pending_entry *entry,
1873                                void (*func)(struct perf_pending_entry *))
1874 {
1875         struct perf_pending_entry **head;
1876
1877         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1878                 return;
1879
1880         entry->func = func;
1881
1882         head = &get_cpu_var(perf_pending_head);
1883
1884         do {
1885                 entry->next = *head;
1886         } while (cmpxchg(head, entry->next, entry) != entry->next);
1887
1888         set_perf_counter_pending();
1889
1890         put_cpu_var(perf_pending_head);
1891 }
1892
1893 static int __perf_pending_run(void)
1894 {
1895         struct perf_pending_entry *list;
1896         int nr = 0;
1897
1898         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1899         while (list != PENDING_TAIL) {
1900                 void (*func)(struct perf_pending_entry *);
1901                 struct perf_pending_entry *entry = list;
1902
1903                 list = list->next;
1904
1905                 func = entry->func;
1906                 entry->next = NULL;
1907                 /*
1908                  * Ensure we observe the unqueue before we issue the wakeup,
1909                  * so that we won't be waiting forever.
1910                  * -- see perf_not_pending().
1911                  */
1912                 smp_wmb();
1913
1914                 func(entry);
1915                 nr++;
1916         }
1917
1918         return nr;
1919 }
1920
1921 static inline int perf_not_pending(struct perf_counter *counter)
1922 {
1923         /*
1924          * If we flush on whatever cpu we run, there is a chance we don't
1925          * need to wait.
1926          */
1927         get_cpu();
1928         __perf_pending_run();
1929         put_cpu();
1930
1931         /*
1932          * Ensure we see the proper queue state before going to sleep
1933          * so that we do not miss the wakeup. -- see perf_pending_handle()
1934          */
1935         smp_rmb();
1936         return counter->pending.next == NULL;
1937 }
1938
1939 static void perf_pending_sync(struct perf_counter *counter)
1940 {
1941         wait_event(counter->waitq, perf_not_pending(counter));
1942 }
1943
1944 void perf_counter_do_pending(void)
1945 {
1946         __perf_pending_run();
1947 }
1948
1949 /*
1950  * Callchain support -- arch specific
1951  */
1952
1953 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1954 {
1955         return NULL;
1956 }
1957
1958 /*
1959  * Output
1960  */
1961
1962 struct perf_output_handle {
1963         struct perf_counter     *counter;
1964         struct perf_mmap_data   *data;
1965         unsigned int            offset;
1966         unsigned int            head;
1967         int                     nmi;
1968         int                     overflow;
1969         int                     locked;
1970         unsigned long           flags;
1971 };
1972
1973 static void perf_output_wakeup(struct perf_output_handle *handle)
1974 {
1975         atomic_set(&handle->data->poll, POLL_IN);
1976
1977         if (handle->nmi) {
1978                 handle->counter->pending_wakeup = 1;
1979                 perf_pending_queue(&handle->counter->pending,
1980                                    perf_pending_counter);
1981         } else
1982                 perf_counter_wakeup(handle->counter);
1983 }
1984
1985 /*
1986  * Curious locking construct.
1987  *
1988  * We need to ensure a later event doesn't publish a head when a former
1989  * event isn't done writing. However since we need to deal with NMIs we
1990  * cannot fully serialize things.
1991  *
1992  * What we do is serialize between CPUs so we only have to deal with NMI
1993  * nesting on a single CPU.
1994  *
1995  * We only publish the head (and generate a wakeup) when the outer-most
1996  * event completes.
1997  */
1998 static void perf_output_lock(struct perf_output_handle *handle)
1999 {
2000         struct perf_mmap_data *data = handle->data;
2001         int cpu;
2002
2003         handle->locked = 0;
2004
2005         local_irq_save(handle->flags);
2006         cpu = smp_processor_id();
2007
2008         if (in_nmi() && atomic_read(&data->lock) == cpu)
2009                 return;
2010
2011         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2012                 cpu_relax();
2013
2014         handle->locked = 1;
2015 }
2016
2017 static void perf_output_unlock(struct perf_output_handle *handle)
2018 {
2019         struct perf_mmap_data *data = handle->data;
2020         int head, cpu;
2021
2022         data->done_head = data->head;
2023
2024         if (!handle->locked)
2025                 goto out;
2026
2027 again:
2028         /*
2029          * The xchg implies a full barrier that ensures all writes are done
2030          * before we publish the new head, matched by a rmb() in userspace when
2031          * reading this position.
2032          */
2033         while ((head = atomic_xchg(&data->done_head, 0)))
2034                 data->user_page->data_head = head;
2035
2036         /*
2037          * NMI can happen here, which means we can miss a done_head update.
2038          */
2039
2040         cpu = atomic_xchg(&data->lock, -1);
2041         WARN_ON_ONCE(cpu != smp_processor_id());
2042
2043         /*
2044          * Therefore we have to validate we did not indeed do so.
2045          */
2046         if (unlikely(atomic_read(&data->done_head))) {
2047                 /*
2048                  * Since we had it locked, we can lock it again.
2049                  */
2050                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2051                         cpu_relax();
2052
2053                 goto again;
2054         }
2055
2056         if (atomic_xchg(&data->wakeup, 0))
2057                 perf_output_wakeup(handle);
2058 out:
2059         local_irq_restore(handle->flags);
2060 }
2061
2062 static int perf_output_begin(struct perf_output_handle *handle,
2063                              struct perf_counter *counter, unsigned int size,
2064                              int nmi, int overflow)
2065 {
2066         struct perf_mmap_data *data;
2067         unsigned int offset, head;
2068
2069         /*
2070          * For inherited counters we send all the output towards the parent.
2071          */
2072         if (counter->parent)
2073                 counter = counter->parent;
2074
2075         rcu_read_lock();
2076         data = rcu_dereference(counter->data);
2077         if (!data)
2078                 goto out;
2079
2080         handle->data     = data;
2081         handle->counter  = counter;
2082         handle->nmi      = nmi;
2083         handle->overflow = overflow;
2084
2085         if (!data->nr_pages)
2086                 goto fail;
2087
2088         perf_output_lock(handle);
2089
2090         do {
2091                 offset = head = atomic_read(&data->head);
2092                 head += size;
2093         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2094
2095         handle->offset  = offset;
2096         handle->head    = head;
2097
2098         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2099                 atomic_set(&data->wakeup, 1);
2100
2101         return 0;
2102
2103 fail:
2104         perf_output_wakeup(handle);
2105 out:
2106         rcu_read_unlock();
2107
2108         return -ENOSPC;
2109 }
2110
2111 static void perf_output_copy(struct perf_output_handle *handle,
2112                              void *buf, unsigned int len)
2113 {
2114         unsigned int pages_mask;
2115         unsigned int offset;
2116         unsigned int size;
2117         void **pages;
2118
2119         offset          = handle->offset;
2120         pages_mask      = handle->data->nr_pages - 1;
2121         pages           = handle->data->data_pages;
2122
2123         do {
2124                 unsigned int page_offset;
2125                 int nr;
2126
2127                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2128                 page_offset = offset & (PAGE_SIZE - 1);
2129                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2130
2131                 memcpy(pages[nr] + page_offset, buf, size);
2132
2133                 len         -= size;
2134                 buf         += size;
2135                 offset      += size;
2136         } while (len);
2137
2138         handle->offset = offset;
2139
2140         /*
2141          * Check we didn't copy past our reservation window, taking the
2142          * possible unsigned int wrap into account.
2143          */
2144         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2145 }
2146
2147 #define perf_output_put(handle, x) \
2148         perf_output_copy((handle), &(x), sizeof(x))
2149
2150 static void perf_output_end(struct perf_output_handle *handle)
2151 {
2152         struct perf_counter *counter = handle->counter;
2153         struct perf_mmap_data *data = handle->data;
2154
2155         int wakeup_events = counter->hw_event.wakeup_events;
2156
2157         if (handle->overflow && wakeup_events) {
2158                 int events = atomic_inc_return(&data->events);
2159                 if (events >= wakeup_events) {
2160                         atomic_sub(wakeup_events, &data->events);
2161                         atomic_set(&data->wakeup, 1);
2162                 }
2163         }
2164
2165         perf_output_unlock(handle);
2166         rcu_read_unlock();
2167 }
2168
2169 static void perf_counter_output(struct perf_counter *counter,
2170                                 int nmi, struct pt_regs *regs, u64 addr)
2171 {
2172         int ret;
2173         u64 record_type = counter->hw_event.record_type;
2174         struct perf_output_handle handle;
2175         struct perf_event_header header;
2176         u64 ip;
2177         struct {
2178                 u32 pid, tid;
2179         } tid_entry;
2180         struct {
2181                 u64 event;
2182                 u64 counter;
2183         } group_entry;
2184         struct perf_callchain_entry *callchain = NULL;
2185         int callchain_size = 0;
2186         u64 time;
2187         struct {
2188                 u32 cpu, reserved;
2189         } cpu_entry;
2190
2191         header.type = 0;
2192         header.size = sizeof(header);
2193
2194         header.misc = PERF_EVENT_MISC_OVERFLOW;
2195         header.misc |= perf_misc_flags(regs);
2196
2197         if (record_type & PERF_RECORD_IP) {
2198                 ip = perf_instruction_pointer(regs);
2199                 header.type |= PERF_RECORD_IP;
2200                 header.size += sizeof(ip);
2201         }
2202
2203         if (record_type & PERF_RECORD_TID) {
2204                 /* namespace issues */
2205                 tid_entry.pid = current->group_leader->pid;
2206                 tid_entry.tid = current->pid;
2207
2208                 header.type |= PERF_RECORD_TID;
2209                 header.size += sizeof(tid_entry);
2210         }
2211
2212         if (record_type & PERF_RECORD_TIME) {
2213                 /*
2214                  * Maybe do better on x86 and provide cpu_clock_nmi()
2215                  */
2216                 time = sched_clock();
2217
2218                 header.type |= PERF_RECORD_TIME;
2219                 header.size += sizeof(u64);
2220         }
2221
2222         if (record_type & PERF_RECORD_ADDR) {
2223                 header.type |= PERF_RECORD_ADDR;
2224                 header.size += sizeof(u64);
2225         }
2226
2227         if (record_type & PERF_RECORD_CONFIG) {
2228                 header.type |= PERF_RECORD_CONFIG;
2229                 header.size += sizeof(u64);
2230         }
2231
2232         if (record_type & PERF_RECORD_CPU) {
2233                 header.type |= PERF_RECORD_CPU;
2234                 header.size += sizeof(cpu_entry);
2235
2236                 cpu_entry.cpu = raw_smp_processor_id();
2237         }
2238
2239         if (record_type & PERF_RECORD_GROUP) {
2240                 header.type |= PERF_RECORD_GROUP;
2241                 header.size += sizeof(u64) +
2242                         counter->nr_siblings * sizeof(group_entry);
2243         }
2244
2245         if (record_type & PERF_RECORD_CALLCHAIN) {
2246                 callchain = perf_callchain(regs);
2247
2248                 if (callchain) {
2249                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2250
2251                         header.type |= PERF_RECORD_CALLCHAIN;
2252                         header.size += callchain_size;
2253                 }
2254         }
2255
2256         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2257         if (ret)
2258                 return;
2259
2260         perf_output_put(&handle, header);
2261
2262         if (record_type & PERF_RECORD_IP)
2263                 perf_output_put(&handle, ip);
2264
2265         if (record_type & PERF_RECORD_TID)
2266                 perf_output_put(&handle, tid_entry);
2267
2268         if (record_type & PERF_RECORD_TIME)
2269                 perf_output_put(&handle, time);
2270
2271         if (record_type & PERF_RECORD_ADDR)
2272                 perf_output_put(&handle, addr);
2273
2274         if (record_type & PERF_RECORD_CONFIG)
2275                 perf_output_put(&handle, counter->hw_event.config);
2276
2277         if (record_type & PERF_RECORD_CPU)
2278                 perf_output_put(&handle, cpu_entry);
2279
2280         /*
2281          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2282          */
2283         if (record_type & PERF_RECORD_GROUP) {
2284                 struct perf_counter *leader, *sub;
2285                 u64 nr = counter->nr_siblings;
2286
2287                 perf_output_put(&handle, nr);
2288
2289                 leader = counter->group_leader;
2290                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2291                         if (sub != counter)
2292                                 sub->pmu->read(sub);
2293
2294                         group_entry.event = sub->hw_event.config;
2295                         group_entry.counter = atomic64_read(&sub->count);
2296
2297                         perf_output_put(&handle, group_entry);
2298                 }
2299         }
2300
2301         if (callchain)
2302                 perf_output_copy(&handle, callchain, callchain_size);
2303
2304         perf_output_end(&handle);
2305 }
2306
2307 /*
2308  * comm tracking
2309  */
2310
2311 struct perf_comm_event {
2312         struct task_struct      *task;
2313         char                    *comm;
2314         int                     comm_size;
2315
2316         struct {
2317                 struct perf_event_header        header;
2318
2319                 u32                             pid;
2320                 u32                             tid;
2321         } event;
2322 };
2323
2324 static void perf_counter_comm_output(struct perf_counter *counter,
2325                                      struct perf_comm_event *comm_event)
2326 {
2327         struct perf_output_handle handle;
2328         int size = comm_event->event.header.size;
2329         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2330
2331         if (ret)
2332                 return;
2333
2334         perf_output_put(&handle, comm_event->event);
2335         perf_output_copy(&handle, comm_event->comm,
2336                                    comm_event->comm_size);
2337         perf_output_end(&handle);
2338 }
2339
2340 static int perf_counter_comm_match(struct perf_counter *counter,
2341                                    struct perf_comm_event *comm_event)
2342 {
2343         if (counter->hw_event.comm &&
2344             comm_event->event.header.type == PERF_EVENT_COMM)
2345                 return 1;
2346
2347         return 0;
2348 }
2349
2350 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2351                                   struct perf_comm_event *comm_event)
2352 {
2353         struct perf_counter *counter;
2354
2355         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2356                 return;
2357
2358         rcu_read_lock();
2359         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2360                 if (perf_counter_comm_match(counter, comm_event))
2361                         perf_counter_comm_output(counter, comm_event);
2362         }
2363         rcu_read_unlock();
2364 }
2365
2366 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2367 {
2368         struct perf_cpu_context *cpuctx;
2369         unsigned int size;
2370         char *comm = comm_event->task->comm;
2371
2372         size = ALIGN(strlen(comm)+1, sizeof(u64));
2373
2374         comm_event->comm = comm;
2375         comm_event->comm_size = size;
2376
2377         comm_event->event.header.size = sizeof(comm_event->event) + size;
2378
2379         cpuctx = &get_cpu_var(perf_cpu_context);
2380         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2381         put_cpu_var(perf_cpu_context);
2382
2383         perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2384 }
2385
2386 void perf_counter_comm(struct task_struct *task)
2387 {
2388         struct perf_comm_event comm_event;
2389
2390         if (!atomic_read(&nr_comm_tracking))
2391                 return;
2392         if (!current->perf_counter_ctxp)
2393                 return;
2394
2395         comm_event = (struct perf_comm_event){
2396                 .task   = task,
2397                 .event  = {
2398                         .header = { .type = PERF_EVENT_COMM, },
2399                         .pid    = task->group_leader->pid,
2400                         .tid    = task->pid,
2401                 },
2402         };
2403
2404         perf_counter_comm_event(&comm_event);
2405 }
2406
2407 /*
2408  * mmap tracking
2409  */
2410
2411 struct perf_mmap_event {
2412         struct file     *file;
2413         char            *file_name;
2414         int             file_size;
2415
2416         struct {
2417                 struct perf_event_header        header;
2418
2419                 u32                             pid;
2420                 u32                             tid;
2421                 u64                             start;
2422                 u64                             len;
2423                 u64                             pgoff;
2424         } event;
2425 };
2426
2427 static void perf_counter_mmap_output(struct perf_counter *counter,
2428                                      struct perf_mmap_event *mmap_event)
2429 {
2430         struct perf_output_handle handle;
2431         int size = mmap_event->event.header.size;
2432         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2433
2434         if (ret)
2435                 return;
2436
2437         perf_output_put(&handle, mmap_event->event);
2438         perf_output_copy(&handle, mmap_event->file_name,
2439                                    mmap_event->file_size);
2440         perf_output_end(&handle);
2441 }
2442
2443 static int perf_counter_mmap_match(struct perf_counter *counter,
2444                                    struct perf_mmap_event *mmap_event)
2445 {
2446         if (counter->hw_event.mmap &&
2447             mmap_event->event.header.type == PERF_EVENT_MMAP)
2448                 return 1;
2449
2450         if (counter->hw_event.munmap &&
2451             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2452                 return 1;
2453
2454         return 0;
2455 }
2456
2457 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2458                                   struct perf_mmap_event *mmap_event)
2459 {
2460         struct perf_counter *counter;
2461
2462         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2463                 return;
2464
2465         rcu_read_lock();
2466         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2467                 if (perf_counter_mmap_match(counter, mmap_event))
2468                         perf_counter_mmap_output(counter, mmap_event);
2469         }
2470         rcu_read_unlock();
2471 }
2472
2473 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2474 {
2475         struct perf_cpu_context *cpuctx;
2476         struct file *file = mmap_event->file;
2477         unsigned int size;
2478         char tmp[16];
2479         char *buf = NULL;
2480         char *name;
2481
2482         if (file) {
2483                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2484                 if (!buf) {
2485                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2486                         goto got_name;
2487                 }
2488                 name = d_path(&file->f_path, buf, PATH_MAX);
2489                 if (IS_ERR(name)) {
2490                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2491                         goto got_name;
2492                 }
2493         } else {
2494                 name = strncpy(tmp, "//anon", sizeof(tmp));
2495                 goto got_name;
2496         }
2497
2498 got_name:
2499         size = ALIGN(strlen(name)+1, sizeof(u64));
2500
2501         mmap_event->file_name = name;
2502         mmap_event->file_size = size;
2503
2504         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2505
2506         cpuctx = &get_cpu_var(perf_cpu_context);
2507         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2508         put_cpu_var(perf_cpu_context);
2509
2510         perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2511
2512         kfree(buf);
2513 }
2514
2515 void perf_counter_mmap(unsigned long addr, unsigned long len,
2516                        unsigned long pgoff, struct file *file)
2517 {
2518         struct perf_mmap_event mmap_event;
2519
2520         if (!atomic_read(&nr_mmap_tracking))
2521                 return;
2522         if (!current->perf_counter_ctxp)
2523                 return;
2524
2525         mmap_event = (struct perf_mmap_event){
2526                 .file   = file,
2527                 .event  = {
2528                         .header = { .type = PERF_EVENT_MMAP, },
2529                         .pid    = current->group_leader->pid,
2530                         .tid    = current->pid,
2531                         .start  = addr,
2532                         .len    = len,
2533                         .pgoff  = pgoff,
2534                 },
2535         };
2536
2537         perf_counter_mmap_event(&mmap_event);
2538 }
2539
2540 void perf_counter_munmap(unsigned long addr, unsigned long len,
2541                          unsigned long pgoff, struct file *file)
2542 {
2543         struct perf_mmap_event mmap_event;
2544
2545         if (!atomic_read(&nr_munmap_tracking))
2546                 return;
2547
2548         mmap_event = (struct perf_mmap_event){
2549                 .file   = file,
2550                 .event  = {
2551                         .header = { .type = PERF_EVENT_MUNMAP, },
2552                         .pid    = current->group_leader->pid,
2553                         .tid    = current->pid,
2554                         .start  = addr,
2555                         .len    = len,
2556                         .pgoff  = pgoff,
2557                 },
2558         };
2559
2560         perf_counter_mmap_event(&mmap_event);
2561 }
2562
2563 /*
2564  * Log irq_period changes so that analyzing tools can re-normalize the
2565  * event flow.
2566  */
2567
2568 static void perf_log_period(struct perf_counter *counter, u64 period)
2569 {
2570         struct perf_output_handle handle;
2571         int ret;
2572
2573         struct {
2574                 struct perf_event_header        header;
2575                 u64                             time;
2576                 u64                             period;
2577         } freq_event = {
2578                 .header = {
2579                         .type = PERF_EVENT_PERIOD,
2580                         .misc = 0,
2581                         .size = sizeof(freq_event),
2582                 },
2583                 .time = sched_clock(),
2584                 .period = period,
2585         };
2586
2587         if (counter->hw.irq_period == period)
2588                 return;
2589
2590         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2591         if (ret)
2592                 return;
2593
2594         perf_output_put(&handle, freq_event);
2595         perf_output_end(&handle);
2596 }
2597
2598 /*
2599  * Generic counter overflow handling.
2600  */
2601
2602 int perf_counter_overflow(struct perf_counter *counter,
2603                           int nmi, struct pt_regs *regs, u64 addr)
2604 {
2605         int events = atomic_read(&counter->event_limit);
2606         int ret = 0;
2607
2608         counter->hw.interrupts++;
2609
2610         /*
2611          * XXX event_limit might not quite work as expected on inherited
2612          * counters
2613          */
2614
2615         counter->pending_kill = POLL_IN;
2616         if (events && atomic_dec_and_test(&counter->event_limit)) {
2617                 ret = 1;
2618                 counter->pending_kill = POLL_HUP;
2619                 if (nmi) {
2620                         counter->pending_disable = 1;
2621                         perf_pending_queue(&counter->pending,
2622                                            perf_pending_counter);
2623                 } else
2624                         perf_counter_disable(counter);
2625         }
2626
2627         perf_counter_output(counter, nmi, regs, addr);
2628         return ret;
2629 }
2630
2631 /*
2632  * Generic software counter infrastructure
2633  */
2634
2635 static void perf_swcounter_update(struct perf_counter *counter)
2636 {
2637         struct hw_perf_counter *hwc = &counter->hw;
2638         u64 prev, now;
2639         s64 delta;
2640
2641 again:
2642         prev = atomic64_read(&hwc->prev_count);
2643         now = atomic64_read(&hwc->count);
2644         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2645                 goto again;
2646
2647         delta = now - prev;
2648
2649         atomic64_add(delta, &counter->count);
2650         atomic64_sub(delta, &hwc->period_left);
2651 }
2652
2653 static void perf_swcounter_set_period(struct perf_counter *counter)
2654 {
2655         struct hw_perf_counter *hwc = &counter->hw;
2656         s64 left = atomic64_read(&hwc->period_left);
2657         s64 period = hwc->irq_period;
2658
2659         if (unlikely(left <= -period)) {
2660                 left = period;
2661                 atomic64_set(&hwc->period_left, left);
2662         }
2663
2664         if (unlikely(left <= 0)) {
2665                 left += period;
2666                 atomic64_add(period, &hwc->period_left);
2667         }
2668
2669         atomic64_set(&hwc->prev_count, -left);
2670         atomic64_set(&hwc->count, -left);
2671 }
2672
2673 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2674 {
2675         enum hrtimer_restart ret = HRTIMER_RESTART;
2676         struct perf_counter *counter;
2677         struct pt_regs *regs;
2678         u64 period;
2679
2680         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2681         counter->pmu->read(counter);
2682
2683         regs = get_irq_regs();
2684         /*
2685          * In case we exclude kernel IPs or are somehow not in interrupt
2686          * context, provide the next best thing, the user IP.
2687          */
2688         if ((counter->hw_event.exclude_kernel || !regs) &&
2689                         !counter->hw_event.exclude_user)
2690                 regs = task_pt_regs(current);
2691
2692         if (regs) {
2693                 if (perf_counter_overflow(counter, 0, regs, 0))
2694                         ret = HRTIMER_NORESTART;
2695         }
2696
2697         period = max_t(u64, 10000, counter->hw.irq_period);
2698         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2699
2700         return ret;
2701 }
2702
2703 static void perf_swcounter_overflow(struct perf_counter *counter,
2704                                     int nmi, struct pt_regs *regs, u64 addr)
2705 {
2706         perf_swcounter_update(counter);
2707         perf_swcounter_set_period(counter);
2708         if (perf_counter_overflow(counter, nmi, regs, addr))
2709                 /* soft-disable the counter */
2710                 ;
2711
2712 }
2713
2714 static int perf_swcounter_match(struct perf_counter *counter,
2715                                 enum perf_event_types type,
2716                                 u32 event, struct pt_regs *regs)
2717 {
2718         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2719                 return 0;
2720
2721         if (perf_event_raw(&counter->hw_event))
2722                 return 0;
2723
2724         if (perf_event_type(&counter->hw_event) != type)
2725                 return 0;
2726
2727         if (perf_event_id(&counter->hw_event) != event)
2728                 return 0;
2729
2730         if (counter->hw_event.exclude_user && user_mode(regs))
2731                 return 0;
2732
2733         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2734                 return 0;
2735
2736         return 1;
2737 }
2738
2739 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2740                                int nmi, struct pt_regs *regs, u64 addr)
2741 {
2742         int neg = atomic64_add_negative(nr, &counter->hw.count);
2743         if (counter->hw.irq_period && !neg)
2744                 perf_swcounter_overflow(counter, nmi, regs, addr);
2745 }
2746
2747 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2748                                      enum perf_event_types type, u32 event,
2749                                      u64 nr, int nmi, struct pt_regs *regs,
2750                                      u64 addr)
2751 {
2752         struct perf_counter *counter;
2753
2754         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2755                 return;
2756
2757         rcu_read_lock();
2758         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2759                 if (perf_swcounter_match(counter, type, event, regs))
2760                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2761         }
2762         rcu_read_unlock();
2763 }
2764
2765 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2766 {
2767         if (in_nmi())
2768                 return &cpuctx->recursion[3];
2769
2770         if (in_irq())
2771                 return &cpuctx->recursion[2];
2772
2773         if (in_softirq())
2774                 return &cpuctx->recursion[1];
2775
2776         return &cpuctx->recursion[0];
2777 }
2778
2779 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2780                                    u64 nr, int nmi, struct pt_regs *regs,
2781                                    u64 addr)
2782 {
2783         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2784         int *recursion = perf_swcounter_recursion_context(cpuctx);
2785
2786         if (*recursion)
2787                 goto out;
2788
2789         (*recursion)++;
2790         barrier();
2791
2792         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2793                                  nr, nmi, regs, addr);
2794         if (cpuctx->task_ctx) {
2795                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2796                                          nr, nmi, regs, addr);
2797         }
2798
2799         barrier();
2800         (*recursion)--;
2801
2802 out:
2803         put_cpu_var(perf_cpu_context);
2804 }
2805
2806 void
2807 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2808 {
2809         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2810 }
2811
2812 static void perf_swcounter_read(struct perf_counter *counter)
2813 {
2814         perf_swcounter_update(counter);
2815 }
2816
2817 static int perf_swcounter_enable(struct perf_counter *counter)
2818 {
2819         perf_swcounter_set_period(counter);
2820         return 0;
2821 }
2822
2823 static void perf_swcounter_disable(struct perf_counter *counter)
2824 {
2825         perf_swcounter_update(counter);
2826 }
2827
2828 static const struct pmu perf_ops_generic = {
2829         .enable         = perf_swcounter_enable,
2830         .disable        = perf_swcounter_disable,
2831         .read           = perf_swcounter_read,
2832 };
2833
2834 /*
2835  * Software counter: cpu wall time clock
2836  */
2837
2838 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2839 {
2840         int cpu = raw_smp_processor_id();
2841         s64 prev;
2842         u64 now;
2843
2844         now = cpu_clock(cpu);
2845         prev = atomic64_read(&counter->hw.prev_count);
2846         atomic64_set(&counter->hw.prev_count, now);
2847         atomic64_add(now - prev, &counter->count);
2848 }
2849
2850 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2851 {
2852         struct hw_perf_counter *hwc = &counter->hw;
2853         int cpu = raw_smp_processor_id();
2854
2855         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2856         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2857         hwc->hrtimer.function = perf_swcounter_hrtimer;
2858         if (hwc->irq_period) {
2859                 u64 period = max_t(u64, 10000, hwc->irq_period);
2860                 __hrtimer_start_range_ns(&hwc->hrtimer,
2861                                 ns_to_ktime(period), 0,
2862                                 HRTIMER_MODE_REL, 0);
2863         }
2864
2865         return 0;
2866 }
2867
2868 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2869 {
2870         if (counter->hw.irq_period)
2871                 hrtimer_cancel(&counter->hw.hrtimer);
2872         cpu_clock_perf_counter_update(counter);
2873 }
2874
2875 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2876 {
2877         cpu_clock_perf_counter_update(counter);
2878 }
2879
2880 static const struct pmu perf_ops_cpu_clock = {
2881         .enable         = cpu_clock_perf_counter_enable,
2882         .disable        = cpu_clock_perf_counter_disable,
2883         .read           = cpu_clock_perf_counter_read,
2884 };
2885
2886 /*
2887  * Software counter: task time clock
2888  */
2889
2890 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2891 {
2892         u64 prev;
2893         s64 delta;
2894
2895         prev = atomic64_xchg(&counter->hw.prev_count, now);
2896         delta = now - prev;
2897         atomic64_add(delta, &counter->count);
2898 }
2899
2900 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2901 {
2902         struct hw_perf_counter *hwc = &counter->hw;
2903         u64 now;
2904
2905         now = counter->ctx->time;
2906
2907         atomic64_set(&hwc->prev_count, now);
2908         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2909         hwc->hrtimer.function = perf_swcounter_hrtimer;
2910         if (hwc->irq_period) {
2911                 u64 period = max_t(u64, 10000, hwc->irq_period);
2912                 __hrtimer_start_range_ns(&hwc->hrtimer,
2913                                 ns_to_ktime(period), 0,
2914                                 HRTIMER_MODE_REL, 0);
2915         }
2916
2917         return 0;
2918 }
2919
2920 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2921 {
2922         if (counter->hw.irq_period)
2923                 hrtimer_cancel(&counter->hw.hrtimer);
2924         task_clock_perf_counter_update(counter, counter->ctx->time);
2925
2926 }
2927
2928 static void task_clock_perf_counter_read(struct perf_counter *counter)
2929 {
2930         u64 time;
2931
2932         if (!in_nmi()) {
2933                 update_context_time(counter->ctx);
2934                 time = counter->ctx->time;
2935         } else {
2936                 u64 now = perf_clock();
2937                 u64 delta = now - counter->ctx->timestamp;
2938                 time = counter->ctx->time + delta;
2939         }
2940
2941         task_clock_perf_counter_update(counter, time);
2942 }
2943
2944 static const struct pmu perf_ops_task_clock = {
2945         .enable         = task_clock_perf_counter_enable,
2946         .disable        = task_clock_perf_counter_disable,
2947         .read           = task_clock_perf_counter_read,
2948 };
2949
2950 /*
2951  * Software counter: cpu migrations
2952  */
2953
2954 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2955 {
2956         struct task_struct *curr = counter->ctx->task;
2957
2958         if (curr)
2959                 return curr->se.nr_migrations;
2960         return cpu_nr_migrations(smp_processor_id());
2961 }
2962
2963 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2964 {
2965         u64 prev, now;
2966         s64 delta;
2967
2968         prev = atomic64_read(&counter->hw.prev_count);
2969         now = get_cpu_migrations(counter);
2970
2971         atomic64_set(&counter->hw.prev_count, now);
2972
2973         delta = now - prev;
2974
2975         atomic64_add(delta, &counter->count);
2976 }
2977
2978 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2979 {
2980         cpu_migrations_perf_counter_update(counter);
2981 }
2982
2983 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2984 {
2985         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2986                 atomic64_set(&counter->hw.prev_count,
2987                              get_cpu_migrations(counter));
2988         return 0;
2989 }
2990
2991 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2992 {
2993         cpu_migrations_perf_counter_update(counter);
2994 }
2995
2996 static const struct pmu perf_ops_cpu_migrations = {
2997         .enable         = cpu_migrations_perf_counter_enable,
2998         .disable        = cpu_migrations_perf_counter_disable,
2999         .read           = cpu_migrations_perf_counter_read,
3000 };
3001
3002 #ifdef CONFIG_EVENT_PROFILE
3003 void perf_tpcounter_event(int event_id)
3004 {
3005         struct pt_regs *regs = get_irq_regs();
3006
3007         if (!regs)
3008                 regs = task_pt_regs(current);
3009
3010         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3011 }
3012 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3013
3014 extern int ftrace_profile_enable(int);
3015 extern void ftrace_profile_disable(int);
3016
3017 static void tp_perf_counter_destroy(struct perf_counter *counter)
3018 {
3019         ftrace_profile_disable(perf_event_id(&counter->hw_event));
3020 }
3021
3022 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3023 {
3024         int event_id = perf_event_id(&counter->hw_event);
3025         int ret;
3026
3027         ret = ftrace_profile_enable(event_id);
3028         if (ret)
3029                 return NULL;
3030
3031         counter->destroy = tp_perf_counter_destroy;
3032         counter->hw.irq_period = counter->hw_event.irq_period;
3033
3034         return &perf_ops_generic;
3035 }
3036 #else
3037 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3038 {
3039         return NULL;
3040 }
3041 #endif
3042
3043 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3044 {
3045         const struct pmu *pmu = NULL;
3046
3047         /*
3048          * Software counters (currently) can't in general distinguish
3049          * between user, kernel and hypervisor events.
3050          * However, context switches and cpu migrations are considered
3051          * to be kernel events, and page faults are never hypervisor
3052          * events.
3053          */
3054         switch (perf_event_id(&counter->hw_event)) {
3055         case PERF_COUNT_CPU_CLOCK:
3056                 pmu = &perf_ops_cpu_clock;
3057
3058                 break;
3059         case PERF_COUNT_TASK_CLOCK:
3060                 /*
3061                  * If the user instantiates this as a per-cpu counter,
3062                  * use the cpu_clock counter instead.
3063                  */
3064                 if (counter->ctx->task)
3065                         pmu = &perf_ops_task_clock;
3066                 else
3067                         pmu = &perf_ops_cpu_clock;
3068
3069                 break;
3070         case PERF_COUNT_PAGE_FAULTS:
3071         case PERF_COUNT_PAGE_FAULTS_MIN:
3072         case PERF_COUNT_PAGE_FAULTS_MAJ:
3073         case PERF_COUNT_CONTEXT_SWITCHES:
3074                 pmu = &perf_ops_generic;
3075                 break;
3076         case PERF_COUNT_CPU_MIGRATIONS:
3077                 if (!counter->hw_event.exclude_kernel)
3078                         pmu = &perf_ops_cpu_migrations;
3079                 break;
3080         }
3081
3082         return pmu;
3083 }
3084
3085 /*
3086  * Allocate and initialize a counter structure
3087  */
3088 static struct perf_counter *
3089 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3090                    int cpu,
3091                    struct perf_counter_context *ctx,
3092                    struct perf_counter *group_leader,
3093                    gfp_t gfpflags)
3094 {
3095         const struct pmu *pmu;
3096         struct perf_counter *counter;
3097         struct hw_perf_counter *hwc;
3098         long err;
3099
3100         counter = kzalloc(sizeof(*counter), gfpflags);
3101         if (!counter)
3102                 return ERR_PTR(-ENOMEM);
3103
3104         /*
3105          * Single counters are their own group leaders, with an
3106          * empty sibling list:
3107          */
3108         if (!group_leader)
3109                 group_leader = counter;
3110
3111         mutex_init(&counter->child_mutex);
3112         INIT_LIST_HEAD(&counter->child_list);
3113
3114         INIT_LIST_HEAD(&counter->list_entry);
3115         INIT_LIST_HEAD(&counter->event_entry);
3116         INIT_LIST_HEAD(&counter->sibling_list);
3117         init_waitqueue_head(&counter->waitq);
3118
3119         mutex_init(&counter->mmap_mutex);
3120
3121         counter->cpu                    = cpu;
3122         counter->hw_event               = *hw_event;
3123         counter->group_leader           = group_leader;
3124         counter->pmu                    = NULL;
3125         counter->ctx                    = ctx;
3126         get_ctx(ctx);
3127
3128         counter->state = PERF_COUNTER_STATE_INACTIVE;
3129         if (hw_event->disabled)
3130                 counter->state = PERF_COUNTER_STATE_OFF;
3131
3132         pmu = NULL;
3133
3134         hwc = &counter->hw;
3135         if (hw_event->freq && hw_event->irq_freq)
3136                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3137         else
3138                 hwc->irq_period = hw_event->irq_period;
3139
3140         /*
3141          * we currently do not support PERF_RECORD_GROUP on inherited counters
3142          */
3143         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3144                 goto done;
3145
3146         if (perf_event_raw(hw_event)) {
3147                 pmu = hw_perf_counter_init(counter);
3148                 goto done;
3149         }
3150
3151         switch (perf_event_type(hw_event)) {
3152         case PERF_TYPE_HARDWARE:
3153                 pmu = hw_perf_counter_init(counter);
3154                 break;
3155
3156         case PERF_TYPE_SOFTWARE:
3157                 pmu = sw_perf_counter_init(counter);
3158                 break;
3159
3160         case PERF_TYPE_TRACEPOINT:
3161                 pmu = tp_perf_counter_init(counter);
3162                 break;
3163         }
3164 done:
3165         err = 0;
3166         if (!pmu)
3167                 err = -EINVAL;
3168         else if (IS_ERR(pmu))
3169                 err = PTR_ERR(pmu);
3170
3171         if (err) {
3172                 kfree(counter);
3173                 return ERR_PTR(err);
3174         }
3175
3176         counter->pmu = pmu;
3177
3178         atomic_inc(&nr_counters);
3179         if (counter->hw_event.mmap)
3180                 atomic_inc(&nr_mmap_tracking);
3181         if (counter->hw_event.munmap)
3182                 atomic_inc(&nr_munmap_tracking);
3183         if (counter->hw_event.comm)
3184                 atomic_inc(&nr_comm_tracking);
3185
3186         return counter;
3187 }
3188
3189 /**
3190  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3191  *
3192  * @hw_event_uptr:      event type attributes for monitoring/sampling
3193  * @pid:                target pid
3194  * @cpu:                target cpu
3195  * @group_fd:           group leader counter fd
3196  */
3197 SYSCALL_DEFINE5(perf_counter_open,
3198                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3199                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3200 {
3201         struct perf_counter *counter, *group_leader;
3202         struct perf_counter_hw_event hw_event;
3203         struct perf_counter_context *ctx;
3204         struct file *counter_file = NULL;
3205         struct file *group_file = NULL;
3206         int fput_needed = 0;
3207         int fput_needed2 = 0;
3208         int ret;
3209
3210         /* for future expandability... */
3211         if (flags)
3212                 return -EINVAL;
3213
3214         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3215                 return -EFAULT;
3216
3217         /*
3218          * Get the target context (task or percpu):
3219          */
3220         ctx = find_get_context(pid, cpu);
3221         if (IS_ERR(ctx))
3222                 return PTR_ERR(ctx);
3223
3224         /*
3225          * Look up the group leader (we will attach this counter to it):
3226          */
3227         group_leader = NULL;
3228         if (group_fd != -1) {
3229                 ret = -EINVAL;
3230                 group_file = fget_light(group_fd, &fput_needed);
3231                 if (!group_file)
3232                         goto err_put_context;
3233                 if (group_file->f_op != &perf_fops)
3234                         goto err_put_context;
3235
3236                 group_leader = group_file->private_data;
3237                 /*
3238                  * Do not allow a recursive hierarchy (this new sibling
3239                  * becoming part of another group-sibling):
3240                  */
3241                 if (group_leader->group_leader != group_leader)
3242                         goto err_put_context;
3243                 /*
3244                  * Do not allow to attach to a group in a different
3245                  * task or CPU context:
3246                  */
3247                 if (group_leader->ctx != ctx)
3248                         goto err_put_context;
3249                 /*
3250                  * Only a group leader can be exclusive or pinned
3251                  */
3252                 if (hw_event.exclusive || hw_event.pinned)
3253                         goto err_put_context;
3254         }
3255
3256         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3257                                      GFP_KERNEL);
3258         ret = PTR_ERR(counter);
3259         if (IS_ERR(counter))
3260                 goto err_put_context;
3261
3262         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3263         if (ret < 0)
3264                 goto err_free_put_context;
3265
3266         counter_file = fget_light(ret, &fput_needed2);
3267         if (!counter_file)
3268                 goto err_free_put_context;
3269
3270         counter->filp = counter_file;
3271         mutex_lock(&ctx->mutex);
3272         perf_install_in_context(ctx, counter, cpu);
3273         mutex_unlock(&ctx->mutex);
3274
3275         fput_light(counter_file, fput_needed2);
3276
3277 out_fput:
3278         fput_light(group_file, fput_needed);
3279
3280         return ret;
3281
3282 err_free_put_context:
3283         kfree(counter);
3284
3285 err_put_context:
3286         put_context(ctx);
3287
3288         goto out_fput;
3289 }
3290
3291 /*
3292  * inherit a counter from parent task to child task:
3293  */
3294 static struct perf_counter *
3295 inherit_counter(struct perf_counter *parent_counter,
3296               struct task_struct *parent,
3297               struct perf_counter_context *parent_ctx,
3298               struct task_struct *child,
3299               struct perf_counter *group_leader,
3300               struct perf_counter_context *child_ctx)
3301 {
3302         struct perf_counter *child_counter;
3303
3304         /*
3305          * Instead of creating recursive hierarchies of counters,
3306          * we link inherited counters back to the original parent,
3307          * which has a filp for sure, which we use as the reference
3308          * count:
3309          */
3310         if (parent_counter->parent)
3311                 parent_counter = parent_counter->parent;
3312
3313         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3314                                            parent_counter->cpu, child_ctx,
3315                                            group_leader, GFP_KERNEL);
3316         if (IS_ERR(child_counter))
3317                 return child_counter;
3318
3319         /*
3320          * Make the child state follow the state of the parent counter,
3321          * not its hw_event.disabled bit.  We hold the parent's mutex,
3322          * so we won't race with perf_counter_{en,dis}able_family.
3323          */
3324         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3325                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3326         else
3327                 child_counter->state = PERF_COUNTER_STATE_OFF;
3328
3329         /*
3330          * Link it up in the child's context:
3331          */
3332         add_counter_to_ctx(child_counter, child_ctx);
3333
3334         child_counter->parent = parent_counter;
3335         /*
3336          * inherit into child's child as well:
3337          */
3338         child_counter->hw_event.inherit = 1;
3339
3340         /*
3341          * Get a reference to the parent filp - we will fput it
3342          * when the child counter exits. This is safe to do because
3343          * we are in the parent and we know that the filp still
3344          * exists and has a nonzero count:
3345          */
3346         atomic_long_inc(&parent_counter->filp->f_count);
3347
3348         /*
3349          * Link this into the parent counter's child list
3350          */
3351         mutex_lock(&parent_counter->child_mutex);
3352         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3353         mutex_unlock(&parent_counter->child_mutex);
3354
3355         return child_counter;
3356 }
3357
3358 static int inherit_group(struct perf_counter *parent_counter,
3359               struct task_struct *parent,
3360               struct perf_counter_context *parent_ctx,
3361               struct task_struct *child,
3362               struct perf_counter_context *child_ctx)
3363 {
3364         struct perf_counter *leader;
3365         struct perf_counter *sub;
3366         struct perf_counter *child_ctr;
3367
3368         leader = inherit_counter(parent_counter, parent, parent_ctx,
3369                                  child, NULL, child_ctx);
3370         if (IS_ERR(leader))
3371                 return PTR_ERR(leader);
3372         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3373                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3374                                             child, leader, child_ctx);
3375                 if (IS_ERR(child_ctr))
3376                         return PTR_ERR(child_ctr);
3377         }
3378         return 0;
3379 }
3380
3381 static void sync_child_counter(struct perf_counter *child_counter,
3382                                struct perf_counter *parent_counter)
3383 {
3384         u64 child_val;
3385
3386         child_val = atomic64_read(&child_counter->count);
3387
3388         /*
3389          * Add back the child's count to the parent's count:
3390          */
3391         atomic64_add(child_val, &parent_counter->count);
3392         atomic64_add(child_counter->total_time_enabled,
3393                      &parent_counter->child_total_time_enabled);
3394         atomic64_add(child_counter->total_time_running,
3395                      &parent_counter->child_total_time_running);
3396
3397         /*
3398          * Remove this counter from the parent's list
3399          */
3400         mutex_lock(&parent_counter->child_mutex);
3401         list_del_init(&child_counter->child_list);
3402         mutex_unlock(&parent_counter->child_mutex);
3403
3404         /*
3405          * Release the parent counter, if this was the last
3406          * reference to it.
3407          */
3408         fput(parent_counter->filp);
3409 }
3410
3411 static void
3412 __perf_counter_exit_task(struct task_struct *child,
3413                          struct perf_counter *child_counter,
3414                          struct perf_counter_context *child_ctx)
3415 {
3416         struct perf_counter *parent_counter;
3417
3418         update_counter_times(child_counter);
3419         perf_counter_remove_from_context(child_counter);
3420
3421         parent_counter = child_counter->parent;
3422         /*
3423          * It can happen that parent exits first, and has counters
3424          * that are still around due to the child reference. These
3425          * counters need to be zapped - but otherwise linger.
3426          */
3427         if (parent_counter) {
3428                 sync_child_counter(child_counter, parent_counter);
3429                 free_counter(child_counter);
3430         }
3431 }
3432
3433 /*
3434  * When a child task exits, feed back counter values to parent counters.
3435  *
3436  * Note: we may be running in child context, but the PID is not hashed
3437  * anymore so new counters will not be added.
3438  * (XXX not sure that is true when we get called from flush_old_exec.
3439  *  -- paulus)
3440  */
3441 void perf_counter_exit_task(struct task_struct *child)
3442 {
3443         struct perf_counter *child_counter, *tmp;
3444         struct perf_counter_context *child_ctx;
3445         unsigned long flags;
3446
3447         WARN_ON_ONCE(child != current);
3448
3449         child_ctx = child->perf_counter_ctxp;
3450
3451         if (likely(!child_ctx))
3452                 return;
3453
3454         local_irq_save(flags);
3455         __perf_counter_task_sched_out(child_ctx);
3456         child->perf_counter_ctxp = NULL;
3457         local_irq_restore(flags);
3458
3459         mutex_lock(&child_ctx->mutex);
3460
3461 again:
3462         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3463                                  list_entry)
3464                 __perf_counter_exit_task(child, child_counter, child_ctx);
3465
3466         /*
3467          * If the last counter was a group counter, it will have appended all
3468          * its siblings to the list, but we obtained 'tmp' before that which
3469          * will still point to the list head terminating the iteration.
3470          */
3471         if (!list_empty(&child_ctx->counter_list))
3472                 goto again;
3473
3474         mutex_unlock(&child_ctx->mutex);
3475
3476         put_ctx(child_ctx);
3477 }
3478
3479 /*
3480  * Initialize the perf_counter context in task_struct
3481  */
3482 void perf_counter_init_task(struct task_struct *child)
3483 {
3484         struct perf_counter_context *child_ctx, *parent_ctx;
3485         struct perf_counter *counter;
3486         struct task_struct *parent = current;
3487         int inherited_all = 1;
3488
3489         child->perf_counter_ctxp = NULL;
3490
3491         /*
3492          * This is executed from the parent task context, so inherit
3493          * counters that have been marked for cloning.
3494          * First allocate and initialize a context for the child.
3495          */
3496
3497         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3498         if (!child_ctx)
3499                 return;
3500
3501         parent_ctx = parent->perf_counter_ctxp;
3502         if (likely(!parent_ctx || !parent_ctx->nr_counters))
3503                 return;
3504
3505         __perf_counter_init_context(child_ctx, child);
3506         child->perf_counter_ctxp = child_ctx;
3507
3508         /*
3509          * Lock the parent list. No need to lock the child - not PID
3510          * hashed yet and not running, so nobody can access it.
3511          */
3512         mutex_lock(&parent_ctx->mutex);
3513
3514         /*
3515          * We dont have to disable NMIs - we are only looking at
3516          * the list, not manipulating it:
3517          */
3518         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3519                 if (counter != counter->group_leader)
3520                         continue;
3521
3522                 if (!counter->hw_event.inherit) {
3523                         inherited_all = 0;
3524                         continue;
3525                 }
3526
3527                 if (inherit_group(counter, parent,
3528                                   parent_ctx, child, child_ctx)) {
3529                         inherited_all = 0;
3530                         break;
3531                 }
3532         }
3533
3534         if (inherited_all) {
3535                 /*
3536                  * Mark the child context as a clone of the parent
3537                  * context, or of whatever the parent is a clone of.
3538                  */
3539                 if (parent_ctx->parent_ctx) {
3540                         child_ctx->parent_ctx = parent_ctx->parent_ctx;
3541                         child_ctx->parent_gen = parent_ctx->parent_gen;
3542                 } else {
3543                         child_ctx->parent_ctx = parent_ctx;
3544                         child_ctx->parent_gen = parent_ctx->generation;
3545                 }
3546                 get_ctx(child_ctx->parent_ctx);
3547         }
3548
3549         mutex_unlock(&parent_ctx->mutex);
3550 }
3551
3552 static void __cpuinit perf_counter_init_cpu(int cpu)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555
3556         cpuctx = &per_cpu(perf_cpu_context, cpu);
3557         __perf_counter_init_context(&cpuctx->ctx, NULL);
3558
3559         spin_lock(&perf_resource_lock);
3560         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3561         spin_unlock(&perf_resource_lock);
3562
3563         hw_perf_counter_setup(cpu);
3564 }
3565
3566 #ifdef CONFIG_HOTPLUG_CPU
3567 static void __perf_counter_exit_cpu(void *info)
3568 {
3569         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3570         struct perf_counter_context *ctx = &cpuctx->ctx;
3571         struct perf_counter *counter, *tmp;
3572
3573         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3574                 __perf_counter_remove_from_context(counter);
3575 }
3576 static void perf_counter_exit_cpu(int cpu)
3577 {
3578         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3579         struct perf_counter_context *ctx = &cpuctx->ctx;
3580
3581         mutex_lock(&ctx->mutex);
3582         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3583         mutex_unlock(&ctx->mutex);
3584 }
3585 #else
3586 static inline void perf_counter_exit_cpu(int cpu) { }
3587 #endif
3588
3589 static int __cpuinit
3590 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3591 {
3592         unsigned int cpu = (long)hcpu;
3593
3594         switch (action) {
3595
3596         case CPU_UP_PREPARE:
3597         case CPU_UP_PREPARE_FROZEN:
3598                 perf_counter_init_cpu(cpu);
3599                 break;
3600
3601         case CPU_DOWN_PREPARE:
3602         case CPU_DOWN_PREPARE_FROZEN:
3603                 perf_counter_exit_cpu(cpu);
3604                 break;
3605
3606         default:
3607                 break;
3608         }
3609
3610         return NOTIFY_OK;
3611 }
3612
3613 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3614         .notifier_call          = perf_cpu_notify,
3615 };
3616
3617 void __init perf_counter_init(void)
3618 {
3619         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3620                         (void *)(long)smp_processor_id());
3621         register_cpu_notifier(&perf_cpu_nb);
3622 }
3623
3624 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3625 {
3626         return sprintf(buf, "%d\n", perf_reserved_percpu);
3627 }
3628
3629 static ssize_t
3630 perf_set_reserve_percpu(struct sysdev_class *class,
3631                         const char *buf,
3632                         size_t count)
3633 {
3634         struct perf_cpu_context *cpuctx;
3635         unsigned long val;
3636         int err, cpu, mpt;
3637
3638         err = strict_strtoul(buf, 10, &val);
3639         if (err)
3640                 return err;
3641         if (val > perf_max_counters)
3642                 return -EINVAL;
3643
3644         spin_lock(&perf_resource_lock);
3645         perf_reserved_percpu = val;
3646         for_each_online_cpu(cpu) {
3647                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3648                 spin_lock_irq(&cpuctx->ctx.lock);
3649                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3650                           perf_max_counters - perf_reserved_percpu);
3651                 cpuctx->max_pertask = mpt;
3652                 spin_unlock_irq(&cpuctx->ctx.lock);
3653         }
3654         spin_unlock(&perf_resource_lock);
3655
3656         return count;
3657 }
3658
3659 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3660 {
3661         return sprintf(buf, "%d\n", perf_overcommit);
3662 }
3663
3664 static ssize_t
3665 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3666 {
3667         unsigned long val;
3668         int err;
3669
3670         err = strict_strtoul(buf, 10, &val);
3671         if (err)
3672                 return err;
3673         if (val > 1)
3674                 return -EINVAL;
3675
3676         spin_lock(&perf_resource_lock);
3677         perf_overcommit = val;
3678         spin_unlock(&perf_resource_lock);
3679
3680         return count;
3681 }
3682
3683 static SYSDEV_CLASS_ATTR(
3684                                 reserve_percpu,
3685                                 0644,
3686                                 perf_show_reserve_percpu,
3687                                 perf_set_reserve_percpu
3688                         );
3689
3690 static SYSDEV_CLASS_ATTR(
3691                                 overcommit,
3692                                 0644,
3693                                 perf_show_overcommit,
3694                                 perf_set_overcommit
3695                         );
3696
3697 static struct attribute *perfclass_attrs[] = {
3698         &attr_reserve_percpu.attr,
3699         &attr_overcommit.attr,
3700         NULL
3701 };
3702
3703 static struct attribute_group perfclass_attr_group = {
3704         .attrs                  = perfclass_attrs,
3705         .name                   = "perf_counters",
3706 };
3707
3708 static int __init perf_counter_sysfs_init(void)
3709 {
3710         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3711                                   &perfclass_attr_group);
3712 }
3713 device_initcall(perf_counter_sysfs_init);