RISC-V: Add mvendorid, marchid, and mimpid to /proc/cpuinfo output
[platform/kernel/linux-starfive.git] / kernel / locking / rtmutex.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  * Adaptive Spinlocks:
12  *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13  *                                   and Peter Morreale,
14  * Adaptive Spinlocks simplification:
15  *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16  *
17  *  See Documentation/locking/rt-mutex-design.rst for details.
18  */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26
27 #include <trace/events/lock.h>
28
29 #include "rtmutex_common.h"
30
31 #ifndef WW_RT
32 # define build_ww_mutex()       (false)
33 # define ww_container_of(rtm)   NULL
34
35 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
36                                         struct rt_mutex *lock,
37                                         struct ww_acquire_ctx *ww_ctx)
38 {
39         return 0;
40 }
41
42 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
43                                             struct ww_acquire_ctx *ww_ctx)
44 {
45 }
46
47 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
48                                           struct ww_acquire_ctx *ww_ctx)
49 {
50 }
51
52 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
53                                         struct rt_mutex_waiter *waiter,
54                                         struct ww_acquire_ctx *ww_ctx)
55 {
56         return 0;
57 }
58
59 #else
60 # define build_ww_mutex()       (true)
61 # define ww_container_of(rtm)   container_of(rtm, struct ww_mutex, base)
62 # include "ww_mutex.h"
63 #endif
64
65 /*
66  * lock->owner state tracking:
67  *
68  * lock->owner holds the task_struct pointer of the owner. Bit 0
69  * is used to keep track of the "lock has waiters" state.
70  *
71  * owner        bit0
72  * NULL         0       lock is free (fast acquire possible)
73  * NULL         1       lock is free and has waiters and the top waiter
74  *                              is going to take the lock*
75  * taskpointer  0       lock is held (fast release possible)
76  * taskpointer  1       lock is held and has waiters**
77  *
78  * The fast atomic compare exchange based acquire and release is only
79  * possible when bit 0 of lock->owner is 0.
80  *
81  * (*) It also can be a transitional state when grabbing the lock
82  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
83  * we need to set the bit0 before looking at the lock, and the owner may be
84  * NULL in this small time, hence this can be a transitional state.
85  *
86  * (**) There is a small time when bit 0 is set but there are no
87  * waiters. This can happen when grabbing the lock in the slow path.
88  * To prevent a cmpxchg of the owner releasing the lock, we need to
89  * set this bit before looking at the lock.
90  */
91
92 static __always_inline void
93 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
94 {
95         unsigned long val = (unsigned long)owner;
96
97         if (rt_mutex_has_waiters(lock))
98                 val |= RT_MUTEX_HAS_WAITERS;
99
100         WRITE_ONCE(lock->owner, (struct task_struct *)val);
101 }
102
103 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
104 {
105         lock->owner = (struct task_struct *)
106                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
107 }
108
109 static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex_base *lock)
110 {
111         unsigned long owner, *p = (unsigned long *) &lock->owner;
112
113         if (rt_mutex_has_waiters(lock))
114                 return;
115
116         /*
117          * The rbtree has no waiters enqueued, now make sure that the
118          * lock->owner still has the waiters bit set, otherwise the
119          * following can happen:
120          *
121          * CPU 0        CPU 1           CPU2
122          * l->owner=T1
123          *              rt_mutex_lock(l)
124          *              lock(l->lock)
125          *              l->owner = T1 | HAS_WAITERS;
126          *              enqueue(T2)
127          *              boost()
128          *                unlock(l->lock)
129          *              block()
130          *
131          *                              rt_mutex_lock(l)
132          *                              lock(l->lock)
133          *                              l->owner = T1 | HAS_WAITERS;
134          *                              enqueue(T3)
135          *                              boost()
136          *                                unlock(l->lock)
137          *                              block()
138          *              signal(->T2)    signal(->T3)
139          *              lock(l->lock)
140          *              dequeue(T2)
141          *              deboost()
142          *                unlock(l->lock)
143          *                              lock(l->lock)
144          *                              dequeue(T3)
145          *                               ==> wait list is empty
146          *                              deboost()
147          *                               unlock(l->lock)
148          *              lock(l->lock)
149          *              fixup_rt_mutex_waiters()
150          *                if (wait_list_empty(l) {
151          *                  l->owner = owner
152          *                  owner = l->owner & ~HAS_WAITERS;
153          *                    ==> l->owner = T1
154          *                }
155          *                              lock(l->lock)
156          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
157          *                                if (wait_list_empty(l) {
158          *                                  owner = l->owner & ~HAS_WAITERS;
159          * cmpxchg(l->owner, T1, NULL)
160          *  ===> Success (l->owner = NULL)
161          *
162          *                                  l->owner = owner
163          *                                    ==> l->owner = T1
164          *                                }
165          *
166          * With the check for the waiter bit in place T3 on CPU2 will not
167          * overwrite. All tasks fiddling with the waiters bit are
168          * serialized by l->lock, so nothing else can modify the waiters
169          * bit. If the bit is set then nothing can change l->owner either
170          * so the simple RMW is safe. The cmpxchg() will simply fail if it
171          * happens in the middle of the RMW because the waiters bit is
172          * still set.
173          */
174         owner = READ_ONCE(*p);
175         if (owner & RT_MUTEX_HAS_WAITERS)
176                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
177 }
178
179 /*
180  * We can speed up the acquire/release, if there's no debugging state to be
181  * set up.
182  */
183 #ifndef CONFIG_DEBUG_RT_MUTEXES
184 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
185                                                      struct task_struct *old,
186                                                      struct task_struct *new)
187 {
188         return try_cmpxchg_acquire(&lock->owner, &old, new);
189 }
190
191 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
192                                                      struct task_struct *old,
193                                                      struct task_struct *new)
194 {
195         return try_cmpxchg_release(&lock->owner, &old, new);
196 }
197
198 /*
199  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
200  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
201  * relaxed semantics suffice.
202  */
203 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
204 {
205         unsigned long owner, *p = (unsigned long *) &lock->owner;
206
207         do {
208                 owner = *p;
209         } while (cmpxchg_relaxed(p, owner,
210                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
211 }
212
213 /*
214  * Safe fastpath aware unlock:
215  * 1) Clear the waiters bit
216  * 2) Drop lock->wait_lock
217  * 3) Try to unlock the lock with cmpxchg
218  */
219 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
220                                                  unsigned long flags)
221         __releases(lock->wait_lock)
222 {
223         struct task_struct *owner = rt_mutex_owner(lock);
224
225         clear_rt_mutex_waiters(lock);
226         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
227         /*
228          * If a new waiter comes in between the unlock and the cmpxchg
229          * we have two situations:
230          *
231          * unlock(wait_lock);
232          *                                      lock(wait_lock);
233          * cmpxchg(p, owner, 0) == owner
234          *                                      mark_rt_mutex_waiters(lock);
235          *                                      acquire(lock);
236          * or:
237          *
238          * unlock(wait_lock);
239          *                                      lock(wait_lock);
240          *                                      mark_rt_mutex_waiters(lock);
241          *
242          * cmpxchg(p, owner, 0) != owner
243          *                                      enqueue_waiter();
244          *                                      unlock(wait_lock);
245          * lock(wait_lock);
246          * wake waiter();
247          * unlock(wait_lock);
248          *                                      lock(wait_lock);
249          *                                      acquire(lock);
250          */
251         return rt_mutex_cmpxchg_release(lock, owner, NULL);
252 }
253
254 #else
255 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
256                                                      struct task_struct *old,
257                                                      struct task_struct *new)
258 {
259         return false;
260
261 }
262
263 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
264                                                      struct task_struct *old,
265                                                      struct task_struct *new)
266 {
267         return false;
268 }
269
270 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
271 {
272         lock->owner = (struct task_struct *)
273                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
274 }
275
276 /*
277  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
278  */
279 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
280                                                  unsigned long flags)
281         __releases(lock->wait_lock)
282 {
283         lock->owner = NULL;
284         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
285         return true;
286 }
287 #endif
288
289 static __always_inline int __waiter_prio(struct task_struct *task)
290 {
291         int prio = task->prio;
292
293         if (!rt_prio(prio))
294                 return DEFAULT_PRIO;
295
296         return prio;
297 }
298
299 static __always_inline void
300 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
301 {
302         waiter->prio = __waiter_prio(task);
303         waiter->deadline = task->dl.deadline;
304 }
305
306 /*
307  * Only use with rt_mutex_waiter_{less,equal}()
308  */
309 #define task_to_waiter(p)       \
310         &(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
311
312 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
313                                                 struct rt_mutex_waiter *right)
314 {
315         if (left->prio < right->prio)
316                 return 1;
317
318         /*
319          * If both waiters have dl_prio(), we check the deadlines of the
320          * associated tasks.
321          * If left waiter has a dl_prio(), and we didn't return 1 above,
322          * then right waiter has a dl_prio() too.
323          */
324         if (dl_prio(left->prio))
325                 return dl_time_before(left->deadline, right->deadline);
326
327         return 0;
328 }
329
330 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
331                                                  struct rt_mutex_waiter *right)
332 {
333         if (left->prio != right->prio)
334                 return 0;
335
336         /*
337          * If both waiters have dl_prio(), we check the deadlines of the
338          * associated tasks.
339          * If left waiter has a dl_prio(), and we didn't return 0 above,
340          * then right waiter has a dl_prio() too.
341          */
342         if (dl_prio(left->prio))
343                 return left->deadline == right->deadline;
344
345         return 1;
346 }
347
348 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
349                                   struct rt_mutex_waiter *top_waiter)
350 {
351         if (rt_mutex_waiter_less(waiter, top_waiter))
352                 return true;
353
354 #ifdef RT_MUTEX_BUILD_SPINLOCKS
355         /*
356          * Note that RT tasks are excluded from same priority (lateral)
357          * steals to prevent the introduction of an unbounded latency.
358          */
359         if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
360                 return false;
361
362         return rt_mutex_waiter_equal(waiter, top_waiter);
363 #else
364         return false;
365 #endif
366 }
367
368 #define __node_2_waiter(node) \
369         rb_entry((node), struct rt_mutex_waiter, tree_entry)
370
371 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
372 {
373         struct rt_mutex_waiter *aw = __node_2_waiter(a);
374         struct rt_mutex_waiter *bw = __node_2_waiter(b);
375
376         if (rt_mutex_waiter_less(aw, bw))
377                 return 1;
378
379         if (!build_ww_mutex())
380                 return 0;
381
382         if (rt_mutex_waiter_less(bw, aw))
383                 return 0;
384
385         /* NOTE: relies on waiter->ww_ctx being set before insertion */
386         if (aw->ww_ctx) {
387                 if (!bw->ww_ctx)
388                         return 1;
389
390                 return (signed long)(aw->ww_ctx->stamp -
391                                      bw->ww_ctx->stamp) < 0;
392         }
393
394         return 0;
395 }
396
397 static __always_inline void
398 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
399 {
400         rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
401 }
402
403 static __always_inline void
404 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
405 {
406         if (RB_EMPTY_NODE(&waiter->tree_entry))
407                 return;
408
409         rb_erase_cached(&waiter->tree_entry, &lock->waiters);
410         RB_CLEAR_NODE(&waiter->tree_entry);
411 }
412
413 #define __node_2_pi_waiter(node) \
414         rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
415
416 static __always_inline bool
417 __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
418 {
419         return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
420 }
421
422 static __always_inline void
423 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
424 {
425         rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
426 }
427
428 static __always_inline void
429 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
430 {
431         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
432                 return;
433
434         rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
435         RB_CLEAR_NODE(&waiter->pi_tree_entry);
436 }
437
438 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
439 {
440         struct task_struct *pi_task = NULL;
441
442         lockdep_assert_held(&p->pi_lock);
443
444         if (task_has_pi_waiters(p))
445                 pi_task = task_top_pi_waiter(p)->task;
446
447         rt_mutex_setprio(p, pi_task);
448 }
449
450 /* RT mutex specific wake_q wrappers */
451 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
452                                                      struct task_struct *task,
453                                                      unsigned int wake_state)
454 {
455         if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
456                 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
457                         WARN_ON_ONCE(wqh->rtlock_task);
458                 get_task_struct(task);
459                 wqh->rtlock_task = task;
460         } else {
461                 wake_q_add(&wqh->head, task);
462         }
463 }
464
465 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
466                                                 struct rt_mutex_waiter *w)
467 {
468         rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
469 }
470
471 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
472 {
473         if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
474                 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
475                 put_task_struct(wqh->rtlock_task);
476                 wqh->rtlock_task = NULL;
477         }
478
479         if (!wake_q_empty(&wqh->head))
480                 wake_up_q(&wqh->head);
481
482         /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
483         preempt_enable();
484 }
485
486 /*
487  * Deadlock detection is conditional:
488  *
489  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
490  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
491  *
492  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
493  * conducted independent of the detect argument.
494  *
495  * If the waiter argument is NULL this indicates the deboost path and
496  * deadlock detection is disabled independent of the detect argument
497  * and the config settings.
498  */
499 static __always_inline bool
500 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
501                               enum rtmutex_chainwalk chwalk)
502 {
503         if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
504                 return waiter != NULL;
505         return chwalk == RT_MUTEX_FULL_CHAINWALK;
506 }
507
508 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
509 {
510         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
511 }
512
513 /*
514  * Adjust the priority chain. Also used for deadlock detection.
515  * Decreases task's usage by one - may thus free the task.
516  *
517  * @task:       the task owning the mutex (owner) for which a chain walk is
518  *              probably needed
519  * @chwalk:     do we have to carry out deadlock detection?
520  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
521  *              things for a task that has just got its priority adjusted, and
522  *              is waiting on a mutex)
523  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
524  *              we dropped its pi_lock. Is never dereferenced, only used for
525  *              comparison to detect lock chain changes.
526  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
527  *              its priority to the mutex owner (can be NULL in the case
528  *              depicted above or if the top waiter is gone away and we are
529  *              actually deboosting the owner)
530  * @top_task:   the current top waiter
531  *
532  * Returns 0 or -EDEADLK.
533  *
534  * Chain walk basics and protection scope
535  *
536  * [R] refcount on task
537  * [P] task->pi_lock held
538  * [L] rtmutex->wait_lock held
539  *
540  * Step Description                             Protected by
541  *      function arguments:
542  *      @task                                   [R]
543  *      @orig_lock if != NULL                   @top_task is blocked on it
544  *      @next_lock                              Unprotected. Cannot be
545  *                                              dereferenced. Only used for
546  *                                              comparison.
547  *      @orig_waiter if != NULL                 @top_task is blocked on it
548  *      @top_task                               current, or in case of proxy
549  *                                              locking protected by calling
550  *                                              code
551  *      again:
552  *        loop_sanity_check();
553  *      retry:
554  * [1]    lock(task->pi_lock);                  [R] acquire [P]
555  * [2]    waiter = task->pi_blocked_on;         [P]
556  * [3]    check_exit_conditions_1();            [P]
557  * [4]    lock = waiter->lock;                  [P]
558  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
559  *          unlock(task->pi_lock);              release [P]
560  *          goto retry;
561  *        }
562  * [6]    check_exit_conditions_2();            [P] + [L]
563  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
564  * [8]    unlock(task->pi_lock);                release [P]
565  *        put_task_struct(task);                release [R]
566  * [9]    check_exit_conditions_3();            [L]
567  * [10]   task = owner(lock);                   [L]
568  *        get_task_struct(task);                [L] acquire [R]
569  *        lock(task->pi_lock);                  [L] acquire [P]
570  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
571  * [12]   check_exit_conditions_4();            [P] + [L]
572  * [13]   unlock(task->pi_lock);                release [P]
573  *        unlock(lock->wait_lock);              release [L]
574  *        goto again;
575  */
576 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
577                                               enum rtmutex_chainwalk chwalk,
578                                               struct rt_mutex_base *orig_lock,
579                                               struct rt_mutex_base *next_lock,
580                                               struct rt_mutex_waiter *orig_waiter,
581                                               struct task_struct *top_task)
582 {
583         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
584         struct rt_mutex_waiter *prerequeue_top_waiter;
585         int ret = 0, depth = 0;
586         struct rt_mutex_base *lock;
587         bool detect_deadlock;
588         bool requeue = true;
589
590         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
591
592         /*
593          * The (de)boosting is a step by step approach with a lot of
594          * pitfalls. We want this to be preemptible and we want hold a
595          * maximum of two locks per step. So we have to check
596          * carefully whether things change under us.
597          */
598  again:
599         /*
600          * We limit the lock chain length for each invocation.
601          */
602         if (++depth > max_lock_depth) {
603                 static int prev_max;
604
605                 /*
606                  * Print this only once. If the admin changes the limit,
607                  * print a new message when reaching the limit again.
608                  */
609                 if (prev_max != max_lock_depth) {
610                         prev_max = max_lock_depth;
611                         printk(KERN_WARNING "Maximum lock depth %d reached "
612                                "task: %s (%d)\n", max_lock_depth,
613                                top_task->comm, task_pid_nr(top_task));
614                 }
615                 put_task_struct(task);
616
617                 return -EDEADLK;
618         }
619
620         /*
621          * We are fully preemptible here and only hold the refcount on
622          * @task. So everything can have changed under us since the
623          * caller or our own code below (goto retry/again) dropped all
624          * locks.
625          */
626  retry:
627         /*
628          * [1] Task cannot go away as we did a get_task() before !
629          */
630         raw_spin_lock_irq(&task->pi_lock);
631
632         /*
633          * [2] Get the waiter on which @task is blocked on.
634          */
635         waiter = task->pi_blocked_on;
636
637         /*
638          * [3] check_exit_conditions_1() protected by task->pi_lock.
639          */
640
641         /*
642          * Check whether the end of the boosting chain has been
643          * reached or the state of the chain has changed while we
644          * dropped the locks.
645          */
646         if (!waiter)
647                 goto out_unlock_pi;
648
649         /*
650          * Check the orig_waiter state. After we dropped the locks,
651          * the previous owner of the lock might have released the lock.
652          */
653         if (orig_waiter && !rt_mutex_owner(orig_lock))
654                 goto out_unlock_pi;
655
656         /*
657          * We dropped all locks after taking a refcount on @task, so
658          * the task might have moved on in the lock chain or even left
659          * the chain completely and blocks now on an unrelated lock or
660          * on @orig_lock.
661          *
662          * We stored the lock on which @task was blocked in @next_lock,
663          * so we can detect the chain change.
664          */
665         if (next_lock != waiter->lock)
666                 goto out_unlock_pi;
667
668         /*
669          * There could be 'spurious' loops in the lock graph due to ww_mutex,
670          * consider:
671          *
672          *   P1: A, ww_A, ww_B
673          *   P2: ww_B, ww_A
674          *   P3: A
675          *
676          * P3 should not return -EDEADLK because it gets trapped in the cycle
677          * created by P1 and P2 (which will resolve -- and runs into
678          * max_lock_depth above). Therefore disable detect_deadlock such that
679          * the below termination condition can trigger once all relevant tasks
680          * are boosted.
681          *
682          * Even when we start with ww_mutex we can disable deadlock detection,
683          * since we would supress a ww_mutex induced deadlock at [6] anyway.
684          * Supressing it here however is not sufficient since we might still
685          * hit [6] due to adjustment driven iteration.
686          *
687          * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
688          * utterly fail to report it; lockdep should.
689          */
690         if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
691                 detect_deadlock = false;
692
693         /*
694          * Drop out, when the task has no waiters. Note,
695          * top_waiter can be NULL, when we are in the deboosting
696          * mode!
697          */
698         if (top_waiter) {
699                 if (!task_has_pi_waiters(task))
700                         goto out_unlock_pi;
701                 /*
702                  * If deadlock detection is off, we stop here if we
703                  * are not the top pi waiter of the task. If deadlock
704                  * detection is enabled we continue, but stop the
705                  * requeueing in the chain walk.
706                  */
707                 if (top_waiter != task_top_pi_waiter(task)) {
708                         if (!detect_deadlock)
709                                 goto out_unlock_pi;
710                         else
711                                 requeue = false;
712                 }
713         }
714
715         /*
716          * If the waiter priority is the same as the task priority
717          * then there is no further priority adjustment necessary.  If
718          * deadlock detection is off, we stop the chain walk. If its
719          * enabled we continue, but stop the requeueing in the chain
720          * walk.
721          */
722         if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
723                 if (!detect_deadlock)
724                         goto out_unlock_pi;
725                 else
726                         requeue = false;
727         }
728
729         /*
730          * [4] Get the next lock
731          */
732         lock = waiter->lock;
733         /*
734          * [5] We need to trylock here as we are holding task->pi_lock,
735          * which is the reverse lock order versus the other rtmutex
736          * operations.
737          */
738         if (!raw_spin_trylock(&lock->wait_lock)) {
739                 raw_spin_unlock_irq(&task->pi_lock);
740                 cpu_relax();
741                 goto retry;
742         }
743
744         /*
745          * [6] check_exit_conditions_2() protected by task->pi_lock and
746          * lock->wait_lock.
747          *
748          * Deadlock detection. If the lock is the same as the original
749          * lock which caused us to walk the lock chain or if the
750          * current lock is owned by the task which initiated the chain
751          * walk, we detected a deadlock.
752          */
753         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
754                 ret = -EDEADLK;
755
756                 /*
757                  * When the deadlock is due to ww_mutex; also see above. Don't
758                  * report the deadlock and instead let the ww_mutex wound/die
759                  * logic pick which of the contending threads gets -EDEADLK.
760                  *
761                  * NOTE: assumes the cycle only contains a single ww_class; any
762                  * other configuration and we fail to report; also, see
763                  * lockdep.
764                  */
765                 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
766                         ret = 0;
767
768                 raw_spin_unlock(&lock->wait_lock);
769                 goto out_unlock_pi;
770         }
771
772         /*
773          * If we just follow the lock chain for deadlock detection, no
774          * need to do all the requeue operations. To avoid a truckload
775          * of conditionals around the various places below, just do the
776          * minimum chain walk checks.
777          */
778         if (!requeue) {
779                 /*
780                  * No requeue[7] here. Just release @task [8]
781                  */
782                 raw_spin_unlock(&task->pi_lock);
783                 put_task_struct(task);
784
785                 /*
786                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
787                  * If there is no owner of the lock, end of chain.
788                  */
789                 if (!rt_mutex_owner(lock)) {
790                         raw_spin_unlock_irq(&lock->wait_lock);
791                         return 0;
792                 }
793
794                 /* [10] Grab the next task, i.e. owner of @lock */
795                 task = get_task_struct(rt_mutex_owner(lock));
796                 raw_spin_lock(&task->pi_lock);
797
798                 /*
799                  * No requeue [11] here. We just do deadlock detection.
800                  *
801                  * [12] Store whether owner is blocked
802                  * itself. Decision is made after dropping the locks
803                  */
804                 next_lock = task_blocked_on_lock(task);
805                 /*
806                  * Get the top waiter for the next iteration
807                  */
808                 top_waiter = rt_mutex_top_waiter(lock);
809
810                 /* [13] Drop locks */
811                 raw_spin_unlock(&task->pi_lock);
812                 raw_spin_unlock_irq(&lock->wait_lock);
813
814                 /* If owner is not blocked, end of chain. */
815                 if (!next_lock)
816                         goto out_put_task;
817                 goto again;
818         }
819
820         /*
821          * Store the current top waiter before doing the requeue
822          * operation on @lock. We need it for the boost/deboost
823          * decision below.
824          */
825         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
826
827         /* [7] Requeue the waiter in the lock waiter tree. */
828         rt_mutex_dequeue(lock, waiter);
829
830         /*
831          * Update the waiter prio fields now that we're dequeued.
832          *
833          * These values can have changed through either:
834          *
835          *   sys_sched_set_scheduler() / sys_sched_setattr()
836          *
837          * or
838          *
839          *   DL CBS enforcement advancing the effective deadline.
840          *
841          * Even though pi_waiters also uses these fields, and that tree is only
842          * updated in [11], we can do this here, since we hold [L], which
843          * serializes all pi_waiters access and rb_erase() does not care about
844          * the values of the node being removed.
845          */
846         waiter_update_prio(waiter, task);
847
848         rt_mutex_enqueue(lock, waiter);
849
850         /* [8] Release the task */
851         raw_spin_unlock(&task->pi_lock);
852         put_task_struct(task);
853
854         /*
855          * [9] check_exit_conditions_3 protected by lock->wait_lock.
856          *
857          * We must abort the chain walk if there is no lock owner even
858          * in the dead lock detection case, as we have nothing to
859          * follow here. This is the end of the chain we are walking.
860          */
861         if (!rt_mutex_owner(lock)) {
862                 /*
863                  * If the requeue [7] above changed the top waiter,
864                  * then we need to wake the new top waiter up to try
865                  * to get the lock.
866                  */
867                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
868                         wake_up_state(waiter->task, waiter->wake_state);
869                 raw_spin_unlock_irq(&lock->wait_lock);
870                 return 0;
871         }
872
873         /* [10] Grab the next task, i.e. the owner of @lock */
874         task = get_task_struct(rt_mutex_owner(lock));
875         raw_spin_lock(&task->pi_lock);
876
877         /* [11] requeue the pi waiters if necessary */
878         if (waiter == rt_mutex_top_waiter(lock)) {
879                 /*
880                  * The waiter became the new top (highest priority)
881                  * waiter on the lock. Replace the previous top waiter
882                  * in the owner tasks pi waiters tree with this waiter
883                  * and adjust the priority of the owner.
884                  */
885                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
886                 rt_mutex_enqueue_pi(task, waiter);
887                 rt_mutex_adjust_prio(task);
888
889         } else if (prerequeue_top_waiter == waiter) {
890                 /*
891                  * The waiter was the top waiter on the lock, but is
892                  * no longer the top priority waiter. Replace waiter in
893                  * the owner tasks pi waiters tree with the new top
894                  * (highest priority) waiter and adjust the priority
895                  * of the owner.
896                  * The new top waiter is stored in @waiter so that
897                  * @waiter == @top_waiter evaluates to true below and
898                  * we continue to deboost the rest of the chain.
899                  */
900                 rt_mutex_dequeue_pi(task, waiter);
901                 waiter = rt_mutex_top_waiter(lock);
902                 rt_mutex_enqueue_pi(task, waiter);
903                 rt_mutex_adjust_prio(task);
904         } else {
905                 /*
906                  * Nothing changed. No need to do any priority
907                  * adjustment.
908                  */
909         }
910
911         /*
912          * [12] check_exit_conditions_4() protected by task->pi_lock
913          * and lock->wait_lock. The actual decisions are made after we
914          * dropped the locks.
915          *
916          * Check whether the task which owns the current lock is pi
917          * blocked itself. If yes we store a pointer to the lock for
918          * the lock chain change detection above. After we dropped
919          * task->pi_lock next_lock cannot be dereferenced anymore.
920          */
921         next_lock = task_blocked_on_lock(task);
922         /*
923          * Store the top waiter of @lock for the end of chain walk
924          * decision below.
925          */
926         top_waiter = rt_mutex_top_waiter(lock);
927
928         /* [13] Drop the locks */
929         raw_spin_unlock(&task->pi_lock);
930         raw_spin_unlock_irq(&lock->wait_lock);
931
932         /*
933          * Make the actual exit decisions [12], based on the stored
934          * values.
935          *
936          * We reached the end of the lock chain. Stop right here. No
937          * point to go back just to figure that out.
938          */
939         if (!next_lock)
940                 goto out_put_task;
941
942         /*
943          * If the current waiter is not the top waiter on the lock,
944          * then we can stop the chain walk here if we are not in full
945          * deadlock detection mode.
946          */
947         if (!detect_deadlock && waiter != top_waiter)
948                 goto out_put_task;
949
950         goto again;
951
952  out_unlock_pi:
953         raw_spin_unlock_irq(&task->pi_lock);
954  out_put_task:
955         put_task_struct(task);
956
957         return ret;
958 }
959
960 /*
961  * Try to take an rt-mutex
962  *
963  * Must be called with lock->wait_lock held and interrupts disabled
964  *
965  * @lock:   The lock to be acquired.
966  * @task:   The task which wants to acquire the lock
967  * @waiter: The waiter that is queued to the lock's wait tree if the
968  *          callsite called task_blocked_on_lock(), otherwise NULL
969  */
970 static int __sched
971 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
972                      struct rt_mutex_waiter *waiter)
973 {
974         lockdep_assert_held(&lock->wait_lock);
975
976         /*
977          * Before testing whether we can acquire @lock, we set the
978          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
979          * other tasks which try to modify @lock into the slow path
980          * and they serialize on @lock->wait_lock.
981          *
982          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
983          * as explained at the top of this file if and only if:
984          *
985          * - There is a lock owner. The caller must fixup the
986          *   transient state if it does a trylock or leaves the lock
987          *   function due to a signal or timeout.
988          *
989          * - @task acquires the lock and there are no other
990          *   waiters. This is undone in rt_mutex_set_owner(@task) at
991          *   the end of this function.
992          */
993         mark_rt_mutex_waiters(lock);
994
995         /*
996          * If @lock has an owner, give up.
997          */
998         if (rt_mutex_owner(lock))
999                 return 0;
1000
1001         /*
1002          * If @waiter != NULL, @task has already enqueued the waiter
1003          * into @lock waiter tree. If @waiter == NULL then this is a
1004          * trylock attempt.
1005          */
1006         if (waiter) {
1007                 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1008
1009                 /*
1010                  * If waiter is the highest priority waiter of @lock,
1011                  * or allowed to steal it, take it over.
1012                  */
1013                 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1014                         /*
1015                          * We can acquire the lock. Remove the waiter from the
1016                          * lock waiters tree.
1017                          */
1018                         rt_mutex_dequeue(lock, waiter);
1019                 } else {
1020                         return 0;
1021                 }
1022         } else {
1023                 /*
1024                  * If the lock has waiters already we check whether @task is
1025                  * eligible to take over the lock.
1026                  *
1027                  * If there are no other waiters, @task can acquire
1028                  * the lock.  @task->pi_blocked_on is NULL, so it does
1029                  * not need to be dequeued.
1030                  */
1031                 if (rt_mutex_has_waiters(lock)) {
1032                         /* Check whether the trylock can steal it. */
1033                         if (!rt_mutex_steal(task_to_waiter(task),
1034                                             rt_mutex_top_waiter(lock)))
1035                                 return 0;
1036
1037                         /*
1038                          * The current top waiter stays enqueued. We
1039                          * don't have to change anything in the lock
1040                          * waiters order.
1041                          */
1042                 } else {
1043                         /*
1044                          * No waiters. Take the lock without the
1045                          * pi_lock dance.@task->pi_blocked_on is NULL
1046                          * and we have no waiters to enqueue in @task
1047                          * pi waiters tree.
1048                          */
1049                         goto takeit;
1050                 }
1051         }
1052
1053         /*
1054          * Clear @task->pi_blocked_on. Requires protection by
1055          * @task->pi_lock. Redundant operation for the @waiter == NULL
1056          * case, but conditionals are more expensive than a redundant
1057          * store.
1058          */
1059         raw_spin_lock(&task->pi_lock);
1060         task->pi_blocked_on = NULL;
1061         /*
1062          * Finish the lock acquisition. @task is the new owner. If
1063          * other waiters exist we have to insert the highest priority
1064          * waiter into @task->pi_waiters tree.
1065          */
1066         if (rt_mutex_has_waiters(lock))
1067                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1068         raw_spin_unlock(&task->pi_lock);
1069
1070 takeit:
1071         /*
1072          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1073          * are still waiters or clears it.
1074          */
1075         rt_mutex_set_owner(lock, task);
1076
1077         return 1;
1078 }
1079
1080 /*
1081  * Task blocks on lock.
1082  *
1083  * Prepare waiter and propagate pi chain
1084  *
1085  * This must be called with lock->wait_lock held and interrupts disabled
1086  */
1087 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1088                                            struct rt_mutex_waiter *waiter,
1089                                            struct task_struct *task,
1090                                            struct ww_acquire_ctx *ww_ctx,
1091                                            enum rtmutex_chainwalk chwalk)
1092 {
1093         struct task_struct *owner = rt_mutex_owner(lock);
1094         struct rt_mutex_waiter *top_waiter = waiter;
1095         struct rt_mutex_base *next_lock;
1096         int chain_walk = 0, res;
1097
1098         lockdep_assert_held(&lock->wait_lock);
1099
1100         /*
1101          * Early deadlock detection. We really don't want the task to
1102          * enqueue on itself just to untangle the mess later. It's not
1103          * only an optimization. We drop the locks, so another waiter
1104          * can come in before the chain walk detects the deadlock. So
1105          * the other will detect the deadlock and return -EDEADLOCK,
1106          * which is wrong, as the other waiter is not in a deadlock
1107          * situation.
1108          *
1109          * Except for ww_mutex, in that case the chain walk must already deal
1110          * with spurious cycles, see the comments at [3] and [6].
1111          */
1112         if (owner == task && !(build_ww_mutex() && ww_ctx))
1113                 return -EDEADLK;
1114
1115         raw_spin_lock(&task->pi_lock);
1116         waiter->task = task;
1117         waiter->lock = lock;
1118         waiter_update_prio(waiter, task);
1119
1120         /* Get the top priority waiter on the lock */
1121         if (rt_mutex_has_waiters(lock))
1122                 top_waiter = rt_mutex_top_waiter(lock);
1123         rt_mutex_enqueue(lock, waiter);
1124
1125         task->pi_blocked_on = waiter;
1126
1127         raw_spin_unlock(&task->pi_lock);
1128
1129         if (build_ww_mutex() && ww_ctx) {
1130                 struct rt_mutex *rtm;
1131
1132                 /* Check whether the waiter should back out immediately */
1133                 rtm = container_of(lock, struct rt_mutex, rtmutex);
1134                 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1135                 if (res) {
1136                         raw_spin_lock(&task->pi_lock);
1137                         rt_mutex_dequeue(lock, waiter);
1138                         task->pi_blocked_on = NULL;
1139                         raw_spin_unlock(&task->pi_lock);
1140                         return res;
1141                 }
1142         }
1143
1144         if (!owner)
1145                 return 0;
1146
1147         raw_spin_lock(&owner->pi_lock);
1148         if (waiter == rt_mutex_top_waiter(lock)) {
1149                 rt_mutex_dequeue_pi(owner, top_waiter);
1150                 rt_mutex_enqueue_pi(owner, waiter);
1151
1152                 rt_mutex_adjust_prio(owner);
1153                 if (owner->pi_blocked_on)
1154                         chain_walk = 1;
1155         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1156                 chain_walk = 1;
1157         }
1158
1159         /* Store the lock on which owner is blocked or NULL */
1160         next_lock = task_blocked_on_lock(owner);
1161
1162         raw_spin_unlock(&owner->pi_lock);
1163         /*
1164          * Even if full deadlock detection is on, if the owner is not
1165          * blocked itself, we can avoid finding this out in the chain
1166          * walk.
1167          */
1168         if (!chain_walk || !next_lock)
1169                 return 0;
1170
1171         /*
1172          * The owner can't disappear while holding a lock,
1173          * so the owner struct is protected by wait_lock.
1174          * Gets dropped in rt_mutex_adjust_prio_chain()!
1175          */
1176         get_task_struct(owner);
1177
1178         raw_spin_unlock_irq(&lock->wait_lock);
1179
1180         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1181                                          next_lock, waiter, task);
1182
1183         raw_spin_lock_irq(&lock->wait_lock);
1184
1185         return res;
1186 }
1187
1188 /*
1189  * Remove the top waiter from the current tasks pi waiter tree and
1190  * queue it up.
1191  *
1192  * Called with lock->wait_lock held and interrupts disabled.
1193  */
1194 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1195                                             struct rt_mutex_base *lock)
1196 {
1197         struct rt_mutex_waiter *waiter;
1198
1199         raw_spin_lock(&current->pi_lock);
1200
1201         waiter = rt_mutex_top_waiter(lock);
1202
1203         /*
1204          * Remove it from current->pi_waiters and deboost.
1205          *
1206          * We must in fact deboost here in order to ensure we call
1207          * rt_mutex_setprio() to update p->pi_top_task before the
1208          * task unblocks.
1209          */
1210         rt_mutex_dequeue_pi(current, waiter);
1211         rt_mutex_adjust_prio(current);
1212
1213         /*
1214          * As we are waking up the top waiter, and the waiter stays
1215          * queued on the lock until it gets the lock, this lock
1216          * obviously has waiters. Just set the bit here and this has
1217          * the added benefit of forcing all new tasks into the
1218          * slow path making sure no task of lower priority than
1219          * the top waiter can steal this lock.
1220          */
1221         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1222
1223         /*
1224          * We deboosted before waking the top waiter task such that we don't
1225          * run two tasks with the 'same' priority (and ensure the
1226          * p->pi_top_task pointer points to a blocked task). This however can
1227          * lead to priority inversion if we would get preempted after the
1228          * deboost but before waking our donor task, hence the preempt_disable()
1229          * before unlock.
1230          *
1231          * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1232          */
1233         preempt_disable();
1234         rt_mutex_wake_q_add(wqh, waiter);
1235         raw_spin_unlock(&current->pi_lock);
1236 }
1237
1238 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1239 {
1240         int ret = try_to_take_rt_mutex(lock, current, NULL);
1241
1242         /*
1243          * try_to_take_rt_mutex() sets the lock waiters bit
1244          * unconditionally. Clean this up.
1245          */
1246         fixup_rt_mutex_waiters(lock);
1247
1248         return ret;
1249 }
1250
1251 /*
1252  * Slow path try-lock function:
1253  */
1254 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1255 {
1256         unsigned long flags;
1257         int ret;
1258
1259         /*
1260          * If the lock already has an owner we fail to get the lock.
1261          * This can be done without taking the @lock->wait_lock as
1262          * it is only being read, and this is a trylock anyway.
1263          */
1264         if (rt_mutex_owner(lock))
1265                 return 0;
1266
1267         /*
1268          * The mutex has currently no owner. Lock the wait lock and try to
1269          * acquire the lock. We use irqsave here to support early boot calls.
1270          */
1271         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1272
1273         ret = __rt_mutex_slowtrylock(lock);
1274
1275         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1276
1277         return ret;
1278 }
1279
1280 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1281 {
1282         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1283                 return 1;
1284
1285         return rt_mutex_slowtrylock(lock);
1286 }
1287
1288 /*
1289  * Slow path to release a rt-mutex.
1290  */
1291 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1292 {
1293         DEFINE_RT_WAKE_Q(wqh);
1294         unsigned long flags;
1295
1296         /* irqsave required to support early boot calls */
1297         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1298
1299         debug_rt_mutex_unlock(lock);
1300
1301         /*
1302          * We must be careful here if the fast path is enabled. If we
1303          * have no waiters queued we cannot set owner to NULL here
1304          * because of:
1305          *
1306          * foo->lock->owner = NULL;
1307          *                      rtmutex_lock(foo->lock);   <- fast path
1308          *                      free = atomic_dec_and_test(foo->refcnt);
1309          *                      rtmutex_unlock(foo->lock); <- fast path
1310          *                      if (free)
1311          *                              kfree(foo);
1312          * raw_spin_unlock(foo->lock->wait_lock);
1313          *
1314          * So for the fastpath enabled kernel:
1315          *
1316          * Nothing can set the waiters bit as long as we hold
1317          * lock->wait_lock. So we do the following sequence:
1318          *
1319          *      owner = rt_mutex_owner(lock);
1320          *      clear_rt_mutex_waiters(lock);
1321          *      raw_spin_unlock(&lock->wait_lock);
1322          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1323          *              return;
1324          *      goto retry;
1325          *
1326          * The fastpath disabled variant is simple as all access to
1327          * lock->owner is serialized by lock->wait_lock:
1328          *
1329          *      lock->owner = NULL;
1330          *      raw_spin_unlock(&lock->wait_lock);
1331          */
1332         while (!rt_mutex_has_waiters(lock)) {
1333                 /* Drops lock->wait_lock ! */
1334                 if (unlock_rt_mutex_safe(lock, flags) == true)
1335                         return;
1336                 /* Relock the rtmutex and try again */
1337                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1338         }
1339
1340         /*
1341          * The wakeup next waiter path does not suffer from the above
1342          * race. See the comments there.
1343          *
1344          * Queue the next waiter for wakeup once we release the wait_lock.
1345          */
1346         mark_wakeup_next_waiter(&wqh, lock);
1347         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1348
1349         rt_mutex_wake_up_q(&wqh);
1350 }
1351
1352 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1353 {
1354         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1355                 return;
1356
1357         rt_mutex_slowunlock(lock);
1358 }
1359
1360 #ifdef CONFIG_SMP
1361 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1362                                   struct rt_mutex_waiter *waiter,
1363                                   struct task_struct *owner)
1364 {
1365         bool res = true;
1366
1367         rcu_read_lock();
1368         for (;;) {
1369                 /* If owner changed, trylock again. */
1370                 if (owner != rt_mutex_owner(lock))
1371                         break;
1372                 /*
1373                  * Ensure that @owner is dereferenced after checking that
1374                  * the lock owner still matches @owner. If that fails,
1375                  * @owner might point to freed memory. If it still matches,
1376                  * the rcu_read_lock() ensures the memory stays valid.
1377                  */
1378                 barrier();
1379                 /*
1380                  * Stop spinning when:
1381                  *  - the lock owner has been scheduled out
1382                  *  - current is not longer the top waiter
1383                  *  - current is requested to reschedule (redundant
1384                  *    for CONFIG_PREEMPT_RCU=y)
1385                  *  - the VCPU on which owner runs is preempted
1386                  */
1387                 if (!owner_on_cpu(owner) || need_resched() ||
1388                     !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1389                         res = false;
1390                         break;
1391                 }
1392                 cpu_relax();
1393         }
1394         rcu_read_unlock();
1395         return res;
1396 }
1397 #else
1398 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1399                                   struct rt_mutex_waiter *waiter,
1400                                   struct task_struct *owner)
1401 {
1402         return false;
1403 }
1404 #endif
1405
1406 #ifdef RT_MUTEX_BUILD_MUTEX
1407 /*
1408  * Functions required for:
1409  *      - rtmutex, futex on all kernels
1410  *      - mutex and rwsem substitutions on RT kernels
1411  */
1412
1413 /*
1414  * Remove a waiter from a lock and give up
1415  *
1416  * Must be called with lock->wait_lock held and interrupts disabled. It must
1417  * have just failed to try_to_take_rt_mutex().
1418  */
1419 static void __sched remove_waiter(struct rt_mutex_base *lock,
1420                                   struct rt_mutex_waiter *waiter)
1421 {
1422         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1423         struct task_struct *owner = rt_mutex_owner(lock);
1424         struct rt_mutex_base *next_lock;
1425
1426         lockdep_assert_held(&lock->wait_lock);
1427
1428         raw_spin_lock(&current->pi_lock);
1429         rt_mutex_dequeue(lock, waiter);
1430         current->pi_blocked_on = NULL;
1431         raw_spin_unlock(&current->pi_lock);
1432
1433         /*
1434          * Only update priority if the waiter was the highest priority
1435          * waiter of the lock and there is an owner to update.
1436          */
1437         if (!owner || !is_top_waiter)
1438                 return;
1439
1440         raw_spin_lock(&owner->pi_lock);
1441
1442         rt_mutex_dequeue_pi(owner, waiter);
1443
1444         if (rt_mutex_has_waiters(lock))
1445                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1446
1447         rt_mutex_adjust_prio(owner);
1448
1449         /* Store the lock on which owner is blocked or NULL */
1450         next_lock = task_blocked_on_lock(owner);
1451
1452         raw_spin_unlock(&owner->pi_lock);
1453
1454         /*
1455          * Don't walk the chain, if the owner task is not blocked
1456          * itself.
1457          */
1458         if (!next_lock)
1459                 return;
1460
1461         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1462         get_task_struct(owner);
1463
1464         raw_spin_unlock_irq(&lock->wait_lock);
1465
1466         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1467                                    next_lock, NULL, current);
1468
1469         raw_spin_lock_irq(&lock->wait_lock);
1470 }
1471
1472 /**
1473  * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1474  * @lock:                the rt_mutex to take
1475  * @ww_ctx:              WW mutex context pointer
1476  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1477  *                       or TASK_UNINTERRUPTIBLE)
1478  * @timeout:             the pre-initialized and started timer, or NULL for none
1479  * @waiter:              the pre-initialized rt_mutex_waiter
1480  *
1481  * Must be called with lock->wait_lock held and interrupts disabled
1482  */
1483 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1484                                            struct ww_acquire_ctx *ww_ctx,
1485                                            unsigned int state,
1486                                            struct hrtimer_sleeper *timeout,
1487                                            struct rt_mutex_waiter *waiter)
1488 {
1489         struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1490         struct task_struct *owner;
1491         int ret = 0;
1492
1493         for (;;) {
1494                 /* Try to acquire the lock: */
1495                 if (try_to_take_rt_mutex(lock, current, waiter))
1496                         break;
1497
1498                 if (timeout && !timeout->task) {
1499                         ret = -ETIMEDOUT;
1500                         break;
1501                 }
1502                 if (signal_pending_state(state, current)) {
1503                         ret = -EINTR;
1504                         break;
1505                 }
1506
1507                 if (build_ww_mutex() && ww_ctx) {
1508                         ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1509                         if (ret)
1510                                 break;
1511                 }
1512
1513                 if (waiter == rt_mutex_top_waiter(lock))
1514                         owner = rt_mutex_owner(lock);
1515                 else
1516                         owner = NULL;
1517                 raw_spin_unlock_irq(&lock->wait_lock);
1518
1519                 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1520                         schedule();
1521
1522                 raw_spin_lock_irq(&lock->wait_lock);
1523                 set_current_state(state);
1524         }
1525
1526         __set_current_state(TASK_RUNNING);
1527         return ret;
1528 }
1529
1530 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1531                                              struct rt_mutex_waiter *w)
1532 {
1533         /*
1534          * If the result is not -EDEADLOCK or the caller requested
1535          * deadlock detection, nothing to do here.
1536          */
1537         if (res != -EDEADLOCK || detect_deadlock)
1538                 return;
1539
1540         if (build_ww_mutex() && w->ww_ctx)
1541                 return;
1542
1543         /*
1544          * Yell loudly and stop the task right here.
1545          */
1546         WARN(1, "rtmutex deadlock detected\n");
1547         while (1) {
1548                 set_current_state(TASK_INTERRUPTIBLE);
1549                 schedule();
1550         }
1551 }
1552
1553 /**
1554  * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1555  * @lock:       The rtmutex to block lock
1556  * @ww_ctx:     WW mutex context pointer
1557  * @state:      The task state for sleeping
1558  * @chwalk:     Indicator whether full or partial chainwalk is requested
1559  * @waiter:     Initializer waiter for blocking
1560  */
1561 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1562                                        struct ww_acquire_ctx *ww_ctx,
1563                                        unsigned int state,
1564                                        enum rtmutex_chainwalk chwalk,
1565                                        struct rt_mutex_waiter *waiter)
1566 {
1567         struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1568         struct ww_mutex *ww = ww_container_of(rtm);
1569         int ret;
1570
1571         lockdep_assert_held(&lock->wait_lock);
1572
1573         /* Try to acquire the lock again: */
1574         if (try_to_take_rt_mutex(lock, current, NULL)) {
1575                 if (build_ww_mutex() && ww_ctx) {
1576                         __ww_mutex_check_waiters(rtm, ww_ctx);
1577                         ww_mutex_lock_acquired(ww, ww_ctx);
1578                 }
1579                 return 0;
1580         }
1581
1582         set_current_state(state);
1583
1584         trace_contention_begin(lock, LCB_F_RT);
1585
1586         ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1587         if (likely(!ret))
1588                 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1589
1590         if (likely(!ret)) {
1591                 /* acquired the lock */
1592                 if (build_ww_mutex() && ww_ctx) {
1593                         if (!ww_ctx->is_wait_die)
1594                                 __ww_mutex_check_waiters(rtm, ww_ctx);
1595                         ww_mutex_lock_acquired(ww, ww_ctx);
1596                 }
1597         } else {
1598                 __set_current_state(TASK_RUNNING);
1599                 remove_waiter(lock, waiter);
1600                 rt_mutex_handle_deadlock(ret, chwalk, waiter);
1601         }
1602
1603         /*
1604          * try_to_take_rt_mutex() sets the waiter bit
1605          * unconditionally. We might have to fix that up.
1606          */
1607         fixup_rt_mutex_waiters(lock);
1608
1609         trace_contention_end(lock, ret);
1610
1611         return ret;
1612 }
1613
1614 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1615                                              struct ww_acquire_ctx *ww_ctx,
1616                                              unsigned int state)
1617 {
1618         struct rt_mutex_waiter waiter;
1619         int ret;
1620
1621         rt_mutex_init_waiter(&waiter);
1622         waiter.ww_ctx = ww_ctx;
1623
1624         ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1625                                   &waiter);
1626
1627         debug_rt_mutex_free_waiter(&waiter);
1628         return ret;
1629 }
1630
1631 /*
1632  * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1633  * @lock:       The rtmutex to block lock
1634  * @ww_ctx:     WW mutex context pointer
1635  * @state:      The task state for sleeping
1636  */
1637 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1638                                      struct ww_acquire_ctx *ww_ctx,
1639                                      unsigned int state)
1640 {
1641         unsigned long flags;
1642         int ret;
1643
1644         /*
1645          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1646          * be called in early boot if the cmpxchg() fast path is disabled
1647          * (debug, no architecture support). In this case we will acquire the
1648          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1649          * enable interrupts in that early boot case. So we need to use the
1650          * irqsave/restore variants.
1651          */
1652         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1653         ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1654         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1655
1656         return ret;
1657 }
1658
1659 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1660                                            unsigned int state)
1661 {
1662         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1663                 return 0;
1664
1665         return rt_mutex_slowlock(lock, NULL, state);
1666 }
1667 #endif /* RT_MUTEX_BUILD_MUTEX */
1668
1669 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1670 /*
1671  * Functions required for spin/rw_lock substitution on RT kernels
1672  */
1673
1674 /**
1675  * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1676  * @lock:       The underlying RT mutex
1677  */
1678 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1679 {
1680         struct rt_mutex_waiter waiter;
1681         struct task_struct *owner;
1682
1683         lockdep_assert_held(&lock->wait_lock);
1684
1685         if (try_to_take_rt_mutex(lock, current, NULL))
1686                 return;
1687
1688         rt_mutex_init_rtlock_waiter(&waiter);
1689
1690         /* Save current state and set state to TASK_RTLOCK_WAIT */
1691         current_save_and_set_rtlock_wait_state();
1692
1693         trace_contention_begin(lock, LCB_F_RT);
1694
1695         task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1696
1697         for (;;) {
1698                 /* Try to acquire the lock again */
1699                 if (try_to_take_rt_mutex(lock, current, &waiter))
1700                         break;
1701
1702                 if (&waiter == rt_mutex_top_waiter(lock))
1703                         owner = rt_mutex_owner(lock);
1704                 else
1705                         owner = NULL;
1706                 raw_spin_unlock_irq(&lock->wait_lock);
1707
1708                 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1709                         schedule_rtlock();
1710
1711                 raw_spin_lock_irq(&lock->wait_lock);
1712                 set_current_state(TASK_RTLOCK_WAIT);
1713         }
1714
1715         /* Restore the task state */
1716         current_restore_rtlock_saved_state();
1717
1718         /*
1719          * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1720          * We might have to fix that up:
1721          */
1722         fixup_rt_mutex_waiters(lock);
1723         debug_rt_mutex_free_waiter(&waiter);
1724
1725         trace_contention_end(lock, 0);
1726 }
1727
1728 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1729 {
1730         unsigned long flags;
1731
1732         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1733         rtlock_slowlock_locked(lock);
1734         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1735 }
1736
1737 #endif /* RT_MUTEX_BUILD_SPINLOCKS */