perf_counter: Use PID namespaces properly
[profile/ivi/kernel-adaptation-intel-automotive.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52  * Lock for (sysadmin-configurable) counter reservations:
53  */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57  * Architecture provided APIs - weak aliases:
58  */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61         return NULL;
62 }
63
64 void __weak hw_perf_disable(void)               { barrier(); }
65 void __weak hw_perf_enable(void)                { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
68
69 int __weak
70 hw_perf_group_sched_in(struct perf_counter *group_leader,
71                struct perf_cpu_context *cpuctx,
72                struct perf_counter_context *ctx, int cpu)
73 {
74         return 0;
75 }
76
77 void __weak perf_counter_print_debug(void)      { }
78
79 static DEFINE_PER_CPU(int, disable_count);
80
81 void __perf_disable(void)
82 {
83         __get_cpu_var(disable_count)++;
84 }
85
86 bool __perf_enable(void)
87 {
88         return !--__get_cpu_var(disable_count);
89 }
90
91 void perf_disable(void)
92 {
93         __perf_disable();
94         hw_perf_disable();
95 }
96
97 void perf_enable(void)
98 {
99         if (__perf_enable())
100                 hw_perf_enable();
101 }
102
103 static void get_ctx(struct perf_counter_context *ctx)
104 {
105         atomic_inc(&ctx->refcount);
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_counter_context *ctx;
111
112         ctx = container_of(head, struct perf_counter_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_counter_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 /*
128  * Get the perf_counter_context for a task and lock it.
129  * This has to cope with with the fact that until it is locked,
130  * the context could get moved to another task.
131  */
132 static struct perf_counter_context *
133 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134 {
135         struct perf_counter_context *ctx;
136
137         rcu_read_lock();
138  retry:
139         ctx = rcu_dereference(task->perf_counter_ctxp);
140         if (ctx) {
141                 /*
142                  * If this context is a clone of another, it might
143                  * get swapped for another underneath us by
144                  * perf_counter_task_sched_out, though the
145                  * rcu_read_lock() protects us from any context
146                  * getting freed.  Lock the context and check if it
147                  * got swapped before we could get the lock, and retry
148                  * if so.  If we locked the right context, then it
149                  * can't get swapped on us any more.
150                  */
151                 spin_lock_irqsave(&ctx->lock, *flags);
152                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
153                         spin_unlock_irqrestore(&ctx->lock, *flags);
154                         goto retry;
155                 }
156         }
157         rcu_read_unlock();
158         return ctx;
159 }
160
161 /*
162  * Get the context for a task and increment its pin_count so it
163  * can't get swapped to another task.  This also increments its
164  * reference count so that the context can't get freed.
165  */
166 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
167 {
168         struct perf_counter_context *ctx;
169         unsigned long flags;
170
171         ctx = perf_lock_task_context(task, &flags);
172         if (ctx) {
173                 ++ctx->pin_count;
174                 get_ctx(ctx);
175                 spin_unlock_irqrestore(&ctx->lock, flags);
176         }
177         return ctx;
178 }
179
180 static void perf_unpin_context(struct perf_counter_context *ctx)
181 {
182         unsigned long flags;
183
184         spin_lock_irqsave(&ctx->lock, flags);
185         --ctx->pin_count;
186         spin_unlock_irqrestore(&ctx->lock, flags);
187         put_ctx(ctx);
188 }
189
190 /*
191  * Add a counter from the lists for its context.
192  * Must be called with ctx->mutex and ctx->lock held.
193  */
194 static void
195 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
196 {
197         struct perf_counter *group_leader = counter->group_leader;
198
199         /*
200          * Depending on whether it is a standalone or sibling counter,
201          * add it straight to the context's counter list, or to the group
202          * leader's sibling list:
203          */
204         if (group_leader == counter)
205                 list_add_tail(&counter->list_entry, &ctx->counter_list);
206         else {
207                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
208                 group_leader->nr_siblings++;
209         }
210
211         list_add_rcu(&counter->event_entry, &ctx->event_list);
212         ctx->nr_counters++;
213 }
214
215 /*
216  * Remove a counter from the lists for its context.
217  * Must be called with ctx->mutex and ctx->lock held.
218  */
219 static void
220 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
221 {
222         struct perf_counter *sibling, *tmp;
223
224         if (list_empty(&counter->list_entry))
225                 return;
226         ctx->nr_counters--;
227
228         list_del_init(&counter->list_entry);
229         list_del_rcu(&counter->event_entry);
230
231         if (counter->group_leader != counter)
232                 counter->group_leader->nr_siblings--;
233
234         /*
235          * If this was a group counter with sibling counters then
236          * upgrade the siblings to singleton counters by adding them
237          * to the context list directly:
238          */
239         list_for_each_entry_safe(sibling, tmp,
240                                  &counter->sibling_list, list_entry) {
241
242                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
243                 sibling->group_leader = sibling;
244         }
245 }
246
247 static void
248 counter_sched_out(struct perf_counter *counter,
249                   struct perf_cpu_context *cpuctx,
250                   struct perf_counter_context *ctx)
251 {
252         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
253                 return;
254
255         counter->state = PERF_COUNTER_STATE_INACTIVE;
256         counter->tstamp_stopped = ctx->time;
257         counter->pmu->disable(counter);
258         counter->oncpu = -1;
259
260         if (!is_software_counter(counter))
261                 cpuctx->active_oncpu--;
262         ctx->nr_active--;
263         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
264                 cpuctx->exclusive = 0;
265 }
266
267 static void
268 group_sched_out(struct perf_counter *group_counter,
269                 struct perf_cpu_context *cpuctx,
270                 struct perf_counter_context *ctx)
271 {
272         struct perf_counter *counter;
273
274         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
275                 return;
276
277         counter_sched_out(group_counter, cpuctx, ctx);
278
279         /*
280          * Schedule out siblings (if any):
281          */
282         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
283                 counter_sched_out(counter, cpuctx, ctx);
284
285         if (group_counter->hw_event.exclusive)
286                 cpuctx->exclusive = 0;
287 }
288
289 /*
290  * Cross CPU call to remove a performance counter
291  *
292  * We disable the counter on the hardware level first. After that we
293  * remove it from the context list.
294  */
295 static void __perf_counter_remove_from_context(void *info)
296 {
297         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
298         struct perf_counter *counter = info;
299         struct perf_counter_context *ctx = counter->ctx;
300
301         /*
302          * If this is a task context, we need to check whether it is
303          * the current task context of this cpu. If not it has been
304          * scheduled out before the smp call arrived.
305          */
306         if (ctx->task && cpuctx->task_ctx != ctx)
307                 return;
308
309         spin_lock(&ctx->lock);
310         /*
311          * Protect the list operation against NMI by disabling the
312          * counters on a global level.
313          */
314         perf_disable();
315
316         counter_sched_out(counter, cpuctx, ctx);
317
318         list_del_counter(counter, ctx);
319
320         if (!ctx->task) {
321                 /*
322                  * Allow more per task counters with respect to the
323                  * reservation:
324                  */
325                 cpuctx->max_pertask =
326                         min(perf_max_counters - ctx->nr_counters,
327                             perf_max_counters - perf_reserved_percpu);
328         }
329
330         perf_enable();
331         spin_unlock(&ctx->lock);
332 }
333
334
335 /*
336  * Remove the counter from a task's (or a CPU's) list of counters.
337  *
338  * Must be called with ctx->mutex held.
339  *
340  * CPU counters are removed with a smp call. For task counters we only
341  * call when the task is on a CPU.
342  *
343  * If counter->ctx is a cloned context, callers must make sure that
344  * every task struct that counter->ctx->task could possibly point to
345  * remains valid.  This is OK when called from perf_release since
346  * that only calls us on the top-level context, which can't be a clone.
347  * When called from perf_counter_exit_task, it's OK because the
348  * context has been detached from its task.
349  */
350 static void perf_counter_remove_from_context(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Per cpu counters are removed via an smp call and
358                  * the removal is always sucessful.
359                  */
360                 smp_call_function_single(counter->cpu,
361                                          __perf_counter_remove_from_context,
362                                          counter, 1);
363                 return;
364         }
365
366 retry:
367         task_oncpu_function_call(task, __perf_counter_remove_from_context,
368                                  counter);
369
370         spin_lock_irq(&ctx->lock);
371         /*
372          * If the context is active we need to retry the smp call.
373          */
374         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
375                 spin_unlock_irq(&ctx->lock);
376                 goto retry;
377         }
378
379         /*
380          * The lock prevents that this context is scheduled in so we
381          * can remove the counter safely, if the call above did not
382          * succeed.
383          */
384         if (!list_empty(&counter->list_entry)) {
385                 list_del_counter(counter, ctx);
386         }
387         spin_unlock_irq(&ctx->lock);
388 }
389
390 static inline u64 perf_clock(void)
391 {
392         return cpu_clock(smp_processor_id());
393 }
394
395 /*
396  * Update the record of the current time in a context.
397  */
398 static void update_context_time(struct perf_counter_context *ctx)
399 {
400         u64 now = perf_clock();
401
402         ctx->time += now - ctx->timestamp;
403         ctx->timestamp = now;
404 }
405
406 /*
407  * Update the total_time_enabled and total_time_running fields for a counter.
408  */
409 static void update_counter_times(struct perf_counter *counter)
410 {
411         struct perf_counter_context *ctx = counter->ctx;
412         u64 run_end;
413
414         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
415                 return;
416
417         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
418
419         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
420                 run_end = counter->tstamp_stopped;
421         else
422                 run_end = ctx->time;
423
424         counter->total_time_running = run_end - counter->tstamp_running;
425 }
426
427 /*
428  * Update total_time_enabled and total_time_running for all counters in a group.
429  */
430 static void update_group_times(struct perf_counter *leader)
431 {
432         struct perf_counter *counter;
433
434         update_counter_times(leader);
435         list_for_each_entry(counter, &leader->sibling_list, list_entry)
436                 update_counter_times(counter);
437 }
438
439 /*
440  * Cross CPU call to disable a performance counter
441  */
442 static void __perf_counter_disable(void *info)
443 {
444         struct perf_counter *counter = info;
445         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
446         struct perf_counter_context *ctx = counter->ctx;
447
448         /*
449          * If this is a per-task counter, need to check whether this
450          * counter's task is the current task on this cpu.
451          */
452         if (ctx->task && cpuctx->task_ctx != ctx)
453                 return;
454
455         spin_lock(&ctx->lock);
456
457         /*
458          * If the counter is on, turn it off.
459          * If it is in error state, leave it in error state.
460          */
461         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
462                 update_context_time(ctx);
463                 update_counter_times(counter);
464                 if (counter == counter->group_leader)
465                         group_sched_out(counter, cpuctx, ctx);
466                 else
467                         counter_sched_out(counter, cpuctx, ctx);
468                 counter->state = PERF_COUNTER_STATE_OFF;
469         }
470
471         spin_unlock(&ctx->lock);
472 }
473
474 /*
475  * Disable a counter.
476  *
477  * If counter->ctx is a cloned context, callers must make sure that
478  * every task struct that counter->ctx->task could possibly point to
479  * remains valid.  This condition is satisifed when called through
480  * perf_counter_for_each_child or perf_counter_for_each because they
481  * hold the top-level counter's child_mutex, so any descendant that
482  * goes to exit will block in sync_child_counter.
483  * When called from perf_pending_counter it's OK because counter->ctx
484  * is the current context on this CPU and preemption is disabled,
485  * hence we can't get into perf_counter_task_sched_out for this context.
486  */
487 static void perf_counter_disable(struct perf_counter *counter)
488 {
489         struct perf_counter_context *ctx = counter->ctx;
490         struct task_struct *task = ctx->task;
491
492         if (!task) {
493                 /*
494                  * Disable the counter on the cpu that it's on
495                  */
496                 smp_call_function_single(counter->cpu, __perf_counter_disable,
497                                          counter, 1);
498                 return;
499         }
500
501  retry:
502         task_oncpu_function_call(task, __perf_counter_disable, counter);
503
504         spin_lock_irq(&ctx->lock);
505         /*
506          * If the counter is still active, we need to retry the cross-call.
507          */
508         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
509                 spin_unlock_irq(&ctx->lock);
510                 goto retry;
511         }
512
513         /*
514          * Since we have the lock this context can't be scheduled
515          * in, so we can change the state safely.
516          */
517         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
518                 update_counter_times(counter);
519                 counter->state = PERF_COUNTER_STATE_OFF;
520         }
521
522         spin_unlock_irq(&ctx->lock);
523 }
524
525 static int
526 counter_sched_in(struct perf_counter *counter,
527                  struct perf_cpu_context *cpuctx,
528                  struct perf_counter_context *ctx,
529                  int cpu)
530 {
531         if (counter->state <= PERF_COUNTER_STATE_OFF)
532                 return 0;
533
534         counter->state = PERF_COUNTER_STATE_ACTIVE;
535         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
536         /*
537          * The new state must be visible before we turn it on in the hardware:
538          */
539         smp_wmb();
540
541         if (counter->pmu->enable(counter)) {
542                 counter->state = PERF_COUNTER_STATE_INACTIVE;
543                 counter->oncpu = -1;
544                 return -EAGAIN;
545         }
546
547         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
548
549         if (!is_software_counter(counter))
550                 cpuctx->active_oncpu++;
551         ctx->nr_active++;
552
553         if (counter->hw_event.exclusive)
554                 cpuctx->exclusive = 1;
555
556         return 0;
557 }
558
559 static int
560 group_sched_in(struct perf_counter *group_counter,
561                struct perf_cpu_context *cpuctx,
562                struct perf_counter_context *ctx,
563                int cpu)
564 {
565         struct perf_counter *counter, *partial_group;
566         int ret;
567
568         if (group_counter->state == PERF_COUNTER_STATE_OFF)
569                 return 0;
570
571         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
572         if (ret)
573                 return ret < 0 ? ret : 0;
574
575         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
576                 return -EAGAIN;
577
578         /*
579          * Schedule in siblings as one group (if any):
580          */
581         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
582                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
583                         partial_group = counter;
584                         goto group_error;
585                 }
586         }
587
588         return 0;
589
590 group_error:
591         /*
592          * Groups can be scheduled in as one unit only, so undo any
593          * partial group before returning:
594          */
595         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
596                 if (counter == partial_group)
597                         break;
598                 counter_sched_out(counter, cpuctx, ctx);
599         }
600         counter_sched_out(group_counter, cpuctx, ctx);
601
602         return -EAGAIN;
603 }
604
605 /*
606  * Return 1 for a group consisting entirely of software counters,
607  * 0 if the group contains any hardware counters.
608  */
609 static int is_software_only_group(struct perf_counter *leader)
610 {
611         struct perf_counter *counter;
612
613         if (!is_software_counter(leader))
614                 return 0;
615
616         list_for_each_entry(counter, &leader->sibling_list, list_entry)
617                 if (!is_software_counter(counter))
618                         return 0;
619
620         return 1;
621 }
622
623 /*
624  * Work out whether we can put this counter group on the CPU now.
625  */
626 static int group_can_go_on(struct perf_counter *counter,
627                            struct perf_cpu_context *cpuctx,
628                            int can_add_hw)
629 {
630         /*
631          * Groups consisting entirely of software counters can always go on.
632          */
633         if (is_software_only_group(counter))
634                 return 1;
635         /*
636          * If an exclusive group is already on, no other hardware
637          * counters can go on.
638          */
639         if (cpuctx->exclusive)
640                 return 0;
641         /*
642          * If this group is exclusive and there are already
643          * counters on the CPU, it can't go on.
644          */
645         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
646                 return 0;
647         /*
648          * Otherwise, try to add it if all previous groups were able
649          * to go on.
650          */
651         return can_add_hw;
652 }
653
654 static void add_counter_to_ctx(struct perf_counter *counter,
655                                struct perf_counter_context *ctx)
656 {
657         list_add_counter(counter, ctx);
658         counter->tstamp_enabled = ctx->time;
659         counter->tstamp_running = ctx->time;
660         counter->tstamp_stopped = ctx->time;
661 }
662
663 /*
664  * Cross CPU call to install and enable a performance counter
665  *
666  * Must be called with ctx->mutex held
667  */
668 static void __perf_install_in_context(void *info)
669 {
670         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
671         struct perf_counter *counter = info;
672         struct perf_counter_context *ctx = counter->ctx;
673         struct perf_counter *leader = counter->group_leader;
674         int cpu = smp_processor_id();
675         int err;
676
677         /*
678          * If this is a task context, we need to check whether it is
679          * the current task context of this cpu. If not it has been
680          * scheduled out before the smp call arrived.
681          * Or possibly this is the right context but it isn't
682          * on this cpu because it had no counters.
683          */
684         if (ctx->task && cpuctx->task_ctx != ctx) {
685                 if (cpuctx->task_ctx || ctx->task != current)
686                         return;
687                 cpuctx->task_ctx = ctx;
688         }
689
690         spin_lock(&ctx->lock);
691         ctx->is_active = 1;
692         update_context_time(ctx);
693
694         /*
695          * Protect the list operation against NMI by disabling the
696          * counters on a global level. NOP for non NMI based counters.
697          */
698         perf_disable();
699
700         add_counter_to_ctx(counter, ctx);
701
702         /*
703          * Don't put the counter on if it is disabled or if
704          * it is in a group and the group isn't on.
705          */
706         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
707             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
708                 goto unlock;
709
710         /*
711          * An exclusive counter can't go on if there are already active
712          * hardware counters, and no hardware counter can go on if there
713          * is already an exclusive counter on.
714          */
715         if (!group_can_go_on(counter, cpuctx, 1))
716                 err = -EEXIST;
717         else
718                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
719
720         if (err) {
721                 /*
722                  * This counter couldn't go on.  If it is in a group
723                  * then we have to pull the whole group off.
724                  * If the counter group is pinned then put it in error state.
725                  */
726                 if (leader != counter)
727                         group_sched_out(leader, cpuctx, ctx);
728                 if (leader->hw_event.pinned) {
729                         update_group_times(leader);
730                         leader->state = PERF_COUNTER_STATE_ERROR;
731                 }
732         }
733
734         if (!err && !ctx->task && cpuctx->max_pertask)
735                 cpuctx->max_pertask--;
736
737  unlock:
738         perf_enable();
739
740         spin_unlock(&ctx->lock);
741 }
742
743 /*
744  * Attach a performance counter to a context
745  *
746  * First we add the counter to the list with the hardware enable bit
747  * in counter->hw_config cleared.
748  *
749  * If the counter is attached to a task which is on a CPU we use a smp
750  * call to enable it in the task context. The task might have been
751  * scheduled away, but we check this in the smp call again.
752  *
753  * Must be called with ctx->mutex held.
754  */
755 static void
756 perf_install_in_context(struct perf_counter_context *ctx,
757                         struct perf_counter *counter,
758                         int cpu)
759 {
760         struct task_struct *task = ctx->task;
761
762         if (!task) {
763                 /*
764                  * Per cpu counters are installed via an smp call and
765                  * the install is always sucessful.
766                  */
767                 smp_call_function_single(cpu, __perf_install_in_context,
768                                          counter, 1);
769                 return;
770         }
771
772 retry:
773         task_oncpu_function_call(task, __perf_install_in_context,
774                                  counter);
775
776         spin_lock_irq(&ctx->lock);
777         /*
778          * we need to retry the smp call.
779          */
780         if (ctx->is_active && list_empty(&counter->list_entry)) {
781                 spin_unlock_irq(&ctx->lock);
782                 goto retry;
783         }
784
785         /*
786          * The lock prevents that this context is scheduled in so we
787          * can add the counter safely, if it the call above did not
788          * succeed.
789          */
790         if (list_empty(&counter->list_entry))
791                 add_counter_to_ctx(counter, ctx);
792         spin_unlock_irq(&ctx->lock);
793 }
794
795 /*
796  * Cross CPU call to enable a performance counter
797  */
798 static void __perf_counter_enable(void *info)
799 {
800         struct perf_counter *counter = info;
801         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
802         struct perf_counter_context *ctx = counter->ctx;
803         struct perf_counter *leader = counter->group_leader;
804         int err;
805
806         /*
807          * If this is a per-task counter, need to check whether this
808          * counter's task is the current task on this cpu.
809          */
810         if (ctx->task && cpuctx->task_ctx != ctx) {
811                 if (cpuctx->task_ctx || ctx->task != current)
812                         return;
813                 cpuctx->task_ctx = ctx;
814         }
815
816         spin_lock(&ctx->lock);
817         ctx->is_active = 1;
818         update_context_time(ctx);
819
820         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
821                 goto unlock;
822         counter->state = PERF_COUNTER_STATE_INACTIVE;
823         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
824
825         /*
826          * If the counter is in a group and isn't the group leader,
827          * then don't put it on unless the group is on.
828          */
829         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
830                 goto unlock;
831
832         if (!group_can_go_on(counter, cpuctx, 1)) {
833                 err = -EEXIST;
834         } else {
835                 perf_disable();
836                 if (counter == leader)
837                         err = group_sched_in(counter, cpuctx, ctx,
838                                              smp_processor_id());
839                 else
840                         err = counter_sched_in(counter, cpuctx, ctx,
841                                                smp_processor_id());
842                 perf_enable();
843         }
844
845         if (err) {
846                 /*
847                  * If this counter can't go on and it's part of a
848                  * group, then the whole group has to come off.
849                  */
850                 if (leader != counter)
851                         group_sched_out(leader, cpuctx, ctx);
852                 if (leader->hw_event.pinned) {
853                         update_group_times(leader);
854                         leader->state = PERF_COUNTER_STATE_ERROR;
855                 }
856         }
857
858  unlock:
859         spin_unlock(&ctx->lock);
860 }
861
862 /*
863  * Enable a counter.
864  *
865  * If counter->ctx is a cloned context, callers must make sure that
866  * every task struct that counter->ctx->task could possibly point to
867  * remains valid.  This condition is satisfied when called through
868  * perf_counter_for_each_child or perf_counter_for_each as described
869  * for perf_counter_disable.
870  */
871 static void perf_counter_enable(struct perf_counter *counter)
872 {
873         struct perf_counter_context *ctx = counter->ctx;
874         struct task_struct *task = ctx->task;
875
876         if (!task) {
877                 /*
878                  * Enable the counter on the cpu that it's on
879                  */
880                 smp_call_function_single(counter->cpu, __perf_counter_enable,
881                                          counter, 1);
882                 return;
883         }
884
885         spin_lock_irq(&ctx->lock);
886         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
887                 goto out;
888
889         /*
890          * If the counter is in error state, clear that first.
891          * That way, if we see the counter in error state below, we
892          * know that it has gone back into error state, as distinct
893          * from the task having been scheduled away before the
894          * cross-call arrived.
895          */
896         if (counter->state == PERF_COUNTER_STATE_ERROR)
897                 counter->state = PERF_COUNTER_STATE_OFF;
898
899  retry:
900         spin_unlock_irq(&ctx->lock);
901         task_oncpu_function_call(task, __perf_counter_enable, counter);
902
903         spin_lock_irq(&ctx->lock);
904
905         /*
906          * If the context is active and the counter is still off,
907          * we need to retry the cross-call.
908          */
909         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
910                 goto retry;
911
912         /*
913          * Since we have the lock this context can't be scheduled
914          * in, so we can change the state safely.
915          */
916         if (counter->state == PERF_COUNTER_STATE_OFF) {
917                 counter->state = PERF_COUNTER_STATE_INACTIVE;
918                 counter->tstamp_enabled =
919                         ctx->time - counter->total_time_enabled;
920         }
921  out:
922         spin_unlock_irq(&ctx->lock);
923 }
924
925 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
926 {
927         /*
928          * not supported on inherited counters
929          */
930         if (counter->hw_event.inherit)
931                 return -EINVAL;
932
933         atomic_add(refresh, &counter->event_limit);
934         perf_counter_enable(counter);
935
936         return 0;
937 }
938
939 void __perf_counter_sched_out(struct perf_counter_context *ctx,
940                               struct perf_cpu_context *cpuctx)
941 {
942         struct perf_counter *counter;
943
944         spin_lock(&ctx->lock);
945         ctx->is_active = 0;
946         if (likely(!ctx->nr_counters))
947                 goto out;
948         update_context_time(ctx);
949
950         perf_disable();
951         if (ctx->nr_active) {
952                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
953                         if (counter != counter->group_leader)
954                                 counter_sched_out(counter, cpuctx, ctx);
955                         else
956                                 group_sched_out(counter, cpuctx, ctx);
957                 }
958         }
959         perf_enable();
960  out:
961         spin_unlock(&ctx->lock);
962 }
963
964 /*
965  * Test whether two contexts are equivalent, i.e. whether they
966  * have both been cloned from the same version of the same context
967  * and they both have the same number of enabled counters.
968  * If the number of enabled counters is the same, then the set
969  * of enabled counters should be the same, because these are both
970  * inherited contexts, therefore we can't access individual counters
971  * in them directly with an fd; we can only enable/disable all
972  * counters via prctl, or enable/disable all counters in a family
973  * via ioctl, which will have the same effect on both contexts.
974  */
975 static int context_equiv(struct perf_counter_context *ctx1,
976                          struct perf_counter_context *ctx2)
977 {
978         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
979                 && ctx1->parent_gen == ctx2->parent_gen
980                 && !ctx1->pin_count && !ctx2->pin_count;
981 }
982
983 /*
984  * Called from scheduler to remove the counters of the current task,
985  * with interrupts disabled.
986  *
987  * We stop each counter and update the counter value in counter->count.
988  *
989  * This does not protect us against NMI, but disable()
990  * sets the disabled bit in the control field of counter _before_
991  * accessing the counter control register. If a NMI hits, then it will
992  * not restart the counter.
993  */
994 void perf_counter_task_sched_out(struct task_struct *task,
995                                  struct task_struct *next, int cpu)
996 {
997         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
998         struct perf_counter_context *ctx = task->perf_counter_ctxp;
999         struct perf_counter_context *next_ctx;
1000         struct perf_counter_context *parent;
1001         struct pt_regs *regs;
1002         int do_switch = 1;
1003
1004         regs = task_pt_regs(task);
1005         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1006
1007         if (likely(!ctx || !cpuctx->task_ctx))
1008                 return;
1009
1010         update_context_time(ctx);
1011
1012         rcu_read_lock();
1013         parent = rcu_dereference(ctx->parent_ctx);
1014         next_ctx = next->perf_counter_ctxp;
1015         if (parent && next_ctx &&
1016             rcu_dereference(next_ctx->parent_ctx) == parent) {
1017                 /*
1018                  * Looks like the two contexts are clones, so we might be
1019                  * able to optimize the context switch.  We lock both
1020                  * contexts and check that they are clones under the
1021                  * lock (including re-checking that neither has been
1022                  * uncloned in the meantime).  It doesn't matter which
1023                  * order we take the locks because no other cpu could
1024                  * be trying to lock both of these tasks.
1025                  */
1026                 spin_lock(&ctx->lock);
1027                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1028                 if (context_equiv(ctx, next_ctx)) {
1029                         /*
1030                          * XXX do we need a memory barrier of sorts
1031                          * wrt to rcu_dereference() of perf_counter_ctxp
1032                          */
1033                         task->perf_counter_ctxp = next_ctx;
1034                         next->perf_counter_ctxp = ctx;
1035                         ctx->task = next;
1036                         next_ctx->task = task;
1037                         do_switch = 0;
1038                 }
1039                 spin_unlock(&next_ctx->lock);
1040                 spin_unlock(&ctx->lock);
1041         }
1042         rcu_read_unlock();
1043
1044         if (do_switch) {
1045                 __perf_counter_sched_out(ctx, cpuctx);
1046                 cpuctx->task_ctx = NULL;
1047         }
1048 }
1049
1050 /*
1051  * Called with IRQs disabled
1052  */
1053 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1054 {
1055         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1056
1057         if (!cpuctx->task_ctx)
1058                 return;
1059
1060         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1061                 return;
1062
1063         __perf_counter_sched_out(ctx, cpuctx);
1064         cpuctx->task_ctx = NULL;
1065 }
1066
1067 /*
1068  * Called with IRQs disabled
1069  */
1070 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1071 {
1072         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1073 }
1074
1075 static void
1076 __perf_counter_sched_in(struct perf_counter_context *ctx,
1077                         struct perf_cpu_context *cpuctx, int cpu)
1078 {
1079         struct perf_counter *counter;
1080         int can_add_hw = 1;
1081
1082         spin_lock(&ctx->lock);
1083         ctx->is_active = 1;
1084         if (likely(!ctx->nr_counters))
1085                 goto out;
1086
1087         ctx->timestamp = perf_clock();
1088
1089         perf_disable();
1090
1091         /*
1092          * First go through the list and put on any pinned groups
1093          * in order to give them the best chance of going on.
1094          */
1095         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1096                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1097                     !counter->hw_event.pinned)
1098                         continue;
1099                 if (counter->cpu != -1 && counter->cpu != cpu)
1100                         continue;
1101
1102                 if (counter != counter->group_leader)
1103                         counter_sched_in(counter, cpuctx, ctx, cpu);
1104                 else {
1105                         if (group_can_go_on(counter, cpuctx, 1))
1106                                 group_sched_in(counter, cpuctx, ctx, cpu);
1107                 }
1108
1109                 /*
1110                  * If this pinned group hasn't been scheduled,
1111                  * put it in error state.
1112                  */
1113                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114                         update_group_times(counter);
1115                         counter->state = PERF_COUNTER_STATE_ERROR;
1116                 }
1117         }
1118
1119         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1120                 /*
1121                  * Ignore counters in OFF or ERROR state, and
1122                  * ignore pinned counters since we did them already.
1123                  */
1124                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1125                     counter->hw_event.pinned)
1126                         continue;
1127
1128                 /*
1129                  * Listen to the 'cpu' scheduling filter constraint
1130                  * of counters:
1131                  */
1132                 if (counter->cpu != -1 && counter->cpu != cpu)
1133                         continue;
1134
1135                 if (counter != counter->group_leader) {
1136                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1137                                 can_add_hw = 0;
1138                 } else {
1139                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1140                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1141                                         can_add_hw = 0;
1142                         }
1143                 }
1144         }
1145         perf_enable();
1146  out:
1147         spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151  * Called from scheduler to add the counters of the current task
1152  * with interrupts disabled.
1153  *
1154  * We restore the counter value and then enable it.
1155  *
1156  * This does not protect us against NMI, but enable()
1157  * sets the enabled bit in the control field of counter _before_
1158  * accessing the counter control register. If a NMI hits, then it will
1159  * keep the counter running.
1160  */
1161 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1162 {
1163         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1164         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1165
1166         if (likely(!ctx))
1167                 return;
1168         if (cpuctx->task_ctx == ctx)
1169                 return;
1170         __perf_counter_sched_in(ctx, cpuctx, cpu);
1171         cpuctx->task_ctx = ctx;
1172 }
1173
1174 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1175 {
1176         struct perf_counter_context *ctx = &cpuctx->ctx;
1177
1178         __perf_counter_sched_in(ctx, cpuctx, cpu);
1179 }
1180
1181 #define MAX_INTERRUPTS (~0ULL)
1182
1183 static void perf_log_throttle(struct perf_counter *counter, int enable);
1184 static void perf_log_period(struct perf_counter *counter, u64 period);
1185
1186 static void perf_adjust_freq(struct perf_counter_context *ctx)
1187 {
1188         struct perf_counter *counter;
1189         u64 interrupts, irq_period;
1190         u64 events, period;
1191         s64 delta;
1192
1193         spin_lock(&ctx->lock);
1194         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1195                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1196                         continue;
1197
1198                 interrupts = counter->hw.interrupts;
1199                 counter->hw.interrupts = 0;
1200
1201                 if (interrupts == MAX_INTERRUPTS) {
1202                         perf_log_throttle(counter, 1);
1203                         counter->pmu->unthrottle(counter);
1204                         interrupts = 2*sysctl_perf_counter_limit/HZ;
1205                 }
1206
1207                 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1208                         continue;
1209
1210                 events = HZ * interrupts * counter->hw.irq_period;
1211                 period = div64_u64(events, counter->hw_event.irq_freq);
1212
1213                 delta = (s64)(1 + period - counter->hw.irq_period);
1214                 delta >>= 1;
1215
1216                 irq_period = counter->hw.irq_period + delta;
1217
1218                 if (!irq_period)
1219                         irq_period = 1;
1220
1221                 perf_log_period(counter, irq_period);
1222
1223                 counter->hw.irq_period = irq_period;
1224         }
1225         spin_unlock(&ctx->lock);
1226 }
1227
1228 /*
1229  * Round-robin a context's counters:
1230  */
1231 static void rotate_ctx(struct perf_counter_context *ctx)
1232 {
1233         struct perf_counter *counter;
1234
1235         if (!ctx->nr_counters)
1236                 return;
1237
1238         spin_lock(&ctx->lock);
1239         /*
1240          * Rotate the first entry last (works just fine for group counters too):
1241          */
1242         perf_disable();
1243         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1244                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1245                 break;
1246         }
1247         perf_enable();
1248
1249         spin_unlock(&ctx->lock);
1250 }
1251
1252 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1253 {
1254         struct perf_cpu_context *cpuctx;
1255         struct perf_counter_context *ctx;
1256
1257         if (!atomic_read(&nr_counters))
1258                 return;
1259
1260         cpuctx = &per_cpu(perf_cpu_context, cpu);
1261         ctx = curr->perf_counter_ctxp;
1262
1263         perf_adjust_freq(&cpuctx->ctx);
1264         if (ctx)
1265                 perf_adjust_freq(ctx);
1266
1267         perf_counter_cpu_sched_out(cpuctx);
1268         if (ctx)
1269                 __perf_counter_task_sched_out(ctx);
1270
1271         rotate_ctx(&cpuctx->ctx);
1272         if (ctx)
1273                 rotate_ctx(ctx);
1274
1275         perf_counter_cpu_sched_in(cpuctx, cpu);
1276         if (ctx)
1277                 perf_counter_task_sched_in(curr, cpu);
1278 }
1279
1280 /*
1281  * Cross CPU call to read the hardware counter
1282  */
1283 static void __read(void *info)
1284 {
1285         struct perf_counter *counter = info;
1286         struct perf_counter_context *ctx = counter->ctx;
1287         unsigned long flags;
1288
1289         local_irq_save(flags);
1290         if (ctx->is_active)
1291                 update_context_time(ctx);
1292         counter->pmu->read(counter);
1293         update_counter_times(counter);
1294         local_irq_restore(flags);
1295 }
1296
1297 static u64 perf_counter_read(struct perf_counter *counter)
1298 {
1299         /*
1300          * If counter is enabled and currently active on a CPU, update the
1301          * value in the counter structure:
1302          */
1303         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1304                 smp_call_function_single(counter->oncpu,
1305                                          __read, counter, 1);
1306         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1307                 update_counter_times(counter);
1308         }
1309
1310         return atomic64_read(&counter->count);
1311 }
1312
1313 /*
1314  * Initialize the perf_counter context in a task_struct:
1315  */
1316 static void
1317 __perf_counter_init_context(struct perf_counter_context *ctx,
1318                             struct task_struct *task)
1319 {
1320         memset(ctx, 0, sizeof(*ctx));
1321         spin_lock_init(&ctx->lock);
1322         mutex_init(&ctx->mutex);
1323         INIT_LIST_HEAD(&ctx->counter_list);
1324         INIT_LIST_HEAD(&ctx->event_list);
1325         atomic_set(&ctx->refcount, 1);
1326         ctx->task = task;
1327 }
1328
1329 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1330 {
1331         struct perf_counter_context *parent_ctx;
1332         struct perf_counter_context *ctx;
1333         struct perf_cpu_context *cpuctx;
1334         struct task_struct *task;
1335         unsigned long flags;
1336         int err;
1337
1338         /*
1339          * If cpu is not a wildcard then this is a percpu counter:
1340          */
1341         if (cpu != -1) {
1342                 /* Must be root to operate on a CPU counter: */
1343                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1344                         return ERR_PTR(-EACCES);
1345
1346                 if (cpu < 0 || cpu > num_possible_cpus())
1347                         return ERR_PTR(-EINVAL);
1348
1349                 /*
1350                  * We could be clever and allow to attach a counter to an
1351                  * offline CPU and activate it when the CPU comes up, but
1352                  * that's for later.
1353                  */
1354                 if (!cpu_isset(cpu, cpu_online_map))
1355                         return ERR_PTR(-ENODEV);
1356
1357                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1358                 ctx = &cpuctx->ctx;
1359                 get_ctx(ctx);
1360
1361                 return ctx;
1362         }
1363
1364         rcu_read_lock();
1365         if (!pid)
1366                 task = current;
1367         else
1368                 task = find_task_by_vpid(pid);
1369         if (task)
1370                 get_task_struct(task);
1371         rcu_read_unlock();
1372
1373         if (!task)
1374                 return ERR_PTR(-ESRCH);
1375
1376         /*
1377          * Can't attach counters to a dying task.
1378          */
1379         err = -ESRCH;
1380         if (task->flags & PF_EXITING)
1381                 goto errout;
1382
1383         /* Reuse ptrace permission checks for now. */
1384         err = -EACCES;
1385         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1386                 goto errout;
1387
1388  retry:
1389         ctx = perf_lock_task_context(task, &flags);
1390         if (ctx) {
1391                 parent_ctx = ctx->parent_ctx;
1392                 if (parent_ctx) {
1393                         put_ctx(parent_ctx);
1394                         ctx->parent_ctx = NULL;         /* no longer a clone */
1395                 }
1396                 /*
1397                  * Get an extra reference before dropping the lock so that
1398                  * this context won't get freed if the task exits.
1399                  */
1400                 get_ctx(ctx);
1401                 spin_unlock_irqrestore(&ctx->lock, flags);
1402         }
1403
1404         if (!ctx) {
1405                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1406                 err = -ENOMEM;
1407                 if (!ctx)
1408                         goto errout;
1409                 __perf_counter_init_context(ctx, task);
1410                 get_ctx(ctx);
1411                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1412                         /*
1413                          * We raced with some other task; use
1414                          * the context they set.
1415                          */
1416                         kfree(ctx);
1417                         goto retry;
1418                 }
1419                 get_task_struct(task);
1420         }
1421
1422         put_task_struct(task);
1423         return ctx;
1424
1425  errout:
1426         put_task_struct(task);
1427         return ERR_PTR(err);
1428 }
1429
1430 static void free_counter_rcu(struct rcu_head *head)
1431 {
1432         struct perf_counter *counter;
1433
1434         counter = container_of(head, struct perf_counter, rcu_head);
1435         if (counter->ns)
1436                 put_pid_ns(counter->ns);
1437         kfree(counter);
1438 }
1439
1440 static void perf_pending_sync(struct perf_counter *counter);
1441
1442 static void free_counter(struct perf_counter *counter)
1443 {
1444         perf_pending_sync(counter);
1445
1446         atomic_dec(&nr_counters);
1447         if (counter->hw_event.mmap)
1448                 atomic_dec(&nr_mmap_tracking);
1449         if (counter->hw_event.munmap)
1450                 atomic_dec(&nr_munmap_tracking);
1451         if (counter->hw_event.comm)
1452                 atomic_dec(&nr_comm_tracking);
1453
1454         if (counter->destroy)
1455                 counter->destroy(counter);
1456
1457         put_ctx(counter->ctx);
1458         call_rcu(&counter->rcu_head, free_counter_rcu);
1459 }
1460
1461 /*
1462  * Called when the last reference to the file is gone.
1463  */
1464 static int perf_release(struct inode *inode, struct file *file)
1465 {
1466         struct perf_counter *counter = file->private_data;
1467         struct perf_counter_context *ctx = counter->ctx;
1468
1469         file->private_data = NULL;
1470
1471         WARN_ON_ONCE(ctx->parent_ctx);
1472         mutex_lock(&ctx->mutex);
1473         perf_counter_remove_from_context(counter);
1474         mutex_unlock(&ctx->mutex);
1475
1476         mutex_lock(&counter->owner->perf_counter_mutex);
1477         list_del_init(&counter->owner_entry);
1478         mutex_unlock(&counter->owner->perf_counter_mutex);
1479         put_task_struct(counter->owner);
1480
1481         free_counter(counter);
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * Read the performance counter - simple non blocking version for now
1488  */
1489 static ssize_t
1490 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1491 {
1492         u64 values[3];
1493         int n;
1494
1495         /*
1496          * Return end-of-file for a read on a counter that is in
1497          * error state (i.e. because it was pinned but it couldn't be
1498          * scheduled on to the CPU at some point).
1499          */
1500         if (counter->state == PERF_COUNTER_STATE_ERROR)
1501                 return 0;
1502
1503         WARN_ON_ONCE(counter->ctx->parent_ctx);
1504         mutex_lock(&counter->child_mutex);
1505         values[0] = perf_counter_read(counter);
1506         n = 1;
1507         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508                 values[n++] = counter->total_time_enabled +
1509                         atomic64_read(&counter->child_total_time_enabled);
1510         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1511                 values[n++] = counter->total_time_running +
1512                         atomic64_read(&counter->child_total_time_running);
1513         mutex_unlock(&counter->child_mutex);
1514
1515         if (count < n * sizeof(u64))
1516                 return -EINVAL;
1517         count = n * sizeof(u64);
1518
1519         if (copy_to_user(buf, values, count))
1520                 return -EFAULT;
1521
1522         return count;
1523 }
1524
1525 static ssize_t
1526 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1527 {
1528         struct perf_counter *counter = file->private_data;
1529
1530         return perf_read_hw(counter, buf, count);
1531 }
1532
1533 static unsigned int perf_poll(struct file *file, poll_table *wait)
1534 {
1535         struct perf_counter *counter = file->private_data;
1536         struct perf_mmap_data *data;
1537         unsigned int events = POLL_HUP;
1538
1539         rcu_read_lock();
1540         data = rcu_dereference(counter->data);
1541         if (data)
1542                 events = atomic_xchg(&data->poll, 0);
1543         rcu_read_unlock();
1544
1545         poll_wait(file, &counter->waitq, wait);
1546
1547         return events;
1548 }
1549
1550 static void perf_counter_reset(struct perf_counter *counter)
1551 {
1552         (void)perf_counter_read(counter);
1553         atomic64_set(&counter->count, 0);
1554         perf_counter_update_userpage(counter);
1555 }
1556
1557 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1558                                           void (*func)(struct perf_counter *))
1559 {
1560         struct perf_counter_context *ctx = counter->ctx;
1561         struct perf_counter *sibling;
1562
1563         WARN_ON_ONCE(ctx->parent_ctx);
1564         mutex_lock(&ctx->mutex);
1565         counter = counter->group_leader;
1566
1567         func(counter);
1568         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1569                 func(sibling);
1570         mutex_unlock(&ctx->mutex);
1571 }
1572
1573 /*
1574  * Holding the top-level counter's child_mutex means that any
1575  * descendant process that has inherited this counter will block
1576  * in sync_child_counter if it goes to exit, thus satisfying the
1577  * task existence requirements of perf_counter_enable/disable.
1578  */
1579 static void perf_counter_for_each_child(struct perf_counter *counter,
1580                                         void (*func)(struct perf_counter *))
1581 {
1582         struct perf_counter *child;
1583
1584         WARN_ON_ONCE(counter->ctx->parent_ctx);
1585         mutex_lock(&counter->child_mutex);
1586         func(counter);
1587         list_for_each_entry(child, &counter->child_list, child_list)
1588                 func(child);
1589         mutex_unlock(&counter->child_mutex);
1590 }
1591
1592 static void perf_counter_for_each(struct perf_counter *counter,
1593                                   void (*func)(struct perf_counter *))
1594 {
1595         struct perf_counter *child;
1596
1597         WARN_ON_ONCE(counter->ctx->parent_ctx);
1598         mutex_lock(&counter->child_mutex);
1599         perf_counter_for_each_sibling(counter, func);
1600         list_for_each_entry(child, &counter->child_list, child_list)
1601                 perf_counter_for_each_sibling(child, func);
1602         mutex_unlock(&counter->child_mutex);
1603 }
1604
1605 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1606 {
1607         struct perf_counter *counter = file->private_data;
1608         void (*func)(struct perf_counter *);
1609         u32 flags = arg;
1610
1611         switch (cmd) {
1612         case PERF_COUNTER_IOC_ENABLE:
1613                 func = perf_counter_enable;
1614                 break;
1615         case PERF_COUNTER_IOC_DISABLE:
1616                 func = perf_counter_disable;
1617                 break;
1618         case PERF_COUNTER_IOC_RESET:
1619                 func = perf_counter_reset;
1620                 break;
1621
1622         case PERF_COUNTER_IOC_REFRESH:
1623                 return perf_counter_refresh(counter, arg);
1624         default:
1625                 return -ENOTTY;
1626         }
1627
1628         if (flags & PERF_IOC_FLAG_GROUP)
1629                 perf_counter_for_each(counter, func);
1630         else
1631                 perf_counter_for_each_child(counter, func);
1632
1633         return 0;
1634 }
1635
1636 int perf_counter_task_enable(void)
1637 {
1638         struct perf_counter *counter;
1639
1640         mutex_lock(&current->perf_counter_mutex);
1641         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1642                 perf_counter_for_each_child(counter, perf_counter_enable);
1643         mutex_unlock(&current->perf_counter_mutex);
1644
1645         return 0;
1646 }
1647
1648 int perf_counter_task_disable(void)
1649 {
1650         struct perf_counter *counter;
1651
1652         mutex_lock(&current->perf_counter_mutex);
1653         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1654                 perf_counter_for_each_child(counter, perf_counter_disable);
1655         mutex_unlock(&current->perf_counter_mutex);
1656
1657         return 0;
1658 }
1659
1660 /*
1661  * Callers need to ensure there can be no nesting of this function, otherwise
1662  * the seqlock logic goes bad. We can not serialize this because the arch
1663  * code calls this from NMI context.
1664  */
1665 void perf_counter_update_userpage(struct perf_counter *counter)
1666 {
1667         struct perf_counter_mmap_page *userpg;
1668         struct perf_mmap_data *data;
1669
1670         rcu_read_lock();
1671         data = rcu_dereference(counter->data);
1672         if (!data)
1673                 goto unlock;
1674
1675         userpg = data->user_page;
1676
1677         /*
1678          * Disable preemption so as to not let the corresponding user-space
1679          * spin too long if we get preempted.
1680          */
1681         preempt_disable();
1682         ++userpg->lock;
1683         barrier();
1684         userpg->index = counter->hw.idx;
1685         userpg->offset = atomic64_read(&counter->count);
1686         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1687                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1688
1689         barrier();
1690         ++userpg->lock;
1691         preempt_enable();
1692 unlock:
1693         rcu_read_unlock();
1694 }
1695
1696 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1697 {
1698         struct perf_counter *counter = vma->vm_file->private_data;
1699         struct perf_mmap_data *data;
1700         int ret = VM_FAULT_SIGBUS;
1701
1702         rcu_read_lock();
1703         data = rcu_dereference(counter->data);
1704         if (!data)
1705                 goto unlock;
1706
1707         if (vmf->pgoff == 0) {
1708                 vmf->page = virt_to_page(data->user_page);
1709         } else {
1710                 int nr = vmf->pgoff - 1;
1711
1712                 if ((unsigned)nr > data->nr_pages)
1713                         goto unlock;
1714
1715                 vmf->page = virt_to_page(data->data_pages[nr]);
1716         }
1717         get_page(vmf->page);
1718         ret = 0;
1719 unlock:
1720         rcu_read_unlock();
1721
1722         return ret;
1723 }
1724
1725 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1726 {
1727         struct perf_mmap_data *data;
1728         unsigned long size;
1729         int i;
1730
1731         WARN_ON(atomic_read(&counter->mmap_count));
1732
1733         size = sizeof(struct perf_mmap_data);
1734         size += nr_pages * sizeof(void *);
1735
1736         data = kzalloc(size, GFP_KERNEL);
1737         if (!data)
1738                 goto fail;
1739
1740         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1741         if (!data->user_page)
1742                 goto fail_user_page;
1743
1744         for (i = 0; i < nr_pages; i++) {
1745                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1746                 if (!data->data_pages[i])
1747                         goto fail_data_pages;
1748         }
1749
1750         data->nr_pages = nr_pages;
1751         atomic_set(&data->lock, -1);
1752
1753         rcu_assign_pointer(counter->data, data);
1754
1755         return 0;
1756
1757 fail_data_pages:
1758         for (i--; i >= 0; i--)
1759                 free_page((unsigned long)data->data_pages[i]);
1760
1761         free_page((unsigned long)data->user_page);
1762
1763 fail_user_page:
1764         kfree(data);
1765
1766 fail:
1767         return -ENOMEM;
1768 }
1769
1770 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1771 {
1772         struct perf_mmap_data *data;
1773         int i;
1774
1775         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1776
1777         free_page((unsigned long)data->user_page);
1778         for (i = 0; i < data->nr_pages; i++)
1779                 free_page((unsigned long)data->data_pages[i]);
1780         kfree(data);
1781 }
1782
1783 static void perf_mmap_data_free(struct perf_counter *counter)
1784 {
1785         struct perf_mmap_data *data = counter->data;
1786
1787         WARN_ON(atomic_read(&counter->mmap_count));
1788
1789         rcu_assign_pointer(counter->data, NULL);
1790         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1791 }
1792
1793 static void perf_mmap_open(struct vm_area_struct *vma)
1794 {
1795         struct perf_counter *counter = vma->vm_file->private_data;
1796
1797         atomic_inc(&counter->mmap_count);
1798 }
1799
1800 static void perf_mmap_close(struct vm_area_struct *vma)
1801 {
1802         struct perf_counter *counter = vma->vm_file->private_data;
1803
1804         WARN_ON_ONCE(counter->ctx->parent_ctx);
1805         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1806                 struct user_struct *user = current_user();
1807
1808                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1809                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1810                 perf_mmap_data_free(counter);
1811                 mutex_unlock(&counter->mmap_mutex);
1812         }
1813 }
1814
1815 static struct vm_operations_struct perf_mmap_vmops = {
1816         .open  = perf_mmap_open,
1817         .close = perf_mmap_close,
1818         .fault = perf_mmap_fault,
1819 };
1820
1821 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1822 {
1823         struct perf_counter *counter = file->private_data;
1824         unsigned long user_locked, user_lock_limit;
1825         struct user_struct *user = current_user();
1826         unsigned long locked, lock_limit;
1827         unsigned long vma_size;
1828         unsigned long nr_pages;
1829         long user_extra, extra;
1830         int ret = 0;
1831
1832         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1833                 return -EINVAL;
1834
1835         vma_size = vma->vm_end - vma->vm_start;
1836         nr_pages = (vma_size / PAGE_SIZE) - 1;
1837
1838         /*
1839          * If we have data pages ensure they're a power-of-two number, so we
1840          * can do bitmasks instead of modulo.
1841          */
1842         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1843                 return -EINVAL;
1844
1845         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1846                 return -EINVAL;
1847
1848         if (vma->vm_pgoff != 0)
1849                 return -EINVAL;
1850
1851         WARN_ON_ONCE(counter->ctx->parent_ctx);
1852         mutex_lock(&counter->mmap_mutex);
1853         if (atomic_inc_not_zero(&counter->mmap_count)) {
1854                 if (nr_pages != counter->data->nr_pages)
1855                         ret = -EINVAL;
1856                 goto unlock;
1857         }
1858
1859         user_extra = nr_pages + 1;
1860         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1861
1862         /*
1863          * Increase the limit linearly with more CPUs:
1864          */
1865         user_lock_limit *= num_online_cpus();
1866
1867         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1868
1869         extra = 0;
1870         if (user_locked > user_lock_limit)
1871                 extra = user_locked - user_lock_limit;
1872
1873         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1874         lock_limit >>= PAGE_SHIFT;
1875         locked = vma->vm_mm->locked_vm + extra;
1876
1877         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1878                 ret = -EPERM;
1879                 goto unlock;
1880         }
1881
1882         WARN_ON(counter->data);
1883         ret = perf_mmap_data_alloc(counter, nr_pages);
1884         if (ret)
1885                 goto unlock;
1886
1887         atomic_set(&counter->mmap_count, 1);
1888         atomic_long_add(user_extra, &user->locked_vm);
1889         vma->vm_mm->locked_vm += extra;
1890         counter->data->nr_locked = extra;
1891 unlock:
1892         mutex_unlock(&counter->mmap_mutex);
1893
1894         vma->vm_flags &= ~VM_MAYWRITE;
1895         vma->vm_flags |= VM_RESERVED;
1896         vma->vm_ops = &perf_mmap_vmops;
1897
1898         return ret;
1899 }
1900
1901 static int perf_fasync(int fd, struct file *filp, int on)
1902 {
1903         struct inode *inode = filp->f_path.dentry->d_inode;
1904         struct perf_counter *counter = filp->private_data;
1905         int retval;
1906
1907         mutex_lock(&inode->i_mutex);
1908         retval = fasync_helper(fd, filp, on, &counter->fasync);
1909         mutex_unlock(&inode->i_mutex);
1910
1911         if (retval < 0)
1912                 return retval;
1913
1914         return 0;
1915 }
1916
1917 static const struct file_operations perf_fops = {
1918         .release                = perf_release,
1919         .read                   = perf_read,
1920         .poll                   = perf_poll,
1921         .unlocked_ioctl         = perf_ioctl,
1922         .compat_ioctl           = perf_ioctl,
1923         .mmap                   = perf_mmap,
1924         .fasync                 = perf_fasync,
1925 };
1926
1927 /*
1928  * Perf counter wakeup
1929  *
1930  * If there's data, ensure we set the poll() state and publish everything
1931  * to user-space before waking everybody up.
1932  */
1933
1934 void perf_counter_wakeup(struct perf_counter *counter)
1935 {
1936         wake_up_all(&counter->waitq);
1937
1938         if (counter->pending_kill) {
1939                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1940                 counter->pending_kill = 0;
1941         }
1942 }
1943
1944 /*
1945  * Pending wakeups
1946  *
1947  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1948  *
1949  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1950  * single linked list and use cmpxchg() to add entries lockless.
1951  */
1952
1953 static void perf_pending_counter(struct perf_pending_entry *entry)
1954 {
1955         struct perf_counter *counter = container_of(entry,
1956                         struct perf_counter, pending);
1957
1958         if (counter->pending_disable) {
1959                 counter->pending_disable = 0;
1960                 perf_counter_disable(counter);
1961         }
1962
1963         if (counter->pending_wakeup) {
1964                 counter->pending_wakeup = 0;
1965                 perf_counter_wakeup(counter);
1966         }
1967 }
1968
1969 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1970
1971 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1972         PENDING_TAIL,
1973 };
1974
1975 static void perf_pending_queue(struct perf_pending_entry *entry,
1976                                void (*func)(struct perf_pending_entry *))
1977 {
1978         struct perf_pending_entry **head;
1979
1980         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1981                 return;
1982
1983         entry->func = func;
1984
1985         head = &get_cpu_var(perf_pending_head);
1986
1987         do {
1988                 entry->next = *head;
1989         } while (cmpxchg(head, entry->next, entry) != entry->next);
1990
1991         set_perf_counter_pending();
1992
1993         put_cpu_var(perf_pending_head);
1994 }
1995
1996 static int __perf_pending_run(void)
1997 {
1998         struct perf_pending_entry *list;
1999         int nr = 0;
2000
2001         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2002         while (list != PENDING_TAIL) {
2003                 void (*func)(struct perf_pending_entry *);
2004                 struct perf_pending_entry *entry = list;
2005
2006                 list = list->next;
2007
2008                 func = entry->func;
2009                 entry->next = NULL;
2010                 /*
2011                  * Ensure we observe the unqueue before we issue the wakeup,
2012                  * so that we won't be waiting forever.
2013                  * -- see perf_not_pending().
2014                  */
2015                 smp_wmb();
2016
2017                 func(entry);
2018                 nr++;
2019         }
2020
2021         return nr;
2022 }
2023
2024 static inline int perf_not_pending(struct perf_counter *counter)
2025 {
2026         /*
2027          * If we flush on whatever cpu we run, there is a chance we don't
2028          * need to wait.
2029          */
2030         get_cpu();
2031         __perf_pending_run();
2032         put_cpu();
2033
2034         /*
2035          * Ensure we see the proper queue state before going to sleep
2036          * so that we do not miss the wakeup. -- see perf_pending_handle()
2037          */
2038         smp_rmb();
2039         return counter->pending.next == NULL;
2040 }
2041
2042 static void perf_pending_sync(struct perf_counter *counter)
2043 {
2044         wait_event(counter->waitq, perf_not_pending(counter));
2045 }
2046
2047 void perf_counter_do_pending(void)
2048 {
2049         __perf_pending_run();
2050 }
2051
2052 /*
2053  * Callchain support -- arch specific
2054  */
2055
2056 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2057 {
2058         return NULL;
2059 }
2060
2061 /*
2062  * Output
2063  */
2064
2065 struct perf_output_handle {
2066         struct perf_counter     *counter;
2067         struct perf_mmap_data   *data;
2068         unsigned int            offset;
2069         unsigned int            head;
2070         int                     nmi;
2071         int                     overflow;
2072         int                     locked;
2073         unsigned long           flags;
2074 };
2075
2076 static void perf_output_wakeup(struct perf_output_handle *handle)
2077 {
2078         atomic_set(&handle->data->poll, POLL_IN);
2079
2080         if (handle->nmi) {
2081                 handle->counter->pending_wakeup = 1;
2082                 perf_pending_queue(&handle->counter->pending,
2083                                    perf_pending_counter);
2084         } else
2085                 perf_counter_wakeup(handle->counter);
2086 }
2087
2088 /*
2089  * Curious locking construct.
2090  *
2091  * We need to ensure a later event doesn't publish a head when a former
2092  * event isn't done writing. However since we need to deal with NMIs we
2093  * cannot fully serialize things.
2094  *
2095  * What we do is serialize between CPUs so we only have to deal with NMI
2096  * nesting on a single CPU.
2097  *
2098  * We only publish the head (and generate a wakeup) when the outer-most
2099  * event completes.
2100  */
2101 static void perf_output_lock(struct perf_output_handle *handle)
2102 {
2103         struct perf_mmap_data *data = handle->data;
2104         int cpu;
2105
2106         handle->locked = 0;
2107
2108         local_irq_save(handle->flags);
2109         cpu = smp_processor_id();
2110
2111         if (in_nmi() && atomic_read(&data->lock) == cpu)
2112                 return;
2113
2114         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2115                 cpu_relax();
2116
2117         handle->locked = 1;
2118 }
2119
2120 static void perf_output_unlock(struct perf_output_handle *handle)
2121 {
2122         struct perf_mmap_data *data = handle->data;
2123         int head, cpu;
2124
2125         data->done_head = data->head;
2126
2127         if (!handle->locked)
2128                 goto out;
2129
2130 again:
2131         /*
2132          * The xchg implies a full barrier that ensures all writes are done
2133          * before we publish the new head, matched by a rmb() in userspace when
2134          * reading this position.
2135          */
2136         while ((head = atomic_xchg(&data->done_head, 0)))
2137                 data->user_page->data_head = head;
2138
2139         /*
2140          * NMI can happen here, which means we can miss a done_head update.
2141          */
2142
2143         cpu = atomic_xchg(&data->lock, -1);
2144         WARN_ON_ONCE(cpu != smp_processor_id());
2145
2146         /*
2147          * Therefore we have to validate we did not indeed do so.
2148          */
2149         if (unlikely(atomic_read(&data->done_head))) {
2150                 /*
2151                  * Since we had it locked, we can lock it again.
2152                  */
2153                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2154                         cpu_relax();
2155
2156                 goto again;
2157         }
2158
2159         if (atomic_xchg(&data->wakeup, 0))
2160                 perf_output_wakeup(handle);
2161 out:
2162         local_irq_restore(handle->flags);
2163 }
2164
2165 static int perf_output_begin(struct perf_output_handle *handle,
2166                              struct perf_counter *counter, unsigned int size,
2167                              int nmi, int overflow)
2168 {
2169         struct perf_mmap_data *data;
2170         unsigned int offset, head;
2171
2172         /*
2173          * For inherited counters we send all the output towards the parent.
2174          */
2175         if (counter->parent)
2176                 counter = counter->parent;
2177
2178         rcu_read_lock();
2179         data = rcu_dereference(counter->data);
2180         if (!data)
2181                 goto out;
2182
2183         handle->data     = data;
2184         handle->counter  = counter;
2185         handle->nmi      = nmi;
2186         handle->overflow = overflow;
2187
2188         if (!data->nr_pages)
2189                 goto fail;
2190
2191         perf_output_lock(handle);
2192
2193         do {
2194                 offset = head = atomic_read(&data->head);
2195                 head += size;
2196         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2197
2198         handle->offset  = offset;
2199         handle->head    = head;
2200
2201         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2202                 atomic_set(&data->wakeup, 1);
2203
2204         return 0;
2205
2206 fail:
2207         perf_output_wakeup(handle);
2208 out:
2209         rcu_read_unlock();
2210
2211         return -ENOSPC;
2212 }
2213
2214 static void perf_output_copy(struct perf_output_handle *handle,
2215                              void *buf, unsigned int len)
2216 {
2217         unsigned int pages_mask;
2218         unsigned int offset;
2219         unsigned int size;
2220         void **pages;
2221
2222         offset          = handle->offset;
2223         pages_mask      = handle->data->nr_pages - 1;
2224         pages           = handle->data->data_pages;
2225
2226         do {
2227                 unsigned int page_offset;
2228                 int nr;
2229
2230                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2231                 page_offset = offset & (PAGE_SIZE - 1);
2232                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2233
2234                 memcpy(pages[nr] + page_offset, buf, size);
2235
2236                 len         -= size;
2237                 buf         += size;
2238                 offset      += size;
2239         } while (len);
2240
2241         handle->offset = offset;
2242
2243         /*
2244          * Check we didn't copy past our reservation window, taking the
2245          * possible unsigned int wrap into account.
2246          */
2247         WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2248 }
2249
2250 #define perf_output_put(handle, x) \
2251         perf_output_copy((handle), &(x), sizeof(x))
2252
2253 static void perf_output_end(struct perf_output_handle *handle)
2254 {
2255         struct perf_counter *counter = handle->counter;
2256         struct perf_mmap_data *data = handle->data;
2257
2258         int wakeup_events = counter->hw_event.wakeup_events;
2259
2260         if (handle->overflow && wakeup_events) {
2261                 int events = atomic_inc_return(&data->events);
2262                 if (events >= wakeup_events) {
2263                         atomic_sub(wakeup_events, &data->events);
2264                         atomic_set(&data->wakeup, 1);
2265                 }
2266         }
2267
2268         perf_output_unlock(handle);
2269         rcu_read_unlock();
2270 }
2271
2272 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2273 {
2274         /*
2275          * only top level counters have the pid namespace they were created in
2276          */
2277         if (counter->parent)
2278                 counter = counter->parent;
2279
2280         return task_tgid_nr_ns(p, counter->ns);
2281 }
2282
2283 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2284 {
2285         /*
2286          * only top level counters have the pid namespace they were created in
2287          */
2288         if (counter->parent)
2289                 counter = counter->parent;
2290
2291         return task_pid_nr_ns(p, counter->ns);
2292 }
2293
2294 static void perf_counter_output(struct perf_counter *counter,
2295                                 int nmi, struct pt_regs *regs, u64 addr)
2296 {
2297         int ret;
2298         u64 record_type = counter->hw_event.record_type;
2299         struct perf_output_handle handle;
2300         struct perf_event_header header;
2301         u64 ip;
2302         struct {
2303                 u32 pid, tid;
2304         } tid_entry;
2305         struct {
2306                 u64 event;
2307                 u64 counter;
2308         } group_entry;
2309         struct perf_callchain_entry *callchain = NULL;
2310         int callchain_size = 0;
2311         u64 time;
2312         struct {
2313                 u32 cpu, reserved;
2314         } cpu_entry;
2315
2316         header.type = 0;
2317         header.size = sizeof(header);
2318
2319         header.misc = PERF_EVENT_MISC_OVERFLOW;
2320         header.misc |= perf_misc_flags(regs);
2321
2322         if (record_type & PERF_RECORD_IP) {
2323                 ip = perf_instruction_pointer(regs);
2324                 header.type |= PERF_RECORD_IP;
2325                 header.size += sizeof(ip);
2326         }
2327
2328         if (record_type & PERF_RECORD_TID) {
2329                 /* namespace issues */
2330                 tid_entry.pid = perf_counter_pid(counter, current);
2331                 tid_entry.tid = perf_counter_tid(counter, current);
2332
2333                 header.type |= PERF_RECORD_TID;
2334                 header.size += sizeof(tid_entry);
2335         }
2336
2337         if (record_type & PERF_RECORD_TIME) {
2338                 /*
2339                  * Maybe do better on x86 and provide cpu_clock_nmi()
2340                  */
2341                 time = sched_clock();
2342
2343                 header.type |= PERF_RECORD_TIME;
2344                 header.size += sizeof(u64);
2345         }
2346
2347         if (record_type & PERF_RECORD_ADDR) {
2348                 header.type |= PERF_RECORD_ADDR;
2349                 header.size += sizeof(u64);
2350         }
2351
2352         if (record_type & PERF_RECORD_CONFIG) {
2353                 header.type |= PERF_RECORD_CONFIG;
2354                 header.size += sizeof(u64);
2355         }
2356
2357         if (record_type & PERF_RECORD_CPU) {
2358                 header.type |= PERF_RECORD_CPU;
2359                 header.size += sizeof(cpu_entry);
2360
2361                 cpu_entry.cpu = raw_smp_processor_id();
2362         }
2363
2364         if (record_type & PERF_RECORD_GROUP) {
2365                 header.type |= PERF_RECORD_GROUP;
2366                 header.size += sizeof(u64) +
2367                         counter->nr_siblings * sizeof(group_entry);
2368         }
2369
2370         if (record_type & PERF_RECORD_CALLCHAIN) {
2371                 callchain = perf_callchain(regs);
2372
2373                 if (callchain) {
2374                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2375
2376                         header.type |= PERF_RECORD_CALLCHAIN;
2377                         header.size += callchain_size;
2378                 }
2379         }
2380
2381         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2382         if (ret)
2383                 return;
2384
2385         perf_output_put(&handle, header);
2386
2387         if (record_type & PERF_RECORD_IP)
2388                 perf_output_put(&handle, ip);
2389
2390         if (record_type & PERF_RECORD_TID)
2391                 perf_output_put(&handle, tid_entry);
2392
2393         if (record_type & PERF_RECORD_TIME)
2394                 perf_output_put(&handle, time);
2395
2396         if (record_type & PERF_RECORD_ADDR)
2397                 perf_output_put(&handle, addr);
2398
2399         if (record_type & PERF_RECORD_CONFIG)
2400                 perf_output_put(&handle, counter->hw_event.config);
2401
2402         if (record_type & PERF_RECORD_CPU)
2403                 perf_output_put(&handle, cpu_entry);
2404
2405         /*
2406          * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2407          */
2408         if (record_type & PERF_RECORD_GROUP) {
2409                 struct perf_counter *leader, *sub;
2410                 u64 nr = counter->nr_siblings;
2411
2412                 perf_output_put(&handle, nr);
2413
2414                 leader = counter->group_leader;
2415                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2416                         if (sub != counter)
2417                                 sub->pmu->read(sub);
2418
2419                         group_entry.event = sub->hw_event.config;
2420                         group_entry.counter = atomic64_read(&sub->count);
2421
2422                         perf_output_put(&handle, group_entry);
2423                 }
2424         }
2425
2426         if (callchain)
2427                 perf_output_copy(&handle, callchain, callchain_size);
2428
2429         perf_output_end(&handle);
2430 }
2431
2432 /*
2433  * comm tracking
2434  */
2435
2436 struct perf_comm_event {
2437         struct task_struct      *task;
2438         char                    *comm;
2439         int                     comm_size;
2440
2441         struct {
2442                 struct perf_event_header        header;
2443
2444                 u32                             pid;
2445                 u32                             tid;
2446         } event;
2447 };
2448
2449 static void perf_counter_comm_output(struct perf_counter *counter,
2450                                      struct perf_comm_event *comm_event)
2451 {
2452         struct perf_output_handle handle;
2453         int size = comm_event->event.header.size;
2454         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2455
2456         if (ret)
2457                 return;
2458
2459         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2460         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2461
2462         perf_output_put(&handle, comm_event->event);
2463         perf_output_copy(&handle, comm_event->comm,
2464                                    comm_event->comm_size);
2465         perf_output_end(&handle);
2466 }
2467
2468 static int perf_counter_comm_match(struct perf_counter *counter,
2469                                    struct perf_comm_event *comm_event)
2470 {
2471         if (counter->hw_event.comm &&
2472             comm_event->event.header.type == PERF_EVENT_COMM)
2473                 return 1;
2474
2475         return 0;
2476 }
2477
2478 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2479                                   struct perf_comm_event *comm_event)
2480 {
2481         struct perf_counter *counter;
2482
2483         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2484                 return;
2485
2486         rcu_read_lock();
2487         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2488                 if (perf_counter_comm_match(counter, comm_event))
2489                         perf_counter_comm_output(counter, comm_event);
2490         }
2491         rcu_read_unlock();
2492 }
2493
2494 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2495 {
2496         struct perf_cpu_context *cpuctx;
2497         struct perf_counter_context *ctx;
2498         unsigned int size;
2499         char *comm = comm_event->task->comm;
2500
2501         size = ALIGN(strlen(comm)+1, sizeof(u64));
2502
2503         comm_event->comm = comm;
2504         comm_event->comm_size = size;
2505
2506         comm_event->event.header.size = sizeof(comm_event->event) + size;
2507
2508         cpuctx = &get_cpu_var(perf_cpu_context);
2509         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2510         put_cpu_var(perf_cpu_context);
2511
2512         rcu_read_lock();
2513         /*
2514          * doesn't really matter which of the child contexts the
2515          * events ends up in.
2516          */
2517         ctx = rcu_dereference(current->perf_counter_ctxp);
2518         if (ctx)
2519                 perf_counter_comm_ctx(ctx, comm_event);
2520         rcu_read_unlock();
2521 }
2522
2523 void perf_counter_comm(struct task_struct *task)
2524 {
2525         struct perf_comm_event comm_event;
2526
2527         if (!atomic_read(&nr_comm_tracking))
2528                 return;
2529
2530         comm_event = (struct perf_comm_event){
2531                 .task   = task,
2532                 .event  = {
2533                         .header = { .type = PERF_EVENT_COMM, },
2534                 },
2535         };
2536
2537         perf_counter_comm_event(&comm_event);
2538 }
2539
2540 /*
2541  * mmap tracking
2542  */
2543
2544 struct perf_mmap_event {
2545         struct file     *file;
2546         char            *file_name;
2547         int             file_size;
2548
2549         struct {
2550                 struct perf_event_header        header;
2551
2552                 u32                             pid;
2553                 u32                             tid;
2554                 u64                             start;
2555                 u64                             len;
2556                 u64                             pgoff;
2557         } event;
2558 };
2559
2560 static void perf_counter_mmap_output(struct perf_counter *counter,
2561                                      struct perf_mmap_event *mmap_event)
2562 {
2563         struct perf_output_handle handle;
2564         int size = mmap_event->event.header.size;
2565         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2566
2567         if (ret)
2568                 return;
2569
2570         mmap_event->event.pid = perf_counter_pid(counter, current);
2571         mmap_event->event.tid = perf_counter_tid(counter, current);
2572
2573         perf_output_put(&handle, mmap_event->event);
2574         perf_output_copy(&handle, mmap_event->file_name,
2575                                    mmap_event->file_size);
2576         perf_output_end(&handle);
2577 }
2578
2579 static int perf_counter_mmap_match(struct perf_counter *counter,
2580                                    struct perf_mmap_event *mmap_event)
2581 {
2582         if (counter->hw_event.mmap &&
2583             mmap_event->event.header.type == PERF_EVENT_MMAP)
2584                 return 1;
2585
2586         if (counter->hw_event.munmap &&
2587             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2588                 return 1;
2589
2590         return 0;
2591 }
2592
2593 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2594                                   struct perf_mmap_event *mmap_event)
2595 {
2596         struct perf_counter *counter;
2597
2598         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2599                 return;
2600
2601         rcu_read_lock();
2602         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2603                 if (perf_counter_mmap_match(counter, mmap_event))
2604                         perf_counter_mmap_output(counter, mmap_event);
2605         }
2606         rcu_read_unlock();
2607 }
2608
2609 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2610 {
2611         struct perf_cpu_context *cpuctx;
2612         struct perf_counter_context *ctx;
2613         struct file *file = mmap_event->file;
2614         unsigned int size;
2615         char tmp[16];
2616         char *buf = NULL;
2617         char *name;
2618
2619         if (file) {
2620                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2621                 if (!buf) {
2622                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2623                         goto got_name;
2624                 }
2625                 name = d_path(&file->f_path, buf, PATH_MAX);
2626                 if (IS_ERR(name)) {
2627                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2628                         goto got_name;
2629                 }
2630         } else {
2631                 name = strncpy(tmp, "//anon", sizeof(tmp));
2632                 goto got_name;
2633         }
2634
2635 got_name:
2636         size = ALIGN(strlen(name)+1, sizeof(u64));
2637
2638         mmap_event->file_name = name;
2639         mmap_event->file_size = size;
2640
2641         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2642
2643         cpuctx = &get_cpu_var(perf_cpu_context);
2644         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2645         put_cpu_var(perf_cpu_context);
2646
2647         rcu_read_lock();
2648         /*
2649          * doesn't really matter which of the child contexts the
2650          * events ends up in.
2651          */
2652         ctx = rcu_dereference(current->perf_counter_ctxp);
2653         if (ctx)
2654                 perf_counter_mmap_ctx(ctx, mmap_event);
2655         rcu_read_unlock();
2656
2657         kfree(buf);
2658 }
2659
2660 void perf_counter_mmap(unsigned long addr, unsigned long len,
2661                        unsigned long pgoff, struct file *file)
2662 {
2663         struct perf_mmap_event mmap_event;
2664
2665         if (!atomic_read(&nr_mmap_tracking))
2666                 return;
2667
2668         mmap_event = (struct perf_mmap_event){
2669                 .file   = file,
2670                 .event  = {
2671                         .header = { .type = PERF_EVENT_MMAP, },
2672                         .start  = addr,
2673                         .len    = len,
2674                         .pgoff  = pgoff,
2675                 },
2676         };
2677
2678         perf_counter_mmap_event(&mmap_event);
2679 }
2680
2681 void perf_counter_munmap(unsigned long addr, unsigned long len,
2682                          unsigned long pgoff, struct file *file)
2683 {
2684         struct perf_mmap_event mmap_event;
2685
2686         if (!atomic_read(&nr_munmap_tracking))
2687                 return;
2688
2689         mmap_event = (struct perf_mmap_event){
2690                 .file   = file,
2691                 .event  = {
2692                         .header = { .type = PERF_EVENT_MUNMAP, },
2693                         .start  = addr,
2694                         .len    = len,
2695                         .pgoff  = pgoff,
2696                 },
2697         };
2698
2699         perf_counter_mmap_event(&mmap_event);
2700 }
2701
2702 /*
2703  * Log irq_period changes so that analyzing tools can re-normalize the
2704  * event flow.
2705  */
2706
2707 static void perf_log_period(struct perf_counter *counter, u64 period)
2708 {
2709         struct perf_output_handle handle;
2710         int ret;
2711
2712         struct {
2713                 struct perf_event_header        header;
2714                 u64                             time;
2715                 u64                             period;
2716         } freq_event = {
2717                 .header = {
2718                         .type = PERF_EVENT_PERIOD,
2719                         .misc = 0,
2720                         .size = sizeof(freq_event),
2721                 },
2722                 .time = sched_clock(),
2723                 .period = period,
2724         };
2725
2726         if (counter->hw.irq_period == period)
2727                 return;
2728
2729         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2730         if (ret)
2731                 return;
2732
2733         perf_output_put(&handle, freq_event);
2734         perf_output_end(&handle);
2735 }
2736
2737 /*
2738  * IRQ throttle logging
2739  */
2740
2741 static void perf_log_throttle(struct perf_counter *counter, int enable)
2742 {
2743         struct perf_output_handle handle;
2744         int ret;
2745
2746         struct {
2747                 struct perf_event_header        header;
2748                 u64                             time;
2749         } throttle_event = {
2750                 .header = {
2751                         .type = PERF_EVENT_THROTTLE + 1,
2752                         .misc = 0,
2753                         .size = sizeof(throttle_event),
2754                 },
2755                 .time = sched_clock(),
2756         };
2757
2758         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2759         if (ret)
2760                 return;
2761
2762         perf_output_put(&handle, throttle_event);
2763         perf_output_end(&handle);
2764 }
2765
2766 /*
2767  * Generic counter overflow handling.
2768  */
2769
2770 int perf_counter_overflow(struct perf_counter *counter,
2771                           int nmi, struct pt_regs *regs, u64 addr)
2772 {
2773         int events = atomic_read(&counter->event_limit);
2774         int throttle = counter->pmu->unthrottle != NULL;
2775         int ret = 0;
2776
2777         if (!throttle) {
2778                 counter->hw.interrupts++;
2779         } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2780                 counter->hw.interrupts++;
2781                 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2782                         counter->hw.interrupts = MAX_INTERRUPTS;
2783                         perf_log_throttle(counter, 0);
2784                         ret = 1;
2785                 }
2786         }
2787
2788         /*
2789          * XXX event_limit might not quite work as expected on inherited
2790          * counters
2791          */
2792
2793         counter->pending_kill = POLL_IN;
2794         if (events && atomic_dec_and_test(&counter->event_limit)) {
2795                 ret = 1;
2796                 counter->pending_kill = POLL_HUP;
2797                 if (nmi) {
2798                         counter->pending_disable = 1;
2799                         perf_pending_queue(&counter->pending,
2800                                            perf_pending_counter);
2801                 } else
2802                         perf_counter_disable(counter);
2803         }
2804
2805         perf_counter_output(counter, nmi, regs, addr);
2806         return ret;
2807 }
2808
2809 /*
2810  * Generic software counter infrastructure
2811  */
2812
2813 static void perf_swcounter_update(struct perf_counter *counter)
2814 {
2815         struct hw_perf_counter *hwc = &counter->hw;
2816         u64 prev, now;
2817         s64 delta;
2818
2819 again:
2820         prev = atomic64_read(&hwc->prev_count);
2821         now = atomic64_read(&hwc->count);
2822         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2823                 goto again;
2824
2825         delta = now - prev;
2826
2827         atomic64_add(delta, &counter->count);
2828         atomic64_sub(delta, &hwc->period_left);
2829 }
2830
2831 static void perf_swcounter_set_period(struct perf_counter *counter)
2832 {
2833         struct hw_perf_counter *hwc = &counter->hw;
2834         s64 left = atomic64_read(&hwc->period_left);
2835         s64 period = hwc->irq_period;
2836
2837         if (unlikely(left <= -period)) {
2838                 left = period;
2839                 atomic64_set(&hwc->period_left, left);
2840         }
2841
2842         if (unlikely(left <= 0)) {
2843                 left += period;
2844                 atomic64_add(period, &hwc->period_left);
2845         }
2846
2847         atomic64_set(&hwc->prev_count, -left);
2848         atomic64_set(&hwc->count, -left);
2849 }
2850
2851 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2852 {
2853         enum hrtimer_restart ret = HRTIMER_RESTART;
2854         struct perf_counter *counter;
2855         struct pt_regs *regs;
2856         u64 period;
2857
2858         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2859         counter->pmu->read(counter);
2860
2861         regs = get_irq_regs();
2862         /*
2863          * In case we exclude kernel IPs or are somehow not in interrupt
2864          * context, provide the next best thing, the user IP.
2865          */
2866         if ((counter->hw_event.exclude_kernel || !regs) &&
2867                         !counter->hw_event.exclude_user)
2868                 regs = task_pt_regs(current);
2869
2870         if (regs) {
2871                 if (perf_counter_overflow(counter, 0, regs, 0))
2872                         ret = HRTIMER_NORESTART;
2873         }
2874
2875         period = max_t(u64, 10000, counter->hw.irq_period);
2876         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2877
2878         return ret;
2879 }
2880
2881 static void perf_swcounter_overflow(struct perf_counter *counter,
2882                                     int nmi, struct pt_regs *regs, u64 addr)
2883 {
2884         perf_swcounter_update(counter);
2885         perf_swcounter_set_period(counter);
2886         if (perf_counter_overflow(counter, nmi, regs, addr))
2887                 /* soft-disable the counter */
2888                 ;
2889
2890 }
2891
2892 static int perf_swcounter_is_counting(struct perf_counter *counter)
2893 {
2894         struct perf_counter_context *ctx;
2895         unsigned long flags;
2896         int count;
2897
2898         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2899                 return 1;
2900
2901         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
2902                 return 0;
2903
2904         /*
2905          * If the counter is inactive, it could be just because
2906          * its task is scheduled out, or because it's in a group
2907          * which could not go on the PMU.  We want to count in
2908          * the first case but not the second.  If the context is
2909          * currently active then an inactive software counter must
2910          * be the second case.  If it's not currently active then
2911          * we need to know whether the counter was active when the
2912          * context was last active, which we can determine by
2913          * comparing counter->tstamp_stopped with ctx->time.
2914          *
2915          * We are within an RCU read-side critical section,
2916          * which protects the existence of *ctx.
2917          */
2918         ctx = counter->ctx;
2919         spin_lock_irqsave(&ctx->lock, flags);
2920         count = 1;
2921         /* Re-check state now we have the lock */
2922         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
2923             counter->ctx->is_active ||
2924             counter->tstamp_stopped < ctx->time)
2925                 count = 0;
2926         spin_unlock_irqrestore(&ctx->lock, flags);
2927         return count;
2928 }
2929
2930 static int perf_swcounter_match(struct perf_counter *counter,
2931                                 enum perf_event_types type,
2932                                 u32 event, struct pt_regs *regs)
2933 {
2934         u64 event_config;
2935
2936         event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2937
2938         if (!perf_swcounter_is_counting(counter))
2939                 return 0;
2940
2941         if (counter->hw_event.config != event_config)
2942                 return 0;
2943
2944         if (regs) {
2945                 if (counter->hw_event.exclude_user && user_mode(regs))
2946                         return 0;
2947
2948                 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2949                         return 0;
2950         }
2951
2952         return 1;
2953 }
2954
2955 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2956                                int nmi, struct pt_regs *regs, u64 addr)
2957 {
2958         int neg = atomic64_add_negative(nr, &counter->hw.count);
2959
2960         if (counter->hw.irq_period && !neg && regs)
2961                 perf_swcounter_overflow(counter, nmi, regs, addr);
2962 }
2963
2964 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2965                                      enum perf_event_types type, u32 event,
2966                                      u64 nr, int nmi, struct pt_regs *regs,
2967                                      u64 addr)
2968 {
2969         struct perf_counter *counter;
2970
2971         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2972                 return;
2973
2974         rcu_read_lock();
2975         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2976                 if (perf_swcounter_match(counter, type, event, regs))
2977                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2978         }
2979         rcu_read_unlock();
2980 }
2981
2982 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2983 {
2984         if (in_nmi())
2985                 return &cpuctx->recursion[3];
2986
2987         if (in_irq())
2988                 return &cpuctx->recursion[2];
2989
2990         if (in_softirq())
2991                 return &cpuctx->recursion[1];
2992
2993         return &cpuctx->recursion[0];
2994 }
2995
2996 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2997                                    u64 nr, int nmi, struct pt_regs *regs,
2998                                    u64 addr)
2999 {
3000         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3001         int *recursion = perf_swcounter_recursion_context(cpuctx);
3002         struct perf_counter_context *ctx;
3003
3004         if (*recursion)
3005                 goto out;
3006
3007         (*recursion)++;
3008         barrier();
3009
3010         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3011                                  nr, nmi, regs, addr);
3012         rcu_read_lock();
3013         /*
3014          * doesn't really matter which of the child contexts the
3015          * events ends up in.
3016          */
3017         ctx = rcu_dereference(current->perf_counter_ctxp);
3018         if (ctx)
3019                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3020         rcu_read_unlock();
3021
3022         barrier();
3023         (*recursion)--;
3024
3025 out:
3026         put_cpu_var(perf_cpu_context);
3027 }
3028
3029 void
3030 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3031 {
3032         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3033 }
3034
3035 static void perf_swcounter_read(struct perf_counter *counter)
3036 {
3037         perf_swcounter_update(counter);
3038 }
3039
3040 static int perf_swcounter_enable(struct perf_counter *counter)
3041 {
3042         perf_swcounter_set_period(counter);
3043         return 0;
3044 }
3045
3046 static void perf_swcounter_disable(struct perf_counter *counter)
3047 {
3048         perf_swcounter_update(counter);
3049 }
3050
3051 static const struct pmu perf_ops_generic = {
3052         .enable         = perf_swcounter_enable,
3053         .disable        = perf_swcounter_disable,
3054         .read           = perf_swcounter_read,
3055 };
3056
3057 /*
3058  * Software counter: cpu wall time clock
3059  */
3060
3061 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3062 {
3063         int cpu = raw_smp_processor_id();
3064         s64 prev;
3065         u64 now;
3066
3067         now = cpu_clock(cpu);
3068         prev = atomic64_read(&counter->hw.prev_count);
3069         atomic64_set(&counter->hw.prev_count, now);
3070         atomic64_add(now - prev, &counter->count);
3071 }
3072
3073 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3074 {
3075         struct hw_perf_counter *hwc = &counter->hw;
3076         int cpu = raw_smp_processor_id();
3077
3078         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3079         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3080         hwc->hrtimer.function = perf_swcounter_hrtimer;
3081         if (hwc->irq_period) {
3082                 u64 period = max_t(u64, 10000, hwc->irq_period);
3083                 __hrtimer_start_range_ns(&hwc->hrtimer,
3084                                 ns_to_ktime(period), 0,
3085                                 HRTIMER_MODE_REL, 0);
3086         }
3087
3088         return 0;
3089 }
3090
3091 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3092 {
3093         if (counter->hw.irq_period)
3094                 hrtimer_cancel(&counter->hw.hrtimer);
3095         cpu_clock_perf_counter_update(counter);
3096 }
3097
3098 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3099 {
3100         cpu_clock_perf_counter_update(counter);
3101 }
3102
3103 static const struct pmu perf_ops_cpu_clock = {
3104         .enable         = cpu_clock_perf_counter_enable,
3105         .disable        = cpu_clock_perf_counter_disable,
3106         .read           = cpu_clock_perf_counter_read,
3107 };
3108
3109 /*
3110  * Software counter: task time clock
3111  */
3112
3113 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3114 {
3115         u64 prev;
3116         s64 delta;
3117
3118         prev = atomic64_xchg(&counter->hw.prev_count, now);
3119         delta = now - prev;
3120         atomic64_add(delta, &counter->count);
3121 }
3122
3123 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3124 {
3125         struct hw_perf_counter *hwc = &counter->hw;
3126         u64 now;
3127
3128         now = counter->ctx->time;
3129
3130         atomic64_set(&hwc->prev_count, now);
3131         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3132         hwc->hrtimer.function = perf_swcounter_hrtimer;
3133         if (hwc->irq_period) {
3134                 u64 period = max_t(u64, 10000, hwc->irq_period);
3135                 __hrtimer_start_range_ns(&hwc->hrtimer,
3136                                 ns_to_ktime(period), 0,
3137                                 HRTIMER_MODE_REL, 0);
3138         }
3139
3140         return 0;
3141 }
3142
3143 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3144 {
3145         if (counter->hw.irq_period)
3146                 hrtimer_cancel(&counter->hw.hrtimer);
3147         task_clock_perf_counter_update(counter, counter->ctx->time);
3148
3149 }
3150
3151 static void task_clock_perf_counter_read(struct perf_counter *counter)
3152 {
3153         u64 time;
3154
3155         if (!in_nmi()) {
3156                 update_context_time(counter->ctx);
3157                 time = counter->ctx->time;
3158         } else {
3159                 u64 now = perf_clock();
3160                 u64 delta = now - counter->ctx->timestamp;
3161                 time = counter->ctx->time + delta;
3162         }
3163
3164         task_clock_perf_counter_update(counter, time);
3165 }
3166
3167 static const struct pmu perf_ops_task_clock = {
3168         .enable         = task_clock_perf_counter_enable,
3169         .disable        = task_clock_perf_counter_disable,
3170         .read           = task_clock_perf_counter_read,
3171 };
3172
3173 /*
3174  * Software counter: cpu migrations
3175  */
3176 void perf_counter_task_migration(struct task_struct *task, int cpu)
3177 {
3178         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3179         struct perf_counter_context *ctx;
3180
3181         perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3182                                  PERF_COUNT_CPU_MIGRATIONS,
3183                                  1, 1, NULL, 0);
3184
3185         ctx = perf_pin_task_context(task);
3186         if (ctx) {
3187                 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3188                                          PERF_COUNT_CPU_MIGRATIONS,
3189                                          1, 1, NULL, 0);
3190                 perf_unpin_context(ctx);
3191         }
3192 }
3193
3194 #ifdef CONFIG_EVENT_PROFILE
3195 void perf_tpcounter_event(int event_id)
3196 {
3197         struct pt_regs *regs = get_irq_regs();
3198
3199         if (!regs)
3200                 regs = task_pt_regs(current);
3201
3202         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3203 }
3204 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3205
3206 extern int ftrace_profile_enable(int);
3207 extern void ftrace_profile_disable(int);
3208
3209 static void tp_perf_counter_destroy(struct perf_counter *counter)
3210 {
3211         ftrace_profile_disable(perf_event_id(&counter->hw_event));
3212 }
3213
3214 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3215 {
3216         int event_id = perf_event_id(&counter->hw_event);
3217         int ret;
3218
3219         ret = ftrace_profile_enable(event_id);
3220         if (ret)
3221                 return NULL;
3222
3223         counter->destroy = tp_perf_counter_destroy;
3224         counter->hw.irq_period = counter->hw_event.irq_period;
3225
3226         return &perf_ops_generic;
3227 }
3228 #else
3229 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3230 {
3231         return NULL;
3232 }
3233 #endif
3234
3235 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3236 {
3237         const struct pmu *pmu = NULL;
3238
3239         /*
3240          * Software counters (currently) can't in general distinguish
3241          * between user, kernel and hypervisor events.
3242          * However, context switches and cpu migrations are considered
3243          * to be kernel events, and page faults are never hypervisor
3244          * events.
3245          */
3246         switch (perf_event_id(&counter->hw_event)) {
3247         case PERF_COUNT_CPU_CLOCK:
3248                 pmu = &perf_ops_cpu_clock;
3249
3250                 break;
3251         case PERF_COUNT_TASK_CLOCK:
3252                 /*
3253                  * If the user instantiates this as a per-cpu counter,
3254                  * use the cpu_clock counter instead.
3255                  */
3256                 if (counter->ctx->task)
3257                         pmu = &perf_ops_task_clock;
3258                 else
3259                         pmu = &perf_ops_cpu_clock;
3260
3261                 break;
3262         case PERF_COUNT_PAGE_FAULTS:
3263         case PERF_COUNT_PAGE_FAULTS_MIN:
3264         case PERF_COUNT_PAGE_FAULTS_MAJ:
3265         case PERF_COUNT_CONTEXT_SWITCHES:
3266         case PERF_COUNT_CPU_MIGRATIONS:
3267                 pmu = &perf_ops_generic;
3268                 break;
3269         }
3270
3271         return pmu;
3272 }
3273
3274 /*
3275  * Allocate and initialize a counter structure
3276  */
3277 static struct perf_counter *
3278 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3279                    int cpu,
3280                    struct perf_counter_context *ctx,
3281                    struct perf_counter *group_leader,
3282                    gfp_t gfpflags)
3283 {
3284         const struct pmu *pmu;
3285         struct perf_counter *counter;
3286         struct hw_perf_counter *hwc;
3287         long err;
3288
3289         counter = kzalloc(sizeof(*counter), gfpflags);
3290         if (!counter)
3291                 return ERR_PTR(-ENOMEM);
3292
3293         /*
3294          * Single counters are their own group leaders, with an
3295          * empty sibling list:
3296          */
3297         if (!group_leader)
3298                 group_leader = counter;
3299
3300         mutex_init(&counter->child_mutex);
3301         INIT_LIST_HEAD(&counter->child_list);
3302
3303         INIT_LIST_HEAD(&counter->list_entry);
3304         INIT_LIST_HEAD(&counter->event_entry);
3305         INIT_LIST_HEAD(&counter->sibling_list);
3306         init_waitqueue_head(&counter->waitq);
3307
3308         mutex_init(&counter->mmap_mutex);
3309
3310         counter->cpu                    = cpu;
3311         counter->hw_event               = *hw_event;
3312         counter->group_leader           = group_leader;
3313         counter->pmu                    = NULL;
3314         counter->ctx                    = ctx;
3315         counter->oncpu                  = -1;
3316
3317         counter->state = PERF_COUNTER_STATE_INACTIVE;
3318         if (hw_event->disabled)
3319                 counter->state = PERF_COUNTER_STATE_OFF;
3320
3321         pmu = NULL;
3322
3323         hwc = &counter->hw;
3324         if (hw_event->freq && hw_event->irq_freq)
3325                 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3326         else
3327                 hwc->irq_period = hw_event->irq_period;
3328
3329         /*
3330          * we currently do not support PERF_RECORD_GROUP on inherited counters
3331          */
3332         if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3333                 goto done;
3334
3335         if (perf_event_raw(hw_event)) {
3336                 pmu = hw_perf_counter_init(counter);
3337                 goto done;
3338         }
3339
3340         switch (perf_event_type(hw_event)) {
3341         case PERF_TYPE_HARDWARE:
3342                 pmu = hw_perf_counter_init(counter);
3343                 break;
3344
3345         case PERF_TYPE_SOFTWARE:
3346                 pmu = sw_perf_counter_init(counter);
3347                 break;
3348
3349         case PERF_TYPE_TRACEPOINT:
3350                 pmu = tp_perf_counter_init(counter);
3351                 break;
3352         }
3353 done:
3354         err = 0;
3355         if (!pmu)
3356                 err = -EINVAL;
3357         else if (IS_ERR(pmu))
3358                 err = PTR_ERR(pmu);
3359
3360         if (err) {
3361                 kfree(counter);
3362                 return ERR_PTR(err);
3363         }
3364
3365         counter->pmu = pmu;
3366
3367         atomic_inc(&nr_counters);
3368         if (counter->hw_event.mmap)
3369                 atomic_inc(&nr_mmap_tracking);
3370         if (counter->hw_event.munmap)
3371                 atomic_inc(&nr_munmap_tracking);
3372         if (counter->hw_event.comm)
3373                 atomic_inc(&nr_comm_tracking);
3374
3375         return counter;
3376 }
3377
3378 /**
3379  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3380  *
3381  * @hw_event_uptr:      event type attributes for monitoring/sampling
3382  * @pid:                target pid
3383  * @cpu:                target cpu
3384  * @group_fd:           group leader counter fd
3385  */
3386 SYSCALL_DEFINE5(perf_counter_open,
3387                 const struct perf_counter_hw_event __user *, hw_event_uptr,
3388                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3389 {
3390         struct perf_counter *counter, *group_leader;
3391         struct perf_counter_hw_event hw_event;
3392         struct perf_counter_context *ctx;
3393         struct file *counter_file = NULL;
3394         struct file *group_file = NULL;
3395         int fput_needed = 0;
3396         int fput_needed2 = 0;
3397         int ret;
3398
3399         /* for future expandability... */
3400         if (flags)
3401                 return -EINVAL;
3402
3403         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3404                 return -EFAULT;
3405
3406         /*
3407          * Get the target context (task or percpu):
3408          */
3409         ctx = find_get_context(pid, cpu);
3410         if (IS_ERR(ctx))
3411                 return PTR_ERR(ctx);
3412
3413         /*
3414          * Look up the group leader (we will attach this counter to it):
3415          */
3416         group_leader = NULL;
3417         if (group_fd != -1) {
3418                 ret = -EINVAL;
3419                 group_file = fget_light(group_fd, &fput_needed);
3420                 if (!group_file)
3421                         goto err_put_context;
3422                 if (group_file->f_op != &perf_fops)
3423                         goto err_put_context;
3424
3425                 group_leader = group_file->private_data;
3426                 /*
3427                  * Do not allow a recursive hierarchy (this new sibling
3428                  * becoming part of another group-sibling):
3429                  */
3430                 if (group_leader->group_leader != group_leader)
3431                         goto err_put_context;
3432                 /*
3433                  * Do not allow to attach to a group in a different
3434                  * task or CPU context:
3435                  */
3436                 if (group_leader->ctx != ctx)
3437                         goto err_put_context;
3438                 /*
3439                  * Only a group leader can be exclusive or pinned
3440                  */
3441                 if (hw_event.exclusive || hw_event.pinned)
3442                         goto err_put_context;
3443         }
3444
3445         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3446                                      GFP_KERNEL);
3447         ret = PTR_ERR(counter);
3448         if (IS_ERR(counter))
3449                 goto err_put_context;
3450
3451         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3452         if (ret < 0)
3453                 goto err_free_put_context;
3454
3455         counter_file = fget_light(ret, &fput_needed2);
3456         if (!counter_file)
3457                 goto err_free_put_context;
3458
3459         counter->filp = counter_file;
3460         WARN_ON_ONCE(ctx->parent_ctx);
3461         mutex_lock(&ctx->mutex);
3462         perf_install_in_context(ctx, counter, cpu);
3463         ++ctx->generation;
3464         mutex_unlock(&ctx->mutex);
3465
3466         counter->owner = current;
3467         get_task_struct(current);
3468         mutex_lock(&current->perf_counter_mutex);
3469         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3470         mutex_unlock(&current->perf_counter_mutex);
3471
3472         counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3473
3474         fput_light(counter_file, fput_needed2);
3475
3476 out_fput:
3477         fput_light(group_file, fput_needed);
3478
3479         return ret;
3480
3481 err_free_put_context:
3482         kfree(counter);
3483
3484 err_put_context:
3485         put_ctx(ctx);
3486
3487         goto out_fput;
3488 }
3489
3490 /*
3491  * inherit a counter from parent task to child task:
3492  */
3493 static struct perf_counter *
3494 inherit_counter(struct perf_counter *parent_counter,
3495               struct task_struct *parent,
3496               struct perf_counter_context *parent_ctx,
3497               struct task_struct *child,
3498               struct perf_counter *group_leader,
3499               struct perf_counter_context *child_ctx)
3500 {
3501         struct perf_counter *child_counter;
3502
3503         /*
3504          * Instead of creating recursive hierarchies of counters,
3505          * we link inherited counters back to the original parent,
3506          * which has a filp for sure, which we use as the reference
3507          * count:
3508          */
3509         if (parent_counter->parent)
3510                 parent_counter = parent_counter->parent;
3511
3512         child_counter = perf_counter_alloc(&parent_counter->hw_event,
3513                                            parent_counter->cpu, child_ctx,
3514                                            group_leader, GFP_KERNEL);
3515         if (IS_ERR(child_counter))
3516                 return child_counter;
3517         get_ctx(child_ctx);
3518
3519         /*
3520          * Make the child state follow the state of the parent counter,
3521          * not its hw_event.disabled bit.  We hold the parent's mutex,
3522          * so we won't race with perf_counter_{en, dis}able_family.
3523          */
3524         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3525                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3526         else
3527                 child_counter->state = PERF_COUNTER_STATE_OFF;
3528
3529         /*
3530          * Link it up in the child's context:
3531          */
3532         add_counter_to_ctx(child_counter, child_ctx);
3533
3534         child_counter->parent = parent_counter;
3535         /*
3536          * inherit into child's child as well:
3537          */
3538         child_counter->hw_event.inherit = 1;
3539
3540         /*
3541          * Get a reference to the parent filp - we will fput it
3542          * when the child counter exits. This is safe to do because
3543          * we are in the parent and we know that the filp still
3544          * exists and has a nonzero count:
3545          */
3546         atomic_long_inc(&parent_counter->filp->f_count);
3547
3548         /*
3549          * Link this into the parent counter's child list
3550          */
3551         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3552         mutex_lock(&parent_counter->child_mutex);
3553         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3554         mutex_unlock(&parent_counter->child_mutex);
3555
3556         return child_counter;
3557 }
3558
3559 static int inherit_group(struct perf_counter *parent_counter,
3560               struct task_struct *parent,
3561               struct perf_counter_context *parent_ctx,
3562               struct task_struct *child,
3563               struct perf_counter_context *child_ctx)
3564 {
3565         struct perf_counter *leader;
3566         struct perf_counter *sub;
3567         struct perf_counter *child_ctr;
3568
3569         leader = inherit_counter(parent_counter, parent, parent_ctx,
3570                                  child, NULL, child_ctx);
3571         if (IS_ERR(leader))
3572                 return PTR_ERR(leader);
3573         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3574                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3575                                             child, leader, child_ctx);
3576                 if (IS_ERR(child_ctr))
3577                         return PTR_ERR(child_ctr);
3578         }
3579         return 0;
3580 }
3581
3582 static void sync_child_counter(struct perf_counter *child_counter,
3583                                struct perf_counter *parent_counter)
3584 {
3585         u64 child_val;
3586
3587         child_val = atomic64_read(&child_counter->count);
3588
3589         /*
3590          * Add back the child's count to the parent's count:
3591          */
3592         atomic64_add(child_val, &parent_counter->count);
3593         atomic64_add(child_counter->total_time_enabled,
3594                      &parent_counter->child_total_time_enabled);
3595         atomic64_add(child_counter->total_time_running,
3596                      &parent_counter->child_total_time_running);
3597
3598         /*
3599          * Remove this counter from the parent's list
3600          */
3601         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3602         mutex_lock(&parent_counter->child_mutex);
3603         list_del_init(&child_counter->child_list);
3604         mutex_unlock(&parent_counter->child_mutex);
3605
3606         /*
3607          * Release the parent counter, if this was the last
3608          * reference to it.
3609          */
3610         fput(parent_counter->filp);
3611 }
3612
3613 static void
3614 __perf_counter_exit_task(struct perf_counter *child_counter,
3615                          struct perf_counter_context *child_ctx)
3616 {
3617         struct perf_counter *parent_counter;
3618
3619         update_counter_times(child_counter);
3620         perf_counter_remove_from_context(child_counter);
3621
3622         parent_counter = child_counter->parent;
3623         /*
3624          * It can happen that parent exits first, and has counters
3625          * that are still around due to the child reference. These
3626          * counters need to be zapped - but otherwise linger.
3627          */
3628         if (parent_counter) {
3629                 sync_child_counter(child_counter, parent_counter);
3630                 free_counter(child_counter);
3631         }
3632 }
3633
3634 /*
3635  * When a child task exits, feed back counter values to parent counters.
3636  */
3637 void perf_counter_exit_task(struct task_struct *child)
3638 {
3639         struct perf_counter *child_counter, *tmp;
3640         struct perf_counter_context *child_ctx;
3641         unsigned long flags;
3642
3643         if (likely(!child->perf_counter_ctxp))
3644                 return;
3645
3646         local_irq_save(flags);
3647         /*
3648          * We can't reschedule here because interrupts are disabled,
3649          * and either child is current or it is a task that can't be
3650          * scheduled, so we are now safe from rescheduling changing
3651          * our context.
3652          */
3653         child_ctx = child->perf_counter_ctxp;
3654         __perf_counter_task_sched_out(child_ctx);
3655
3656         /*
3657          * Take the context lock here so that if find_get_context is
3658          * reading child->perf_counter_ctxp, we wait until it has
3659          * incremented the context's refcount before we do put_ctx below.
3660          */
3661         spin_lock(&child_ctx->lock);
3662         child->perf_counter_ctxp = NULL;
3663         if (child_ctx->parent_ctx) {
3664                 /*
3665                  * This context is a clone; unclone it so it can't get
3666                  * swapped to another process while we're removing all
3667                  * the counters from it.
3668                  */
3669                 put_ctx(child_ctx->parent_ctx);
3670                 child_ctx->parent_ctx = NULL;
3671         }
3672         spin_unlock(&child_ctx->lock);
3673         local_irq_restore(flags);
3674
3675         mutex_lock(&child_ctx->mutex);
3676
3677 again:
3678         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3679                                  list_entry)
3680                 __perf_counter_exit_task(child_counter, child_ctx);
3681
3682         /*
3683          * If the last counter was a group counter, it will have appended all
3684          * its siblings to the list, but we obtained 'tmp' before that which
3685          * will still point to the list head terminating the iteration.
3686          */
3687         if (!list_empty(&child_ctx->counter_list))
3688                 goto again;
3689
3690         mutex_unlock(&child_ctx->mutex);
3691
3692         put_ctx(child_ctx);
3693 }
3694
3695 /*
3696  * free an unexposed, unused context as created by inheritance by
3697  * init_task below, used by fork() in case of fail.
3698  */
3699 void perf_counter_free_task(struct task_struct *task)
3700 {
3701         struct perf_counter_context *ctx = task->perf_counter_ctxp;
3702         struct perf_counter *counter, *tmp;
3703
3704         if (!ctx)
3705                 return;
3706
3707         mutex_lock(&ctx->mutex);
3708 again:
3709         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3710                 struct perf_counter *parent = counter->parent;
3711
3712                 if (WARN_ON_ONCE(!parent))
3713                         continue;
3714
3715                 mutex_lock(&parent->child_mutex);
3716                 list_del_init(&counter->child_list);
3717                 mutex_unlock(&parent->child_mutex);
3718
3719                 fput(parent->filp);
3720
3721                 list_del_counter(counter, ctx);
3722                 free_counter(counter);
3723         }
3724
3725         if (!list_empty(&ctx->counter_list))
3726                 goto again;
3727
3728         mutex_unlock(&ctx->mutex);
3729
3730         put_ctx(ctx);
3731 }
3732
3733 /*
3734  * Initialize the perf_counter context in task_struct
3735  */
3736 int perf_counter_init_task(struct task_struct *child)
3737 {
3738         struct perf_counter_context *child_ctx, *parent_ctx;
3739         struct perf_counter_context *cloned_ctx;
3740         struct perf_counter *counter;
3741         struct task_struct *parent = current;
3742         int inherited_all = 1;
3743         int ret = 0;
3744
3745         child->perf_counter_ctxp = NULL;
3746
3747         mutex_init(&child->perf_counter_mutex);
3748         INIT_LIST_HEAD(&child->perf_counter_list);
3749
3750         if (likely(!parent->perf_counter_ctxp))
3751                 return 0;
3752
3753         /*
3754          * This is executed from the parent task context, so inherit
3755          * counters that have been marked for cloning.
3756          * First allocate and initialize a context for the child.
3757          */
3758
3759         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3760         if (!child_ctx)
3761                 return -ENOMEM;
3762
3763         __perf_counter_init_context(child_ctx, child);
3764         child->perf_counter_ctxp = child_ctx;
3765         get_task_struct(child);
3766
3767         /*
3768          * If the parent's context is a clone, pin it so it won't get
3769          * swapped under us.
3770          */
3771         parent_ctx = perf_pin_task_context(parent);
3772
3773         /*
3774          * No need to check if parent_ctx != NULL here; since we saw
3775          * it non-NULL earlier, the only reason for it to become NULL
3776          * is if we exit, and since we're currently in the middle of
3777          * a fork we can't be exiting at the same time.
3778          */
3779
3780         /*
3781          * Lock the parent list. No need to lock the child - not PID
3782          * hashed yet and not running, so nobody can access it.
3783          */
3784         mutex_lock(&parent_ctx->mutex);
3785
3786         /*
3787          * We dont have to disable NMIs - we are only looking at
3788          * the list, not manipulating it:
3789          */
3790         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3791                 if (counter != counter->group_leader)
3792                         continue;
3793
3794                 if (!counter->hw_event.inherit) {
3795                         inherited_all = 0;
3796                         continue;
3797                 }
3798
3799                 ret = inherit_group(counter, parent, parent_ctx,
3800                                              child, child_ctx);
3801                 if (ret) {
3802                         inherited_all = 0;
3803                         break;
3804                 }
3805         }
3806
3807         if (inherited_all) {
3808                 /*
3809                  * Mark the child context as a clone of the parent
3810                  * context, or of whatever the parent is a clone of.
3811                  * Note that if the parent is a clone, it could get
3812                  * uncloned at any point, but that doesn't matter
3813                  * because the list of counters and the generation
3814                  * count can't have changed since we took the mutex.
3815                  */
3816                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3817                 if (cloned_ctx) {
3818                         child_ctx->parent_ctx = cloned_ctx;
3819                         child_ctx->parent_gen = parent_ctx->parent_gen;
3820                 } else {
3821                         child_ctx->parent_ctx = parent_ctx;
3822                         child_ctx->parent_gen = parent_ctx->generation;
3823                 }
3824                 get_ctx(child_ctx->parent_ctx);
3825         }
3826
3827         mutex_unlock(&parent_ctx->mutex);
3828
3829         perf_unpin_context(parent_ctx);
3830
3831         return ret;
3832 }
3833
3834 static void __cpuinit perf_counter_init_cpu(int cpu)
3835 {
3836         struct perf_cpu_context *cpuctx;
3837
3838         cpuctx = &per_cpu(perf_cpu_context, cpu);
3839         __perf_counter_init_context(&cpuctx->ctx, NULL);
3840
3841         spin_lock(&perf_resource_lock);
3842         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3843         spin_unlock(&perf_resource_lock);
3844
3845         hw_perf_counter_setup(cpu);
3846 }
3847
3848 #ifdef CONFIG_HOTPLUG_CPU
3849 static void __perf_counter_exit_cpu(void *info)
3850 {
3851         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3852         struct perf_counter_context *ctx = &cpuctx->ctx;
3853         struct perf_counter *counter, *tmp;
3854
3855         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3856                 __perf_counter_remove_from_context(counter);
3857 }
3858 static void perf_counter_exit_cpu(int cpu)
3859 {
3860         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3861         struct perf_counter_context *ctx = &cpuctx->ctx;
3862
3863         mutex_lock(&ctx->mutex);
3864         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3865         mutex_unlock(&ctx->mutex);
3866 }
3867 #else
3868 static inline void perf_counter_exit_cpu(int cpu) { }
3869 #endif
3870
3871 static int __cpuinit
3872 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3873 {
3874         unsigned int cpu = (long)hcpu;
3875
3876         switch (action) {
3877
3878         case CPU_UP_PREPARE:
3879         case CPU_UP_PREPARE_FROZEN:
3880                 perf_counter_init_cpu(cpu);
3881                 break;
3882
3883         case CPU_DOWN_PREPARE:
3884         case CPU_DOWN_PREPARE_FROZEN:
3885                 perf_counter_exit_cpu(cpu);
3886                 break;
3887
3888         default:
3889                 break;
3890         }
3891
3892         return NOTIFY_OK;
3893 }
3894
3895 /*
3896  * This has to have a higher priority than migration_notifier in sched.c.
3897  */
3898 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3899         .notifier_call          = perf_cpu_notify,
3900         .priority               = 20,
3901 };
3902
3903 void __init perf_counter_init(void)
3904 {
3905         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3906                         (void *)(long)smp_processor_id());
3907         register_cpu_notifier(&perf_cpu_nb);
3908 }
3909
3910 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3911 {
3912         return sprintf(buf, "%d\n", perf_reserved_percpu);
3913 }
3914
3915 static ssize_t
3916 perf_set_reserve_percpu(struct sysdev_class *class,
3917                         const char *buf,
3918                         size_t count)
3919 {
3920         struct perf_cpu_context *cpuctx;
3921         unsigned long val;
3922         int err, cpu, mpt;
3923
3924         err = strict_strtoul(buf, 10, &val);
3925         if (err)
3926                 return err;
3927         if (val > perf_max_counters)
3928                 return -EINVAL;
3929
3930         spin_lock(&perf_resource_lock);
3931         perf_reserved_percpu = val;
3932         for_each_online_cpu(cpu) {
3933                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3934                 spin_lock_irq(&cpuctx->ctx.lock);
3935                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3936                           perf_max_counters - perf_reserved_percpu);
3937                 cpuctx->max_pertask = mpt;
3938                 spin_unlock_irq(&cpuctx->ctx.lock);
3939         }
3940         spin_unlock(&perf_resource_lock);
3941
3942         return count;
3943 }
3944
3945 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3946 {
3947         return sprintf(buf, "%d\n", perf_overcommit);
3948 }
3949
3950 static ssize_t
3951 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3952 {
3953         unsigned long val;
3954         int err;
3955
3956         err = strict_strtoul(buf, 10, &val);
3957         if (err)
3958                 return err;
3959         if (val > 1)
3960                 return -EINVAL;
3961
3962         spin_lock(&perf_resource_lock);
3963         perf_overcommit = val;
3964         spin_unlock(&perf_resource_lock);
3965
3966         return count;
3967 }
3968
3969 static SYSDEV_CLASS_ATTR(
3970                                 reserve_percpu,
3971                                 0644,
3972                                 perf_show_reserve_percpu,
3973                                 perf_set_reserve_percpu
3974                         );
3975
3976 static SYSDEV_CLASS_ATTR(
3977                                 overcommit,
3978                                 0644,
3979                                 perf_show_overcommit,
3980                                 perf_set_overcommit
3981                         );
3982
3983 static struct attribute *perfclass_attrs[] = {
3984         &attr_reserve_percpu.attr,
3985         &attr_overcommit.attr,
3986         NULL
3987 };
3988
3989 static struct attribute_group perfclass_attr_group = {
3990         .attrs                  = perfclass_attrs,
3991         .name                   = "perf_counters",
3992 };
3993
3994 static int __init perf_counter_sysfs_init(void)
3995 {
3996         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3997                                   &perfclass_attr_group);
3998 }
3999 device_initcall(perf_counter_sysfs_init);