perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file
[platform/kernel/linux-starfive.git] / kernel / locking / rwbase_rt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4  * RT-specific reader/writer semaphores and reader/writer locks
5  *
6  * down_write/write_lock()
7  *  1) Lock rtmutex
8  *  2) Remove the reader BIAS to force readers into the slow path
9  *  3) Wait until all readers have left the critical section
10  *  4) Mark it write locked
11  *
12  * up_write/write_unlock()
13  *  1) Remove the write locked marker
14  *  2) Set the reader BIAS, so readers can use the fast path again
15  *  3) Unlock rtmutex, to release blocked readers
16  *
17  * down_read/read_lock()
18  *  1) Try fast path acquisition (reader BIAS is set)
19  *  2) Take tmutex::wait_lock, which protects the writelocked flag
20  *  3) If !writelocked, acquire it for read
21  *  4) If writelocked, block on tmutex
22  *  5) unlock rtmutex, goto 1)
23  *
24  * up_read/read_unlock()
25  *  1) Try fast path release (reader count != 1)
26  *  2) Wake the writer waiting in down_write()/write_lock() #3
27  *
28  * down_read/read_lock()#3 has the consequence, that rw semaphores and rw
29  * locks on RT are not writer fair, but writers, which should be avoided in
30  * RT tasks (think mmap_sem), are subject to the rtmutex priority/DL
31  * inheritance mechanism.
32  *
33  * It's possible to make the rw primitives writer fair by keeping a list of
34  * active readers. A blocked writer would force all newly incoming readers
35  * to block on the rtmutex, but the rtmutex would have to be proxy locked
36  * for one reader after the other. We can't use multi-reader inheritance
37  * because there is no way to support that with SCHED_DEADLINE.
38  * Implementing the one by one reader boosting/handover mechanism is a
39  * major surgery for a very dubious value.
40  *
41  * The risk of writer starvation is there, but the pathological use cases
42  * which trigger it are not necessarily the typical RT workloads.
43  *
44  * Fast-path orderings:
45  * The lock/unlock of readers can run in fast paths: lock and unlock are only
46  * atomic ops, and there is no inner lock to provide ACQUIRE and RELEASE
47  * semantics of rwbase_rt. Atomic ops should thus provide _acquire()
48  * and _release() (or stronger).
49  *
50  * Common code shared between RT rw_semaphore and rwlock
51  */
52
53 static __always_inline int rwbase_read_trylock(struct rwbase_rt *rwb)
54 {
55         int r;
56
57         /*
58          * Increment reader count, if sem->readers < 0, i.e. READER_BIAS is
59          * set.
60          */
61         for (r = atomic_read(&rwb->readers); r < 0;) {
62                 if (likely(atomic_try_cmpxchg_acquire(&rwb->readers, &r, r + 1)))
63                         return 1;
64         }
65         return 0;
66 }
67
68 static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
69                                       unsigned int state)
70 {
71         struct rt_mutex_base *rtm = &rwb->rtmutex;
72         int ret;
73
74         raw_spin_lock_irq(&rtm->wait_lock);
75
76         /*
77          * Call into the slow lock path with the rtmutex->wait_lock
78          * held, so this can't result in the following race:
79          *
80          * Reader1              Reader2         Writer
81          *                      down_read()
82          *                                      down_write()
83          *                                      rtmutex_lock(m)
84          *                                      wait()
85          * down_read()
86          * unlock(m->wait_lock)
87          *                      up_read()
88          *                      wake(Writer)
89          *                                      lock(m->wait_lock)
90          *                                      sem->writelocked=true
91          *                                      unlock(m->wait_lock)
92          *
93          *                                      up_write()
94          *                                      sem->writelocked=false
95          *                                      rtmutex_unlock(m)
96          *                      down_read()
97          *                                      down_write()
98          *                                      rtmutex_lock(m)
99          *                                      wait()
100          * rtmutex_lock(m)
101          *
102          * That would put Reader1 behind the writer waiting on
103          * Reader2 to call up_read(), which might be unbound.
104          */
105
106         trace_contention_begin(rwb, LCB_F_RT | LCB_F_READ);
107
108         /*
109          * For rwlocks this returns 0 unconditionally, so the below
110          * !ret conditionals are optimized out.
111          */
112         ret = rwbase_rtmutex_slowlock_locked(rtm, state);
113
114         /*
115          * On success the rtmutex is held, so there can't be a writer
116          * active. Increment the reader count and immediately drop the
117          * rtmutex again.
118          *
119          * rtmutex->wait_lock has to be unlocked in any case of course.
120          */
121         if (!ret)
122                 atomic_inc(&rwb->readers);
123         raw_spin_unlock_irq(&rtm->wait_lock);
124         if (!ret)
125                 rwbase_rtmutex_unlock(rtm);
126
127         trace_contention_end(rwb, ret);
128         return ret;
129 }
130
131 static __always_inline int rwbase_read_lock(struct rwbase_rt *rwb,
132                                             unsigned int state)
133 {
134         if (rwbase_read_trylock(rwb))
135                 return 0;
136
137         return __rwbase_read_lock(rwb, state);
138 }
139
140 static void __sched __rwbase_read_unlock(struct rwbase_rt *rwb,
141                                          unsigned int state)
142 {
143         struct rt_mutex_base *rtm = &rwb->rtmutex;
144         struct task_struct *owner;
145         DEFINE_RT_WAKE_Q(wqh);
146
147         raw_spin_lock_irq(&rtm->wait_lock);
148         /*
149          * Wake the writer, i.e. the rtmutex owner. It might release the
150          * rtmutex concurrently in the fast path (due to a signal), but to
151          * clean up rwb->readers it needs to acquire rtm->wait_lock. The
152          * worst case which can happen is a spurious wakeup.
153          */
154         owner = rt_mutex_owner(rtm);
155         if (owner)
156                 rt_mutex_wake_q_add_task(&wqh, owner, state);
157
158         /* Pairs with the preempt_enable in rt_mutex_wake_up_q() */
159         preempt_disable();
160         raw_spin_unlock_irq(&rtm->wait_lock);
161         rt_mutex_wake_up_q(&wqh);
162 }
163
164 static __always_inline void rwbase_read_unlock(struct rwbase_rt *rwb,
165                                                unsigned int state)
166 {
167         /*
168          * rwb->readers can only hit 0 when a writer is waiting for the
169          * active readers to leave the critical section.
170          *
171          * dec_and_test() is fully ordered, provides RELEASE.
172          */
173         if (unlikely(atomic_dec_and_test(&rwb->readers)))
174                 __rwbase_read_unlock(rwb, state);
175 }
176
177 static inline void __rwbase_write_unlock(struct rwbase_rt *rwb, int bias,
178                                          unsigned long flags)
179 {
180         struct rt_mutex_base *rtm = &rwb->rtmutex;
181
182         /*
183          * _release() is needed in case that reader is in fast path, pairing
184          * with atomic_try_cmpxchg_acquire() in rwbase_read_trylock().
185          */
186         (void)atomic_add_return_release(READER_BIAS - bias, &rwb->readers);
187         raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
188         rwbase_rtmutex_unlock(rtm);
189 }
190
191 static inline void rwbase_write_unlock(struct rwbase_rt *rwb)
192 {
193         struct rt_mutex_base *rtm = &rwb->rtmutex;
194         unsigned long flags;
195
196         raw_spin_lock_irqsave(&rtm->wait_lock, flags);
197         __rwbase_write_unlock(rwb, WRITER_BIAS, flags);
198 }
199
200 static inline void rwbase_write_downgrade(struct rwbase_rt *rwb)
201 {
202         struct rt_mutex_base *rtm = &rwb->rtmutex;
203         unsigned long flags;
204
205         raw_spin_lock_irqsave(&rtm->wait_lock, flags);
206         /* Release it and account current as reader */
207         __rwbase_write_unlock(rwb, WRITER_BIAS - 1, flags);
208 }
209
210 static inline bool __rwbase_write_trylock(struct rwbase_rt *rwb)
211 {
212         /* Can do without CAS because we're serialized by wait_lock. */
213         lockdep_assert_held(&rwb->rtmutex.wait_lock);
214
215         /*
216          * _acquire is needed in case the reader is in the fast path, pairing
217          * with rwbase_read_unlock(), provides ACQUIRE.
218          */
219         if (!atomic_read_acquire(&rwb->readers)) {
220                 atomic_set(&rwb->readers, WRITER_BIAS);
221                 return 1;
222         }
223
224         return 0;
225 }
226
227 static int __sched rwbase_write_lock(struct rwbase_rt *rwb,
228                                      unsigned int state)
229 {
230         struct rt_mutex_base *rtm = &rwb->rtmutex;
231         unsigned long flags;
232
233         /* Take the rtmutex as a first step */
234         if (rwbase_rtmutex_lock_state(rtm, state))
235                 return -EINTR;
236
237         /* Force readers into slow path */
238         atomic_sub(READER_BIAS, &rwb->readers);
239
240         raw_spin_lock_irqsave(&rtm->wait_lock, flags);
241         if (__rwbase_write_trylock(rwb))
242                 goto out_unlock;
243
244         rwbase_set_and_save_current_state(state);
245         trace_contention_begin(rwb, LCB_F_RT | LCB_F_WRITE);
246         for (;;) {
247                 /* Optimized out for rwlocks */
248                 if (rwbase_signal_pending_state(state, current)) {
249                         rwbase_restore_current_state();
250                         __rwbase_write_unlock(rwb, 0, flags);
251                         trace_contention_end(rwb, -EINTR);
252                         return -EINTR;
253                 }
254
255                 if (__rwbase_write_trylock(rwb))
256                         break;
257
258                 raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
259                 rwbase_schedule();
260                 raw_spin_lock_irqsave(&rtm->wait_lock, flags);
261
262                 set_current_state(state);
263         }
264         rwbase_restore_current_state();
265         trace_contention_end(rwb, 0);
266
267 out_unlock:
268         raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
269         return 0;
270 }
271
272 static inline int rwbase_write_trylock(struct rwbase_rt *rwb)
273 {
274         struct rt_mutex_base *rtm = &rwb->rtmutex;
275         unsigned long flags;
276
277         if (!rwbase_rtmutex_trylock(rtm))
278                 return 0;
279
280         atomic_sub(READER_BIAS, &rwb->readers);
281
282         raw_spin_lock_irqsave(&rtm->wait_lock, flags);
283         if (__rwbase_write_trylock(rwb)) {
284                 raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
285                 return 1;
286         }
287         __rwbase_write_unlock(rwb, 0, flags);
288         return 0;
289 }