drm/edid/firmware: Add built-in edid/1280x720.bin firmware
[platform/kernel/linux-starfive.git] / kernel / locking / rwsem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED      (1UL << 0)
64 #define RWSEM_NONSPINNABLE      (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
69         if (!debug_locks_silent &&                              \
70             WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71                 #c, atomic_long_read(&(sem)->count),            \
72                 (unsigned long) sem->magic,                     \
73                 atomic_long_read(&(sem)->owner), (long)current, \
74                 list_empty(&(sem)->wait_list) ? "" : "not "))   \
75                         debug_locks_off();                      \
76         } while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers             -- set, clear
110  * 2) rwsem_try_write_lock() for writers        -- set, clear
111  * 3) rwsem_del_waiter()                        -- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED     (1UL << 0)
118 #define RWSEM_FLAG_WAITERS      (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF      (1UL << 2)
120 #define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
121
122 #define RWSEM_READER_SHIFT      8
123 #define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128                                  RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  *
137  * Both rwsem_{set,clear}_owner() functions should be in the same
138  * preempt disable section as the atomic op that changes sem->count.
139  */
140 static inline void rwsem_set_owner(struct rw_semaphore *sem)
141 {
142         lockdep_assert_preemption_disabled();
143         atomic_long_set(&sem->owner, (long)current);
144 }
145
146 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147 {
148         lockdep_assert_preemption_disabled();
149         atomic_long_set(&sem->owner, 0);
150 }
151
152 /*
153  * Test the flags in the owner field.
154  */
155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156 {
157         return atomic_long_read(&sem->owner) & flags;
158 }
159
160 /*
161  * The task_struct pointer of the last owning reader will be left in
162  * the owner field.
163  *
164  * Note that the owner value just indicates the task has owned the rwsem
165  * previously, it may not be the real owner or one of the real owners
166  * anymore when that field is examined, so take it with a grain of salt.
167  *
168  * The reader non-spinnable bit is preserved.
169  */
170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171                                             struct task_struct *owner)
172 {
173         unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174                 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175
176         atomic_long_set(&sem->owner, val);
177 }
178
179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180 {
181         __rwsem_set_reader_owned(sem, current);
182 }
183
184 /*
185  * Return true if the rwsem is owned by a reader.
186  */
187 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
188 {
189 #ifdef CONFIG_DEBUG_RWSEMS
190         /*
191          * Check the count to see if it is write-locked.
192          */
193         long count = atomic_long_read(&sem->count);
194
195         if (count & RWSEM_WRITER_MASK)
196                 return false;
197 #endif
198         return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
199 }
200
201 #ifdef CONFIG_DEBUG_RWSEMS
202 /*
203  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
204  * is a task pointer in owner of a reader-owned rwsem, it will be the
205  * real owner or one of the real owners. The only exception is when the
206  * unlock is done by up_read_non_owner().
207  */
208 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
209 {
210         unsigned long val = atomic_long_read(&sem->owner);
211
212         while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
213                 if (atomic_long_try_cmpxchg(&sem->owner, &val,
214                                             val & RWSEM_OWNER_FLAGS_MASK))
215                         return;
216         }
217 }
218 #else
219 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
220 {
221 }
222 #endif
223
224 /*
225  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
226  * remains set. Otherwise, the operation will be aborted.
227  */
228 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
229 {
230         unsigned long owner = atomic_long_read(&sem->owner);
231
232         do {
233                 if (!(owner & RWSEM_READER_OWNED))
234                         break;
235                 if (owner & RWSEM_NONSPINNABLE)
236                         break;
237         } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
238                                           owner | RWSEM_NONSPINNABLE));
239 }
240
241 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
242 {
243         *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
244
245         if (WARN_ON_ONCE(*cntp < 0))
246                 rwsem_set_nonspinnable(sem);
247
248         if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
249                 rwsem_set_reader_owned(sem);
250                 return true;
251         }
252
253         return false;
254 }
255
256 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
257 {
258         long tmp = RWSEM_UNLOCKED_VALUE;
259         bool ret = false;
260
261         preempt_disable();
262         if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
263                 rwsem_set_owner(sem);
264                 ret = true;
265         }
266
267         preempt_enable();
268         return ret;
269 }
270
271 /*
272  * Return just the real task structure pointer of the owner
273  */
274 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
275 {
276         return (struct task_struct *)
277                 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
278 }
279
280 /*
281  * Return the real task structure pointer of the owner and the embedded
282  * flags in the owner. pflags must be non-NULL.
283  */
284 static inline struct task_struct *
285 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
286 {
287         unsigned long owner = atomic_long_read(&sem->owner);
288
289         *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
290         return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
291 }
292
293 /*
294  * Guide to the rw_semaphore's count field.
295  *
296  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
297  * by a writer.
298  *
299  * The lock is owned by readers when
300  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
301  * (2) some of the reader bits are set in count, and
302  * (3) the owner field has RWSEM_READ_OWNED bit set.
303  *
304  * Having some reader bits set is not enough to guarantee a readers owned
305  * lock as the readers may be in the process of backing out from the count
306  * and a writer has just released the lock. So another writer may steal
307  * the lock immediately after that.
308  */
309
310 /*
311  * Initialize an rwsem:
312  */
313 void __init_rwsem(struct rw_semaphore *sem, const char *name,
314                   struct lock_class_key *key)
315 {
316 #ifdef CONFIG_DEBUG_LOCK_ALLOC
317         /*
318          * Make sure we are not reinitializing a held semaphore:
319          */
320         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
321         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
322 #endif
323 #ifdef CONFIG_DEBUG_RWSEMS
324         sem->magic = sem;
325 #endif
326         atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
327         raw_spin_lock_init(&sem->wait_lock);
328         INIT_LIST_HEAD(&sem->wait_list);
329         atomic_long_set(&sem->owner, 0L);
330 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
331         osq_lock_init(&sem->osq);
332 #endif
333 }
334 EXPORT_SYMBOL(__init_rwsem);
335
336 enum rwsem_waiter_type {
337         RWSEM_WAITING_FOR_WRITE,
338         RWSEM_WAITING_FOR_READ
339 };
340
341 struct rwsem_waiter {
342         struct list_head list;
343         struct task_struct *task;
344         enum rwsem_waiter_type type;
345         unsigned long timeout;
346         bool handoff_set;
347 };
348 #define rwsem_first_waiter(sem) \
349         list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
350
351 enum rwsem_wake_type {
352         RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
353         RWSEM_WAKE_READERS,     /* Wake readers only */
354         RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
355 };
356
357 /*
358  * The typical HZ value is either 250 or 1000. So set the minimum waiting
359  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
360  * queue before initiating the handoff protocol.
361  */
362 #define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
363
364 /*
365  * Magic number to batch-wakeup waiting readers, even when writers are
366  * also present in the queue. This both limits the amount of work the
367  * waking thread must do and also prevents any potential counter overflow,
368  * however unlikely.
369  */
370 #define MAX_READERS_WAKEUP      0x100
371
372 static inline void
373 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
374 {
375         lockdep_assert_held(&sem->wait_lock);
376         list_add_tail(&waiter->list, &sem->wait_list);
377         /* caller will set RWSEM_FLAG_WAITERS */
378 }
379
380 /*
381  * Remove a waiter from the wait_list and clear flags.
382  *
383  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
384  * this function. Modify with care.
385  *
386  * Return: true if wait_list isn't empty and false otherwise
387  */
388 static inline bool
389 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
390 {
391         lockdep_assert_held(&sem->wait_lock);
392         list_del(&waiter->list);
393         if (likely(!list_empty(&sem->wait_list)))
394                 return true;
395
396         atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
397         return false;
398 }
399
400 /*
401  * handle the lock release when processes blocked on it that can now run
402  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
403  *   have been set.
404  * - there must be someone on the queue
405  * - the wait_lock must be held by the caller
406  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
407  *   to actually wakeup the blocked task(s) and drop the reference count,
408  *   preferably when the wait_lock is released
409  * - woken process blocks are discarded from the list after having task zeroed
410  * - writers are only marked woken if downgrading is false
411  *
412  * Implies rwsem_del_waiter() for all woken readers.
413  */
414 static void rwsem_mark_wake(struct rw_semaphore *sem,
415                             enum rwsem_wake_type wake_type,
416                             struct wake_q_head *wake_q)
417 {
418         struct rwsem_waiter *waiter, *tmp;
419         long oldcount, woken = 0, adjustment = 0;
420         struct list_head wlist;
421
422         lockdep_assert_held(&sem->wait_lock);
423
424         /*
425          * Take a peek at the queue head waiter such that we can determine
426          * the wakeup(s) to perform.
427          */
428         waiter = rwsem_first_waiter(sem);
429
430         if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
431                 if (wake_type == RWSEM_WAKE_ANY) {
432                         /*
433                          * Mark writer at the front of the queue for wakeup.
434                          * Until the task is actually later awoken later by
435                          * the caller, other writers are able to steal it.
436                          * Readers, on the other hand, will block as they
437                          * will notice the queued writer.
438                          */
439                         wake_q_add(wake_q, waiter->task);
440                         lockevent_inc(rwsem_wake_writer);
441                 }
442
443                 return;
444         }
445
446         /*
447          * No reader wakeup if there are too many of them already.
448          */
449         if (unlikely(atomic_long_read(&sem->count) < 0))
450                 return;
451
452         /*
453          * Writers might steal the lock before we grant it to the next reader.
454          * We prefer to do the first reader grant before counting readers
455          * so we can bail out early if a writer stole the lock.
456          */
457         if (wake_type != RWSEM_WAKE_READ_OWNED) {
458                 struct task_struct *owner;
459
460                 adjustment = RWSEM_READER_BIAS;
461                 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
462                 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
463                         /*
464                          * When we've been waiting "too" long (for writers
465                          * to give up the lock), request a HANDOFF to
466                          * force the issue.
467                          */
468                         if (time_after(jiffies, waiter->timeout)) {
469                                 if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
470                                         adjustment -= RWSEM_FLAG_HANDOFF;
471                                         lockevent_inc(rwsem_rlock_handoff);
472                                 }
473                                 waiter->handoff_set = true;
474                         }
475
476                         atomic_long_add(-adjustment, &sem->count);
477                         return;
478                 }
479                 /*
480                  * Set it to reader-owned to give spinners an early
481                  * indication that readers now have the lock.
482                  * The reader nonspinnable bit seen at slowpath entry of
483                  * the reader is copied over.
484                  */
485                 owner = waiter->task;
486                 __rwsem_set_reader_owned(sem, owner);
487         }
488
489         /*
490          * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
491          * queue. We know that the woken will be at least 1 as we accounted
492          * for above. Note we increment the 'active part' of the count by the
493          * number of readers before waking any processes up.
494          *
495          * This is an adaptation of the phase-fair R/W locks where at the
496          * reader phase (first waiter is a reader), all readers are eligible
497          * to acquire the lock at the same time irrespective of their order
498          * in the queue. The writers acquire the lock according to their
499          * order in the queue.
500          *
501          * We have to do wakeup in 2 passes to prevent the possibility that
502          * the reader count may be decremented before it is incremented. It
503          * is because the to-be-woken waiter may not have slept yet. So it
504          * may see waiter->task got cleared, finish its critical section and
505          * do an unlock before the reader count increment.
506          *
507          * 1) Collect the read-waiters in a separate list, count them and
508          *    fully increment the reader count in rwsem.
509          * 2) For each waiters in the new list, clear waiter->task and
510          *    put them into wake_q to be woken up later.
511          */
512         INIT_LIST_HEAD(&wlist);
513         list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
514                 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
515                         continue;
516
517                 woken++;
518                 list_move_tail(&waiter->list, &wlist);
519
520                 /*
521                  * Limit # of readers that can be woken up per wakeup call.
522                  */
523                 if (unlikely(woken >= MAX_READERS_WAKEUP))
524                         break;
525         }
526
527         adjustment = woken * RWSEM_READER_BIAS - adjustment;
528         lockevent_cond_inc(rwsem_wake_reader, woken);
529
530         oldcount = atomic_long_read(&sem->count);
531         if (list_empty(&sem->wait_list)) {
532                 /*
533                  * Combined with list_move_tail() above, this implies
534                  * rwsem_del_waiter().
535                  */
536                 adjustment -= RWSEM_FLAG_WAITERS;
537                 if (oldcount & RWSEM_FLAG_HANDOFF)
538                         adjustment -= RWSEM_FLAG_HANDOFF;
539         } else if (woken) {
540                 /*
541                  * When we've woken a reader, we no longer need to force
542                  * writers to give up the lock and we can clear HANDOFF.
543                  */
544                 if (oldcount & RWSEM_FLAG_HANDOFF)
545                         adjustment -= RWSEM_FLAG_HANDOFF;
546         }
547
548         if (adjustment)
549                 atomic_long_add(adjustment, &sem->count);
550
551         /* 2nd pass */
552         list_for_each_entry_safe(waiter, tmp, &wlist, list) {
553                 struct task_struct *tsk;
554
555                 tsk = waiter->task;
556                 get_task_struct(tsk);
557
558                 /*
559                  * Ensure calling get_task_struct() before setting the reader
560                  * waiter to nil such that rwsem_down_read_slowpath() cannot
561                  * race with do_exit() by always holding a reference count
562                  * to the task to wakeup.
563                  */
564                 smp_store_release(&waiter->task, NULL);
565                 /*
566                  * Ensure issuing the wakeup (either by us or someone else)
567                  * after setting the reader waiter to nil.
568                  */
569                 wake_q_add_safe(wake_q, tsk);
570         }
571 }
572
573 /*
574  * Remove a waiter and try to wake up other waiters in the wait queue
575  * This function is called from the out_nolock path of both the reader and
576  * writer slowpaths with wait_lock held. It releases the wait_lock and
577  * optionally wake up waiters before it returns.
578  */
579 static inline void
580 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
581                       struct wake_q_head *wake_q)
582                       __releases(&sem->wait_lock)
583 {
584         bool first = rwsem_first_waiter(sem) == waiter;
585
586         wake_q_init(wake_q);
587
588         /*
589          * If the wait_list isn't empty and the waiter to be deleted is
590          * the first waiter, we wake up the remaining waiters as they may
591          * be eligible to acquire or spin on the lock.
592          */
593         if (rwsem_del_waiter(sem, waiter) && first)
594                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
595         raw_spin_unlock_irq(&sem->wait_lock);
596         if (!wake_q_empty(wake_q))
597                 wake_up_q(wake_q);
598 }
599
600 /*
601  * This function must be called with the sem->wait_lock held to prevent
602  * race conditions between checking the rwsem wait list and setting the
603  * sem->count accordingly.
604  *
605  * Implies rwsem_del_waiter() on success.
606  */
607 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
608                                         struct rwsem_waiter *waiter)
609 {
610         struct rwsem_waiter *first = rwsem_first_waiter(sem);
611         long count, new;
612
613         lockdep_assert_held(&sem->wait_lock);
614
615         count = atomic_long_read(&sem->count);
616         do {
617                 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
618
619                 if (has_handoff) {
620                         /*
621                          * Honor handoff bit and yield only when the first
622                          * waiter is the one that set it. Otherwisee, we
623                          * still try to acquire the rwsem.
624                          */
625                         if (first->handoff_set && (waiter != first))
626                                 return false;
627                 }
628
629                 new = count;
630
631                 if (count & RWSEM_LOCK_MASK) {
632                         /*
633                          * A waiter (first or not) can set the handoff bit
634                          * if it is an RT task or wait in the wait queue
635                          * for too long.
636                          */
637                         if (has_handoff || (!rt_task(waiter->task) &&
638                                             !time_after(jiffies, waiter->timeout)))
639                                 return false;
640
641                         new |= RWSEM_FLAG_HANDOFF;
642                 } else {
643                         new |= RWSEM_WRITER_LOCKED;
644                         new &= ~RWSEM_FLAG_HANDOFF;
645
646                         if (list_is_singular(&sem->wait_list))
647                                 new &= ~RWSEM_FLAG_WAITERS;
648                 }
649         } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
650
651         /*
652          * We have either acquired the lock with handoff bit cleared or set
653          * the handoff bit. Only the first waiter can have its handoff_set
654          * set here to enable optimistic spinning in slowpath loop.
655          */
656         if (new & RWSEM_FLAG_HANDOFF) {
657                 first->handoff_set = true;
658                 lockevent_inc(rwsem_wlock_handoff);
659                 return false;
660         }
661
662         /*
663          * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
664          * success.
665          */
666         list_del(&waiter->list);
667         rwsem_set_owner(sem);
668         return true;
669 }
670
671 /*
672  * The rwsem_spin_on_owner() function returns the following 4 values
673  * depending on the lock owner state.
674  *   OWNER_NULL  : owner is currently NULL
675  *   OWNER_WRITER: when owner changes and is a writer
676  *   OWNER_READER: when owner changes and the new owner may be a reader.
677  *   OWNER_NONSPINNABLE:
678  *                 when optimistic spinning has to stop because either the
679  *                 owner stops running, is unknown, or its timeslice has
680  *                 been used up.
681  */
682 enum owner_state {
683         OWNER_NULL              = 1 << 0,
684         OWNER_WRITER            = 1 << 1,
685         OWNER_READER            = 1 << 2,
686         OWNER_NONSPINNABLE      = 1 << 3,
687 };
688
689 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
690 /*
691  * Try to acquire write lock before the writer has been put on wait queue.
692  */
693 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
694 {
695         long count = atomic_long_read(&sem->count);
696
697         while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
698                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
699                                         count | RWSEM_WRITER_LOCKED)) {
700                         rwsem_set_owner(sem);
701                         lockevent_inc(rwsem_opt_lock);
702                         return true;
703                 }
704         }
705         return false;
706 }
707
708 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
709 {
710         struct task_struct *owner;
711         unsigned long flags;
712         bool ret = true;
713
714         if (need_resched()) {
715                 lockevent_inc(rwsem_opt_fail);
716                 return false;
717         }
718
719         preempt_disable();
720         /*
721          * Disable preemption is equal to the RCU read-side crital section,
722          * thus the task_strcut structure won't go away.
723          */
724         owner = rwsem_owner_flags(sem, &flags);
725         /*
726          * Don't check the read-owner as the entry may be stale.
727          */
728         if ((flags & RWSEM_NONSPINNABLE) ||
729             (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
730                 ret = false;
731         preempt_enable();
732
733         lockevent_cond_inc(rwsem_opt_fail, !ret);
734         return ret;
735 }
736
737 #define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
738
739 static inline enum owner_state
740 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
741 {
742         if (flags & RWSEM_NONSPINNABLE)
743                 return OWNER_NONSPINNABLE;
744
745         if (flags & RWSEM_READER_OWNED)
746                 return OWNER_READER;
747
748         return owner ? OWNER_WRITER : OWNER_NULL;
749 }
750
751 static noinline enum owner_state
752 rwsem_spin_on_owner(struct rw_semaphore *sem)
753 {
754         struct task_struct *new, *owner;
755         unsigned long flags, new_flags;
756         enum owner_state state;
757
758         lockdep_assert_preemption_disabled();
759
760         owner = rwsem_owner_flags(sem, &flags);
761         state = rwsem_owner_state(owner, flags);
762         if (state != OWNER_WRITER)
763                 return state;
764
765         for (;;) {
766                 /*
767                  * When a waiting writer set the handoff flag, it may spin
768                  * on the owner as well. Once that writer acquires the lock,
769                  * we can spin on it. So we don't need to quit even when the
770                  * handoff bit is set.
771                  */
772                 new = rwsem_owner_flags(sem, &new_flags);
773                 if ((new != owner) || (new_flags != flags)) {
774                         state = rwsem_owner_state(new, new_flags);
775                         break;
776                 }
777
778                 /*
779                  * Ensure we emit the owner->on_cpu, dereference _after_
780                  * checking sem->owner still matches owner, if that fails,
781                  * owner might point to free()d memory, if it still matches,
782                  * our spinning context already disabled preemption which is
783                  * equal to RCU read-side crital section ensures the memory
784                  * stays valid.
785                  */
786                 barrier();
787
788                 if (need_resched() || !owner_on_cpu(owner)) {
789                         state = OWNER_NONSPINNABLE;
790                         break;
791                 }
792
793                 cpu_relax();
794         }
795
796         return state;
797 }
798
799 /*
800  * Calculate reader-owned rwsem spinning threshold for writer
801  *
802  * The more readers own the rwsem, the longer it will take for them to
803  * wind down and free the rwsem. So the empirical formula used to
804  * determine the actual spinning time limit here is:
805  *
806  *   Spinning threshold = (10 + nr_readers/2)us
807  *
808  * The limit is capped to a maximum of 25us (30 readers). This is just
809  * a heuristic and is subjected to change in the future.
810  */
811 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
812 {
813         long count = atomic_long_read(&sem->count);
814         int readers = count >> RWSEM_READER_SHIFT;
815         u64 delta;
816
817         if (readers > 30)
818                 readers = 30;
819         delta = (20 + readers) * NSEC_PER_USEC / 2;
820
821         return sched_clock() + delta;
822 }
823
824 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
825 {
826         bool taken = false;
827         int prev_owner_state = OWNER_NULL;
828         int loop = 0;
829         u64 rspin_threshold = 0;
830
831         preempt_disable();
832
833         /* sem->wait_lock should not be held when doing optimistic spinning */
834         if (!osq_lock(&sem->osq))
835                 goto done;
836
837         /*
838          * Optimistically spin on the owner field and attempt to acquire the
839          * lock whenever the owner changes. Spinning will be stopped when:
840          *  1) the owning writer isn't running; or
841          *  2) readers own the lock and spinning time has exceeded limit.
842          */
843         for (;;) {
844                 enum owner_state owner_state;
845
846                 owner_state = rwsem_spin_on_owner(sem);
847                 if (!(owner_state & OWNER_SPINNABLE))
848                         break;
849
850                 /*
851                  * Try to acquire the lock
852                  */
853                 taken = rwsem_try_write_lock_unqueued(sem);
854
855                 if (taken)
856                         break;
857
858                 /*
859                  * Time-based reader-owned rwsem optimistic spinning
860                  */
861                 if (owner_state == OWNER_READER) {
862                         /*
863                          * Re-initialize rspin_threshold every time when
864                          * the owner state changes from non-reader to reader.
865                          * This allows a writer to steal the lock in between
866                          * 2 reader phases and have the threshold reset at
867                          * the beginning of the 2nd reader phase.
868                          */
869                         if (prev_owner_state != OWNER_READER) {
870                                 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
871                                         break;
872                                 rspin_threshold = rwsem_rspin_threshold(sem);
873                                 loop = 0;
874                         }
875
876                         /*
877                          * Check time threshold once every 16 iterations to
878                          * avoid calling sched_clock() too frequently so
879                          * as to reduce the average latency between the times
880                          * when the lock becomes free and when the spinner
881                          * is ready to do a trylock.
882                          */
883                         else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
884                                 rwsem_set_nonspinnable(sem);
885                                 lockevent_inc(rwsem_opt_nospin);
886                                 break;
887                         }
888                 }
889
890                 /*
891                  * An RT task cannot do optimistic spinning if it cannot
892                  * be sure the lock holder is running or live-lock may
893                  * happen if the current task and the lock holder happen
894                  * to run in the same CPU. However, aborting optimistic
895                  * spinning while a NULL owner is detected may miss some
896                  * opportunity where spinning can continue without causing
897                  * problem.
898                  *
899                  * There are 2 possible cases where an RT task may be able
900                  * to continue spinning.
901                  *
902                  * 1) The lock owner is in the process of releasing the
903                  *    lock, sem->owner is cleared but the lock has not
904                  *    been released yet.
905                  * 2) The lock was free and owner cleared, but another
906                  *    task just comes in and acquire the lock before
907                  *    we try to get it. The new owner may be a spinnable
908                  *    writer.
909                  *
910                  * To take advantage of two scenarios listed above, the RT
911                  * task is made to retry one more time to see if it can
912                  * acquire the lock or continue spinning on the new owning
913                  * writer. Of course, if the time lag is long enough or the
914                  * new owner is not a writer or spinnable, the RT task will
915                  * quit spinning.
916                  *
917                  * If the owner is a writer, the need_resched() check is
918                  * done inside rwsem_spin_on_owner(). If the owner is not
919                  * a writer, need_resched() check needs to be done here.
920                  */
921                 if (owner_state != OWNER_WRITER) {
922                         if (need_resched())
923                                 break;
924                         if (rt_task(current) &&
925                            (prev_owner_state != OWNER_WRITER))
926                                 break;
927                 }
928                 prev_owner_state = owner_state;
929
930                 /*
931                  * The cpu_relax() call is a compiler barrier which forces
932                  * everything in this loop to be re-loaded. We don't need
933                  * memory barriers as we'll eventually observe the right
934                  * values at the cost of a few extra spins.
935                  */
936                 cpu_relax();
937         }
938         osq_unlock(&sem->osq);
939 done:
940         preempt_enable();
941         lockevent_cond_inc(rwsem_opt_fail, !taken);
942         return taken;
943 }
944
945 /*
946  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
947  * only be called when the reader count reaches 0.
948  */
949 static inline void clear_nonspinnable(struct rw_semaphore *sem)
950 {
951         if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
952                 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
953 }
954
955 #else
956 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
957 {
958         return false;
959 }
960
961 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
962 {
963         return false;
964 }
965
966 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
967
968 static inline enum owner_state
969 rwsem_spin_on_owner(struct rw_semaphore *sem)
970 {
971         return OWNER_NONSPINNABLE;
972 }
973 #endif
974
975 /*
976  * Prepare to wake up waiter(s) in the wait queue by putting them into the
977  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
978  * reader-owned, wake up read lock waiters in queue front or wake up any
979  * front waiter otherwise.
980
981  * This is being called from both reader and writer slow paths.
982  */
983 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
984                                           struct wake_q_head *wake_q)
985 {
986         enum rwsem_wake_type wake_type;
987
988         if (count & RWSEM_WRITER_MASK)
989                 return;
990
991         if (count & RWSEM_READER_MASK) {
992                 wake_type = RWSEM_WAKE_READERS;
993         } else {
994                 wake_type = RWSEM_WAKE_ANY;
995                 clear_nonspinnable(sem);
996         }
997         rwsem_mark_wake(sem, wake_type, wake_q);
998 }
999
1000 /*
1001  * Wait for the read lock to be granted
1002  */
1003 static struct rw_semaphore __sched *
1004 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
1005 {
1006         long adjustment = -RWSEM_READER_BIAS;
1007         long rcnt = (count >> RWSEM_READER_SHIFT);
1008         struct rwsem_waiter waiter;
1009         DEFINE_WAKE_Q(wake_q);
1010
1011         /*
1012          * To prevent a constant stream of readers from starving a sleeping
1013          * waiter, don't attempt optimistic lock stealing if the lock is
1014          * currently owned by readers.
1015          */
1016         if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1017             (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1018                 goto queue;
1019
1020         /*
1021          * Reader optimistic lock stealing.
1022          */
1023         if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1024                 rwsem_set_reader_owned(sem);
1025                 lockevent_inc(rwsem_rlock_steal);
1026
1027                 /*
1028                  * Wake up other readers in the wait queue if it is
1029                  * the first reader.
1030                  */
1031                 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1032                         raw_spin_lock_irq(&sem->wait_lock);
1033                         if (!list_empty(&sem->wait_list))
1034                                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1035                                                 &wake_q);
1036                         raw_spin_unlock_irq(&sem->wait_lock);
1037                         wake_up_q(&wake_q);
1038                 }
1039                 return sem;
1040         }
1041
1042 queue:
1043         waiter.task = current;
1044         waiter.type = RWSEM_WAITING_FOR_READ;
1045         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1046         waiter.handoff_set = false;
1047
1048         raw_spin_lock_irq(&sem->wait_lock);
1049         if (list_empty(&sem->wait_list)) {
1050                 /*
1051                  * In case the wait queue is empty and the lock isn't owned
1052                  * by a writer, this reader can exit the slowpath and return
1053                  * immediately as its RWSEM_READER_BIAS has already been set
1054                  * in the count.
1055                  */
1056                 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1057                         /* Provide lock ACQUIRE */
1058                         smp_acquire__after_ctrl_dep();
1059                         raw_spin_unlock_irq(&sem->wait_lock);
1060                         rwsem_set_reader_owned(sem);
1061                         lockevent_inc(rwsem_rlock_fast);
1062                         return sem;
1063                 }
1064                 adjustment += RWSEM_FLAG_WAITERS;
1065         }
1066         rwsem_add_waiter(sem, &waiter);
1067
1068         /* we're now waiting on the lock, but no longer actively locking */
1069         count = atomic_long_add_return(adjustment, &sem->count);
1070
1071         rwsem_cond_wake_waiter(sem, count, &wake_q);
1072         raw_spin_unlock_irq(&sem->wait_lock);
1073
1074         if (!wake_q_empty(&wake_q))
1075                 wake_up_q(&wake_q);
1076
1077         trace_contention_begin(sem, LCB_F_READ);
1078
1079         /* wait to be given the lock */
1080         for (;;) {
1081                 set_current_state(state);
1082                 if (!smp_load_acquire(&waiter.task)) {
1083                         /* Matches rwsem_mark_wake()'s smp_store_release(). */
1084                         break;
1085                 }
1086                 if (signal_pending_state(state, current)) {
1087                         raw_spin_lock_irq(&sem->wait_lock);
1088                         if (waiter.task)
1089                                 goto out_nolock;
1090                         raw_spin_unlock_irq(&sem->wait_lock);
1091                         /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1092                         break;
1093                 }
1094                 schedule_preempt_disabled();
1095                 lockevent_inc(rwsem_sleep_reader);
1096         }
1097
1098         __set_current_state(TASK_RUNNING);
1099         lockevent_inc(rwsem_rlock);
1100         trace_contention_end(sem, 0);
1101         return sem;
1102
1103 out_nolock:
1104         rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1105         __set_current_state(TASK_RUNNING);
1106         lockevent_inc(rwsem_rlock_fail);
1107         trace_contention_end(sem, -EINTR);
1108         return ERR_PTR(-EINTR);
1109 }
1110
1111 /*
1112  * Wait until we successfully acquire the write lock
1113  */
1114 static struct rw_semaphore __sched *
1115 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1116 {
1117         struct rwsem_waiter waiter;
1118         DEFINE_WAKE_Q(wake_q);
1119
1120         /* do optimistic spinning and steal lock if possible */
1121         if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1122                 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1123                 return sem;
1124         }
1125
1126         /*
1127          * Optimistic spinning failed, proceed to the slowpath
1128          * and block until we can acquire the sem.
1129          */
1130         waiter.task = current;
1131         waiter.type = RWSEM_WAITING_FOR_WRITE;
1132         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1133         waiter.handoff_set = false;
1134
1135         raw_spin_lock_irq(&sem->wait_lock);
1136         rwsem_add_waiter(sem, &waiter);
1137
1138         /* we're now waiting on the lock */
1139         if (rwsem_first_waiter(sem) != &waiter) {
1140                 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1141                                        &wake_q);
1142                 if (!wake_q_empty(&wake_q)) {
1143                         /*
1144                          * We want to minimize wait_lock hold time especially
1145                          * when a large number of readers are to be woken up.
1146                          */
1147                         raw_spin_unlock_irq(&sem->wait_lock);
1148                         wake_up_q(&wake_q);
1149                         raw_spin_lock_irq(&sem->wait_lock);
1150                 }
1151         } else {
1152                 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1153         }
1154
1155         /* wait until we successfully acquire the lock */
1156         set_current_state(state);
1157         trace_contention_begin(sem, LCB_F_WRITE);
1158
1159         for (;;) {
1160                 if (rwsem_try_write_lock(sem, &waiter)) {
1161                         /* rwsem_try_write_lock() implies ACQUIRE on success */
1162                         break;
1163                 }
1164
1165                 raw_spin_unlock_irq(&sem->wait_lock);
1166
1167                 if (signal_pending_state(state, current))
1168                         goto out_nolock;
1169
1170                 /*
1171                  * After setting the handoff bit and failing to acquire
1172                  * the lock, attempt to spin on owner to accelerate lock
1173                  * transfer. If the previous owner is a on-cpu writer and it
1174                  * has just released the lock, OWNER_NULL will be returned.
1175                  * In this case, we attempt to acquire the lock again
1176                  * without sleeping.
1177                  */
1178                 if (waiter.handoff_set) {
1179                         enum owner_state owner_state;
1180
1181                         preempt_disable();
1182                         owner_state = rwsem_spin_on_owner(sem);
1183                         preempt_enable();
1184
1185                         if (owner_state == OWNER_NULL)
1186                                 goto trylock_again;
1187                 }
1188
1189                 schedule();
1190                 lockevent_inc(rwsem_sleep_writer);
1191                 set_current_state(state);
1192 trylock_again:
1193                 raw_spin_lock_irq(&sem->wait_lock);
1194         }
1195         __set_current_state(TASK_RUNNING);
1196         raw_spin_unlock_irq(&sem->wait_lock);
1197         lockevent_inc(rwsem_wlock);
1198         trace_contention_end(sem, 0);
1199         return sem;
1200
1201 out_nolock:
1202         __set_current_state(TASK_RUNNING);
1203         raw_spin_lock_irq(&sem->wait_lock);
1204         rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1205         lockevent_inc(rwsem_wlock_fail);
1206         trace_contention_end(sem, -EINTR);
1207         return ERR_PTR(-EINTR);
1208 }
1209
1210 /*
1211  * handle waking up a waiter on the semaphore
1212  * - up_read/up_write has decremented the active part of count if we come here
1213  */
1214 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1215 {
1216         unsigned long flags;
1217         DEFINE_WAKE_Q(wake_q);
1218
1219         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1220
1221         if (!list_empty(&sem->wait_list))
1222                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1223
1224         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1225         wake_up_q(&wake_q);
1226
1227         return sem;
1228 }
1229
1230 /*
1231  * downgrade a write lock into a read lock
1232  * - caller incremented waiting part of count and discovered it still negative
1233  * - just wake up any readers at the front of the queue
1234  */
1235 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1236 {
1237         unsigned long flags;
1238         DEFINE_WAKE_Q(wake_q);
1239
1240         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1241
1242         if (!list_empty(&sem->wait_list))
1243                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1244
1245         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1246         wake_up_q(&wake_q);
1247
1248         return sem;
1249 }
1250
1251 /*
1252  * lock for reading
1253  */
1254 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
1255 {
1256         int ret = 0;
1257         long count;
1258
1259         preempt_disable();
1260         if (!rwsem_read_trylock(sem, &count)) {
1261                 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
1262                         ret = -EINTR;
1263                         goto out;
1264                 }
1265                 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1266         }
1267 out:
1268         preempt_enable();
1269         return ret;
1270 }
1271
1272 static __always_inline void __down_read(struct rw_semaphore *sem)
1273 {
1274         __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1275 }
1276
1277 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
1278 {
1279         return __down_read_common(sem, TASK_INTERRUPTIBLE);
1280 }
1281
1282 static __always_inline int __down_read_killable(struct rw_semaphore *sem)
1283 {
1284         return __down_read_common(sem, TASK_KILLABLE);
1285 }
1286
1287 static inline int __down_read_trylock(struct rw_semaphore *sem)
1288 {
1289         int ret = 0;
1290         long tmp;
1291
1292         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1293
1294         preempt_disable();
1295         tmp = atomic_long_read(&sem->count);
1296         while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1297                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1298                                                     tmp + RWSEM_READER_BIAS)) {
1299                         rwsem_set_reader_owned(sem);
1300                         ret = 1;
1301                         break;
1302                 }
1303         }
1304         preempt_enable();
1305         return ret;
1306 }
1307
1308 /*
1309  * lock for writing
1310  */
1311 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1312 {
1313         if (unlikely(!rwsem_write_trylock(sem))) {
1314                 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1315                         return -EINTR;
1316         }
1317
1318         return 0;
1319 }
1320
1321 static inline void __down_write(struct rw_semaphore *sem)
1322 {
1323         __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1324 }
1325
1326 static inline int __down_write_killable(struct rw_semaphore *sem)
1327 {
1328         return __down_write_common(sem, TASK_KILLABLE);
1329 }
1330
1331 static inline int __down_write_trylock(struct rw_semaphore *sem)
1332 {
1333         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1334         return rwsem_write_trylock(sem);
1335 }
1336
1337 /*
1338  * unlock after reading
1339  */
1340 static inline void __up_read(struct rw_semaphore *sem)
1341 {
1342         long tmp;
1343
1344         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1345         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1346
1347         preempt_disable();
1348         rwsem_clear_reader_owned(sem);
1349         tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1350         DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1351         if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1352                       RWSEM_FLAG_WAITERS)) {
1353                 clear_nonspinnable(sem);
1354                 rwsem_wake(sem);
1355         }
1356         preempt_enable();
1357 }
1358
1359 /*
1360  * unlock after writing
1361  */
1362 static inline void __up_write(struct rw_semaphore *sem)
1363 {
1364         long tmp;
1365
1366         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1367         /*
1368          * sem->owner may differ from current if the ownership is transferred
1369          * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1370          */
1371         DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1372                             !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1373
1374         preempt_disable();
1375         rwsem_clear_owner(sem);
1376         tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1377         preempt_enable();
1378         if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1379                 rwsem_wake(sem);
1380 }
1381
1382 /*
1383  * downgrade write lock to read lock
1384  */
1385 static inline void __downgrade_write(struct rw_semaphore *sem)
1386 {
1387         long tmp;
1388
1389         /*
1390          * When downgrading from exclusive to shared ownership,
1391          * anything inside the write-locked region cannot leak
1392          * into the read side. In contrast, anything in the
1393          * read-locked region is ok to be re-ordered into the
1394          * write side. As such, rely on RELEASE semantics.
1395          */
1396         DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1397         tmp = atomic_long_fetch_add_release(
1398                 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1399         rwsem_set_reader_owned(sem);
1400         if (tmp & RWSEM_FLAG_WAITERS)
1401                 rwsem_downgrade_wake(sem);
1402 }
1403
1404 #else /* !CONFIG_PREEMPT_RT */
1405
1406 #define RT_MUTEX_BUILD_MUTEX
1407 #include "rtmutex.c"
1408
1409 #define rwbase_set_and_save_current_state(state)        \
1410         set_current_state(state)
1411
1412 #define rwbase_restore_current_state()                  \
1413         __set_current_state(TASK_RUNNING)
1414
1415 #define rwbase_rtmutex_lock_state(rtm, state)           \
1416         __rt_mutex_lock(rtm, state)
1417
1418 #define rwbase_rtmutex_slowlock_locked(rtm, state)      \
1419         __rt_mutex_slowlock_locked(rtm, NULL, state)
1420
1421 #define rwbase_rtmutex_unlock(rtm)                      \
1422         __rt_mutex_unlock(rtm)
1423
1424 #define rwbase_rtmutex_trylock(rtm)                     \
1425         __rt_mutex_trylock(rtm)
1426
1427 #define rwbase_signal_pending_state(state, current)     \
1428         signal_pending_state(state, current)
1429
1430 #define rwbase_schedule()                               \
1431         schedule()
1432
1433 #include "rwbase_rt.c"
1434
1435 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1436                   struct lock_class_key *key)
1437 {
1438         init_rwbase_rt(&(sem)->rwbase);
1439
1440 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1441         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1442         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1443 #endif
1444 }
1445 EXPORT_SYMBOL(__init_rwsem);
1446
1447 static inline void __down_read(struct rw_semaphore *sem)
1448 {
1449         rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1450 }
1451
1452 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1453 {
1454         return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1455 }
1456
1457 static inline int __down_read_killable(struct rw_semaphore *sem)
1458 {
1459         return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1460 }
1461
1462 static inline int __down_read_trylock(struct rw_semaphore *sem)
1463 {
1464         return rwbase_read_trylock(&sem->rwbase);
1465 }
1466
1467 static inline void __up_read(struct rw_semaphore *sem)
1468 {
1469         rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1470 }
1471
1472 static inline void __sched __down_write(struct rw_semaphore *sem)
1473 {
1474         rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1475 }
1476
1477 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1478 {
1479         return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1480 }
1481
1482 static inline int __down_write_trylock(struct rw_semaphore *sem)
1483 {
1484         return rwbase_write_trylock(&sem->rwbase);
1485 }
1486
1487 static inline void __up_write(struct rw_semaphore *sem)
1488 {
1489         rwbase_write_unlock(&sem->rwbase);
1490 }
1491
1492 static inline void __downgrade_write(struct rw_semaphore *sem)
1493 {
1494         rwbase_write_downgrade(&sem->rwbase);
1495 }
1496
1497 /* Debug stubs for the common API */
1498 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1499
1500 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1501                                             struct task_struct *owner)
1502 {
1503 }
1504
1505 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1506 {
1507         int count = atomic_read(&sem->rwbase.readers);
1508
1509         return count < 0 && count != READER_BIAS;
1510 }
1511
1512 #endif /* CONFIG_PREEMPT_RT */
1513
1514 /*
1515  * lock for reading
1516  */
1517 void __sched down_read(struct rw_semaphore *sem)
1518 {
1519         might_sleep();
1520         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1521
1522         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1523 }
1524 EXPORT_SYMBOL(down_read);
1525
1526 int __sched down_read_interruptible(struct rw_semaphore *sem)
1527 {
1528         might_sleep();
1529         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1530
1531         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1532                 rwsem_release(&sem->dep_map, _RET_IP_);
1533                 return -EINTR;
1534         }
1535
1536         return 0;
1537 }
1538 EXPORT_SYMBOL(down_read_interruptible);
1539
1540 int __sched down_read_killable(struct rw_semaphore *sem)
1541 {
1542         might_sleep();
1543         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1544
1545         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1546                 rwsem_release(&sem->dep_map, _RET_IP_);
1547                 return -EINTR;
1548         }
1549
1550         return 0;
1551 }
1552 EXPORT_SYMBOL(down_read_killable);
1553
1554 /*
1555  * trylock for reading -- returns 1 if successful, 0 if contention
1556  */
1557 int down_read_trylock(struct rw_semaphore *sem)
1558 {
1559         int ret = __down_read_trylock(sem);
1560
1561         if (ret == 1)
1562                 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1563         return ret;
1564 }
1565 EXPORT_SYMBOL(down_read_trylock);
1566
1567 /*
1568  * lock for writing
1569  */
1570 void __sched down_write(struct rw_semaphore *sem)
1571 {
1572         might_sleep();
1573         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1574         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1575 }
1576 EXPORT_SYMBOL(down_write);
1577
1578 /*
1579  * lock for writing
1580  */
1581 int __sched down_write_killable(struct rw_semaphore *sem)
1582 {
1583         might_sleep();
1584         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1585
1586         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1587                                   __down_write_killable)) {
1588                 rwsem_release(&sem->dep_map, _RET_IP_);
1589                 return -EINTR;
1590         }
1591
1592         return 0;
1593 }
1594 EXPORT_SYMBOL(down_write_killable);
1595
1596 /*
1597  * trylock for writing -- returns 1 if successful, 0 if contention
1598  */
1599 int down_write_trylock(struct rw_semaphore *sem)
1600 {
1601         int ret = __down_write_trylock(sem);
1602
1603         if (ret == 1)
1604                 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1605
1606         return ret;
1607 }
1608 EXPORT_SYMBOL(down_write_trylock);
1609
1610 /*
1611  * release a read lock
1612  */
1613 void up_read(struct rw_semaphore *sem)
1614 {
1615         rwsem_release(&sem->dep_map, _RET_IP_);
1616         __up_read(sem);
1617 }
1618 EXPORT_SYMBOL(up_read);
1619
1620 /*
1621  * release a write lock
1622  */
1623 void up_write(struct rw_semaphore *sem)
1624 {
1625         rwsem_release(&sem->dep_map, _RET_IP_);
1626         __up_write(sem);
1627 }
1628 EXPORT_SYMBOL(up_write);
1629
1630 /*
1631  * downgrade write lock to read lock
1632  */
1633 void downgrade_write(struct rw_semaphore *sem)
1634 {
1635         lock_downgrade(&sem->dep_map, _RET_IP_);
1636         __downgrade_write(sem);
1637 }
1638 EXPORT_SYMBOL(downgrade_write);
1639
1640 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1641
1642 void down_read_nested(struct rw_semaphore *sem, int subclass)
1643 {
1644         might_sleep();
1645         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1646         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1647 }
1648 EXPORT_SYMBOL(down_read_nested);
1649
1650 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1651 {
1652         might_sleep();
1653         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1654
1655         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1656                 rwsem_release(&sem->dep_map, _RET_IP_);
1657                 return -EINTR;
1658         }
1659
1660         return 0;
1661 }
1662 EXPORT_SYMBOL(down_read_killable_nested);
1663
1664 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1665 {
1666         might_sleep();
1667         rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1668         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1669 }
1670 EXPORT_SYMBOL(_down_write_nest_lock);
1671
1672 void down_read_non_owner(struct rw_semaphore *sem)
1673 {
1674         might_sleep();
1675         __down_read(sem);
1676         /*
1677          * The owner value for a reader-owned lock is mostly for debugging
1678          * purpose only and is not critical to the correct functioning of
1679          * rwsem. So it is perfectly fine to set it in a preempt-enabled
1680          * context here.
1681          */
1682         __rwsem_set_reader_owned(sem, NULL);
1683 }
1684 EXPORT_SYMBOL(down_read_non_owner);
1685
1686 void down_write_nested(struct rw_semaphore *sem, int subclass)
1687 {
1688         might_sleep();
1689         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1690         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1691 }
1692 EXPORT_SYMBOL(down_write_nested);
1693
1694 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1695 {
1696         might_sleep();
1697         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1698
1699         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1700                                   __down_write_killable)) {
1701                 rwsem_release(&sem->dep_map, _RET_IP_);
1702                 return -EINTR;
1703         }
1704
1705         return 0;
1706 }
1707 EXPORT_SYMBOL(down_write_killable_nested);
1708
1709 void up_read_non_owner(struct rw_semaphore *sem)
1710 {
1711         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1712         __up_read(sem);
1713 }
1714 EXPORT_SYMBOL(up_read_non_owner);
1715
1716 #endif