Merge tag 'riscv-for-linus-6.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / kernel / locking / rwsem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED      (1UL << 0)
64 #define RWSEM_NONSPINNABLE      (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
69         if (!debug_locks_silent &&                              \
70             WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71                 #c, atomic_long_read(&(sem)->count),            \
72                 (unsigned long) sem->magic,                     \
73                 atomic_long_read(&(sem)->owner), (long)current, \
74                 list_empty(&(sem)->wait_list) ? "" : "not "))   \
75                         debug_locks_off();                      \
76         } while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers             -- set, clear
110  * 2) rwsem_try_write_lock() for writers        -- set, clear
111  * 3) rwsem_del_waiter()                        -- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED     (1UL << 0)
118 #define RWSEM_FLAG_WAITERS      (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF      (1UL << 2)
120 #define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
121
122 #define RWSEM_READER_SHIFT      8
123 #define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128                                  RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  *
137  * Both rwsem_{set,clear}_owner() functions should be in the same
138  * preempt disable section as the atomic op that changes sem->count.
139  */
140 static inline void rwsem_set_owner(struct rw_semaphore *sem)
141 {
142         lockdep_assert_preemption_disabled();
143         atomic_long_set(&sem->owner, (long)current);
144 }
145
146 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147 {
148         lockdep_assert_preemption_disabled();
149         atomic_long_set(&sem->owner, 0);
150 }
151
152 /*
153  * Test the flags in the owner field.
154  */
155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156 {
157         return atomic_long_read(&sem->owner) & flags;
158 }
159
160 /*
161  * The task_struct pointer of the last owning reader will be left in
162  * the owner field.
163  *
164  * Note that the owner value just indicates the task has owned the rwsem
165  * previously, it may not be the real owner or one of the real owners
166  * anymore when that field is examined, so take it with a grain of salt.
167  *
168  * The reader non-spinnable bit is preserved.
169  */
170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171                                             struct task_struct *owner)
172 {
173         unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174                 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175
176         atomic_long_set(&sem->owner, val);
177 }
178
179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180 {
181         __rwsem_set_reader_owned(sem, current);
182 }
183
184 /*
185  * Return true if the rwsem is owned by a reader.
186  */
187 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
188 {
189 #ifdef CONFIG_DEBUG_RWSEMS
190         /*
191          * Check the count to see if it is write-locked.
192          */
193         long count = atomic_long_read(&sem->count);
194
195         if (count & RWSEM_WRITER_MASK)
196                 return false;
197 #endif
198         return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
199 }
200
201 #ifdef CONFIG_DEBUG_RWSEMS
202 /*
203  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
204  * is a task pointer in owner of a reader-owned rwsem, it will be the
205  * real owner or one of the real owners. The only exception is when the
206  * unlock is done by up_read_non_owner().
207  */
208 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
209 {
210         unsigned long val = atomic_long_read(&sem->owner);
211
212         while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
213                 if (atomic_long_try_cmpxchg(&sem->owner, &val,
214                                             val & RWSEM_OWNER_FLAGS_MASK))
215                         return;
216         }
217 }
218 #else
219 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
220 {
221 }
222 #endif
223
224 /*
225  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
226  * remains set. Otherwise, the operation will be aborted.
227  */
228 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
229 {
230         unsigned long owner = atomic_long_read(&sem->owner);
231
232         do {
233                 if (!(owner & RWSEM_READER_OWNED))
234                         break;
235                 if (owner & RWSEM_NONSPINNABLE)
236                         break;
237         } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
238                                           owner | RWSEM_NONSPINNABLE));
239 }
240
241 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
242 {
243         *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
244
245         if (WARN_ON_ONCE(*cntp < 0))
246                 rwsem_set_nonspinnable(sem);
247
248         if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
249                 rwsem_set_reader_owned(sem);
250                 return true;
251         }
252
253         return false;
254 }
255
256 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
257 {
258         long tmp = RWSEM_UNLOCKED_VALUE;
259         bool ret = false;
260
261         preempt_disable();
262         if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
263                 rwsem_set_owner(sem);
264                 ret = true;
265         }
266
267         preempt_enable();
268         return ret;
269 }
270
271 /*
272  * Return just the real task structure pointer of the owner
273  */
274 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
275 {
276         return (struct task_struct *)
277                 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
278 }
279
280 /*
281  * Return the real task structure pointer of the owner and the embedded
282  * flags in the owner. pflags must be non-NULL.
283  */
284 static inline struct task_struct *
285 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
286 {
287         unsigned long owner = atomic_long_read(&sem->owner);
288
289         *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
290         return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
291 }
292
293 /*
294  * Guide to the rw_semaphore's count field.
295  *
296  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
297  * by a writer.
298  *
299  * The lock is owned by readers when
300  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
301  * (2) some of the reader bits are set in count, and
302  * (3) the owner field has RWSEM_READ_OWNED bit set.
303  *
304  * Having some reader bits set is not enough to guarantee a readers owned
305  * lock as the readers may be in the process of backing out from the count
306  * and a writer has just released the lock. So another writer may steal
307  * the lock immediately after that.
308  */
309
310 /*
311  * Initialize an rwsem:
312  */
313 void __init_rwsem(struct rw_semaphore *sem, const char *name,
314                   struct lock_class_key *key)
315 {
316 #ifdef CONFIG_DEBUG_LOCK_ALLOC
317         /*
318          * Make sure we are not reinitializing a held semaphore:
319          */
320         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
321         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
322 #endif
323 #ifdef CONFIG_DEBUG_RWSEMS
324         sem->magic = sem;
325 #endif
326         atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
327         raw_spin_lock_init(&sem->wait_lock);
328         INIT_LIST_HEAD(&sem->wait_list);
329         atomic_long_set(&sem->owner, 0L);
330 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
331         osq_lock_init(&sem->osq);
332 #endif
333 }
334 EXPORT_SYMBOL(__init_rwsem);
335
336 enum rwsem_waiter_type {
337         RWSEM_WAITING_FOR_WRITE,
338         RWSEM_WAITING_FOR_READ
339 };
340
341 struct rwsem_waiter {
342         struct list_head list;
343         struct task_struct *task;
344         enum rwsem_waiter_type type;
345         unsigned long timeout;
346         bool handoff_set;
347 };
348 #define rwsem_first_waiter(sem) \
349         list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
350
351 enum rwsem_wake_type {
352         RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
353         RWSEM_WAKE_READERS,     /* Wake readers only */
354         RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
355 };
356
357 /*
358  * The typical HZ value is either 250 or 1000. So set the minimum waiting
359  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
360  * queue before initiating the handoff protocol.
361  */
362 #define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
363
364 /*
365  * Magic number to batch-wakeup waiting readers, even when writers are
366  * also present in the queue. This both limits the amount of work the
367  * waking thread must do and also prevents any potential counter overflow,
368  * however unlikely.
369  */
370 #define MAX_READERS_WAKEUP      0x100
371
372 static inline void
373 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
374 {
375         lockdep_assert_held(&sem->wait_lock);
376         list_add_tail(&waiter->list, &sem->wait_list);
377         /* caller will set RWSEM_FLAG_WAITERS */
378 }
379
380 /*
381  * Remove a waiter from the wait_list and clear flags.
382  *
383  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
384  * this function. Modify with care.
385  *
386  * Return: true if wait_list isn't empty and false otherwise
387  */
388 static inline bool
389 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
390 {
391         lockdep_assert_held(&sem->wait_lock);
392         list_del(&waiter->list);
393         if (likely(!list_empty(&sem->wait_list)))
394                 return true;
395
396         atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
397         return false;
398 }
399
400 /*
401  * handle the lock release when processes blocked on it that can now run
402  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
403  *   have been set.
404  * - there must be someone on the queue
405  * - the wait_lock must be held by the caller
406  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
407  *   to actually wakeup the blocked task(s) and drop the reference count,
408  *   preferably when the wait_lock is released
409  * - woken process blocks are discarded from the list after having task zeroed
410  * - writers are only marked woken if downgrading is false
411  *
412  * Implies rwsem_del_waiter() for all woken readers.
413  */
414 static void rwsem_mark_wake(struct rw_semaphore *sem,
415                             enum rwsem_wake_type wake_type,
416                             struct wake_q_head *wake_q)
417 {
418         struct rwsem_waiter *waiter, *tmp;
419         long oldcount, woken = 0, adjustment = 0;
420         struct list_head wlist;
421
422         lockdep_assert_held(&sem->wait_lock);
423
424         /*
425          * Take a peek at the queue head waiter such that we can determine
426          * the wakeup(s) to perform.
427          */
428         waiter = rwsem_first_waiter(sem);
429
430         if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
431                 if (wake_type == RWSEM_WAKE_ANY) {
432                         /*
433                          * Mark writer at the front of the queue for wakeup.
434                          * Until the task is actually later awoken later by
435                          * the caller, other writers are able to steal it.
436                          * Readers, on the other hand, will block as they
437                          * will notice the queued writer.
438                          */
439                         wake_q_add(wake_q, waiter->task);
440                         lockevent_inc(rwsem_wake_writer);
441                 }
442
443                 return;
444         }
445
446         /*
447          * No reader wakeup if there are too many of them already.
448          */
449         if (unlikely(atomic_long_read(&sem->count) < 0))
450                 return;
451
452         /*
453          * Writers might steal the lock before we grant it to the next reader.
454          * We prefer to do the first reader grant before counting readers
455          * so we can bail out early if a writer stole the lock.
456          */
457         if (wake_type != RWSEM_WAKE_READ_OWNED) {
458                 struct task_struct *owner;
459
460                 adjustment = RWSEM_READER_BIAS;
461                 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
462                 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
463                         /*
464                          * When we've been waiting "too" long (for writers
465                          * to give up the lock), request a HANDOFF to
466                          * force the issue.
467                          */
468                         if (time_after(jiffies, waiter->timeout)) {
469                                 if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
470                                         adjustment -= RWSEM_FLAG_HANDOFF;
471                                         lockevent_inc(rwsem_rlock_handoff);
472                                 }
473                                 waiter->handoff_set = true;
474                         }
475
476                         atomic_long_add(-adjustment, &sem->count);
477                         return;
478                 }
479                 /*
480                  * Set it to reader-owned to give spinners an early
481                  * indication that readers now have the lock.
482                  * The reader nonspinnable bit seen at slowpath entry of
483                  * the reader is copied over.
484                  */
485                 owner = waiter->task;
486                 __rwsem_set_reader_owned(sem, owner);
487         }
488
489         /*
490          * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
491          * queue. We know that the woken will be at least 1 as we accounted
492          * for above. Note we increment the 'active part' of the count by the
493          * number of readers before waking any processes up.
494          *
495          * This is an adaptation of the phase-fair R/W locks where at the
496          * reader phase (first waiter is a reader), all readers are eligible
497          * to acquire the lock at the same time irrespective of their order
498          * in the queue. The writers acquire the lock according to their
499          * order in the queue.
500          *
501          * We have to do wakeup in 2 passes to prevent the possibility that
502          * the reader count may be decremented before it is incremented. It
503          * is because the to-be-woken waiter may not have slept yet. So it
504          * may see waiter->task got cleared, finish its critical section and
505          * do an unlock before the reader count increment.
506          *
507          * 1) Collect the read-waiters in a separate list, count them and
508          *    fully increment the reader count in rwsem.
509          * 2) For each waiters in the new list, clear waiter->task and
510          *    put them into wake_q to be woken up later.
511          */
512         INIT_LIST_HEAD(&wlist);
513         list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
514                 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
515                         continue;
516
517                 woken++;
518                 list_move_tail(&waiter->list, &wlist);
519
520                 /*
521                  * Limit # of readers that can be woken up per wakeup call.
522                  */
523                 if (unlikely(woken >= MAX_READERS_WAKEUP))
524                         break;
525         }
526
527         adjustment = woken * RWSEM_READER_BIAS - adjustment;
528         lockevent_cond_inc(rwsem_wake_reader, woken);
529
530         oldcount = atomic_long_read(&sem->count);
531         if (list_empty(&sem->wait_list)) {
532                 /*
533                  * Combined with list_move_tail() above, this implies
534                  * rwsem_del_waiter().
535                  */
536                 adjustment -= RWSEM_FLAG_WAITERS;
537                 if (oldcount & RWSEM_FLAG_HANDOFF)
538                         adjustment -= RWSEM_FLAG_HANDOFF;
539         } else if (woken) {
540                 /*
541                  * When we've woken a reader, we no longer need to force
542                  * writers to give up the lock and we can clear HANDOFF.
543                  */
544                 if (oldcount & RWSEM_FLAG_HANDOFF)
545                         adjustment -= RWSEM_FLAG_HANDOFF;
546         }
547
548         if (adjustment)
549                 atomic_long_add(adjustment, &sem->count);
550
551         /* 2nd pass */
552         list_for_each_entry_safe(waiter, tmp, &wlist, list) {
553                 struct task_struct *tsk;
554
555                 tsk = waiter->task;
556                 get_task_struct(tsk);
557
558                 /*
559                  * Ensure calling get_task_struct() before setting the reader
560                  * waiter to nil such that rwsem_down_read_slowpath() cannot
561                  * race with do_exit() by always holding a reference count
562                  * to the task to wakeup.
563                  */
564                 smp_store_release(&waiter->task, NULL);
565                 /*
566                  * Ensure issuing the wakeup (either by us or someone else)
567                  * after setting the reader waiter to nil.
568                  */
569                 wake_q_add_safe(wake_q, tsk);
570         }
571 }
572
573 /*
574  * Remove a waiter and try to wake up other waiters in the wait queue
575  * This function is called from the out_nolock path of both the reader and
576  * writer slowpaths with wait_lock held. It releases the wait_lock and
577  * optionally wake up waiters before it returns.
578  */
579 static inline void
580 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
581                       struct wake_q_head *wake_q)
582                       __releases(&sem->wait_lock)
583 {
584         bool first = rwsem_first_waiter(sem) == waiter;
585
586         wake_q_init(wake_q);
587
588         /*
589          * If the wait_list isn't empty and the waiter to be deleted is
590          * the first waiter, we wake up the remaining waiters as they may
591          * be eligible to acquire or spin on the lock.
592          */
593         if (rwsem_del_waiter(sem, waiter) && first)
594                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
595         raw_spin_unlock_irq(&sem->wait_lock);
596         if (!wake_q_empty(wake_q))
597                 wake_up_q(wake_q);
598 }
599
600 /*
601  * This function must be called with the sem->wait_lock held to prevent
602  * race conditions between checking the rwsem wait list and setting the
603  * sem->count accordingly.
604  *
605  * Implies rwsem_del_waiter() on success.
606  */
607 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
608                                         struct rwsem_waiter *waiter)
609 {
610         struct rwsem_waiter *first = rwsem_first_waiter(sem);
611         long count, new;
612
613         lockdep_assert_held(&sem->wait_lock);
614
615         count = atomic_long_read(&sem->count);
616         do {
617                 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
618
619                 if (has_handoff) {
620                         /*
621                          * Honor handoff bit and yield only when the first
622                          * waiter is the one that set it. Otherwisee, we
623                          * still try to acquire the rwsem.
624                          */
625                         if (first->handoff_set && (waiter != first))
626                                 return false;
627
628                         /*
629                          * First waiter can inherit a previously set handoff
630                          * bit and spin on rwsem if lock acquisition fails.
631                          */
632                         if (waiter == first)
633                                 waiter->handoff_set = true;
634                 }
635
636                 new = count;
637
638                 if (count & RWSEM_LOCK_MASK) {
639                         if (has_handoff || (!rt_task(waiter->task) &&
640                                             !time_after(jiffies, waiter->timeout)))
641                                 return false;
642
643                         new |= RWSEM_FLAG_HANDOFF;
644                 } else {
645                         new |= RWSEM_WRITER_LOCKED;
646                         new &= ~RWSEM_FLAG_HANDOFF;
647
648                         if (list_is_singular(&sem->wait_list))
649                                 new &= ~RWSEM_FLAG_WAITERS;
650                 }
651         } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
652
653         /*
654          * We have either acquired the lock with handoff bit cleared or
655          * set the handoff bit.
656          */
657         if (new & RWSEM_FLAG_HANDOFF) {
658                 waiter->handoff_set = true;
659                 lockevent_inc(rwsem_wlock_handoff);
660                 return false;
661         }
662
663         /*
664          * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
665          * success.
666          */
667         list_del(&waiter->list);
668         rwsem_set_owner(sem);
669         return true;
670 }
671
672 /*
673  * The rwsem_spin_on_owner() function returns the following 4 values
674  * depending on the lock owner state.
675  *   OWNER_NULL  : owner is currently NULL
676  *   OWNER_WRITER: when owner changes and is a writer
677  *   OWNER_READER: when owner changes and the new owner may be a reader.
678  *   OWNER_NONSPINNABLE:
679  *                 when optimistic spinning has to stop because either the
680  *                 owner stops running, is unknown, or its timeslice has
681  *                 been used up.
682  */
683 enum owner_state {
684         OWNER_NULL              = 1 << 0,
685         OWNER_WRITER            = 1 << 1,
686         OWNER_READER            = 1 << 2,
687         OWNER_NONSPINNABLE      = 1 << 3,
688 };
689
690 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
691 /*
692  * Try to acquire write lock before the writer has been put on wait queue.
693  */
694 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
695 {
696         long count = atomic_long_read(&sem->count);
697
698         while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
699                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
700                                         count | RWSEM_WRITER_LOCKED)) {
701                         rwsem_set_owner(sem);
702                         lockevent_inc(rwsem_opt_lock);
703                         return true;
704                 }
705         }
706         return false;
707 }
708
709 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
710 {
711         struct task_struct *owner;
712         unsigned long flags;
713         bool ret = true;
714
715         if (need_resched()) {
716                 lockevent_inc(rwsem_opt_fail);
717                 return false;
718         }
719
720         preempt_disable();
721         /*
722          * Disable preemption is equal to the RCU read-side crital section,
723          * thus the task_strcut structure won't go away.
724          */
725         owner = rwsem_owner_flags(sem, &flags);
726         /*
727          * Don't check the read-owner as the entry may be stale.
728          */
729         if ((flags & RWSEM_NONSPINNABLE) ||
730             (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
731                 ret = false;
732         preempt_enable();
733
734         lockevent_cond_inc(rwsem_opt_fail, !ret);
735         return ret;
736 }
737
738 #define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
739
740 static inline enum owner_state
741 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
742 {
743         if (flags & RWSEM_NONSPINNABLE)
744                 return OWNER_NONSPINNABLE;
745
746         if (flags & RWSEM_READER_OWNED)
747                 return OWNER_READER;
748
749         return owner ? OWNER_WRITER : OWNER_NULL;
750 }
751
752 static noinline enum owner_state
753 rwsem_spin_on_owner(struct rw_semaphore *sem)
754 {
755         struct task_struct *new, *owner;
756         unsigned long flags, new_flags;
757         enum owner_state state;
758
759         lockdep_assert_preemption_disabled();
760
761         owner = rwsem_owner_flags(sem, &flags);
762         state = rwsem_owner_state(owner, flags);
763         if (state != OWNER_WRITER)
764                 return state;
765
766         for (;;) {
767                 /*
768                  * When a waiting writer set the handoff flag, it may spin
769                  * on the owner as well. Once that writer acquires the lock,
770                  * we can spin on it. So we don't need to quit even when the
771                  * handoff bit is set.
772                  */
773                 new = rwsem_owner_flags(sem, &new_flags);
774                 if ((new != owner) || (new_flags != flags)) {
775                         state = rwsem_owner_state(new, new_flags);
776                         break;
777                 }
778
779                 /*
780                  * Ensure we emit the owner->on_cpu, dereference _after_
781                  * checking sem->owner still matches owner, if that fails,
782                  * owner might point to free()d memory, if it still matches,
783                  * our spinning context already disabled preemption which is
784                  * equal to RCU read-side crital section ensures the memory
785                  * stays valid.
786                  */
787                 barrier();
788
789                 if (need_resched() || !owner_on_cpu(owner)) {
790                         state = OWNER_NONSPINNABLE;
791                         break;
792                 }
793
794                 cpu_relax();
795         }
796
797         return state;
798 }
799
800 /*
801  * Calculate reader-owned rwsem spinning threshold for writer
802  *
803  * The more readers own the rwsem, the longer it will take for them to
804  * wind down and free the rwsem. So the empirical formula used to
805  * determine the actual spinning time limit here is:
806  *
807  *   Spinning threshold = (10 + nr_readers/2)us
808  *
809  * The limit is capped to a maximum of 25us (30 readers). This is just
810  * a heuristic and is subjected to change in the future.
811  */
812 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
813 {
814         long count = atomic_long_read(&sem->count);
815         int readers = count >> RWSEM_READER_SHIFT;
816         u64 delta;
817
818         if (readers > 30)
819                 readers = 30;
820         delta = (20 + readers) * NSEC_PER_USEC / 2;
821
822         return sched_clock() + delta;
823 }
824
825 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
826 {
827         bool taken = false;
828         int prev_owner_state = OWNER_NULL;
829         int loop = 0;
830         u64 rspin_threshold = 0;
831
832         preempt_disable();
833
834         /* sem->wait_lock should not be held when doing optimistic spinning */
835         if (!osq_lock(&sem->osq))
836                 goto done;
837
838         /*
839          * Optimistically spin on the owner field and attempt to acquire the
840          * lock whenever the owner changes. Spinning will be stopped when:
841          *  1) the owning writer isn't running; or
842          *  2) readers own the lock and spinning time has exceeded limit.
843          */
844         for (;;) {
845                 enum owner_state owner_state;
846
847                 owner_state = rwsem_spin_on_owner(sem);
848                 if (!(owner_state & OWNER_SPINNABLE))
849                         break;
850
851                 /*
852                  * Try to acquire the lock
853                  */
854                 taken = rwsem_try_write_lock_unqueued(sem);
855
856                 if (taken)
857                         break;
858
859                 /*
860                  * Time-based reader-owned rwsem optimistic spinning
861                  */
862                 if (owner_state == OWNER_READER) {
863                         /*
864                          * Re-initialize rspin_threshold every time when
865                          * the owner state changes from non-reader to reader.
866                          * This allows a writer to steal the lock in between
867                          * 2 reader phases and have the threshold reset at
868                          * the beginning of the 2nd reader phase.
869                          */
870                         if (prev_owner_state != OWNER_READER) {
871                                 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
872                                         break;
873                                 rspin_threshold = rwsem_rspin_threshold(sem);
874                                 loop = 0;
875                         }
876
877                         /*
878                          * Check time threshold once every 16 iterations to
879                          * avoid calling sched_clock() too frequently so
880                          * as to reduce the average latency between the times
881                          * when the lock becomes free and when the spinner
882                          * is ready to do a trylock.
883                          */
884                         else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
885                                 rwsem_set_nonspinnable(sem);
886                                 lockevent_inc(rwsem_opt_nospin);
887                                 break;
888                         }
889                 }
890
891                 /*
892                  * An RT task cannot do optimistic spinning if it cannot
893                  * be sure the lock holder is running or live-lock may
894                  * happen if the current task and the lock holder happen
895                  * to run in the same CPU. However, aborting optimistic
896                  * spinning while a NULL owner is detected may miss some
897                  * opportunity where spinning can continue without causing
898                  * problem.
899                  *
900                  * There are 2 possible cases where an RT task may be able
901                  * to continue spinning.
902                  *
903                  * 1) The lock owner is in the process of releasing the
904                  *    lock, sem->owner is cleared but the lock has not
905                  *    been released yet.
906                  * 2) The lock was free and owner cleared, but another
907                  *    task just comes in and acquire the lock before
908                  *    we try to get it. The new owner may be a spinnable
909                  *    writer.
910                  *
911                  * To take advantage of two scenarios listed above, the RT
912                  * task is made to retry one more time to see if it can
913                  * acquire the lock or continue spinning on the new owning
914                  * writer. Of course, if the time lag is long enough or the
915                  * new owner is not a writer or spinnable, the RT task will
916                  * quit spinning.
917                  *
918                  * If the owner is a writer, the need_resched() check is
919                  * done inside rwsem_spin_on_owner(). If the owner is not
920                  * a writer, need_resched() check needs to be done here.
921                  */
922                 if (owner_state != OWNER_WRITER) {
923                         if (need_resched())
924                                 break;
925                         if (rt_task(current) &&
926                            (prev_owner_state != OWNER_WRITER))
927                                 break;
928                 }
929                 prev_owner_state = owner_state;
930
931                 /*
932                  * The cpu_relax() call is a compiler barrier which forces
933                  * everything in this loop to be re-loaded. We don't need
934                  * memory barriers as we'll eventually observe the right
935                  * values at the cost of a few extra spins.
936                  */
937                 cpu_relax();
938         }
939         osq_unlock(&sem->osq);
940 done:
941         preempt_enable();
942         lockevent_cond_inc(rwsem_opt_fail, !taken);
943         return taken;
944 }
945
946 /*
947  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
948  * only be called when the reader count reaches 0.
949  */
950 static inline void clear_nonspinnable(struct rw_semaphore *sem)
951 {
952         if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
953                 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
954 }
955
956 #else
957 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
958 {
959         return false;
960 }
961
962 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
963 {
964         return false;
965 }
966
967 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
968
969 static inline enum owner_state
970 rwsem_spin_on_owner(struct rw_semaphore *sem)
971 {
972         return OWNER_NONSPINNABLE;
973 }
974 #endif
975
976 /*
977  * Prepare to wake up waiter(s) in the wait queue by putting them into the
978  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
979  * reader-owned, wake up read lock waiters in queue front or wake up any
980  * front waiter otherwise.
981
982  * This is being called from both reader and writer slow paths.
983  */
984 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
985                                           struct wake_q_head *wake_q)
986 {
987         enum rwsem_wake_type wake_type;
988
989         if (count & RWSEM_WRITER_MASK)
990                 return;
991
992         if (count & RWSEM_READER_MASK) {
993                 wake_type = RWSEM_WAKE_READERS;
994         } else {
995                 wake_type = RWSEM_WAKE_ANY;
996                 clear_nonspinnable(sem);
997         }
998         rwsem_mark_wake(sem, wake_type, wake_q);
999 }
1000
1001 /*
1002  * Wait for the read lock to be granted
1003  */
1004 static struct rw_semaphore __sched *
1005 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
1006 {
1007         long adjustment = -RWSEM_READER_BIAS;
1008         long rcnt = (count >> RWSEM_READER_SHIFT);
1009         struct rwsem_waiter waiter;
1010         DEFINE_WAKE_Q(wake_q);
1011
1012         /*
1013          * To prevent a constant stream of readers from starving a sleeping
1014          * waiter, don't attempt optimistic lock stealing if the lock is
1015          * currently owned by readers.
1016          */
1017         if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1018             (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1019                 goto queue;
1020
1021         /*
1022          * Reader optimistic lock stealing.
1023          */
1024         if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1025                 rwsem_set_reader_owned(sem);
1026                 lockevent_inc(rwsem_rlock_steal);
1027
1028                 /*
1029                  * Wake up other readers in the wait queue if it is
1030                  * the first reader.
1031                  */
1032                 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1033                         raw_spin_lock_irq(&sem->wait_lock);
1034                         if (!list_empty(&sem->wait_list))
1035                                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1036                                                 &wake_q);
1037                         raw_spin_unlock_irq(&sem->wait_lock);
1038                         wake_up_q(&wake_q);
1039                 }
1040                 return sem;
1041         }
1042
1043 queue:
1044         waiter.task = current;
1045         waiter.type = RWSEM_WAITING_FOR_READ;
1046         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1047         waiter.handoff_set = false;
1048
1049         raw_spin_lock_irq(&sem->wait_lock);
1050         if (list_empty(&sem->wait_list)) {
1051                 /*
1052                  * In case the wait queue is empty and the lock isn't owned
1053                  * by a writer, this reader can exit the slowpath and return
1054                  * immediately as its RWSEM_READER_BIAS has already been set
1055                  * in the count.
1056                  */
1057                 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1058                         /* Provide lock ACQUIRE */
1059                         smp_acquire__after_ctrl_dep();
1060                         raw_spin_unlock_irq(&sem->wait_lock);
1061                         rwsem_set_reader_owned(sem);
1062                         lockevent_inc(rwsem_rlock_fast);
1063                         return sem;
1064                 }
1065                 adjustment += RWSEM_FLAG_WAITERS;
1066         }
1067         rwsem_add_waiter(sem, &waiter);
1068
1069         /* we're now waiting on the lock, but no longer actively locking */
1070         count = atomic_long_add_return(adjustment, &sem->count);
1071
1072         rwsem_cond_wake_waiter(sem, count, &wake_q);
1073         raw_spin_unlock_irq(&sem->wait_lock);
1074
1075         if (!wake_q_empty(&wake_q))
1076                 wake_up_q(&wake_q);
1077
1078         trace_contention_begin(sem, LCB_F_READ);
1079
1080         /* wait to be given the lock */
1081         for (;;) {
1082                 set_current_state(state);
1083                 if (!smp_load_acquire(&waiter.task)) {
1084                         /* Matches rwsem_mark_wake()'s smp_store_release(). */
1085                         break;
1086                 }
1087                 if (signal_pending_state(state, current)) {
1088                         raw_spin_lock_irq(&sem->wait_lock);
1089                         if (waiter.task)
1090                                 goto out_nolock;
1091                         raw_spin_unlock_irq(&sem->wait_lock);
1092                         /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1093                         break;
1094                 }
1095                 schedule();
1096                 lockevent_inc(rwsem_sleep_reader);
1097         }
1098
1099         __set_current_state(TASK_RUNNING);
1100         lockevent_inc(rwsem_rlock);
1101         trace_contention_end(sem, 0);
1102         return sem;
1103
1104 out_nolock:
1105         rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1106         __set_current_state(TASK_RUNNING);
1107         lockevent_inc(rwsem_rlock_fail);
1108         trace_contention_end(sem, -EINTR);
1109         return ERR_PTR(-EINTR);
1110 }
1111
1112 /*
1113  * Wait until we successfully acquire the write lock
1114  */
1115 static struct rw_semaphore __sched *
1116 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1117 {
1118         struct rwsem_waiter waiter;
1119         DEFINE_WAKE_Q(wake_q);
1120
1121         /* do optimistic spinning and steal lock if possible */
1122         if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1123                 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1124                 return sem;
1125         }
1126
1127         /*
1128          * Optimistic spinning failed, proceed to the slowpath
1129          * and block until we can acquire the sem.
1130          */
1131         waiter.task = current;
1132         waiter.type = RWSEM_WAITING_FOR_WRITE;
1133         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1134         waiter.handoff_set = false;
1135
1136         raw_spin_lock_irq(&sem->wait_lock);
1137         rwsem_add_waiter(sem, &waiter);
1138
1139         /* we're now waiting on the lock */
1140         if (rwsem_first_waiter(sem) != &waiter) {
1141                 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1142                                        &wake_q);
1143                 if (!wake_q_empty(&wake_q)) {
1144                         /*
1145                          * We want to minimize wait_lock hold time especially
1146                          * when a large number of readers are to be woken up.
1147                          */
1148                         raw_spin_unlock_irq(&sem->wait_lock);
1149                         wake_up_q(&wake_q);
1150                         raw_spin_lock_irq(&sem->wait_lock);
1151                 }
1152         } else {
1153                 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1154         }
1155
1156         /* wait until we successfully acquire the lock */
1157         set_current_state(state);
1158         trace_contention_begin(sem, LCB_F_WRITE);
1159
1160         for (;;) {
1161                 if (rwsem_try_write_lock(sem, &waiter)) {
1162                         /* rwsem_try_write_lock() implies ACQUIRE on success */
1163                         break;
1164                 }
1165
1166                 raw_spin_unlock_irq(&sem->wait_lock);
1167
1168                 if (signal_pending_state(state, current))
1169                         goto out_nolock;
1170
1171                 /*
1172                  * After setting the handoff bit and failing to acquire
1173                  * the lock, attempt to spin on owner to accelerate lock
1174                  * transfer. If the previous owner is a on-cpu writer and it
1175                  * has just released the lock, OWNER_NULL will be returned.
1176                  * In this case, we attempt to acquire the lock again
1177                  * without sleeping.
1178                  */
1179                 if (waiter.handoff_set) {
1180                         enum owner_state owner_state;
1181
1182                         preempt_disable();
1183                         owner_state = rwsem_spin_on_owner(sem);
1184                         preempt_enable();
1185
1186                         if (owner_state == OWNER_NULL)
1187                                 goto trylock_again;
1188                 }
1189
1190                 schedule();
1191                 lockevent_inc(rwsem_sleep_writer);
1192                 set_current_state(state);
1193 trylock_again:
1194                 raw_spin_lock_irq(&sem->wait_lock);
1195         }
1196         __set_current_state(TASK_RUNNING);
1197         raw_spin_unlock_irq(&sem->wait_lock);
1198         lockevent_inc(rwsem_wlock);
1199         trace_contention_end(sem, 0);
1200         return sem;
1201
1202 out_nolock:
1203         __set_current_state(TASK_RUNNING);
1204         raw_spin_lock_irq(&sem->wait_lock);
1205         rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1206         lockevent_inc(rwsem_wlock_fail);
1207         trace_contention_end(sem, -EINTR);
1208         return ERR_PTR(-EINTR);
1209 }
1210
1211 /*
1212  * handle waking up a waiter on the semaphore
1213  * - up_read/up_write has decremented the active part of count if we come here
1214  */
1215 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1216 {
1217         unsigned long flags;
1218         DEFINE_WAKE_Q(wake_q);
1219
1220         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1221
1222         if (!list_empty(&sem->wait_list))
1223                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1224
1225         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1226         wake_up_q(&wake_q);
1227
1228         return sem;
1229 }
1230
1231 /*
1232  * downgrade a write lock into a read lock
1233  * - caller incremented waiting part of count and discovered it still negative
1234  * - just wake up any readers at the front of the queue
1235  */
1236 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1237 {
1238         unsigned long flags;
1239         DEFINE_WAKE_Q(wake_q);
1240
1241         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1242
1243         if (!list_empty(&sem->wait_list))
1244                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1245
1246         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1247         wake_up_q(&wake_q);
1248
1249         return sem;
1250 }
1251
1252 /*
1253  * lock for reading
1254  */
1255 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1256 {
1257         long count;
1258
1259         if (!rwsem_read_trylock(sem, &count)) {
1260                 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1261                         return -EINTR;
1262                 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1263         }
1264         return 0;
1265 }
1266
1267 static inline void __down_read(struct rw_semaphore *sem)
1268 {
1269         __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1270 }
1271
1272 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1273 {
1274         return __down_read_common(sem, TASK_INTERRUPTIBLE);
1275 }
1276
1277 static inline int __down_read_killable(struct rw_semaphore *sem)
1278 {
1279         return __down_read_common(sem, TASK_KILLABLE);
1280 }
1281
1282 static inline int __down_read_trylock(struct rw_semaphore *sem)
1283 {
1284         long tmp;
1285
1286         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1287
1288         tmp = atomic_long_read(&sem->count);
1289         while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1290                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1291                                                     tmp + RWSEM_READER_BIAS)) {
1292                         rwsem_set_reader_owned(sem);
1293                         return 1;
1294                 }
1295         }
1296         return 0;
1297 }
1298
1299 /*
1300  * lock for writing
1301  */
1302 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1303 {
1304         if (unlikely(!rwsem_write_trylock(sem))) {
1305                 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1306                         return -EINTR;
1307         }
1308
1309         return 0;
1310 }
1311
1312 static inline void __down_write(struct rw_semaphore *sem)
1313 {
1314         __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1315 }
1316
1317 static inline int __down_write_killable(struct rw_semaphore *sem)
1318 {
1319         return __down_write_common(sem, TASK_KILLABLE);
1320 }
1321
1322 static inline int __down_write_trylock(struct rw_semaphore *sem)
1323 {
1324         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1325         return rwsem_write_trylock(sem);
1326 }
1327
1328 /*
1329  * unlock after reading
1330  */
1331 static inline void __up_read(struct rw_semaphore *sem)
1332 {
1333         long tmp;
1334
1335         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1336         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1337
1338         rwsem_clear_reader_owned(sem);
1339         tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1340         DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1341         if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1342                       RWSEM_FLAG_WAITERS)) {
1343                 clear_nonspinnable(sem);
1344                 rwsem_wake(sem);
1345         }
1346 }
1347
1348 /*
1349  * unlock after writing
1350  */
1351 static inline void __up_write(struct rw_semaphore *sem)
1352 {
1353         long tmp;
1354
1355         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1356         /*
1357          * sem->owner may differ from current if the ownership is transferred
1358          * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1359          */
1360         DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1361                             !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1362
1363         preempt_disable();
1364         rwsem_clear_owner(sem);
1365         tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1366         preempt_enable();
1367         if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1368                 rwsem_wake(sem);
1369 }
1370
1371 /*
1372  * downgrade write lock to read lock
1373  */
1374 static inline void __downgrade_write(struct rw_semaphore *sem)
1375 {
1376         long tmp;
1377
1378         /*
1379          * When downgrading from exclusive to shared ownership,
1380          * anything inside the write-locked region cannot leak
1381          * into the read side. In contrast, anything in the
1382          * read-locked region is ok to be re-ordered into the
1383          * write side. As such, rely on RELEASE semantics.
1384          */
1385         DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1386         tmp = atomic_long_fetch_add_release(
1387                 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1388         rwsem_set_reader_owned(sem);
1389         if (tmp & RWSEM_FLAG_WAITERS)
1390                 rwsem_downgrade_wake(sem);
1391 }
1392
1393 #else /* !CONFIG_PREEMPT_RT */
1394
1395 #define RT_MUTEX_BUILD_MUTEX
1396 #include "rtmutex.c"
1397
1398 #define rwbase_set_and_save_current_state(state)        \
1399         set_current_state(state)
1400
1401 #define rwbase_restore_current_state()                  \
1402         __set_current_state(TASK_RUNNING)
1403
1404 #define rwbase_rtmutex_lock_state(rtm, state)           \
1405         __rt_mutex_lock(rtm, state)
1406
1407 #define rwbase_rtmutex_slowlock_locked(rtm, state)      \
1408         __rt_mutex_slowlock_locked(rtm, NULL, state)
1409
1410 #define rwbase_rtmutex_unlock(rtm)                      \
1411         __rt_mutex_unlock(rtm)
1412
1413 #define rwbase_rtmutex_trylock(rtm)                     \
1414         __rt_mutex_trylock(rtm)
1415
1416 #define rwbase_signal_pending_state(state, current)     \
1417         signal_pending_state(state, current)
1418
1419 #define rwbase_schedule()                               \
1420         schedule()
1421
1422 #include "rwbase_rt.c"
1423
1424 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1425                   struct lock_class_key *key)
1426 {
1427         init_rwbase_rt(&(sem)->rwbase);
1428
1429 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1430         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1431         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1432 #endif
1433 }
1434 EXPORT_SYMBOL(__init_rwsem);
1435
1436 static inline void __down_read(struct rw_semaphore *sem)
1437 {
1438         rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1439 }
1440
1441 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1442 {
1443         return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1444 }
1445
1446 static inline int __down_read_killable(struct rw_semaphore *sem)
1447 {
1448         return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1449 }
1450
1451 static inline int __down_read_trylock(struct rw_semaphore *sem)
1452 {
1453         return rwbase_read_trylock(&sem->rwbase);
1454 }
1455
1456 static inline void __up_read(struct rw_semaphore *sem)
1457 {
1458         rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1459 }
1460
1461 static inline void __sched __down_write(struct rw_semaphore *sem)
1462 {
1463         rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1464 }
1465
1466 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1467 {
1468         return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1469 }
1470
1471 static inline int __down_write_trylock(struct rw_semaphore *sem)
1472 {
1473         return rwbase_write_trylock(&sem->rwbase);
1474 }
1475
1476 static inline void __up_write(struct rw_semaphore *sem)
1477 {
1478         rwbase_write_unlock(&sem->rwbase);
1479 }
1480
1481 static inline void __downgrade_write(struct rw_semaphore *sem)
1482 {
1483         rwbase_write_downgrade(&sem->rwbase);
1484 }
1485
1486 /* Debug stubs for the common API */
1487 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1488
1489 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1490                                             struct task_struct *owner)
1491 {
1492 }
1493
1494 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1495 {
1496         int count = atomic_read(&sem->rwbase.readers);
1497
1498         return count < 0 && count != READER_BIAS;
1499 }
1500
1501 #endif /* CONFIG_PREEMPT_RT */
1502
1503 /*
1504  * lock for reading
1505  */
1506 void __sched down_read(struct rw_semaphore *sem)
1507 {
1508         might_sleep();
1509         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1510
1511         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1512 }
1513 EXPORT_SYMBOL(down_read);
1514
1515 int __sched down_read_interruptible(struct rw_semaphore *sem)
1516 {
1517         might_sleep();
1518         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1519
1520         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1521                 rwsem_release(&sem->dep_map, _RET_IP_);
1522                 return -EINTR;
1523         }
1524
1525         return 0;
1526 }
1527 EXPORT_SYMBOL(down_read_interruptible);
1528
1529 int __sched down_read_killable(struct rw_semaphore *sem)
1530 {
1531         might_sleep();
1532         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1533
1534         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1535                 rwsem_release(&sem->dep_map, _RET_IP_);
1536                 return -EINTR;
1537         }
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL(down_read_killable);
1542
1543 /*
1544  * trylock for reading -- returns 1 if successful, 0 if contention
1545  */
1546 int down_read_trylock(struct rw_semaphore *sem)
1547 {
1548         int ret = __down_read_trylock(sem);
1549
1550         if (ret == 1)
1551                 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1552         return ret;
1553 }
1554 EXPORT_SYMBOL(down_read_trylock);
1555
1556 /*
1557  * lock for writing
1558  */
1559 void __sched down_write(struct rw_semaphore *sem)
1560 {
1561         might_sleep();
1562         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1563         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1564 }
1565 EXPORT_SYMBOL(down_write);
1566
1567 /*
1568  * lock for writing
1569  */
1570 int __sched down_write_killable(struct rw_semaphore *sem)
1571 {
1572         might_sleep();
1573         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1574
1575         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1576                                   __down_write_killable)) {
1577                 rwsem_release(&sem->dep_map, _RET_IP_);
1578                 return -EINTR;
1579         }
1580
1581         return 0;
1582 }
1583 EXPORT_SYMBOL(down_write_killable);
1584
1585 /*
1586  * trylock for writing -- returns 1 if successful, 0 if contention
1587  */
1588 int down_write_trylock(struct rw_semaphore *sem)
1589 {
1590         int ret = __down_write_trylock(sem);
1591
1592         if (ret == 1)
1593                 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1594
1595         return ret;
1596 }
1597 EXPORT_SYMBOL(down_write_trylock);
1598
1599 /*
1600  * release a read lock
1601  */
1602 void up_read(struct rw_semaphore *sem)
1603 {
1604         rwsem_release(&sem->dep_map, _RET_IP_);
1605         __up_read(sem);
1606 }
1607 EXPORT_SYMBOL(up_read);
1608
1609 /*
1610  * release a write lock
1611  */
1612 void up_write(struct rw_semaphore *sem)
1613 {
1614         rwsem_release(&sem->dep_map, _RET_IP_);
1615         __up_write(sem);
1616 }
1617 EXPORT_SYMBOL(up_write);
1618
1619 /*
1620  * downgrade write lock to read lock
1621  */
1622 void downgrade_write(struct rw_semaphore *sem)
1623 {
1624         lock_downgrade(&sem->dep_map, _RET_IP_);
1625         __downgrade_write(sem);
1626 }
1627 EXPORT_SYMBOL(downgrade_write);
1628
1629 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1630
1631 void down_read_nested(struct rw_semaphore *sem, int subclass)
1632 {
1633         might_sleep();
1634         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1635         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1636 }
1637 EXPORT_SYMBOL(down_read_nested);
1638
1639 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1640 {
1641         might_sleep();
1642         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1643
1644         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1645                 rwsem_release(&sem->dep_map, _RET_IP_);
1646                 return -EINTR;
1647         }
1648
1649         return 0;
1650 }
1651 EXPORT_SYMBOL(down_read_killable_nested);
1652
1653 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1654 {
1655         might_sleep();
1656         rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1657         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1658 }
1659 EXPORT_SYMBOL(_down_write_nest_lock);
1660
1661 void down_read_non_owner(struct rw_semaphore *sem)
1662 {
1663         might_sleep();
1664         __down_read(sem);
1665         __rwsem_set_reader_owned(sem, NULL);
1666 }
1667 EXPORT_SYMBOL(down_read_non_owner);
1668
1669 void down_write_nested(struct rw_semaphore *sem, int subclass)
1670 {
1671         might_sleep();
1672         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1673         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1674 }
1675 EXPORT_SYMBOL(down_write_nested);
1676
1677 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1678 {
1679         might_sleep();
1680         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1681
1682         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1683                                   __down_write_killable)) {
1684                 rwsem_release(&sem->dep_map, _RET_IP_);
1685                 return -EINTR;
1686         }
1687
1688         return 0;
1689 }
1690 EXPORT_SYMBOL(down_write_killable_nested);
1691
1692 void up_read_non_owner(struct rw_semaphore *sem)
1693 {
1694         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1695         __up_read(sem);
1696 }
1697 EXPORT_SYMBOL(up_read_non_owner);
1698
1699 #endif