perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file
[platform/kernel/linux-starfive.git] / kernel / locking / test-ww_mutex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Module-based API test facility for ww_mutexes
4  */
5
6 #include <linux/kernel.h>
7
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/kthread.h>
11 #include <linux/module.h>
12 #include <linux/random.h>
13 #include <linux/slab.h>
14 #include <linux/ww_mutex.h>
15
16 static DEFINE_WD_CLASS(ww_class);
17 struct workqueue_struct *wq;
18
19 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
20 #define ww_acquire_init_noinject(a, b) do { \
21                 ww_acquire_init((a), (b)); \
22                 (a)->deadlock_inject_countdown = ~0U; \
23         } while (0)
24 #else
25 #define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
26 #endif
27
28 struct test_mutex {
29         struct work_struct work;
30         struct ww_mutex mutex;
31         struct completion ready, go, done;
32         unsigned int flags;
33 };
34
35 #define TEST_MTX_SPIN BIT(0)
36 #define TEST_MTX_TRY BIT(1)
37 #define TEST_MTX_CTX BIT(2)
38 #define __TEST_MTX_LAST BIT(3)
39
40 static void test_mutex_work(struct work_struct *work)
41 {
42         struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
43
44         complete(&mtx->ready);
45         wait_for_completion(&mtx->go);
46
47         if (mtx->flags & TEST_MTX_TRY) {
48                 while (!ww_mutex_trylock(&mtx->mutex, NULL))
49                         cond_resched();
50         } else {
51                 ww_mutex_lock(&mtx->mutex, NULL);
52         }
53         complete(&mtx->done);
54         ww_mutex_unlock(&mtx->mutex);
55 }
56
57 static int __test_mutex(unsigned int flags)
58 {
59 #define TIMEOUT (HZ / 16)
60         struct test_mutex mtx;
61         struct ww_acquire_ctx ctx;
62         int ret;
63
64         ww_mutex_init(&mtx.mutex, &ww_class);
65         ww_acquire_init(&ctx, &ww_class);
66
67         INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
68         init_completion(&mtx.ready);
69         init_completion(&mtx.go);
70         init_completion(&mtx.done);
71         mtx.flags = flags;
72
73         schedule_work(&mtx.work);
74
75         wait_for_completion(&mtx.ready);
76         ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
77         complete(&mtx.go);
78         if (flags & TEST_MTX_SPIN) {
79                 unsigned long timeout = jiffies + TIMEOUT;
80
81                 ret = 0;
82                 do {
83                         if (completion_done(&mtx.done)) {
84                                 ret = -EINVAL;
85                                 break;
86                         }
87                         cond_resched();
88                 } while (time_before(jiffies, timeout));
89         } else {
90                 ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
91         }
92         ww_mutex_unlock(&mtx.mutex);
93         ww_acquire_fini(&ctx);
94
95         if (ret) {
96                 pr_err("%s(flags=%x): mutual exclusion failure\n",
97                        __func__, flags);
98                 ret = -EINVAL;
99         }
100
101         flush_work(&mtx.work);
102         destroy_work_on_stack(&mtx.work);
103         return ret;
104 #undef TIMEOUT
105 }
106
107 static int test_mutex(void)
108 {
109         int ret;
110         int i;
111
112         for (i = 0; i < __TEST_MTX_LAST; i++) {
113                 ret = __test_mutex(i);
114                 if (ret)
115                         return ret;
116         }
117
118         return 0;
119 }
120
121 static int test_aa(bool trylock)
122 {
123         struct ww_mutex mutex;
124         struct ww_acquire_ctx ctx;
125         int ret;
126         const char *from = trylock ? "trylock" : "lock";
127
128         ww_mutex_init(&mutex, &ww_class);
129         ww_acquire_init(&ctx, &ww_class);
130
131         if (!trylock) {
132                 ret = ww_mutex_lock(&mutex, &ctx);
133                 if (ret) {
134                         pr_err("%s: initial lock failed!\n", __func__);
135                         goto out;
136                 }
137         } else {
138                 ret = !ww_mutex_trylock(&mutex, &ctx);
139                 if (ret) {
140                         pr_err("%s: initial trylock failed!\n", __func__);
141                         goto out;
142                 }
143         }
144
145         if (ww_mutex_trylock(&mutex, NULL))  {
146                 pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
147                 ww_mutex_unlock(&mutex);
148                 ret = -EINVAL;
149                 goto out;
150         }
151
152         if (ww_mutex_trylock(&mutex, &ctx))  {
153                 pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
154                 ww_mutex_unlock(&mutex);
155                 ret = -EINVAL;
156                 goto out;
157         }
158
159         ret = ww_mutex_lock(&mutex, &ctx);
160         if (ret != -EALREADY) {
161                 pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
162                        __func__, ret, from);
163                 if (!ret)
164                         ww_mutex_unlock(&mutex);
165                 ret = -EINVAL;
166                 goto out;
167         }
168
169         ww_mutex_unlock(&mutex);
170         ret = 0;
171 out:
172         ww_acquire_fini(&ctx);
173         return ret;
174 }
175
176 struct test_abba {
177         struct work_struct work;
178         struct ww_mutex a_mutex;
179         struct ww_mutex b_mutex;
180         struct completion a_ready;
181         struct completion b_ready;
182         bool resolve, trylock;
183         int result;
184 };
185
186 static void test_abba_work(struct work_struct *work)
187 {
188         struct test_abba *abba = container_of(work, typeof(*abba), work);
189         struct ww_acquire_ctx ctx;
190         int err;
191
192         ww_acquire_init_noinject(&ctx, &ww_class);
193         if (!abba->trylock)
194                 ww_mutex_lock(&abba->b_mutex, &ctx);
195         else
196                 WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
197
198         WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
199
200         complete(&abba->b_ready);
201         wait_for_completion(&abba->a_ready);
202
203         err = ww_mutex_lock(&abba->a_mutex, &ctx);
204         if (abba->resolve && err == -EDEADLK) {
205                 ww_mutex_unlock(&abba->b_mutex);
206                 ww_mutex_lock_slow(&abba->a_mutex, &ctx);
207                 err = ww_mutex_lock(&abba->b_mutex, &ctx);
208         }
209
210         if (!err)
211                 ww_mutex_unlock(&abba->a_mutex);
212         ww_mutex_unlock(&abba->b_mutex);
213         ww_acquire_fini(&ctx);
214
215         abba->result = err;
216 }
217
218 static int test_abba(bool trylock, bool resolve)
219 {
220         struct test_abba abba;
221         struct ww_acquire_ctx ctx;
222         int err, ret;
223
224         ww_mutex_init(&abba.a_mutex, &ww_class);
225         ww_mutex_init(&abba.b_mutex, &ww_class);
226         INIT_WORK_ONSTACK(&abba.work, test_abba_work);
227         init_completion(&abba.a_ready);
228         init_completion(&abba.b_ready);
229         abba.trylock = trylock;
230         abba.resolve = resolve;
231
232         schedule_work(&abba.work);
233
234         ww_acquire_init_noinject(&ctx, &ww_class);
235         if (!trylock)
236                 ww_mutex_lock(&abba.a_mutex, &ctx);
237         else
238                 WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
239
240         WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
241
242         complete(&abba.a_ready);
243         wait_for_completion(&abba.b_ready);
244
245         err = ww_mutex_lock(&abba.b_mutex, &ctx);
246         if (resolve && err == -EDEADLK) {
247                 ww_mutex_unlock(&abba.a_mutex);
248                 ww_mutex_lock_slow(&abba.b_mutex, &ctx);
249                 err = ww_mutex_lock(&abba.a_mutex, &ctx);
250         }
251
252         if (!err)
253                 ww_mutex_unlock(&abba.b_mutex);
254         ww_mutex_unlock(&abba.a_mutex);
255         ww_acquire_fini(&ctx);
256
257         flush_work(&abba.work);
258         destroy_work_on_stack(&abba.work);
259
260         ret = 0;
261         if (resolve) {
262                 if (err || abba.result) {
263                         pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
264                                __func__, err, abba.result);
265                         ret = -EINVAL;
266                 }
267         } else {
268                 if (err != -EDEADLK && abba.result != -EDEADLK) {
269                         pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
270                                __func__, err, abba.result);
271                         ret = -EINVAL;
272                 }
273         }
274         return ret;
275 }
276
277 struct test_cycle {
278         struct work_struct work;
279         struct ww_mutex a_mutex;
280         struct ww_mutex *b_mutex;
281         struct completion *a_signal;
282         struct completion b_signal;
283         int result;
284 };
285
286 static void test_cycle_work(struct work_struct *work)
287 {
288         struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
289         struct ww_acquire_ctx ctx;
290         int err, erra = 0;
291
292         ww_acquire_init_noinject(&ctx, &ww_class);
293         ww_mutex_lock(&cycle->a_mutex, &ctx);
294
295         complete(cycle->a_signal);
296         wait_for_completion(&cycle->b_signal);
297
298         err = ww_mutex_lock(cycle->b_mutex, &ctx);
299         if (err == -EDEADLK) {
300                 err = 0;
301                 ww_mutex_unlock(&cycle->a_mutex);
302                 ww_mutex_lock_slow(cycle->b_mutex, &ctx);
303                 erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
304         }
305
306         if (!err)
307                 ww_mutex_unlock(cycle->b_mutex);
308         if (!erra)
309                 ww_mutex_unlock(&cycle->a_mutex);
310         ww_acquire_fini(&ctx);
311
312         cycle->result = err ?: erra;
313 }
314
315 static int __test_cycle(unsigned int nthreads)
316 {
317         struct test_cycle *cycles;
318         unsigned int n, last = nthreads - 1;
319         int ret;
320
321         cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
322         if (!cycles)
323                 return -ENOMEM;
324
325         for (n = 0; n < nthreads; n++) {
326                 struct test_cycle *cycle = &cycles[n];
327
328                 ww_mutex_init(&cycle->a_mutex, &ww_class);
329                 if (n == last)
330                         cycle->b_mutex = &cycles[0].a_mutex;
331                 else
332                         cycle->b_mutex = &cycles[n + 1].a_mutex;
333
334                 if (n == 0)
335                         cycle->a_signal = &cycles[last].b_signal;
336                 else
337                         cycle->a_signal = &cycles[n - 1].b_signal;
338                 init_completion(&cycle->b_signal);
339
340                 INIT_WORK(&cycle->work, test_cycle_work);
341                 cycle->result = 0;
342         }
343
344         for (n = 0; n < nthreads; n++)
345                 queue_work(wq, &cycles[n].work);
346
347         flush_workqueue(wq);
348
349         ret = 0;
350         for (n = 0; n < nthreads; n++) {
351                 struct test_cycle *cycle = &cycles[n];
352
353                 if (!cycle->result)
354                         continue;
355
356                 pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
357                        n, nthreads, cycle->result);
358                 ret = -EINVAL;
359                 break;
360         }
361
362         for (n = 0; n < nthreads; n++)
363                 ww_mutex_destroy(&cycles[n].a_mutex);
364         kfree(cycles);
365         return ret;
366 }
367
368 static int test_cycle(unsigned int ncpus)
369 {
370         unsigned int n;
371         int ret;
372
373         for (n = 2; n <= ncpus + 1; n++) {
374                 ret = __test_cycle(n);
375                 if (ret)
376                         return ret;
377         }
378
379         return 0;
380 }
381
382 struct stress {
383         struct work_struct work;
384         struct ww_mutex *locks;
385         unsigned long timeout;
386         int nlocks;
387 };
388
389 static int *get_random_order(int count)
390 {
391         int *order;
392         int n, r, tmp;
393
394         order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
395         if (!order)
396                 return order;
397
398         for (n = 0; n < count; n++)
399                 order[n] = n;
400
401         for (n = count - 1; n > 1; n--) {
402                 r = get_random_u32_below(n + 1);
403                 if (r != n) {
404                         tmp = order[n];
405                         order[n] = order[r];
406                         order[r] = tmp;
407                 }
408         }
409
410         return order;
411 }
412
413 static void dummy_load(struct stress *stress)
414 {
415         usleep_range(1000, 2000);
416 }
417
418 static void stress_inorder_work(struct work_struct *work)
419 {
420         struct stress *stress = container_of(work, typeof(*stress), work);
421         const int nlocks = stress->nlocks;
422         struct ww_mutex *locks = stress->locks;
423         struct ww_acquire_ctx ctx;
424         int *order;
425
426         order = get_random_order(nlocks);
427         if (!order)
428                 return;
429
430         do {
431                 int contended = -1;
432                 int n, err;
433
434                 ww_acquire_init(&ctx, &ww_class);
435 retry:
436                 err = 0;
437                 for (n = 0; n < nlocks; n++) {
438                         if (n == contended)
439                                 continue;
440
441                         err = ww_mutex_lock(&locks[order[n]], &ctx);
442                         if (err < 0)
443                                 break;
444                 }
445                 if (!err)
446                         dummy_load(stress);
447
448                 if (contended > n)
449                         ww_mutex_unlock(&locks[order[contended]]);
450                 contended = n;
451                 while (n--)
452                         ww_mutex_unlock(&locks[order[n]]);
453
454                 if (err == -EDEADLK) {
455                         ww_mutex_lock_slow(&locks[order[contended]], &ctx);
456                         goto retry;
457                 }
458
459                 if (err) {
460                         pr_err_once("stress (%s) failed with %d\n",
461                                     __func__, err);
462                         break;
463                 }
464
465                 ww_acquire_fini(&ctx);
466         } while (!time_after(jiffies, stress->timeout));
467
468         kfree(order);
469 }
470
471 struct reorder_lock {
472         struct list_head link;
473         struct ww_mutex *lock;
474 };
475
476 static void stress_reorder_work(struct work_struct *work)
477 {
478         struct stress *stress = container_of(work, typeof(*stress), work);
479         LIST_HEAD(locks);
480         struct ww_acquire_ctx ctx;
481         struct reorder_lock *ll, *ln;
482         int *order;
483         int n, err;
484
485         order = get_random_order(stress->nlocks);
486         if (!order)
487                 return;
488
489         for (n = 0; n < stress->nlocks; n++) {
490                 ll = kmalloc(sizeof(*ll), GFP_KERNEL);
491                 if (!ll)
492                         goto out;
493
494                 ll->lock = &stress->locks[order[n]];
495                 list_add(&ll->link, &locks);
496         }
497         kfree(order);
498         order = NULL;
499
500         do {
501                 ww_acquire_init(&ctx, &ww_class);
502
503                 list_for_each_entry(ll, &locks, link) {
504                         err = ww_mutex_lock(ll->lock, &ctx);
505                         if (!err)
506                                 continue;
507
508                         ln = ll;
509                         list_for_each_entry_continue_reverse(ln, &locks, link)
510                                 ww_mutex_unlock(ln->lock);
511
512                         if (err != -EDEADLK) {
513                                 pr_err_once("stress (%s) failed with %d\n",
514                                             __func__, err);
515                                 break;
516                         }
517
518                         ww_mutex_lock_slow(ll->lock, &ctx);
519                         list_move(&ll->link, &locks); /* restarts iteration */
520                 }
521
522                 dummy_load(stress);
523                 list_for_each_entry(ll, &locks, link)
524                         ww_mutex_unlock(ll->lock);
525
526                 ww_acquire_fini(&ctx);
527         } while (!time_after(jiffies, stress->timeout));
528
529 out:
530         list_for_each_entry_safe(ll, ln, &locks, link)
531                 kfree(ll);
532         kfree(order);
533 }
534
535 static void stress_one_work(struct work_struct *work)
536 {
537         struct stress *stress = container_of(work, typeof(*stress), work);
538         const int nlocks = stress->nlocks;
539         struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
540         int err;
541
542         do {
543                 err = ww_mutex_lock(lock, NULL);
544                 if (!err) {
545                         dummy_load(stress);
546                         ww_mutex_unlock(lock);
547                 } else {
548                         pr_err_once("stress (%s) failed with %d\n",
549                                     __func__, err);
550                         break;
551                 }
552         } while (!time_after(jiffies, stress->timeout));
553 }
554
555 #define STRESS_INORDER BIT(0)
556 #define STRESS_REORDER BIT(1)
557 #define STRESS_ONE BIT(2)
558 #define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
559
560 static int stress(int nlocks, int nthreads, unsigned int flags)
561 {
562         struct ww_mutex *locks;
563         struct stress *stress_array;
564         int n, count;
565
566         locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
567         if (!locks)
568                 return -ENOMEM;
569
570         stress_array = kmalloc_array(nthreads, sizeof(*stress_array),
571                                      GFP_KERNEL);
572         if (!stress_array) {
573                 kfree(locks);
574                 return -ENOMEM;
575         }
576
577         for (n = 0; n < nlocks; n++)
578                 ww_mutex_init(&locks[n], &ww_class);
579
580         count = 0;
581         for (n = 0; nthreads; n++) {
582                 struct stress *stress;
583                 void (*fn)(struct work_struct *work);
584
585                 fn = NULL;
586                 switch (n & 3) {
587                 case 0:
588                         if (flags & STRESS_INORDER)
589                                 fn = stress_inorder_work;
590                         break;
591                 case 1:
592                         if (flags & STRESS_REORDER)
593                                 fn = stress_reorder_work;
594                         break;
595                 case 2:
596                         if (flags & STRESS_ONE)
597                                 fn = stress_one_work;
598                         break;
599                 }
600
601                 if (!fn)
602                         continue;
603
604                 stress = &stress_array[count++];
605
606                 INIT_WORK(&stress->work, fn);
607                 stress->locks = locks;
608                 stress->nlocks = nlocks;
609                 stress->timeout = jiffies + 2*HZ;
610
611                 queue_work(wq, &stress->work);
612                 nthreads--;
613         }
614
615         flush_workqueue(wq);
616
617         for (n = 0; n < nlocks; n++)
618                 ww_mutex_destroy(&locks[n]);
619         kfree(stress_array);
620         kfree(locks);
621
622         return 0;
623 }
624
625 static int __init test_ww_mutex_init(void)
626 {
627         int ncpus = num_online_cpus();
628         int ret, i;
629
630         printk(KERN_INFO "Beginning ww mutex selftests\n");
631
632         wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
633         if (!wq)
634                 return -ENOMEM;
635
636         ret = test_mutex();
637         if (ret)
638                 return ret;
639
640         ret = test_aa(false);
641         if (ret)
642                 return ret;
643
644         ret = test_aa(true);
645         if (ret)
646                 return ret;
647
648         for (i = 0; i < 4; i++) {
649                 ret = test_abba(i & 1, i & 2);
650                 if (ret)
651                         return ret;
652         }
653
654         ret = test_cycle(ncpus);
655         if (ret)
656                 return ret;
657
658         ret = stress(16, 2*ncpus, STRESS_INORDER);
659         if (ret)
660                 return ret;
661
662         ret = stress(16, 2*ncpus, STRESS_REORDER);
663         if (ret)
664                 return ret;
665
666         ret = stress(2047, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
667         if (ret)
668                 return ret;
669
670         printk(KERN_INFO "All ww mutex selftests passed\n");
671         return 0;
672 }
673
674 static void __exit test_ww_mutex_exit(void)
675 {
676         destroy_workqueue(wq);
677 }
678
679 module_init(test_ww_mutex_init);
680 module_exit(test_ww_mutex_exit);
681
682 MODULE_LICENSE("GPL");
683 MODULE_AUTHOR("Intel Corporation");