1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
7 * (C) Copyright 2015 Intel Corp.
8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
10 * Authors: Waiman Long <longman@redhat.com>
11 * Peter Zijlstra <peterz@infradead.org>
14 #ifndef _GEN_PV_LOCK_SLOWPATH
16 #include <linux/smp.h>
17 #include <linux/bug.h>
18 #include <linux/cpumask.h>
19 #include <linux/percpu.h>
20 #include <linux/hardirq.h>
21 #include <linux/mutex.h>
22 #include <linux/prefetch.h>
23 #include <asm/byteorder.h>
24 #include <asm/qspinlock.h>
25 #include <trace/events/lock.h>
28 * Include queued spinlock statistics code
30 #include "qspinlock_stat.h"
33 * The basic principle of a queue-based spinlock can best be understood
34 * by studying a classic queue-based spinlock implementation called the
35 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
36 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
37 * Scott") is available at
39 * https://bugzilla.kernel.org/show_bug.cgi?id=206115
41 * This queued spinlock implementation is based on the MCS lock, however to
42 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
43 * existing API, we must modify it somehow.
45 * In particular; where the traditional MCS lock consists of a tail pointer
46 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
47 * unlock the next pending (next->locked), we compress both these: {tail,
48 * next->locked} into a single u32 value.
50 * Since a spinlock disables recursion of its own context and there is a limit
51 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
52 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
53 * we can encode the tail by combining the 2-bit nesting level with the cpu
54 * number. With one byte for the lock value and 3 bytes for the tail, only a
55 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
56 * we extend it to a full byte to achieve better performance for architectures
57 * that support atomic byte write.
59 * We also change the first spinner to spin on the lock bit instead of its
60 * node; whereby avoiding the need to carry a node from lock to unlock, and
61 * preserving existing lock API. This also makes the unlock code simpler and
64 * N.B. The current implementation only supports architectures that allow
65 * atomic operations on smaller 8-bit and 16-bit data types.
69 #include "mcs_spinlock.h"
73 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
74 * size and four of them will fit nicely in one 64-byte cacheline. For
75 * pvqspinlock, however, we need more space for extra data. To accommodate
76 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
77 * two of them can fit in a cacheline in this case. That is OK as it is rare
78 * to have more than 2 levels of slowpath nesting in actual use. We don't
79 * want to penalize pvqspinlocks to optimize for a rare case in native
83 struct mcs_spinlock mcs;
84 #ifdef CONFIG_PARAVIRT_SPINLOCKS
90 * The pending bit spinning loop count.
91 * This heuristic is used to limit the number of lockword accesses
92 * made by atomic_cond_read_relaxed when waiting for the lock to
93 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
94 * indefinitely because there's no guarantee that we'll make forward
97 #ifndef _Q_PENDING_LOOPS
98 #define _Q_PENDING_LOOPS 1
102 * Per-CPU queue node structures; we can never have more than 4 nested
103 * contexts: task, softirq, hardirq, nmi.
105 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
107 * PV doubles the storage and uses the second cacheline for PV state.
109 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
112 * We must be able to distinguish between no-tail and the tail at 0:0,
113 * therefore increment the cpu number by one.
116 static inline __pure u32 encode_tail(int cpu, int idx)
120 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
121 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
126 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
128 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
129 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
131 return per_cpu_ptr(&qnodes[idx].mcs, cpu);
135 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
137 return &((struct qnode *)base + idx)->mcs;
140 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
142 #if _Q_PENDING_BITS == 8
144 * clear_pending - clear the pending bit.
145 * @lock: Pointer to queued spinlock structure
149 static __always_inline void clear_pending(struct qspinlock *lock)
151 WRITE_ONCE(lock->pending, 0);
155 * clear_pending_set_locked - take ownership and clear the pending bit.
156 * @lock: Pointer to queued spinlock structure
160 * Lock stealing is not allowed if this function is used.
162 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
164 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
169 * @lock : Pointer to queued spinlock structure
170 * @tail : The new queue tail code word
171 * Return: The previous queue tail code word
173 * xchg(lock, tail), which heads an address dependency
175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
177 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
180 * We can use relaxed semantics since the caller ensures that the
181 * MCS node is properly initialized before updating the tail.
183 return (u32)xchg_relaxed(&lock->tail,
184 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
187 #else /* _Q_PENDING_BITS == 8 */
190 * clear_pending - clear the pending bit.
191 * @lock: Pointer to queued spinlock structure
195 static __always_inline void clear_pending(struct qspinlock *lock)
197 atomic_andnot(_Q_PENDING_VAL, &lock->val);
201 * clear_pending_set_locked - take ownership and clear the pending bit.
202 * @lock: Pointer to queued spinlock structure
206 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
208 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
212 * xchg_tail - Put in the new queue tail code word & retrieve previous one
213 * @lock : Pointer to queued spinlock structure
214 * @tail : The new queue tail code word
215 * Return: The previous queue tail code word
219 * p,*,* -> n,*,* ; prev = xchg(lock, node)
221 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
223 u32 old, new, val = atomic_read(&lock->val);
226 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
228 * We can use relaxed semantics since the caller ensures that
229 * the MCS node is properly initialized before updating the
232 old = atomic_cmpxchg_relaxed(&lock->val, val, new);
240 #endif /* _Q_PENDING_BITS == 8 */
243 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
244 * @lock : Pointer to queued spinlock structure
245 * Return: The previous lock value
249 #ifndef queued_fetch_set_pending_acquire
250 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
252 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
257 * set_locked - Set the lock bit and own the lock
258 * @lock: Pointer to queued spinlock structure
262 static __always_inline void set_locked(struct qspinlock *lock)
264 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
269 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
270 * all the PV callbacks.
273 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
274 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
275 struct mcs_spinlock *prev) { }
276 static __always_inline void __pv_kick_node(struct qspinlock *lock,
277 struct mcs_spinlock *node) { }
278 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
279 struct mcs_spinlock *node)
282 #define pv_enabled() false
284 #define pv_init_node __pv_init_node
285 #define pv_wait_node __pv_wait_node
286 #define pv_kick_node __pv_kick_node
287 #define pv_wait_head_or_lock __pv_wait_head_or_lock
289 #ifdef CONFIG_PARAVIRT_SPINLOCKS
290 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
293 #endif /* _GEN_PV_LOCK_SLOWPATH */
296 * queued_spin_lock_slowpath - acquire the queued spinlock
297 * @lock: Pointer to queued spinlock structure
298 * @val: Current value of the queued spinlock 32-bit word
300 * (queue tail, pending bit, lock value)
302 * fast : slow : unlock
304 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
305 * : | ^--------.------. / :
307 * pending : (0,1,1) +--> (0,1,0) \ | :
310 * uncontended : (n,x,y) +--> (n,0,0) --' | :
313 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
316 void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
318 struct mcs_spinlock *prev, *next, *node;
322 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
327 if (virt_spin_lock(lock))
331 * Wait for in-progress pending->locked hand-overs with a bounded
332 * number of spins so that we guarantee forward progress.
336 if (val == _Q_PENDING_VAL) {
337 int cnt = _Q_PENDING_LOOPS;
338 val = atomic_cond_read_relaxed(&lock->val,
339 (VAL != _Q_PENDING_VAL) || !cnt--);
343 * If we observe any contention; queue.
345 if (val & ~_Q_LOCKED_MASK)
351 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
353 val = queued_fetch_set_pending_acquire(lock);
356 * If we observe contention, there is a concurrent locker.
358 * Undo and queue; our setting of PENDING might have made the
359 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
360 * on @next to become !NULL.
362 if (unlikely(val & ~_Q_LOCKED_MASK)) {
364 /* Undo PENDING if we set it. */
365 if (!(val & _Q_PENDING_MASK))
372 * We're pending, wait for the owner to go away.
376 * this wait loop must be a load-acquire such that we match the
377 * store-release that clears the locked bit and create lock
378 * sequentiality; this is because not all
379 * clear_pending_set_locked() implementations imply full
382 if (val & _Q_LOCKED_MASK)
383 atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
386 * take ownership and clear the pending bit.
390 clear_pending_set_locked(lock);
391 lockevent_inc(lock_pending);
395 * End of pending bit optimistic spinning and beginning of MCS
399 lockevent_inc(lock_slowpath);
401 node = this_cpu_ptr(&qnodes[0].mcs);
403 tail = encode_tail(smp_processor_id(), idx);
405 trace_contention_begin(lock, LCB_F_SPIN);
408 * 4 nodes are allocated based on the assumption that there will
409 * not be nested NMIs taking spinlocks. That may not be true in
410 * some architectures even though the chance of needing more than
411 * 4 nodes will still be extremely unlikely. When that happens,
412 * we fall back to spinning on the lock directly without using
413 * any MCS node. This is not the most elegant solution, but is
416 if (unlikely(idx >= MAX_NODES)) {
417 lockevent_inc(lock_no_node);
418 while (!queued_spin_trylock(lock))
423 node = grab_mcs_node(node, idx);
426 * Keep counts of non-zero index values:
428 lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
431 * Ensure that we increment the head node->count before initialising
432 * the actual node. If the compiler is kind enough to reorder these
433 * stores, then an IRQ could overwrite our assignments.
442 * We touched a (possibly) cold cacheline in the per-cpu queue node;
443 * attempt the trylock once more in the hope someone let go while we
446 if (queued_spin_trylock(lock))
450 * Ensure that the initialisation of @node is complete before we
451 * publish the updated tail via xchg_tail() and potentially link
452 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
457 * Publish the updated tail.
458 * We have already touched the queueing cacheline; don't bother with
463 old = xchg_tail(lock, tail);
467 * if there was a previous node; link it and wait until reaching the
468 * head of the waitqueue.
470 if (old & _Q_TAIL_MASK) {
471 prev = decode_tail(old);
473 /* Link @node into the waitqueue. */
474 WRITE_ONCE(prev->next, node);
476 pv_wait_node(node, prev);
477 arch_mcs_spin_lock_contended(&node->locked);
480 * While waiting for the MCS lock, the next pointer may have
481 * been set by another lock waiter. We optimistically load
482 * the next pointer & prefetch the cacheline for writing
483 * to reduce latency in the upcoming MCS unlock operation.
485 next = READ_ONCE(node->next);
491 * we're at the head of the waitqueue, wait for the owner & pending to
496 * this wait loop must use a load-acquire such that we match the
497 * store-release that clears the locked bit and create lock
498 * sequentiality; this is because the set_locked() function below
499 * does not imply a full barrier.
501 * The PV pv_wait_head_or_lock function, if active, will acquire
502 * the lock and return a non-zero value. So we have to skip the
503 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
504 * been designated yet, there is no way for the locked value to become
505 * _Q_SLOW_VAL. So both the set_locked() and the
506 * atomic_cmpxchg_relaxed() calls will be safe.
508 * If PV isn't active, 0 will be returned instead.
511 if ((val = pv_wait_head_or_lock(lock, node)))
514 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
520 * n,0,0 -> 0,0,1 : lock, uncontended
521 * *,*,0 -> *,*,1 : lock, contended
523 * If the queue head is the only one in the queue (lock value == tail)
524 * and nobody is pending, clear the tail code and grab the lock.
525 * Otherwise, we only need to grab the lock.
529 * In the PV case we might already have _Q_LOCKED_VAL set, because
530 * of lock stealing; therefore we must also allow:
534 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
535 * above wait condition, therefore any concurrent setting of
536 * PENDING will make the uncontended transition fail.
538 if ((val & _Q_TAIL_MASK) == tail) {
539 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
540 goto release; /* No contention */
544 * Either somebody is queued behind us or _Q_PENDING_VAL got set
545 * which will then detect the remaining tail and queue behind us
546 * ensuring we'll see a @next.
551 * contended path; wait for next if not observed yet, release.
554 next = smp_cond_load_relaxed(&node->next, (VAL));
556 arch_mcs_spin_unlock_contended(&next->locked);
557 pv_kick_node(lock, next);
560 trace_contention_end(lock, 0);
565 __this_cpu_dec(qnodes[0].mcs.count);
567 EXPORT_SYMBOL(queued_spin_lock_slowpath);
570 * Generate the paravirt code for queued_spin_unlock_slowpath().
572 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
573 #define _GEN_PV_LOCK_SLOWPATH
576 #define pv_enabled() true
581 #undef pv_wait_head_or_lock
583 #undef queued_spin_lock_slowpath
584 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
586 #include "qspinlock_paravirt.h"
587 #include "qspinlock.c"
589 bool nopvspin __initdata;
590 static __init int parse_nopvspin(char *arg)
595 early_param("nopvspin", parse_nopvspin);