Merge tag 'for-6.1-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-starfive.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 static int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 static int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 #ifdef CONFIG_SYSCTL
80 static struct ctl_table kern_lockdep_table[] = {
81 #ifdef CONFIG_PROVE_LOCKING
82         {
83                 .procname       = "prove_locking",
84                 .data           = &prove_locking,
85                 .maxlen         = sizeof(int),
86                 .mode           = 0644,
87                 .proc_handler   = proc_dointvec,
88         },
89 #endif /* CONFIG_PROVE_LOCKING */
90 #ifdef CONFIG_LOCK_STAT
91         {
92                 .procname       = "lock_stat",
93                 .data           = &lock_stat,
94                 .maxlen         = sizeof(int),
95                 .mode           = 0644,
96                 .proc_handler   = proc_dointvec,
97         },
98 #endif /* CONFIG_LOCK_STAT */
99         { }
100 };
101
102 static __init int kernel_lockdep_sysctls_init(void)
103 {
104         register_sysctl_init("kernel", kern_lockdep_table);
105         return 0;
106 }
107 late_initcall(kernel_lockdep_sysctls_init);
108 #endif /* CONFIG_SYSCTL */
109
110 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
111 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
112
113 static __always_inline bool lockdep_enabled(void)
114 {
115         if (!debug_locks)
116                 return false;
117
118         if (this_cpu_read(lockdep_recursion))
119                 return false;
120
121         if (current->lockdep_recursion)
122                 return false;
123
124         return true;
125 }
126
127 /*
128  * lockdep_lock: protects the lockdep graph, the hashes and the
129  *               class/list/hash allocators.
130  *
131  * This is one of the rare exceptions where it's justified
132  * to use a raw spinlock - we really dont want the spinlock
133  * code to recurse back into the lockdep code...
134  */
135 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
136 static struct task_struct *__owner;
137
138 static inline void lockdep_lock(void)
139 {
140         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
141
142         __this_cpu_inc(lockdep_recursion);
143         arch_spin_lock(&__lock);
144         __owner = current;
145 }
146
147 static inline void lockdep_unlock(void)
148 {
149         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
150
151         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
152                 return;
153
154         __owner = NULL;
155         arch_spin_unlock(&__lock);
156         __this_cpu_dec(lockdep_recursion);
157 }
158
159 static inline bool lockdep_assert_locked(void)
160 {
161         return DEBUG_LOCKS_WARN_ON(__owner != current);
162 }
163
164 static struct task_struct *lockdep_selftest_task_struct;
165
166
167 static int graph_lock(void)
168 {
169         lockdep_lock();
170         /*
171          * Make sure that if another CPU detected a bug while
172          * walking the graph we dont change it (while the other
173          * CPU is busy printing out stuff with the graph lock
174          * dropped already)
175          */
176         if (!debug_locks) {
177                 lockdep_unlock();
178                 return 0;
179         }
180         return 1;
181 }
182
183 static inline void graph_unlock(void)
184 {
185         lockdep_unlock();
186 }
187
188 /*
189  * Turn lock debugging off and return with 0 if it was off already,
190  * and also release the graph lock:
191  */
192 static inline int debug_locks_off_graph_unlock(void)
193 {
194         int ret = debug_locks_off();
195
196         lockdep_unlock();
197
198         return ret;
199 }
200
201 unsigned long nr_list_entries;
202 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
203 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
204
205 /*
206  * All data structures here are protected by the global debug_lock.
207  *
208  * nr_lock_classes is the number of elements of lock_classes[] that is
209  * in use.
210  */
211 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
212 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
213 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
214 unsigned long nr_lock_classes;
215 unsigned long nr_zapped_classes;
216 unsigned long max_lock_class_idx;
217 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
218 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
219
220 static inline struct lock_class *hlock_class(struct held_lock *hlock)
221 {
222         unsigned int class_idx = hlock->class_idx;
223
224         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
225         barrier();
226
227         if (!test_bit(class_idx, lock_classes_in_use)) {
228                 /*
229                  * Someone passed in garbage, we give up.
230                  */
231                 DEBUG_LOCKS_WARN_ON(1);
232                 return NULL;
233         }
234
235         /*
236          * At this point, if the passed hlock->class_idx is still garbage,
237          * we just have to live with it
238          */
239         return lock_classes + class_idx;
240 }
241
242 #ifdef CONFIG_LOCK_STAT
243 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
244
245 static inline u64 lockstat_clock(void)
246 {
247         return local_clock();
248 }
249
250 static int lock_point(unsigned long points[], unsigned long ip)
251 {
252         int i;
253
254         for (i = 0; i < LOCKSTAT_POINTS; i++) {
255                 if (points[i] == 0) {
256                         points[i] = ip;
257                         break;
258                 }
259                 if (points[i] == ip)
260                         break;
261         }
262
263         return i;
264 }
265
266 static void lock_time_inc(struct lock_time *lt, u64 time)
267 {
268         if (time > lt->max)
269                 lt->max = time;
270
271         if (time < lt->min || !lt->nr)
272                 lt->min = time;
273
274         lt->total += time;
275         lt->nr++;
276 }
277
278 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
279 {
280         if (!src->nr)
281                 return;
282
283         if (src->max > dst->max)
284                 dst->max = src->max;
285
286         if (src->min < dst->min || !dst->nr)
287                 dst->min = src->min;
288
289         dst->total += src->total;
290         dst->nr += src->nr;
291 }
292
293 struct lock_class_stats lock_stats(struct lock_class *class)
294 {
295         struct lock_class_stats stats;
296         int cpu, i;
297
298         memset(&stats, 0, sizeof(struct lock_class_stats));
299         for_each_possible_cpu(cpu) {
300                 struct lock_class_stats *pcs =
301                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
302
303                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
304                         stats.contention_point[i] += pcs->contention_point[i];
305
306                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
307                         stats.contending_point[i] += pcs->contending_point[i];
308
309                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
310                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
311
312                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
313                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
314
315                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
316                         stats.bounces[i] += pcs->bounces[i];
317         }
318
319         return stats;
320 }
321
322 void clear_lock_stats(struct lock_class *class)
323 {
324         int cpu;
325
326         for_each_possible_cpu(cpu) {
327                 struct lock_class_stats *cpu_stats =
328                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
329
330                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
331         }
332         memset(class->contention_point, 0, sizeof(class->contention_point));
333         memset(class->contending_point, 0, sizeof(class->contending_point));
334 }
335
336 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
337 {
338         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
339 }
340
341 static void lock_release_holdtime(struct held_lock *hlock)
342 {
343         struct lock_class_stats *stats;
344         u64 holdtime;
345
346         if (!lock_stat)
347                 return;
348
349         holdtime = lockstat_clock() - hlock->holdtime_stamp;
350
351         stats = get_lock_stats(hlock_class(hlock));
352         if (hlock->read)
353                 lock_time_inc(&stats->read_holdtime, holdtime);
354         else
355                 lock_time_inc(&stats->write_holdtime, holdtime);
356 }
357 #else
358 static inline void lock_release_holdtime(struct held_lock *hlock)
359 {
360 }
361 #endif
362
363 /*
364  * We keep a global list of all lock classes. The list is only accessed with
365  * the lockdep spinlock lock held. free_lock_classes is a list with free
366  * elements. These elements are linked together by the lock_entry member in
367  * struct lock_class.
368  */
369 static LIST_HEAD(all_lock_classes);
370 static LIST_HEAD(free_lock_classes);
371
372 /**
373  * struct pending_free - information about data structures about to be freed
374  * @zapped: Head of a list with struct lock_class elements.
375  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
376  *      are about to be freed.
377  */
378 struct pending_free {
379         struct list_head zapped;
380         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
381 };
382
383 /**
384  * struct delayed_free - data structures used for delayed freeing
385  *
386  * A data structure for delayed freeing of data structures that may be
387  * accessed by RCU readers at the time these were freed.
388  *
389  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
390  * @index:     Index of @pf to which freed data structures are added.
391  * @scheduled: Whether or not an RCU callback has been scheduled.
392  * @pf:        Array with information about data structures about to be freed.
393  */
394 static struct delayed_free {
395         struct rcu_head         rcu_head;
396         int                     index;
397         int                     scheduled;
398         struct pending_free     pf[2];
399 } delayed_free;
400
401 /*
402  * The lockdep classes are in a hash-table as well, for fast lookup:
403  */
404 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
405 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
406 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
407 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
408
409 static struct hlist_head classhash_table[CLASSHASH_SIZE];
410
411 /*
412  * We put the lock dependency chains into a hash-table as well, to cache
413  * their existence:
414  */
415 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
416 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
417 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
418 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
419
420 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
421
422 /*
423  * the id of held_lock
424  */
425 static inline u16 hlock_id(struct held_lock *hlock)
426 {
427         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
428
429         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
430 }
431
432 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
433 {
434         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
435 }
436
437 /*
438  * The hash key of the lock dependency chains is a hash itself too:
439  * it's a hash of all locks taken up to that lock, including that lock.
440  * It's a 64-bit hash, because it's important for the keys to be
441  * unique.
442  */
443 static inline u64 iterate_chain_key(u64 key, u32 idx)
444 {
445         u32 k0 = key, k1 = key >> 32;
446
447         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
448
449         return k0 | (u64)k1 << 32;
450 }
451
452 void lockdep_init_task(struct task_struct *task)
453 {
454         task->lockdep_depth = 0; /* no locks held yet */
455         task->curr_chain_key = INITIAL_CHAIN_KEY;
456         task->lockdep_recursion = 0;
457 }
458
459 static __always_inline void lockdep_recursion_inc(void)
460 {
461         __this_cpu_inc(lockdep_recursion);
462 }
463
464 static __always_inline void lockdep_recursion_finish(void)
465 {
466         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
467                 __this_cpu_write(lockdep_recursion, 0);
468 }
469
470 void lockdep_set_selftest_task(struct task_struct *task)
471 {
472         lockdep_selftest_task_struct = task;
473 }
474
475 /*
476  * Debugging switches:
477  */
478
479 #define VERBOSE                 0
480 #define VERY_VERBOSE            0
481
482 #if VERBOSE
483 # define HARDIRQ_VERBOSE        1
484 # define SOFTIRQ_VERBOSE        1
485 #else
486 # define HARDIRQ_VERBOSE        0
487 # define SOFTIRQ_VERBOSE        0
488 #endif
489
490 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
491 /*
492  * Quick filtering for interesting events:
493  */
494 static int class_filter(struct lock_class *class)
495 {
496 #if 0
497         /* Example */
498         if (class->name_version == 1 &&
499                         !strcmp(class->name, "lockname"))
500                 return 1;
501         if (class->name_version == 1 &&
502                         !strcmp(class->name, "&struct->lockfield"))
503                 return 1;
504 #endif
505         /* Filter everything else. 1 would be to allow everything else */
506         return 0;
507 }
508 #endif
509
510 static int verbose(struct lock_class *class)
511 {
512 #if VERBOSE
513         return class_filter(class);
514 #endif
515         return 0;
516 }
517
518 static void print_lockdep_off(const char *bug_msg)
519 {
520         printk(KERN_DEBUG "%s\n", bug_msg);
521         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
522 #ifdef CONFIG_LOCK_STAT
523         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
524 #endif
525 }
526
527 unsigned long nr_stack_trace_entries;
528
529 #ifdef CONFIG_PROVE_LOCKING
530 /**
531  * struct lock_trace - single stack backtrace
532  * @hash_entry: Entry in a stack_trace_hash[] list.
533  * @hash:       jhash() of @entries.
534  * @nr_entries: Number of entries in @entries.
535  * @entries:    Actual stack backtrace.
536  */
537 struct lock_trace {
538         struct hlist_node       hash_entry;
539         u32                     hash;
540         u32                     nr_entries;
541         unsigned long           entries[] __aligned(sizeof(unsigned long));
542 };
543 #define LOCK_TRACE_SIZE_IN_LONGS                                \
544         (sizeof(struct lock_trace) / sizeof(unsigned long))
545 /*
546  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
547  */
548 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
549 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
550
551 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
552 {
553         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
554                 memcmp(t1->entries, t2->entries,
555                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
556 }
557
558 static struct lock_trace *save_trace(void)
559 {
560         struct lock_trace *trace, *t2;
561         struct hlist_head *hash_head;
562         u32 hash;
563         int max_entries;
564
565         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
566         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
567
568         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
569         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
570                 LOCK_TRACE_SIZE_IN_LONGS;
571
572         if (max_entries <= 0) {
573                 if (!debug_locks_off_graph_unlock())
574                         return NULL;
575
576                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
577                 dump_stack();
578
579                 return NULL;
580         }
581         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
582
583         hash = jhash(trace->entries, trace->nr_entries *
584                      sizeof(trace->entries[0]), 0);
585         trace->hash = hash;
586         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
587         hlist_for_each_entry(t2, hash_head, hash_entry) {
588                 if (traces_identical(trace, t2))
589                         return t2;
590         }
591         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
592         hlist_add_head(&trace->hash_entry, hash_head);
593
594         return trace;
595 }
596
597 /* Return the number of stack traces in the stack_trace[] array. */
598 u64 lockdep_stack_trace_count(void)
599 {
600         struct lock_trace *trace;
601         u64 c = 0;
602         int i;
603
604         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
605                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
606                         c++;
607                 }
608         }
609
610         return c;
611 }
612
613 /* Return the number of stack hash chains that have at least one stack trace. */
614 u64 lockdep_stack_hash_count(void)
615 {
616         u64 c = 0;
617         int i;
618
619         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
620                 if (!hlist_empty(&stack_trace_hash[i]))
621                         c++;
622
623         return c;
624 }
625 #endif
626
627 unsigned int nr_hardirq_chains;
628 unsigned int nr_softirq_chains;
629 unsigned int nr_process_chains;
630 unsigned int max_lockdep_depth;
631
632 #ifdef CONFIG_DEBUG_LOCKDEP
633 /*
634  * Various lockdep statistics:
635  */
636 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
637 #endif
638
639 #ifdef CONFIG_PROVE_LOCKING
640 /*
641  * Locking printouts:
642  */
643
644 #define __USAGE(__STATE)                                                \
645         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
646         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
647         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
648         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
649
650 static const char *usage_str[] =
651 {
652 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
653 #include "lockdep_states.h"
654 #undef LOCKDEP_STATE
655         [LOCK_USED] = "INITIAL USE",
656         [LOCK_USED_READ] = "INITIAL READ USE",
657         /* abused as string storage for verify_lock_unused() */
658         [LOCK_USAGE_STATES] = "IN-NMI",
659 };
660 #endif
661
662 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
663 {
664         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
665 }
666
667 static inline unsigned long lock_flag(enum lock_usage_bit bit)
668 {
669         return 1UL << bit;
670 }
671
672 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
673 {
674         /*
675          * The usage character defaults to '.' (i.e., irqs disabled and not in
676          * irq context), which is the safest usage category.
677          */
678         char c = '.';
679
680         /*
681          * The order of the following usage checks matters, which will
682          * result in the outcome character as follows:
683          *
684          * - '+': irq is enabled and not in irq context
685          * - '-': in irq context and irq is disabled
686          * - '?': in irq context and irq is enabled
687          */
688         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
689                 c = '+';
690                 if (class->usage_mask & lock_flag(bit))
691                         c = '?';
692         } else if (class->usage_mask & lock_flag(bit))
693                 c = '-';
694
695         return c;
696 }
697
698 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
699 {
700         int i = 0;
701
702 #define LOCKDEP_STATE(__STATE)                                          \
703         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
704         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
705 #include "lockdep_states.h"
706 #undef LOCKDEP_STATE
707
708         usage[i] = '\0';
709 }
710
711 static void __print_lock_name(struct lock_class *class)
712 {
713         char str[KSYM_NAME_LEN];
714         const char *name;
715
716         name = class->name;
717         if (!name) {
718                 name = __get_key_name(class->key, str);
719                 printk(KERN_CONT "%s", name);
720         } else {
721                 printk(KERN_CONT "%s", name);
722                 if (class->name_version > 1)
723                         printk(KERN_CONT "#%d", class->name_version);
724                 if (class->subclass)
725                         printk(KERN_CONT "/%d", class->subclass);
726         }
727 }
728
729 static void print_lock_name(struct lock_class *class)
730 {
731         char usage[LOCK_USAGE_CHARS];
732
733         get_usage_chars(class, usage);
734
735         printk(KERN_CONT " (");
736         __print_lock_name(class);
737         printk(KERN_CONT "){%s}-{%d:%d}", usage,
738                         class->wait_type_outer ?: class->wait_type_inner,
739                         class->wait_type_inner);
740 }
741
742 static void print_lockdep_cache(struct lockdep_map *lock)
743 {
744         const char *name;
745         char str[KSYM_NAME_LEN];
746
747         name = lock->name;
748         if (!name)
749                 name = __get_key_name(lock->key->subkeys, str);
750
751         printk(KERN_CONT "%s", name);
752 }
753
754 static void print_lock(struct held_lock *hlock)
755 {
756         /*
757          * We can be called locklessly through debug_show_all_locks() so be
758          * extra careful, the hlock might have been released and cleared.
759          *
760          * If this indeed happens, lets pretend it does not hurt to continue
761          * to print the lock unless the hlock class_idx does not point to a
762          * registered class. The rationale here is: since we don't attempt
763          * to distinguish whether we are in this situation, if it just
764          * happened we can't count on class_idx to tell either.
765          */
766         struct lock_class *lock = hlock_class(hlock);
767
768         if (!lock) {
769                 printk(KERN_CONT "<RELEASED>\n");
770                 return;
771         }
772
773         printk(KERN_CONT "%px", hlock->instance);
774         print_lock_name(lock);
775         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
776 }
777
778 static void lockdep_print_held_locks(struct task_struct *p)
779 {
780         int i, depth = READ_ONCE(p->lockdep_depth);
781
782         if (!depth)
783                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
784         else
785                 printk("%d lock%s held by %s/%d:\n", depth,
786                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
787         /*
788          * It's not reliable to print a task's held locks if it's not sleeping
789          * and it's not the current task.
790          */
791         if (p != current && task_is_running(p))
792                 return;
793         for (i = 0; i < depth; i++) {
794                 printk(" #%d: ", i);
795                 print_lock(p->held_locks + i);
796         }
797 }
798
799 static void print_kernel_ident(void)
800 {
801         printk("%s %.*s %s\n", init_utsname()->release,
802                 (int)strcspn(init_utsname()->version, " "),
803                 init_utsname()->version,
804                 print_tainted());
805 }
806
807 static int very_verbose(struct lock_class *class)
808 {
809 #if VERY_VERBOSE
810         return class_filter(class);
811 #endif
812         return 0;
813 }
814
815 /*
816  * Is this the address of a static object:
817  */
818 #ifdef __KERNEL__
819 /*
820  * Check if an address is part of freed initmem. After initmem is freed,
821  * memory can be allocated from it, and such allocations would then have
822  * addresses within the range [_stext, _end].
823  */
824 #ifndef arch_is_kernel_initmem_freed
825 static int arch_is_kernel_initmem_freed(unsigned long addr)
826 {
827         if (system_state < SYSTEM_FREEING_INITMEM)
828                 return 0;
829
830         return init_section_contains((void *)addr, 1);
831 }
832 #endif
833
834 static int static_obj(const void *obj)
835 {
836         unsigned long start = (unsigned long) &_stext,
837                       end   = (unsigned long) &_end,
838                       addr  = (unsigned long) obj;
839
840         if (arch_is_kernel_initmem_freed(addr))
841                 return 0;
842
843         /*
844          * static variable?
845          */
846         if ((addr >= start) && (addr < end))
847                 return 1;
848
849         /*
850          * in-kernel percpu var?
851          */
852         if (is_kernel_percpu_address(addr))
853                 return 1;
854
855         /*
856          * module static or percpu var?
857          */
858         return is_module_address(addr) || is_module_percpu_address(addr);
859 }
860 #endif
861
862 /*
863  * To make lock name printouts unique, we calculate a unique
864  * class->name_version generation counter. The caller must hold the graph
865  * lock.
866  */
867 static int count_matching_names(struct lock_class *new_class)
868 {
869         struct lock_class *class;
870         int count = 0;
871
872         if (!new_class->name)
873                 return 0;
874
875         list_for_each_entry(class, &all_lock_classes, lock_entry) {
876                 if (new_class->key - new_class->subclass == class->key)
877                         return class->name_version;
878                 if (class->name && !strcmp(class->name, new_class->name))
879                         count = max(count, class->name_version);
880         }
881
882         return count + 1;
883 }
884
885 /* used from NMI context -- must be lockless */
886 static noinstr struct lock_class *
887 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
888 {
889         struct lockdep_subclass_key *key;
890         struct hlist_head *hash_head;
891         struct lock_class *class;
892
893         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
894                 instrumentation_begin();
895                 debug_locks_off();
896                 printk(KERN_ERR
897                         "BUG: looking up invalid subclass: %u\n", subclass);
898                 printk(KERN_ERR
899                         "turning off the locking correctness validator.\n");
900                 dump_stack();
901                 instrumentation_end();
902                 return NULL;
903         }
904
905         /*
906          * If it is not initialised then it has never been locked,
907          * so it won't be present in the hash table.
908          */
909         if (unlikely(!lock->key))
910                 return NULL;
911
912         /*
913          * NOTE: the class-key must be unique. For dynamic locks, a static
914          * lock_class_key variable is passed in through the mutex_init()
915          * (or spin_lock_init()) call - which acts as the key. For static
916          * locks we use the lock object itself as the key.
917          */
918         BUILD_BUG_ON(sizeof(struct lock_class_key) >
919                         sizeof(struct lockdep_map));
920
921         key = lock->key->subkeys + subclass;
922
923         hash_head = classhashentry(key);
924
925         /*
926          * We do an RCU walk of the hash, see lockdep_free_key_range().
927          */
928         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
929                 return NULL;
930
931         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
932                 if (class->key == key) {
933                         /*
934                          * Huh! same key, different name? Did someone trample
935                          * on some memory? We're most confused.
936                          */
937                         WARN_ONCE(class->name != lock->name &&
938                                   lock->key != &__lockdep_no_validate__,
939                                   "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
940                                   lock->name, lock->key, class->name);
941                         return class;
942                 }
943         }
944
945         return NULL;
946 }
947
948 /*
949  * Static locks do not have their class-keys yet - for them the key is
950  * the lock object itself. If the lock is in the per cpu area, the
951  * canonical address of the lock (per cpu offset removed) is used.
952  */
953 static bool assign_lock_key(struct lockdep_map *lock)
954 {
955         unsigned long can_addr, addr = (unsigned long)lock;
956
957 #ifdef __KERNEL__
958         /*
959          * lockdep_free_key_range() assumes that struct lock_class_key
960          * objects do not overlap. Since we use the address of lock
961          * objects as class key for static objects, check whether the
962          * size of lock_class_key objects does not exceed the size of
963          * the smallest lock object.
964          */
965         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
966 #endif
967
968         if (__is_kernel_percpu_address(addr, &can_addr))
969                 lock->key = (void *)can_addr;
970         else if (__is_module_percpu_address(addr, &can_addr))
971                 lock->key = (void *)can_addr;
972         else if (static_obj(lock))
973                 lock->key = (void *)lock;
974         else {
975                 /* Debug-check: all keys must be persistent! */
976                 debug_locks_off();
977                 pr_err("INFO: trying to register non-static key.\n");
978                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
979                 pr_err("you didn't initialize this object before use?\n");
980                 pr_err("turning off the locking correctness validator.\n");
981                 dump_stack();
982                 return false;
983         }
984
985         return true;
986 }
987
988 #ifdef CONFIG_DEBUG_LOCKDEP
989
990 /* Check whether element @e occurs in list @h */
991 static bool in_list(struct list_head *e, struct list_head *h)
992 {
993         struct list_head *f;
994
995         list_for_each(f, h) {
996                 if (e == f)
997                         return true;
998         }
999
1000         return false;
1001 }
1002
1003 /*
1004  * Check whether entry @e occurs in any of the locks_after or locks_before
1005  * lists.
1006  */
1007 static bool in_any_class_list(struct list_head *e)
1008 {
1009         struct lock_class *class;
1010         int i;
1011
1012         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1013                 class = &lock_classes[i];
1014                 if (in_list(e, &class->locks_after) ||
1015                     in_list(e, &class->locks_before))
1016                         return true;
1017         }
1018         return false;
1019 }
1020
1021 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1022 {
1023         struct lock_list *e;
1024
1025         list_for_each_entry(e, h, entry) {
1026                 if (e->links_to != c) {
1027                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1028                                c->name ? : "(?)",
1029                                (unsigned long)(e - list_entries),
1030                                e->links_to && e->links_to->name ?
1031                                e->links_to->name : "(?)",
1032                                e->class && e->class->name ? e->class->name :
1033                                "(?)");
1034                         return false;
1035                 }
1036         }
1037         return true;
1038 }
1039
1040 #ifdef CONFIG_PROVE_LOCKING
1041 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1042 #endif
1043
1044 static bool check_lock_chain_key(struct lock_chain *chain)
1045 {
1046 #ifdef CONFIG_PROVE_LOCKING
1047         u64 chain_key = INITIAL_CHAIN_KEY;
1048         int i;
1049
1050         for (i = chain->base; i < chain->base + chain->depth; i++)
1051                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1052         /*
1053          * The 'unsigned long long' casts avoid that a compiler warning
1054          * is reported when building tools/lib/lockdep.
1055          */
1056         if (chain->chain_key != chain_key) {
1057                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1058                        (unsigned long long)(chain - lock_chains),
1059                        (unsigned long long)chain->chain_key,
1060                        (unsigned long long)chain_key);
1061                 return false;
1062         }
1063 #endif
1064         return true;
1065 }
1066
1067 static bool in_any_zapped_class_list(struct lock_class *class)
1068 {
1069         struct pending_free *pf;
1070         int i;
1071
1072         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1073                 if (in_list(&class->lock_entry, &pf->zapped))
1074                         return true;
1075         }
1076
1077         return false;
1078 }
1079
1080 static bool __check_data_structures(void)
1081 {
1082         struct lock_class *class;
1083         struct lock_chain *chain;
1084         struct hlist_head *head;
1085         struct lock_list *e;
1086         int i;
1087
1088         /* Check whether all classes occur in a lock list. */
1089         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1090                 class = &lock_classes[i];
1091                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1092                     !in_list(&class->lock_entry, &free_lock_classes) &&
1093                     !in_any_zapped_class_list(class)) {
1094                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1095                                class, class->name ? : "(?)");
1096                         return false;
1097                 }
1098         }
1099
1100         /* Check whether all classes have valid lock lists. */
1101         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1102                 class = &lock_classes[i];
1103                 if (!class_lock_list_valid(class, &class->locks_before))
1104                         return false;
1105                 if (!class_lock_list_valid(class, &class->locks_after))
1106                         return false;
1107         }
1108
1109         /* Check the chain_key of all lock chains. */
1110         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1111                 head = chainhash_table + i;
1112                 hlist_for_each_entry_rcu(chain, head, entry) {
1113                         if (!check_lock_chain_key(chain))
1114                                 return false;
1115                 }
1116         }
1117
1118         /*
1119          * Check whether all list entries that are in use occur in a class
1120          * lock list.
1121          */
1122         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1123                 e = list_entries + i;
1124                 if (!in_any_class_list(&e->entry)) {
1125                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1126                                (unsigned int)(e - list_entries),
1127                                e->class->name ? : "(?)",
1128                                e->links_to->name ? : "(?)");
1129                         return false;
1130                 }
1131         }
1132
1133         /*
1134          * Check whether all list entries that are not in use do not occur in
1135          * a class lock list.
1136          */
1137         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1138                 e = list_entries + i;
1139                 if (in_any_class_list(&e->entry)) {
1140                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1141                                (unsigned int)(e - list_entries),
1142                                e->class && e->class->name ? e->class->name :
1143                                "(?)",
1144                                e->links_to && e->links_to->name ?
1145                                e->links_to->name : "(?)");
1146                         return false;
1147                 }
1148         }
1149
1150         return true;
1151 }
1152
1153 int check_consistency = 0;
1154 module_param(check_consistency, int, 0644);
1155
1156 static void check_data_structures(void)
1157 {
1158         static bool once = false;
1159
1160         if (check_consistency && !once) {
1161                 if (!__check_data_structures()) {
1162                         once = true;
1163                         WARN_ON(once);
1164                 }
1165         }
1166 }
1167
1168 #else /* CONFIG_DEBUG_LOCKDEP */
1169
1170 static inline void check_data_structures(void) { }
1171
1172 #endif /* CONFIG_DEBUG_LOCKDEP */
1173
1174 static void init_chain_block_buckets(void);
1175
1176 /*
1177  * Initialize the lock_classes[] array elements, the free_lock_classes list
1178  * and also the delayed_free structure.
1179  */
1180 static void init_data_structures_once(void)
1181 {
1182         static bool __read_mostly ds_initialized, rcu_head_initialized;
1183         int i;
1184
1185         if (likely(rcu_head_initialized))
1186                 return;
1187
1188         if (system_state >= SYSTEM_SCHEDULING) {
1189                 init_rcu_head(&delayed_free.rcu_head);
1190                 rcu_head_initialized = true;
1191         }
1192
1193         if (ds_initialized)
1194                 return;
1195
1196         ds_initialized = true;
1197
1198         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1199         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1200
1201         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1202                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1203                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1204                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1205         }
1206         init_chain_block_buckets();
1207 }
1208
1209 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1210 {
1211         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1212
1213         return lock_keys_hash + hash;
1214 }
1215
1216 /* Register a dynamically allocated key. */
1217 void lockdep_register_key(struct lock_class_key *key)
1218 {
1219         struct hlist_head *hash_head;
1220         struct lock_class_key *k;
1221         unsigned long flags;
1222
1223         if (WARN_ON_ONCE(static_obj(key)))
1224                 return;
1225         hash_head = keyhashentry(key);
1226
1227         raw_local_irq_save(flags);
1228         if (!graph_lock())
1229                 goto restore_irqs;
1230         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1231                 if (WARN_ON_ONCE(k == key))
1232                         goto out_unlock;
1233         }
1234         hlist_add_head_rcu(&key->hash_entry, hash_head);
1235 out_unlock:
1236         graph_unlock();
1237 restore_irqs:
1238         raw_local_irq_restore(flags);
1239 }
1240 EXPORT_SYMBOL_GPL(lockdep_register_key);
1241
1242 /* Check whether a key has been registered as a dynamic key. */
1243 static bool is_dynamic_key(const struct lock_class_key *key)
1244 {
1245         struct hlist_head *hash_head;
1246         struct lock_class_key *k;
1247         bool found = false;
1248
1249         if (WARN_ON_ONCE(static_obj(key)))
1250                 return false;
1251
1252         /*
1253          * If lock debugging is disabled lock_keys_hash[] may contain
1254          * pointers to memory that has already been freed. Avoid triggering
1255          * a use-after-free in that case by returning early.
1256          */
1257         if (!debug_locks)
1258                 return true;
1259
1260         hash_head = keyhashentry(key);
1261
1262         rcu_read_lock();
1263         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1264                 if (k == key) {
1265                         found = true;
1266                         break;
1267                 }
1268         }
1269         rcu_read_unlock();
1270
1271         return found;
1272 }
1273
1274 /*
1275  * Register a lock's class in the hash-table, if the class is not present
1276  * yet. Otherwise we look it up. We cache the result in the lock object
1277  * itself, so actual lookup of the hash should be once per lock object.
1278  */
1279 static struct lock_class *
1280 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1281 {
1282         struct lockdep_subclass_key *key;
1283         struct hlist_head *hash_head;
1284         struct lock_class *class;
1285         int idx;
1286
1287         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1288
1289         class = look_up_lock_class(lock, subclass);
1290         if (likely(class))
1291                 goto out_set_class_cache;
1292
1293         if (!lock->key) {
1294                 if (!assign_lock_key(lock))
1295                         return NULL;
1296         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1297                 return NULL;
1298         }
1299
1300         key = lock->key->subkeys + subclass;
1301         hash_head = classhashentry(key);
1302
1303         if (!graph_lock()) {
1304                 return NULL;
1305         }
1306         /*
1307          * We have to do the hash-walk again, to avoid races
1308          * with another CPU:
1309          */
1310         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1311                 if (class->key == key)
1312                         goto out_unlock_set;
1313         }
1314
1315         init_data_structures_once();
1316
1317         /* Allocate a new lock class and add it to the hash. */
1318         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1319                                          lock_entry);
1320         if (!class) {
1321                 if (!debug_locks_off_graph_unlock()) {
1322                         return NULL;
1323                 }
1324
1325                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1326                 dump_stack();
1327                 return NULL;
1328         }
1329         nr_lock_classes++;
1330         __set_bit(class - lock_classes, lock_classes_in_use);
1331         debug_atomic_inc(nr_unused_locks);
1332         class->key = key;
1333         class->name = lock->name;
1334         class->subclass = subclass;
1335         WARN_ON_ONCE(!list_empty(&class->locks_before));
1336         WARN_ON_ONCE(!list_empty(&class->locks_after));
1337         class->name_version = count_matching_names(class);
1338         class->wait_type_inner = lock->wait_type_inner;
1339         class->wait_type_outer = lock->wait_type_outer;
1340         class->lock_type = lock->lock_type;
1341         /*
1342          * We use RCU's safe list-add method to make
1343          * parallel walking of the hash-list safe:
1344          */
1345         hlist_add_head_rcu(&class->hash_entry, hash_head);
1346         /*
1347          * Remove the class from the free list and add it to the global list
1348          * of classes.
1349          */
1350         list_move_tail(&class->lock_entry, &all_lock_classes);
1351         idx = class - lock_classes;
1352         if (idx > max_lock_class_idx)
1353                 max_lock_class_idx = idx;
1354
1355         if (verbose(class)) {
1356                 graph_unlock();
1357
1358                 printk("\nnew class %px: %s", class->key, class->name);
1359                 if (class->name_version > 1)
1360                         printk(KERN_CONT "#%d", class->name_version);
1361                 printk(KERN_CONT "\n");
1362                 dump_stack();
1363
1364                 if (!graph_lock()) {
1365                         return NULL;
1366                 }
1367         }
1368 out_unlock_set:
1369         graph_unlock();
1370
1371 out_set_class_cache:
1372         if (!subclass || force)
1373                 lock->class_cache[0] = class;
1374         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1375                 lock->class_cache[subclass] = class;
1376
1377         /*
1378          * Hash collision, did we smoke some? We found a class with a matching
1379          * hash but the subclass -- which is hashed in -- didn't match.
1380          */
1381         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1382                 return NULL;
1383
1384         return class;
1385 }
1386
1387 #ifdef CONFIG_PROVE_LOCKING
1388 /*
1389  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1390  * with NULL on failure)
1391  */
1392 static struct lock_list *alloc_list_entry(void)
1393 {
1394         int idx = find_first_zero_bit(list_entries_in_use,
1395                                       ARRAY_SIZE(list_entries));
1396
1397         if (idx >= ARRAY_SIZE(list_entries)) {
1398                 if (!debug_locks_off_graph_unlock())
1399                         return NULL;
1400
1401                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1402                 dump_stack();
1403                 return NULL;
1404         }
1405         nr_list_entries++;
1406         __set_bit(idx, list_entries_in_use);
1407         return list_entries + idx;
1408 }
1409
1410 /*
1411  * Add a new dependency to the head of the list:
1412  */
1413 static int add_lock_to_list(struct lock_class *this,
1414                             struct lock_class *links_to, struct list_head *head,
1415                             u16 distance, u8 dep,
1416                             const struct lock_trace *trace)
1417 {
1418         struct lock_list *entry;
1419         /*
1420          * Lock not present yet - get a new dependency struct and
1421          * add it to the list:
1422          */
1423         entry = alloc_list_entry();
1424         if (!entry)
1425                 return 0;
1426
1427         entry->class = this;
1428         entry->links_to = links_to;
1429         entry->dep = dep;
1430         entry->distance = distance;
1431         entry->trace = trace;
1432         /*
1433          * Both allocation and removal are done under the graph lock; but
1434          * iteration is under RCU-sched; see look_up_lock_class() and
1435          * lockdep_free_key_range().
1436          */
1437         list_add_tail_rcu(&entry->entry, head);
1438
1439         return 1;
1440 }
1441
1442 /*
1443  * For good efficiency of modular, we use power of 2
1444  */
1445 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1446 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1447
1448 /*
1449  * The circular_queue and helpers are used to implement graph
1450  * breadth-first search (BFS) algorithm, by which we can determine
1451  * whether there is a path from a lock to another. In deadlock checks,
1452  * a path from the next lock to be acquired to a previous held lock
1453  * indicates that adding the <prev> -> <next> lock dependency will
1454  * produce a circle in the graph. Breadth-first search instead of
1455  * depth-first search is used in order to find the shortest (circular)
1456  * path.
1457  */
1458 struct circular_queue {
1459         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1460         unsigned int  front, rear;
1461 };
1462
1463 static struct circular_queue lock_cq;
1464
1465 unsigned int max_bfs_queue_depth;
1466
1467 static unsigned int lockdep_dependency_gen_id;
1468
1469 static inline void __cq_init(struct circular_queue *cq)
1470 {
1471         cq->front = cq->rear = 0;
1472         lockdep_dependency_gen_id++;
1473 }
1474
1475 static inline int __cq_empty(struct circular_queue *cq)
1476 {
1477         return (cq->front == cq->rear);
1478 }
1479
1480 static inline int __cq_full(struct circular_queue *cq)
1481 {
1482         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1483 }
1484
1485 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1486 {
1487         if (__cq_full(cq))
1488                 return -1;
1489
1490         cq->element[cq->rear] = elem;
1491         cq->rear = (cq->rear + 1) & CQ_MASK;
1492         return 0;
1493 }
1494
1495 /*
1496  * Dequeue an element from the circular_queue, return a lock_list if
1497  * the queue is not empty, or NULL if otherwise.
1498  */
1499 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1500 {
1501         struct lock_list * lock;
1502
1503         if (__cq_empty(cq))
1504                 return NULL;
1505
1506         lock = cq->element[cq->front];
1507         cq->front = (cq->front + 1) & CQ_MASK;
1508
1509         return lock;
1510 }
1511
1512 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1513 {
1514         return (cq->rear - cq->front) & CQ_MASK;
1515 }
1516
1517 static inline void mark_lock_accessed(struct lock_list *lock)
1518 {
1519         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1520 }
1521
1522 static inline void visit_lock_entry(struct lock_list *lock,
1523                                     struct lock_list *parent)
1524 {
1525         lock->parent = parent;
1526 }
1527
1528 static inline unsigned long lock_accessed(struct lock_list *lock)
1529 {
1530         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1531 }
1532
1533 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1534 {
1535         return child->parent;
1536 }
1537
1538 static inline int get_lock_depth(struct lock_list *child)
1539 {
1540         int depth = 0;
1541         struct lock_list *parent;
1542
1543         while ((parent = get_lock_parent(child))) {
1544                 child = parent;
1545                 depth++;
1546         }
1547         return depth;
1548 }
1549
1550 /*
1551  * Return the forward or backward dependency list.
1552  *
1553  * @lock:   the lock_list to get its class's dependency list
1554  * @offset: the offset to struct lock_class to determine whether it is
1555  *          locks_after or locks_before
1556  */
1557 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1558 {
1559         void *lock_class = lock->class;
1560
1561         return lock_class + offset;
1562 }
1563 /*
1564  * Return values of a bfs search:
1565  *
1566  * BFS_E* indicates an error
1567  * BFS_R* indicates a result (match or not)
1568  *
1569  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1570  *
1571  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1572  *
1573  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1574  *             *@target_entry.
1575  *
1576  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1577  *               _unchanged_.
1578  */
1579 enum bfs_result {
1580         BFS_EINVALIDNODE = -2,
1581         BFS_EQUEUEFULL = -1,
1582         BFS_RMATCH = 0,
1583         BFS_RNOMATCH = 1,
1584 };
1585
1586 /*
1587  * bfs_result < 0 means error
1588  */
1589 static inline bool bfs_error(enum bfs_result res)
1590 {
1591         return res < 0;
1592 }
1593
1594 /*
1595  * DEP_*_BIT in lock_list::dep
1596  *
1597  * For dependency @prev -> @next:
1598  *
1599  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1600  *       (->read == 2)
1601  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1602  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1603  *   EN: @prev is exclusive locker and @next is non-recursive locker
1604  *
1605  * Note that we define the value of DEP_*_BITs so that:
1606  *   bit0 is prev->read == 0
1607  *   bit1 is next->read != 2
1608  */
1609 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1610 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1611 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1612 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1613
1614 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1615 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1616 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1617 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1618
1619 static inline unsigned int
1620 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1621 {
1622         return (prev->read == 0) + ((next->read != 2) << 1);
1623 }
1624
1625 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1626 {
1627         return 1U << __calc_dep_bit(prev, next);
1628 }
1629
1630 /*
1631  * calculate the dep_bit for backwards edges. We care about whether @prev is
1632  * shared and whether @next is recursive.
1633  */
1634 static inline unsigned int
1635 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1636 {
1637         return (next->read != 2) + ((prev->read == 0) << 1);
1638 }
1639
1640 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1641 {
1642         return 1U << __calc_dep_bitb(prev, next);
1643 }
1644
1645 /*
1646  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1647  * search.
1648  */
1649 static inline void __bfs_init_root(struct lock_list *lock,
1650                                    struct lock_class *class)
1651 {
1652         lock->class = class;
1653         lock->parent = NULL;
1654         lock->only_xr = 0;
1655 }
1656
1657 /*
1658  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1659  * root for a BFS search.
1660  *
1661  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1662  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1663  * and -(S*)->.
1664  */
1665 static inline void bfs_init_root(struct lock_list *lock,
1666                                  struct held_lock *hlock)
1667 {
1668         __bfs_init_root(lock, hlock_class(hlock));
1669         lock->only_xr = (hlock->read == 2);
1670 }
1671
1672 /*
1673  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1674  *
1675  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1676  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1677  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1678  */
1679 static inline void bfs_init_rootb(struct lock_list *lock,
1680                                   struct held_lock *hlock)
1681 {
1682         __bfs_init_root(lock, hlock_class(hlock));
1683         lock->only_xr = (hlock->read != 0);
1684 }
1685
1686 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1687 {
1688         if (!lock || !lock->parent)
1689                 return NULL;
1690
1691         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1692                                      &lock->entry, struct lock_list, entry);
1693 }
1694
1695 /*
1696  * Breadth-First Search to find a strong path in the dependency graph.
1697  *
1698  * @source_entry: the source of the path we are searching for.
1699  * @data: data used for the second parameter of @match function
1700  * @match: match function for the search
1701  * @target_entry: pointer to the target of a matched path
1702  * @offset: the offset to struct lock_class to determine whether it is
1703  *          locks_after or locks_before
1704  *
1705  * We may have multiple edges (considering different kinds of dependencies,
1706  * e.g. ER and SN) between two nodes in the dependency graph. But
1707  * only the strong dependency path in the graph is relevant to deadlocks. A
1708  * strong dependency path is a dependency path that doesn't have two adjacent
1709  * dependencies as -(*R)-> -(S*)->, please see:
1710  *
1711  *         Documentation/locking/lockdep-design.rst
1712  *
1713  * for more explanation of the definition of strong dependency paths
1714  *
1715  * In __bfs(), we only traverse in the strong dependency path:
1716  *
1717  *     In lock_list::only_xr, we record whether the previous dependency only
1718  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1719  *     filter out any -(S*)-> in the current dependency and after that, the
1720  *     ->only_xr is set according to whether we only have -(*R)-> left.
1721  */
1722 static enum bfs_result __bfs(struct lock_list *source_entry,
1723                              void *data,
1724                              bool (*match)(struct lock_list *entry, void *data),
1725                              bool (*skip)(struct lock_list *entry, void *data),
1726                              struct lock_list **target_entry,
1727                              int offset)
1728 {
1729         struct circular_queue *cq = &lock_cq;
1730         struct lock_list *lock = NULL;
1731         struct lock_list *entry;
1732         struct list_head *head;
1733         unsigned int cq_depth;
1734         bool first;
1735
1736         lockdep_assert_locked();
1737
1738         __cq_init(cq);
1739         __cq_enqueue(cq, source_entry);
1740
1741         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1742                 if (!lock->class)
1743                         return BFS_EINVALIDNODE;
1744
1745                 /*
1746                  * Step 1: check whether we already finish on this one.
1747                  *
1748                  * If we have visited all the dependencies from this @lock to
1749                  * others (iow, if we have visited all lock_list entries in
1750                  * @lock->class->locks_{after,before}) we skip, otherwise go
1751                  * and visit all the dependencies in the list and mark this
1752                  * list accessed.
1753                  */
1754                 if (lock_accessed(lock))
1755                         continue;
1756                 else
1757                         mark_lock_accessed(lock);
1758
1759                 /*
1760                  * Step 2: check whether prev dependency and this form a strong
1761                  *         dependency path.
1762                  */
1763                 if (lock->parent) { /* Parent exists, check prev dependency */
1764                         u8 dep = lock->dep;
1765                         bool prev_only_xr = lock->parent->only_xr;
1766
1767                         /*
1768                          * Mask out all -(S*)-> if we only have *R in previous
1769                          * step, because -(*R)-> -(S*)-> don't make up a strong
1770                          * dependency.
1771                          */
1772                         if (prev_only_xr)
1773                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1774
1775                         /* If nothing left, we skip */
1776                         if (!dep)
1777                                 continue;
1778
1779                         /* If there are only -(*R)-> left, set that for the next step */
1780                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1781                 }
1782
1783                 /*
1784                  * Step 3: we haven't visited this and there is a strong
1785                  *         dependency path to this, so check with @match.
1786                  *         If @skip is provide and returns true, we skip this
1787                  *         lock (and any path this lock is in).
1788                  */
1789                 if (skip && skip(lock, data))
1790                         continue;
1791
1792                 if (match(lock, data)) {
1793                         *target_entry = lock;
1794                         return BFS_RMATCH;
1795                 }
1796
1797                 /*
1798                  * Step 4: if not match, expand the path by adding the
1799                  *         forward or backwards dependencies in the search
1800                  *
1801                  */
1802                 first = true;
1803                 head = get_dep_list(lock, offset);
1804                 list_for_each_entry_rcu(entry, head, entry) {
1805                         visit_lock_entry(entry, lock);
1806
1807                         /*
1808                          * Note we only enqueue the first of the list into the
1809                          * queue, because we can always find a sibling
1810                          * dependency from one (see __bfs_next()), as a result
1811                          * the space of queue is saved.
1812                          */
1813                         if (!first)
1814                                 continue;
1815
1816                         first = false;
1817
1818                         if (__cq_enqueue(cq, entry))
1819                                 return BFS_EQUEUEFULL;
1820
1821                         cq_depth = __cq_get_elem_count(cq);
1822                         if (max_bfs_queue_depth < cq_depth)
1823                                 max_bfs_queue_depth = cq_depth;
1824                 }
1825         }
1826
1827         return BFS_RNOMATCH;
1828 }
1829
1830 static inline enum bfs_result
1831 __bfs_forwards(struct lock_list *src_entry,
1832                void *data,
1833                bool (*match)(struct lock_list *entry, void *data),
1834                bool (*skip)(struct lock_list *entry, void *data),
1835                struct lock_list **target_entry)
1836 {
1837         return __bfs(src_entry, data, match, skip, target_entry,
1838                      offsetof(struct lock_class, locks_after));
1839
1840 }
1841
1842 static inline enum bfs_result
1843 __bfs_backwards(struct lock_list *src_entry,
1844                 void *data,
1845                 bool (*match)(struct lock_list *entry, void *data),
1846                bool (*skip)(struct lock_list *entry, void *data),
1847                 struct lock_list **target_entry)
1848 {
1849         return __bfs(src_entry, data, match, skip, target_entry,
1850                      offsetof(struct lock_class, locks_before));
1851
1852 }
1853
1854 static void print_lock_trace(const struct lock_trace *trace,
1855                              unsigned int spaces)
1856 {
1857         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1858 }
1859
1860 /*
1861  * Print a dependency chain entry (this is only done when a deadlock
1862  * has been detected):
1863  */
1864 static noinline void
1865 print_circular_bug_entry(struct lock_list *target, int depth)
1866 {
1867         if (debug_locks_silent)
1868                 return;
1869         printk("\n-> #%u", depth);
1870         print_lock_name(target->class);
1871         printk(KERN_CONT ":\n");
1872         print_lock_trace(target->trace, 6);
1873 }
1874
1875 static void
1876 print_circular_lock_scenario(struct held_lock *src,
1877                              struct held_lock *tgt,
1878                              struct lock_list *prt)
1879 {
1880         struct lock_class *source = hlock_class(src);
1881         struct lock_class *target = hlock_class(tgt);
1882         struct lock_class *parent = prt->class;
1883
1884         /*
1885          * A direct locking problem where unsafe_class lock is taken
1886          * directly by safe_class lock, then all we need to show
1887          * is the deadlock scenario, as it is obvious that the
1888          * unsafe lock is taken under the safe lock.
1889          *
1890          * But if there is a chain instead, where the safe lock takes
1891          * an intermediate lock (middle_class) where this lock is
1892          * not the same as the safe lock, then the lock chain is
1893          * used to describe the problem. Otherwise we would need
1894          * to show a different CPU case for each link in the chain
1895          * from the safe_class lock to the unsafe_class lock.
1896          */
1897         if (parent != source) {
1898                 printk("Chain exists of:\n  ");
1899                 __print_lock_name(source);
1900                 printk(KERN_CONT " --> ");
1901                 __print_lock_name(parent);
1902                 printk(KERN_CONT " --> ");
1903                 __print_lock_name(target);
1904                 printk(KERN_CONT "\n\n");
1905         }
1906
1907         printk(" Possible unsafe locking scenario:\n\n");
1908         printk("       CPU0                    CPU1\n");
1909         printk("       ----                    ----\n");
1910         printk("  lock(");
1911         __print_lock_name(target);
1912         printk(KERN_CONT ");\n");
1913         printk("                               lock(");
1914         __print_lock_name(parent);
1915         printk(KERN_CONT ");\n");
1916         printk("                               lock(");
1917         __print_lock_name(target);
1918         printk(KERN_CONT ");\n");
1919         printk("  lock(");
1920         __print_lock_name(source);
1921         printk(KERN_CONT ");\n");
1922         printk("\n *** DEADLOCK ***\n\n");
1923 }
1924
1925 /*
1926  * When a circular dependency is detected, print the
1927  * header first:
1928  */
1929 static noinline void
1930 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1931                         struct held_lock *check_src,
1932                         struct held_lock *check_tgt)
1933 {
1934         struct task_struct *curr = current;
1935
1936         if (debug_locks_silent)
1937                 return;
1938
1939         pr_warn("\n");
1940         pr_warn("======================================================\n");
1941         pr_warn("WARNING: possible circular locking dependency detected\n");
1942         print_kernel_ident();
1943         pr_warn("------------------------------------------------------\n");
1944         pr_warn("%s/%d is trying to acquire lock:\n",
1945                 curr->comm, task_pid_nr(curr));
1946         print_lock(check_src);
1947
1948         pr_warn("\nbut task is already holding lock:\n");
1949
1950         print_lock(check_tgt);
1951         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1952         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1953
1954         print_circular_bug_entry(entry, depth);
1955 }
1956
1957 /*
1958  * We are about to add A -> B into the dependency graph, and in __bfs() a
1959  * strong dependency path A -> .. -> B is found: hlock_class equals
1960  * entry->class.
1961  *
1962  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1963  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1964  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1965  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1966  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1967  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1968  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1969  *
1970  * We need to make sure both the start and the end of A -> .. -> B is not
1971  * weaker than A -> B. For the start part, please see the comment in
1972  * check_redundant(). For the end part, we need:
1973  *
1974  * Either
1975  *
1976  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1977  *
1978  * or
1979  *
1980  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1981  *
1982  */
1983 static inline bool hlock_equal(struct lock_list *entry, void *data)
1984 {
1985         struct held_lock *hlock = (struct held_lock *)data;
1986
1987         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1988                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1989                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1990 }
1991
1992 /*
1993  * We are about to add B -> A into the dependency graph, and in __bfs() a
1994  * strong dependency path A -> .. -> B is found: hlock_class equals
1995  * entry->class.
1996  *
1997  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1998  * dependency cycle, that means:
1999  *
2000  * Either
2001  *
2002  *     a) B -> A is -(E*)->
2003  *
2004  * or
2005  *
2006  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2007  *
2008  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2009  */
2010 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2011 {
2012         struct held_lock *hlock = (struct held_lock *)data;
2013
2014         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2015                (hlock->read == 0 || /* B -> A is -(E*)-> */
2016                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2017 }
2018
2019 static noinline void print_circular_bug(struct lock_list *this,
2020                                 struct lock_list *target,
2021                                 struct held_lock *check_src,
2022                                 struct held_lock *check_tgt)
2023 {
2024         struct task_struct *curr = current;
2025         struct lock_list *parent;
2026         struct lock_list *first_parent;
2027         int depth;
2028
2029         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2030                 return;
2031
2032         this->trace = save_trace();
2033         if (!this->trace)
2034                 return;
2035
2036         depth = get_lock_depth(target);
2037
2038         print_circular_bug_header(target, depth, check_src, check_tgt);
2039
2040         parent = get_lock_parent(target);
2041         first_parent = parent;
2042
2043         while (parent) {
2044                 print_circular_bug_entry(parent, --depth);
2045                 parent = get_lock_parent(parent);
2046         }
2047
2048         printk("\nother info that might help us debug this:\n\n");
2049         print_circular_lock_scenario(check_src, check_tgt,
2050                                      first_parent);
2051
2052         lockdep_print_held_locks(curr);
2053
2054         printk("\nstack backtrace:\n");
2055         dump_stack();
2056 }
2057
2058 static noinline void print_bfs_bug(int ret)
2059 {
2060         if (!debug_locks_off_graph_unlock())
2061                 return;
2062
2063         /*
2064          * Breadth-first-search failed, graph got corrupted?
2065          */
2066         WARN(1, "lockdep bfs error:%d\n", ret);
2067 }
2068
2069 static bool noop_count(struct lock_list *entry, void *data)
2070 {
2071         (*(unsigned long *)data)++;
2072         return false;
2073 }
2074
2075 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2076 {
2077         unsigned long  count = 0;
2078         struct lock_list *target_entry;
2079
2080         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2081
2082         return count;
2083 }
2084 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2085 {
2086         unsigned long ret, flags;
2087         struct lock_list this;
2088
2089         __bfs_init_root(&this, class);
2090
2091         raw_local_irq_save(flags);
2092         lockdep_lock();
2093         ret = __lockdep_count_forward_deps(&this);
2094         lockdep_unlock();
2095         raw_local_irq_restore(flags);
2096
2097         return ret;
2098 }
2099
2100 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2101 {
2102         unsigned long  count = 0;
2103         struct lock_list *target_entry;
2104
2105         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2106
2107         return count;
2108 }
2109
2110 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2111 {
2112         unsigned long ret, flags;
2113         struct lock_list this;
2114
2115         __bfs_init_root(&this, class);
2116
2117         raw_local_irq_save(flags);
2118         lockdep_lock();
2119         ret = __lockdep_count_backward_deps(&this);
2120         lockdep_unlock();
2121         raw_local_irq_restore(flags);
2122
2123         return ret;
2124 }
2125
2126 /*
2127  * Check that the dependency graph starting at <src> can lead to
2128  * <target> or not.
2129  */
2130 static noinline enum bfs_result
2131 check_path(struct held_lock *target, struct lock_list *src_entry,
2132            bool (*match)(struct lock_list *entry, void *data),
2133            bool (*skip)(struct lock_list *entry, void *data),
2134            struct lock_list **target_entry)
2135 {
2136         enum bfs_result ret;
2137
2138         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2139
2140         if (unlikely(bfs_error(ret)))
2141                 print_bfs_bug(ret);
2142
2143         return ret;
2144 }
2145
2146 /*
2147  * Prove that the dependency graph starting at <src> can not
2148  * lead to <target>. If it can, there is a circle when adding
2149  * <target> -> <src> dependency.
2150  *
2151  * Print an error and return BFS_RMATCH if it does.
2152  */
2153 static noinline enum bfs_result
2154 check_noncircular(struct held_lock *src, struct held_lock *target,
2155                   struct lock_trace **const trace)
2156 {
2157         enum bfs_result ret;
2158         struct lock_list *target_entry;
2159         struct lock_list src_entry;
2160
2161         bfs_init_root(&src_entry, src);
2162
2163         debug_atomic_inc(nr_cyclic_checks);
2164
2165         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2166
2167         if (unlikely(ret == BFS_RMATCH)) {
2168                 if (!*trace) {
2169                         /*
2170                          * If save_trace fails here, the printing might
2171                          * trigger a WARN but because of the !nr_entries it
2172                          * should not do bad things.
2173                          */
2174                         *trace = save_trace();
2175                 }
2176
2177                 print_circular_bug(&src_entry, target_entry, src, target);
2178         }
2179
2180         return ret;
2181 }
2182
2183 #ifdef CONFIG_TRACE_IRQFLAGS
2184
2185 /*
2186  * Forwards and backwards subgraph searching, for the purposes of
2187  * proving that two subgraphs can be connected by a new dependency
2188  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2189  *
2190  * A irq safe->unsafe deadlock happens with the following conditions:
2191  *
2192  * 1) We have a strong dependency path A -> ... -> B
2193  *
2194  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2195  *    irq can create a new dependency B -> A (consider the case that a holder
2196  *    of B gets interrupted by an irq whose handler will try to acquire A).
2197  *
2198  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2199  *    strong circle:
2200  *
2201  *      For the usage bits of B:
2202  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2203  *           ENABLED_IRQ usage suffices.
2204  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2205  *           ENABLED_IRQ_*_READ usage suffices.
2206  *
2207  *      For the usage bits of A:
2208  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2209  *           USED_IN_IRQ usage suffices.
2210  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2211  *           USED_IN_IRQ_*_READ usage suffices.
2212  */
2213
2214 /*
2215  * There is a strong dependency path in the dependency graph: A -> B, and now
2216  * we need to decide which usage bit of A should be accumulated to detect
2217  * safe->unsafe bugs.
2218  *
2219  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2220  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2221  *
2222  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2223  * path, any usage of A should be considered. Otherwise, we should only
2224  * consider _READ usage.
2225  */
2226 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2227 {
2228         if (!entry->only_xr)
2229                 *(unsigned long *)mask |= entry->class->usage_mask;
2230         else /* Mask out _READ usage bits */
2231                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2232
2233         return false;
2234 }
2235
2236 /*
2237  * There is a strong dependency path in the dependency graph: A -> B, and now
2238  * we need to decide which usage bit of B conflicts with the usage bits of A,
2239  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2240  *
2241  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2242  * path, any usage of B should be considered. Otherwise, we should only
2243  * consider _READ usage.
2244  */
2245 static inline bool usage_match(struct lock_list *entry, void *mask)
2246 {
2247         if (!entry->only_xr)
2248                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2249         else /* Mask out _READ usage bits */
2250                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2251 }
2252
2253 static inline bool usage_skip(struct lock_list *entry, void *mask)
2254 {
2255         /*
2256          * Skip local_lock() for irq inversion detection.
2257          *
2258          * For !RT, local_lock() is not a real lock, so it won't carry any
2259          * dependency.
2260          *
2261          * For RT, an irq inversion happens when we have lock A and B, and on
2262          * some CPU we can have:
2263          *
2264          *      lock(A);
2265          *      <interrupted>
2266          *        lock(B);
2267          *
2268          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2269          *
2270          * Now we prove local_lock() cannot exist in that dependency. First we
2271          * have the observation for any lock chain L1 -> ... -> Ln, for any
2272          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2273          * wait context check will complain. And since B is not a sleep lock,
2274          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2275          * local_lock() is 3, which is greater than 2, therefore there is no
2276          * way the local_lock() exists in the dependency B -> ... -> A.
2277          *
2278          * As a result, we will skip local_lock(), when we search for irq
2279          * inversion bugs.
2280          */
2281         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2282                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2283                         return false;
2284
2285                 return true;
2286         }
2287
2288         return false;
2289 }
2290
2291 /*
2292  * Find a node in the forwards-direction dependency sub-graph starting
2293  * at @root->class that matches @bit.
2294  *
2295  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2296  * into *@target_entry.
2297  */
2298 static enum bfs_result
2299 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2300                         struct lock_list **target_entry)
2301 {
2302         enum bfs_result result;
2303
2304         debug_atomic_inc(nr_find_usage_forwards_checks);
2305
2306         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2307
2308         return result;
2309 }
2310
2311 /*
2312  * Find a node in the backwards-direction dependency sub-graph starting
2313  * at @root->class that matches @bit.
2314  */
2315 static enum bfs_result
2316 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2317                         struct lock_list **target_entry)
2318 {
2319         enum bfs_result result;
2320
2321         debug_atomic_inc(nr_find_usage_backwards_checks);
2322
2323         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2324
2325         return result;
2326 }
2327
2328 static void print_lock_class_header(struct lock_class *class, int depth)
2329 {
2330         int bit;
2331
2332         printk("%*s->", depth, "");
2333         print_lock_name(class);
2334 #ifdef CONFIG_DEBUG_LOCKDEP
2335         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2336 #endif
2337         printk(KERN_CONT " {\n");
2338
2339         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2340                 if (class->usage_mask & (1 << bit)) {
2341                         int len = depth;
2342
2343                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2344                         len += printk(KERN_CONT " at:\n");
2345                         print_lock_trace(class->usage_traces[bit], len);
2346                 }
2347         }
2348         printk("%*s }\n", depth, "");
2349
2350         printk("%*s ... key      at: [<%px>] %pS\n",
2351                 depth, "", class->key, class->key);
2352 }
2353
2354 /*
2355  * Dependency path printing:
2356  *
2357  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2358  * printing out each lock in the dependency path will help on understanding how
2359  * the deadlock could happen. Here are some details about dependency path
2360  * printing:
2361  *
2362  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2363  *      for a lock dependency A -> B, there are two lock_lists:
2364  *
2365  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2366  *              ->links_to is A. In this case, we can say the lock_list is
2367  *              "A -> B" (forwards case).
2368  *
2369  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2370  *              and ->links_to is B. In this case, we can say the lock_list is
2371  *              "B <- A" (bacwards case).
2372  *
2373  *      The ->trace of both a) and b) point to the call trace where B was
2374  *      acquired with A held.
2375  *
2376  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2377  *      represent a certain lock dependency, it only provides an initial entry
2378  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2379  *      ->class is A, as a result BFS will search all dependencies starting with
2380  *      A, e.g. A -> B or A -> C.
2381  *
2382  *      The notation of a forwards helper lock_list is like "-> A", which means
2383  *      we should search the forwards dependencies starting with "A", e.g A -> B
2384  *      or A -> C.
2385  *
2386  *      The notation of a bacwards helper lock_list is like "<- B", which means
2387  *      we should search the backwards dependencies ending with "B", e.g.
2388  *      B <- A or B <- C.
2389  */
2390
2391 /*
2392  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2393  *
2394  * We have a lock dependency path as follow:
2395  *
2396  *    @root                                                                 @leaf
2397  *      |                                                                     |
2398  *      V                                                                     V
2399  *                ->parent                                   ->parent
2400  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2401  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2402  *
2403  * , so it's natural that we start from @leaf and print every ->class and
2404  * ->trace until we reach the @root.
2405  */
2406 static void __used
2407 print_shortest_lock_dependencies(struct lock_list *leaf,
2408                                  struct lock_list *root)
2409 {
2410         struct lock_list *entry = leaf;
2411         int depth;
2412
2413         /*compute depth from generated tree by BFS*/
2414         depth = get_lock_depth(leaf);
2415
2416         do {
2417                 print_lock_class_header(entry->class, depth);
2418                 printk("%*s ... acquired at:\n", depth, "");
2419                 print_lock_trace(entry->trace, 2);
2420                 printk("\n");
2421
2422                 if (depth == 0 && (entry != root)) {
2423                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2424                         break;
2425                 }
2426
2427                 entry = get_lock_parent(entry);
2428                 depth--;
2429         } while (entry && (depth >= 0));
2430 }
2431
2432 /*
2433  * printk the shortest lock dependencies from @leaf to @root.
2434  *
2435  * We have a lock dependency path (from a backwards search) as follow:
2436  *
2437  *    @leaf                                                                 @root
2438  *      |                                                                     |
2439  *      V                                                                     V
2440  *                ->parent                                   ->parent
2441  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2442  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2443  *
2444  * , so when we iterate from @leaf to @root, we actually print the lock
2445  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2446  *
2447  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2448  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2449  * trace of L1 in the dependency path, which is alright, because most of the
2450  * time we can figure out where L1 is held from the call trace of L2.
2451  */
2452 static void __used
2453 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2454                                            struct lock_list *root)
2455 {
2456         struct lock_list *entry = leaf;
2457         const struct lock_trace *trace = NULL;
2458         int depth;
2459
2460         /*compute depth from generated tree by BFS*/
2461         depth = get_lock_depth(leaf);
2462
2463         do {
2464                 print_lock_class_header(entry->class, depth);
2465                 if (trace) {
2466                         printk("%*s ... acquired at:\n", depth, "");
2467                         print_lock_trace(trace, 2);
2468                         printk("\n");
2469                 }
2470
2471                 /*
2472                  * Record the pointer to the trace for the next lock_list
2473                  * entry, see the comments for the function.
2474                  */
2475                 trace = entry->trace;
2476
2477                 if (depth == 0 && (entry != root)) {
2478                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2479                         break;
2480                 }
2481
2482                 entry = get_lock_parent(entry);
2483                 depth--;
2484         } while (entry && (depth >= 0));
2485 }
2486
2487 static void
2488 print_irq_lock_scenario(struct lock_list *safe_entry,
2489                         struct lock_list *unsafe_entry,
2490                         struct lock_class *prev_class,
2491                         struct lock_class *next_class)
2492 {
2493         struct lock_class *safe_class = safe_entry->class;
2494         struct lock_class *unsafe_class = unsafe_entry->class;
2495         struct lock_class *middle_class = prev_class;
2496
2497         if (middle_class == safe_class)
2498                 middle_class = next_class;
2499
2500         /*
2501          * A direct locking problem where unsafe_class lock is taken
2502          * directly by safe_class lock, then all we need to show
2503          * is the deadlock scenario, as it is obvious that the
2504          * unsafe lock is taken under the safe lock.
2505          *
2506          * But if there is a chain instead, where the safe lock takes
2507          * an intermediate lock (middle_class) where this lock is
2508          * not the same as the safe lock, then the lock chain is
2509          * used to describe the problem. Otherwise we would need
2510          * to show a different CPU case for each link in the chain
2511          * from the safe_class lock to the unsafe_class lock.
2512          */
2513         if (middle_class != unsafe_class) {
2514                 printk("Chain exists of:\n  ");
2515                 __print_lock_name(safe_class);
2516                 printk(KERN_CONT " --> ");
2517                 __print_lock_name(middle_class);
2518                 printk(KERN_CONT " --> ");
2519                 __print_lock_name(unsafe_class);
2520                 printk(KERN_CONT "\n\n");
2521         }
2522
2523         printk(" Possible interrupt unsafe locking scenario:\n\n");
2524         printk("       CPU0                    CPU1\n");
2525         printk("       ----                    ----\n");
2526         printk("  lock(");
2527         __print_lock_name(unsafe_class);
2528         printk(KERN_CONT ");\n");
2529         printk("                               local_irq_disable();\n");
2530         printk("                               lock(");
2531         __print_lock_name(safe_class);
2532         printk(KERN_CONT ");\n");
2533         printk("                               lock(");
2534         __print_lock_name(middle_class);
2535         printk(KERN_CONT ");\n");
2536         printk("  <Interrupt>\n");
2537         printk("    lock(");
2538         __print_lock_name(safe_class);
2539         printk(KERN_CONT ");\n");
2540         printk("\n *** DEADLOCK ***\n\n");
2541 }
2542
2543 static void
2544 print_bad_irq_dependency(struct task_struct *curr,
2545                          struct lock_list *prev_root,
2546                          struct lock_list *next_root,
2547                          struct lock_list *backwards_entry,
2548                          struct lock_list *forwards_entry,
2549                          struct held_lock *prev,
2550                          struct held_lock *next,
2551                          enum lock_usage_bit bit1,
2552                          enum lock_usage_bit bit2,
2553                          const char *irqclass)
2554 {
2555         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2556                 return;
2557
2558         pr_warn("\n");
2559         pr_warn("=====================================================\n");
2560         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2561                 irqclass, irqclass);
2562         print_kernel_ident();
2563         pr_warn("-----------------------------------------------------\n");
2564         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2565                 curr->comm, task_pid_nr(curr),
2566                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2567                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2568                 lockdep_hardirqs_enabled(),
2569                 curr->softirqs_enabled);
2570         print_lock(next);
2571
2572         pr_warn("\nand this task is already holding:\n");
2573         print_lock(prev);
2574         pr_warn("which would create a new lock dependency:\n");
2575         print_lock_name(hlock_class(prev));
2576         pr_cont(" ->");
2577         print_lock_name(hlock_class(next));
2578         pr_cont("\n");
2579
2580         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2581                 irqclass);
2582         print_lock_name(backwards_entry->class);
2583         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2584
2585         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2586
2587         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2588         print_lock_name(forwards_entry->class);
2589         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2590         pr_warn("...");
2591
2592         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2593
2594         pr_warn("\nother info that might help us debug this:\n\n");
2595         print_irq_lock_scenario(backwards_entry, forwards_entry,
2596                                 hlock_class(prev), hlock_class(next));
2597
2598         lockdep_print_held_locks(curr);
2599
2600         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2601         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2602
2603         pr_warn("\nthe dependencies between the lock to be acquired");
2604         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2605         next_root->trace = save_trace();
2606         if (!next_root->trace)
2607                 return;
2608         print_shortest_lock_dependencies(forwards_entry, next_root);
2609
2610         pr_warn("\nstack backtrace:\n");
2611         dump_stack();
2612 }
2613
2614 static const char *state_names[] = {
2615 #define LOCKDEP_STATE(__STATE) \
2616         __stringify(__STATE),
2617 #include "lockdep_states.h"
2618 #undef LOCKDEP_STATE
2619 };
2620
2621 static const char *state_rnames[] = {
2622 #define LOCKDEP_STATE(__STATE) \
2623         __stringify(__STATE)"-READ",
2624 #include "lockdep_states.h"
2625 #undef LOCKDEP_STATE
2626 };
2627
2628 static inline const char *state_name(enum lock_usage_bit bit)
2629 {
2630         if (bit & LOCK_USAGE_READ_MASK)
2631                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2632         else
2633                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2634 }
2635
2636 /*
2637  * The bit number is encoded like:
2638  *
2639  *  bit0: 0 exclusive, 1 read lock
2640  *  bit1: 0 used in irq, 1 irq enabled
2641  *  bit2-n: state
2642  */
2643 static int exclusive_bit(int new_bit)
2644 {
2645         int state = new_bit & LOCK_USAGE_STATE_MASK;
2646         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2647
2648         /*
2649          * keep state, bit flip the direction and strip read.
2650          */
2651         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2652 }
2653
2654 /*
2655  * Observe that when given a bitmask where each bitnr is encoded as above, a
2656  * right shift of the mask transforms the individual bitnrs as -1 and
2657  * conversely, a left shift transforms into +1 for the individual bitnrs.
2658  *
2659  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2660  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2661  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2662  *
2663  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2664  *
2665  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2666  * all bits set) and recompose with bitnr1 flipped.
2667  */
2668 static unsigned long invert_dir_mask(unsigned long mask)
2669 {
2670         unsigned long excl = 0;
2671
2672         /* Invert dir */
2673         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2674         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2675
2676         return excl;
2677 }
2678
2679 /*
2680  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2681  * usage may cause deadlock too, for example:
2682  *
2683  * P1                           P2
2684  * <irq disabled>
2685  * write_lock(l1);              <irq enabled>
2686  *                              read_lock(l2);
2687  * write_lock(l2);
2688  *                              <in irq>
2689  *                              read_lock(l1);
2690  *
2691  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2692  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2693  * deadlock.
2694  *
2695  * In fact, all of the following cases may cause deadlocks:
2696  *
2697  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2698  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2699  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2700  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2701  *
2702  * As a result, to calculate the "exclusive mask", first we invert the
2703  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2704  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2705  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2706  */
2707 static unsigned long exclusive_mask(unsigned long mask)
2708 {
2709         unsigned long excl = invert_dir_mask(mask);
2710
2711         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2712         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2713
2714         return excl;
2715 }
2716
2717 /*
2718  * Retrieve the _possible_ original mask to which @mask is
2719  * exclusive. Ie: this is the opposite of exclusive_mask().
2720  * Note that 2 possible original bits can match an exclusive
2721  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2722  * cleared. So both are returned for each exclusive bit.
2723  */
2724 static unsigned long original_mask(unsigned long mask)
2725 {
2726         unsigned long excl = invert_dir_mask(mask);
2727
2728         /* Include read in existing usages */
2729         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2730         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2731
2732         return excl;
2733 }
2734
2735 /*
2736  * Find the first pair of bit match between an original
2737  * usage mask and an exclusive usage mask.
2738  */
2739 static int find_exclusive_match(unsigned long mask,
2740                                 unsigned long excl_mask,
2741                                 enum lock_usage_bit *bitp,
2742                                 enum lock_usage_bit *excl_bitp)
2743 {
2744         int bit, excl, excl_read;
2745
2746         for_each_set_bit(bit, &mask, LOCK_USED) {
2747                 /*
2748                  * exclusive_bit() strips the read bit, however,
2749                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2750                  * to search excl | LOCK_USAGE_READ_MASK as well.
2751                  */
2752                 excl = exclusive_bit(bit);
2753                 excl_read = excl | LOCK_USAGE_READ_MASK;
2754                 if (excl_mask & lock_flag(excl)) {
2755                         *bitp = bit;
2756                         *excl_bitp = excl;
2757                         return 0;
2758                 } else if (excl_mask & lock_flag(excl_read)) {
2759                         *bitp = bit;
2760                         *excl_bitp = excl_read;
2761                         return 0;
2762                 }
2763         }
2764         return -1;
2765 }
2766
2767 /*
2768  * Prove that the new dependency does not connect a hardirq-safe(-read)
2769  * lock with a hardirq-unsafe lock - to achieve this we search
2770  * the backwards-subgraph starting at <prev>, and the
2771  * forwards-subgraph starting at <next>:
2772  */
2773 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2774                            struct held_lock *next)
2775 {
2776         unsigned long usage_mask = 0, forward_mask, backward_mask;
2777         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2778         struct lock_list *target_entry1;
2779         struct lock_list *target_entry;
2780         struct lock_list this, that;
2781         enum bfs_result ret;
2782
2783         /*
2784          * Step 1: gather all hard/soft IRQs usages backward in an
2785          * accumulated usage mask.
2786          */
2787         bfs_init_rootb(&this, prev);
2788
2789         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2790         if (bfs_error(ret)) {
2791                 print_bfs_bug(ret);
2792                 return 0;
2793         }
2794
2795         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2796         if (!usage_mask)
2797                 return 1;
2798
2799         /*
2800          * Step 2: find exclusive uses forward that match the previous
2801          * backward accumulated mask.
2802          */
2803         forward_mask = exclusive_mask(usage_mask);
2804
2805         bfs_init_root(&that, next);
2806
2807         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2808         if (bfs_error(ret)) {
2809                 print_bfs_bug(ret);
2810                 return 0;
2811         }
2812         if (ret == BFS_RNOMATCH)
2813                 return 1;
2814
2815         /*
2816          * Step 3: we found a bad match! Now retrieve a lock from the backward
2817          * list whose usage mask matches the exclusive usage mask from the
2818          * lock found on the forward list.
2819          *
2820          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2821          * the follow case:
2822          *
2823          * When trying to add A -> B to the graph, we find that there is a
2824          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2825          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2826          * invert bits of M's usage_mask, we will find another lock N that is
2827          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2828          * cause a inversion deadlock.
2829          */
2830         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2831
2832         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2833         if (bfs_error(ret)) {
2834                 print_bfs_bug(ret);
2835                 return 0;
2836         }
2837         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2838                 return 1;
2839
2840         /*
2841          * Step 4: narrow down to a pair of incompatible usage bits
2842          * and report it.
2843          */
2844         ret = find_exclusive_match(target_entry->class->usage_mask,
2845                                    target_entry1->class->usage_mask,
2846                                    &backward_bit, &forward_bit);
2847         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2848                 return 1;
2849
2850         print_bad_irq_dependency(curr, &this, &that,
2851                                  target_entry, target_entry1,
2852                                  prev, next,
2853                                  backward_bit, forward_bit,
2854                                  state_name(backward_bit));
2855
2856         return 0;
2857 }
2858
2859 #else
2860
2861 static inline int check_irq_usage(struct task_struct *curr,
2862                                   struct held_lock *prev, struct held_lock *next)
2863 {
2864         return 1;
2865 }
2866
2867 static inline bool usage_skip(struct lock_list *entry, void *mask)
2868 {
2869         return false;
2870 }
2871
2872 #endif /* CONFIG_TRACE_IRQFLAGS */
2873
2874 #ifdef CONFIG_LOCKDEP_SMALL
2875 /*
2876  * Check that the dependency graph starting at <src> can lead to
2877  * <target> or not. If it can, <src> -> <target> dependency is already
2878  * in the graph.
2879  *
2880  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2881  * any error appears in the bfs search.
2882  */
2883 static noinline enum bfs_result
2884 check_redundant(struct held_lock *src, struct held_lock *target)
2885 {
2886         enum bfs_result ret;
2887         struct lock_list *target_entry;
2888         struct lock_list src_entry;
2889
2890         bfs_init_root(&src_entry, src);
2891         /*
2892          * Special setup for check_redundant().
2893          *
2894          * To report redundant, we need to find a strong dependency path that
2895          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2896          * we need to let __bfs() only search for a path starting at a -(E*)->,
2897          * we achieve this by setting the initial node's ->only_xr to true in
2898          * that case. And if <prev> is S, we set initial ->only_xr to false
2899          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2900          */
2901         src_entry.only_xr = src->read == 0;
2902
2903         debug_atomic_inc(nr_redundant_checks);
2904
2905         /*
2906          * Note: we skip local_lock() for redundant check, because as the
2907          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2908          * the same.
2909          */
2910         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2911
2912         if (ret == BFS_RMATCH)
2913                 debug_atomic_inc(nr_redundant);
2914
2915         return ret;
2916 }
2917
2918 #else
2919
2920 static inline enum bfs_result
2921 check_redundant(struct held_lock *src, struct held_lock *target)
2922 {
2923         return BFS_RNOMATCH;
2924 }
2925
2926 #endif
2927
2928 static void inc_chains(int irq_context)
2929 {
2930         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2931                 nr_hardirq_chains++;
2932         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2933                 nr_softirq_chains++;
2934         else
2935                 nr_process_chains++;
2936 }
2937
2938 static void dec_chains(int irq_context)
2939 {
2940         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2941                 nr_hardirq_chains--;
2942         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2943                 nr_softirq_chains--;
2944         else
2945                 nr_process_chains--;
2946 }
2947
2948 static void
2949 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2950 {
2951         struct lock_class *next = hlock_class(nxt);
2952         struct lock_class *prev = hlock_class(prv);
2953
2954         printk(" Possible unsafe locking scenario:\n\n");
2955         printk("       CPU0\n");
2956         printk("       ----\n");
2957         printk("  lock(");
2958         __print_lock_name(prev);
2959         printk(KERN_CONT ");\n");
2960         printk("  lock(");
2961         __print_lock_name(next);
2962         printk(KERN_CONT ");\n");
2963         printk("\n *** DEADLOCK ***\n\n");
2964         printk(" May be due to missing lock nesting notation\n\n");
2965 }
2966
2967 static void
2968 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2969                    struct held_lock *next)
2970 {
2971         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2972                 return;
2973
2974         pr_warn("\n");
2975         pr_warn("============================================\n");
2976         pr_warn("WARNING: possible recursive locking detected\n");
2977         print_kernel_ident();
2978         pr_warn("--------------------------------------------\n");
2979         pr_warn("%s/%d is trying to acquire lock:\n",
2980                 curr->comm, task_pid_nr(curr));
2981         print_lock(next);
2982         pr_warn("\nbut task is already holding lock:\n");
2983         print_lock(prev);
2984
2985         pr_warn("\nother info that might help us debug this:\n");
2986         print_deadlock_scenario(next, prev);
2987         lockdep_print_held_locks(curr);
2988
2989         pr_warn("\nstack backtrace:\n");
2990         dump_stack();
2991 }
2992
2993 /*
2994  * Check whether we are holding such a class already.
2995  *
2996  * (Note that this has to be done separately, because the graph cannot
2997  * detect such classes of deadlocks.)
2998  *
2999  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3000  * lock class is held but nest_lock is also held, i.e. we rely on the
3001  * nest_lock to avoid the deadlock.
3002  */
3003 static int
3004 check_deadlock(struct task_struct *curr, struct held_lock *next)
3005 {
3006         struct held_lock *prev;
3007         struct held_lock *nest = NULL;
3008         int i;
3009
3010         for (i = 0; i < curr->lockdep_depth; i++) {
3011                 prev = curr->held_locks + i;
3012
3013                 if (prev->instance == next->nest_lock)
3014                         nest = prev;
3015
3016                 if (hlock_class(prev) != hlock_class(next))
3017                         continue;
3018
3019                 /*
3020                  * Allow read-after-read recursion of the same
3021                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
3022                  */
3023                 if ((next->read == 2) && prev->read)
3024                         continue;
3025
3026                 /*
3027                  * We're holding the nest_lock, which serializes this lock's
3028                  * nesting behaviour.
3029                  */
3030                 if (nest)
3031                         return 2;
3032
3033                 print_deadlock_bug(curr, prev, next);
3034                 return 0;
3035         }
3036         return 1;
3037 }
3038
3039 /*
3040  * There was a chain-cache miss, and we are about to add a new dependency
3041  * to a previous lock. We validate the following rules:
3042  *
3043  *  - would the adding of the <prev> -> <next> dependency create a
3044  *    circular dependency in the graph? [== circular deadlock]
3045  *
3046  *  - does the new prev->next dependency connect any hardirq-safe lock
3047  *    (in the full backwards-subgraph starting at <prev>) with any
3048  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3049  *    <next>)? [== illegal lock inversion with hardirq contexts]
3050  *
3051  *  - does the new prev->next dependency connect any softirq-safe lock
3052  *    (in the full backwards-subgraph starting at <prev>) with any
3053  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3054  *    <next>)? [== illegal lock inversion with softirq contexts]
3055  *
3056  * any of these scenarios could lead to a deadlock.
3057  *
3058  * Then if all the validations pass, we add the forwards and backwards
3059  * dependency.
3060  */
3061 static int
3062 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3063                struct held_lock *next, u16 distance,
3064                struct lock_trace **const trace)
3065 {
3066         struct lock_list *entry;
3067         enum bfs_result ret;
3068
3069         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3070                 /*
3071                  * The warning statements below may trigger a use-after-free
3072                  * of the class name. It is better to trigger a use-after free
3073                  * and to have the class name most of the time instead of not
3074                  * having the class name available.
3075                  */
3076                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3077                           "Detected use-after-free of lock class %px/%s\n",
3078                           hlock_class(prev),
3079                           hlock_class(prev)->name);
3080                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3081                           "Detected use-after-free of lock class %px/%s\n",
3082                           hlock_class(next),
3083                           hlock_class(next)->name);
3084                 return 2;
3085         }
3086
3087         /*
3088          * Prove that the new <prev> -> <next> dependency would not
3089          * create a circular dependency in the graph. (We do this by
3090          * a breadth-first search into the graph starting at <next>,
3091          * and check whether we can reach <prev>.)
3092          *
3093          * The search is limited by the size of the circular queue (i.e.,
3094          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3095          * in the graph whose neighbours are to be checked.
3096          */
3097         ret = check_noncircular(next, prev, trace);
3098         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3099                 return 0;
3100
3101         if (!check_irq_usage(curr, prev, next))
3102                 return 0;
3103
3104         /*
3105          * Is the <prev> -> <next> dependency already present?
3106          *
3107          * (this may occur even though this is a new chain: consider
3108          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3109          *  chains - the second one will be new, but L1 already has
3110          *  L2 added to its dependency list, due to the first chain.)
3111          */
3112         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3113                 if (entry->class == hlock_class(next)) {
3114                         if (distance == 1)
3115                                 entry->distance = 1;
3116                         entry->dep |= calc_dep(prev, next);
3117
3118                         /*
3119                          * Also, update the reverse dependency in @next's
3120                          * ->locks_before list.
3121                          *
3122                          *  Here we reuse @entry as the cursor, which is fine
3123                          *  because we won't go to the next iteration of the
3124                          *  outer loop:
3125                          *
3126                          *  For normal cases, we return in the inner loop.
3127                          *
3128                          *  If we fail to return, we have inconsistency, i.e.
3129                          *  <prev>::locks_after contains <next> while
3130                          *  <next>::locks_before doesn't contain <prev>. In
3131                          *  that case, we return after the inner and indicate
3132                          *  something is wrong.
3133                          */
3134                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3135                                 if (entry->class == hlock_class(prev)) {
3136                                         if (distance == 1)
3137                                                 entry->distance = 1;
3138                                         entry->dep |= calc_depb(prev, next);
3139                                         return 1;
3140                                 }
3141                         }
3142
3143                         /* <prev> is not found in <next>::locks_before */
3144                         return 0;
3145                 }
3146         }
3147
3148         /*
3149          * Is the <prev> -> <next> link redundant?
3150          */
3151         ret = check_redundant(prev, next);
3152         if (bfs_error(ret))
3153                 return 0;
3154         else if (ret == BFS_RMATCH)
3155                 return 2;
3156
3157         if (!*trace) {
3158                 *trace = save_trace();
3159                 if (!*trace)
3160                         return 0;
3161         }
3162
3163         /*
3164          * Ok, all validations passed, add the new lock
3165          * to the previous lock's dependency list:
3166          */
3167         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3168                                &hlock_class(prev)->locks_after, distance,
3169                                calc_dep(prev, next), *trace);
3170
3171         if (!ret)
3172                 return 0;
3173
3174         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3175                                &hlock_class(next)->locks_before, distance,
3176                                calc_depb(prev, next), *trace);
3177         if (!ret)
3178                 return 0;
3179
3180         return 2;
3181 }
3182
3183 /*
3184  * Add the dependency to all directly-previous locks that are 'relevant'.
3185  * The ones that are relevant are (in increasing distance from curr):
3186  * all consecutive trylock entries and the final non-trylock entry - or
3187  * the end of this context's lock-chain - whichever comes first.
3188  */
3189 static int
3190 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3191 {
3192         struct lock_trace *trace = NULL;
3193         int depth = curr->lockdep_depth;
3194         struct held_lock *hlock;
3195
3196         /*
3197          * Debugging checks.
3198          *
3199          * Depth must not be zero for a non-head lock:
3200          */
3201         if (!depth)
3202                 goto out_bug;
3203         /*
3204          * At least two relevant locks must exist for this
3205          * to be a head:
3206          */
3207         if (curr->held_locks[depth].irq_context !=
3208                         curr->held_locks[depth-1].irq_context)
3209                 goto out_bug;
3210
3211         for (;;) {
3212                 u16 distance = curr->lockdep_depth - depth + 1;
3213                 hlock = curr->held_locks + depth - 1;
3214
3215                 if (hlock->check) {
3216                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3217                         if (!ret)
3218                                 return 0;
3219
3220                         /*
3221                          * Stop after the first non-trylock entry,
3222                          * as non-trylock entries have added their
3223                          * own direct dependencies already, so this
3224                          * lock is connected to them indirectly:
3225                          */
3226                         if (!hlock->trylock)
3227                                 break;
3228                 }
3229
3230                 depth--;
3231                 /*
3232                  * End of lock-stack?
3233                  */
3234                 if (!depth)
3235                         break;
3236                 /*
3237                  * Stop the search if we cross into another context:
3238                  */
3239                 if (curr->held_locks[depth].irq_context !=
3240                                 curr->held_locks[depth-1].irq_context)
3241                         break;
3242         }
3243         return 1;
3244 out_bug:
3245         if (!debug_locks_off_graph_unlock())
3246                 return 0;
3247
3248         /*
3249          * Clearly we all shouldn't be here, but since we made it we
3250          * can reliable say we messed up our state. See the above two
3251          * gotos for reasons why we could possibly end up here.
3252          */
3253         WARN_ON(1);
3254
3255         return 0;
3256 }
3257
3258 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3259 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3260 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3261 unsigned long nr_zapped_lock_chains;
3262 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3263 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3264 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3265
3266 /*
3267  * The first 2 chain_hlocks entries in the chain block in the bucket
3268  * list contains the following meta data:
3269  *
3270  *   entry[0]:
3271  *     Bit    15 - always set to 1 (it is not a class index)
3272  *     Bits 0-14 - upper 15 bits of the next block index
3273  *   entry[1]    - lower 16 bits of next block index
3274  *
3275  * A next block index of all 1 bits means it is the end of the list.
3276  *
3277  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3278  * the chain block size:
3279  *
3280  *   entry[2] - upper 16 bits of the chain block size
3281  *   entry[3] - lower 16 bits of the chain block size
3282  */
3283 #define MAX_CHAIN_BUCKETS       16
3284 #define CHAIN_BLK_FLAG          (1U << 15)
3285 #define CHAIN_BLK_LIST_END      0xFFFFU
3286
3287 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3288
3289 static inline int size_to_bucket(int size)
3290 {
3291         if (size > MAX_CHAIN_BUCKETS)
3292                 return 0;
3293
3294         return size - 1;
3295 }
3296
3297 /*
3298  * Iterate all the chain blocks in a bucket.
3299  */
3300 #define for_each_chain_block(bucket, prev, curr)                \
3301         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3302              (curr) >= 0;                                       \
3303              (prev) = (curr), (curr) = chain_block_next(curr))
3304
3305 /*
3306  * next block or -1
3307  */
3308 static inline int chain_block_next(int offset)
3309 {
3310         int next = chain_hlocks[offset];
3311
3312         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3313
3314         if (next == CHAIN_BLK_LIST_END)
3315                 return -1;
3316
3317         next &= ~CHAIN_BLK_FLAG;
3318         next <<= 16;
3319         next |= chain_hlocks[offset + 1];
3320
3321         return next;
3322 }
3323
3324 /*
3325  * bucket-0 only
3326  */
3327 static inline int chain_block_size(int offset)
3328 {
3329         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3330 }
3331
3332 static inline void init_chain_block(int offset, int next, int bucket, int size)
3333 {
3334         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3335         chain_hlocks[offset + 1] = (u16)next;
3336
3337         if (size && !bucket) {
3338                 chain_hlocks[offset + 2] = size >> 16;
3339                 chain_hlocks[offset + 3] = (u16)size;
3340         }
3341 }
3342
3343 static inline void add_chain_block(int offset, int size)
3344 {
3345         int bucket = size_to_bucket(size);
3346         int next = chain_block_buckets[bucket];
3347         int prev, curr;
3348
3349         if (unlikely(size < 2)) {
3350                 /*
3351                  * We can't store single entries on the freelist. Leak them.
3352                  *
3353                  * One possible way out would be to uniquely mark them, other
3354                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3355                  * the block before it is re-added.
3356                  */
3357                 if (size)
3358                         nr_lost_chain_hlocks++;
3359                 return;
3360         }
3361
3362         nr_free_chain_hlocks += size;
3363         if (!bucket) {
3364                 nr_large_chain_blocks++;
3365
3366                 /*
3367                  * Variable sized, sort large to small.
3368                  */
3369                 for_each_chain_block(0, prev, curr) {
3370                         if (size >= chain_block_size(curr))
3371                                 break;
3372                 }
3373                 init_chain_block(offset, curr, 0, size);
3374                 if (prev < 0)
3375                         chain_block_buckets[0] = offset;
3376                 else
3377                         init_chain_block(prev, offset, 0, 0);
3378                 return;
3379         }
3380         /*
3381          * Fixed size, add to head.
3382          */
3383         init_chain_block(offset, next, bucket, size);
3384         chain_block_buckets[bucket] = offset;
3385 }
3386
3387 /*
3388  * Only the first block in the list can be deleted.
3389  *
3390  * For the variable size bucket[0], the first block (the largest one) is
3391  * returned, broken up and put back into the pool. So if a chain block of
3392  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3393  * queued up after the primordial chain block and never be used until the
3394  * hlock entries in the primordial chain block is almost used up. That
3395  * causes fragmentation and reduce allocation efficiency. That can be
3396  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3397  */
3398 static inline void del_chain_block(int bucket, int size, int next)
3399 {
3400         nr_free_chain_hlocks -= size;
3401         chain_block_buckets[bucket] = next;
3402
3403         if (!bucket)
3404                 nr_large_chain_blocks--;
3405 }
3406
3407 static void init_chain_block_buckets(void)
3408 {
3409         int i;
3410
3411         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3412                 chain_block_buckets[i] = -1;
3413
3414         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3415 }
3416
3417 /*
3418  * Return offset of a chain block of the right size or -1 if not found.
3419  *
3420  * Fairly simple worst-fit allocator with the addition of a number of size
3421  * specific free lists.
3422  */
3423 static int alloc_chain_hlocks(int req)
3424 {
3425         int bucket, curr, size;
3426
3427         /*
3428          * We rely on the MSB to act as an escape bit to denote freelist
3429          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3430          */
3431         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3432
3433         init_data_structures_once();
3434
3435         if (nr_free_chain_hlocks < req)
3436                 return -1;
3437
3438         /*
3439          * We require a minimum of 2 (u16) entries to encode a freelist
3440          * 'pointer'.
3441          */
3442         req = max(req, 2);
3443         bucket = size_to_bucket(req);
3444         curr = chain_block_buckets[bucket];
3445
3446         if (bucket) {
3447                 if (curr >= 0) {
3448                         del_chain_block(bucket, req, chain_block_next(curr));
3449                         return curr;
3450                 }
3451                 /* Try bucket 0 */
3452                 curr = chain_block_buckets[0];
3453         }
3454
3455         /*
3456          * The variable sized freelist is sorted by size; the first entry is
3457          * the largest. Use it if it fits.
3458          */
3459         if (curr >= 0) {
3460                 size = chain_block_size(curr);
3461                 if (likely(size >= req)) {
3462                         del_chain_block(0, size, chain_block_next(curr));
3463                         add_chain_block(curr + req, size - req);
3464                         return curr;
3465                 }
3466         }
3467
3468         /*
3469          * Last resort, split a block in a larger sized bucket.
3470          */
3471         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3472                 bucket = size_to_bucket(size);
3473                 curr = chain_block_buckets[bucket];
3474                 if (curr < 0)
3475                         continue;
3476
3477                 del_chain_block(bucket, size, chain_block_next(curr));
3478                 add_chain_block(curr + req, size - req);
3479                 return curr;
3480         }
3481
3482         return -1;
3483 }
3484
3485 static inline void free_chain_hlocks(int base, int size)
3486 {
3487         add_chain_block(base, max(size, 2));
3488 }
3489
3490 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3491 {
3492         u16 chain_hlock = chain_hlocks[chain->base + i];
3493         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3494
3495         return lock_classes + class_idx;
3496 }
3497
3498 /*
3499  * Returns the index of the first held_lock of the current chain
3500  */
3501 static inline int get_first_held_lock(struct task_struct *curr,
3502                                         struct held_lock *hlock)
3503 {
3504         int i;
3505         struct held_lock *hlock_curr;
3506
3507         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3508                 hlock_curr = curr->held_locks + i;
3509                 if (hlock_curr->irq_context != hlock->irq_context)
3510                         break;
3511
3512         }
3513
3514         return ++i;
3515 }
3516
3517 #ifdef CONFIG_DEBUG_LOCKDEP
3518 /*
3519  * Returns the next chain_key iteration
3520  */
3521 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3522 {
3523         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3524
3525         printk(" hlock_id:%d -> chain_key:%016Lx",
3526                 (unsigned int)hlock_id,
3527                 (unsigned long long)new_chain_key);
3528         return new_chain_key;
3529 }
3530
3531 static void
3532 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3533 {
3534         struct held_lock *hlock;
3535         u64 chain_key = INITIAL_CHAIN_KEY;
3536         int depth = curr->lockdep_depth;
3537         int i = get_first_held_lock(curr, hlock_next);
3538
3539         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3540                 hlock_next->irq_context);
3541         for (; i < depth; i++) {
3542                 hlock = curr->held_locks + i;
3543                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3544
3545                 print_lock(hlock);
3546         }
3547
3548         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3549         print_lock(hlock_next);
3550 }
3551
3552 static void print_chain_keys_chain(struct lock_chain *chain)
3553 {
3554         int i;
3555         u64 chain_key = INITIAL_CHAIN_KEY;
3556         u16 hlock_id;
3557
3558         printk("depth: %u\n", chain->depth);
3559         for (i = 0; i < chain->depth; i++) {
3560                 hlock_id = chain_hlocks[chain->base + i];
3561                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3562
3563                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3564                 printk("\n");
3565         }
3566 }
3567
3568 static void print_collision(struct task_struct *curr,
3569                         struct held_lock *hlock_next,
3570                         struct lock_chain *chain)
3571 {
3572         pr_warn("\n");
3573         pr_warn("============================\n");
3574         pr_warn("WARNING: chain_key collision\n");
3575         print_kernel_ident();
3576         pr_warn("----------------------------\n");
3577         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3578         pr_warn("Hash chain already cached but the contents don't match!\n");
3579
3580         pr_warn("Held locks:");
3581         print_chain_keys_held_locks(curr, hlock_next);
3582
3583         pr_warn("Locks in cached chain:");
3584         print_chain_keys_chain(chain);
3585
3586         pr_warn("\nstack backtrace:\n");
3587         dump_stack();
3588 }
3589 #endif
3590
3591 /*
3592  * Checks whether the chain and the current held locks are consistent
3593  * in depth and also in content. If they are not it most likely means
3594  * that there was a collision during the calculation of the chain_key.
3595  * Returns: 0 not passed, 1 passed
3596  */
3597 static int check_no_collision(struct task_struct *curr,
3598                         struct held_lock *hlock,
3599                         struct lock_chain *chain)
3600 {
3601 #ifdef CONFIG_DEBUG_LOCKDEP
3602         int i, j, id;
3603
3604         i = get_first_held_lock(curr, hlock);
3605
3606         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3607                 print_collision(curr, hlock, chain);
3608                 return 0;
3609         }
3610
3611         for (j = 0; j < chain->depth - 1; j++, i++) {
3612                 id = hlock_id(&curr->held_locks[i]);
3613
3614                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3615                         print_collision(curr, hlock, chain);
3616                         return 0;
3617                 }
3618         }
3619 #endif
3620         return 1;
3621 }
3622
3623 /*
3624  * Given an index that is >= -1, return the index of the next lock chain.
3625  * Return -2 if there is no next lock chain.
3626  */
3627 long lockdep_next_lockchain(long i)
3628 {
3629         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3630         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3631 }
3632
3633 unsigned long lock_chain_count(void)
3634 {
3635         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3636 }
3637
3638 /* Must be called with the graph lock held. */
3639 static struct lock_chain *alloc_lock_chain(void)
3640 {
3641         int idx = find_first_zero_bit(lock_chains_in_use,
3642                                       ARRAY_SIZE(lock_chains));
3643
3644         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3645                 return NULL;
3646         __set_bit(idx, lock_chains_in_use);
3647         return lock_chains + idx;
3648 }
3649
3650 /*
3651  * Adds a dependency chain into chain hashtable. And must be called with
3652  * graph_lock held.
3653  *
3654  * Return 0 if fail, and graph_lock is released.
3655  * Return 1 if succeed, with graph_lock held.
3656  */
3657 static inline int add_chain_cache(struct task_struct *curr,
3658                                   struct held_lock *hlock,
3659                                   u64 chain_key)
3660 {
3661         struct hlist_head *hash_head = chainhashentry(chain_key);
3662         struct lock_chain *chain;
3663         int i, j;
3664
3665         /*
3666          * The caller must hold the graph lock, ensure we've got IRQs
3667          * disabled to make this an IRQ-safe lock.. for recursion reasons
3668          * lockdep won't complain about its own locking errors.
3669          */
3670         if (lockdep_assert_locked())
3671                 return 0;
3672
3673         chain = alloc_lock_chain();
3674         if (!chain) {
3675                 if (!debug_locks_off_graph_unlock())
3676                         return 0;
3677
3678                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3679                 dump_stack();
3680                 return 0;
3681         }
3682         chain->chain_key = chain_key;
3683         chain->irq_context = hlock->irq_context;
3684         i = get_first_held_lock(curr, hlock);
3685         chain->depth = curr->lockdep_depth + 1 - i;
3686
3687         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3688         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3689         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3690
3691         j = alloc_chain_hlocks(chain->depth);
3692         if (j < 0) {
3693                 if (!debug_locks_off_graph_unlock())
3694                         return 0;
3695
3696                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3697                 dump_stack();
3698                 return 0;
3699         }
3700
3701         chain->base = j;
3702         for (j = 0; j < chain->depth - 1; j++, i++) {
3703                 int lock_id = hlock_id(curr->held_locks + i);
3704
3705                 chain_hlocks[chain->base + j] = lock_id;
3706         }
3707         chain_hlocks[chain->base + j] = hlock_id(hlock);
3708         hlist_add_head_rcu(&chain->entry, hash_head);
3709         debug_atomic_inc(chain_lookup_misses);
3710         inc_chains(chain->irq_context);
3711
3712         return 1;
3713 }
3714
3715 /*
3716  * Look up a dependency chain. Must be called with either the graph lock or
3717  * the RCU read lock held.
3718  */
3719 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3720 {
3721         struct hlist_head *hash_head = chainhashentry(chain_key);
3722         struct lock_chain *chain;
3723
3724         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3725                 if (READ_ONCE(chain->chain_key) == chain_key) {
3726                         debug_atomic_inc(chain_lookup_hits);
3727                         return chain;
3728                 }
3729         }
3730         return NULL;
3731 }
3732
3733 /*
3734  * If the key is not present yet in dependency chain cache then
3735  * add it and return 1 - in this case the new dependency chain is
3736  * validated. If the key is already hashed, return 0.
3737  * (On return with 1 graph_lock is held.)
3738  */
3739 static inline int lookup_chain_cache_add(struct task_struct *curr,
3740                                          struct held_lock *hlock,
3741                                          u64 chain_key)
3742 {
3743         struct lock_class *class = hlock_class(hlock);
3744         struct lock_chain *chain = lookup_chain_cache(chain_key);
3745
3746         if (chain) {
3747 cache_hit:
3748                 if (!check_no_collision(curr, hlock, chain))
3749                         return 0;
3750
3751                 if (very_verbose(class)) {
3752                         printk("\nhash chain already cached, key: "
3753                                         "%016Lx tail class: [%px] %s\n",
3754                                         (unsigned long long)chain_key,
3755                                         class->key, class->name);
3756                 }
3757
3758                 return 0;
3759         }
3760
3761         if (very_verbose(class)) {
3762                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3763                         (unsigned long long)chain_key, class->key, class->name);
3764         }
3765
3766         if (!graph_lock())
3767                 return 0;
3768
3769         /*
3770          * We have to walk the chain again locked - to avoid duplicates:
3771          */
3772         chain = lookup_chain_cache(chain_key);
3773         if (chain) {
3774                 graph_unlock();
3775                 goto cache_hit;
3776         }
3777
3778         if (!add_chain_cache(curr, hlock, chain_key))
3779                 return 0;
3780
3781         return 1;
3782 }
3783
3784 static int validate_chain(struct task_struct *curr,
3785                           struct held_lock *hlock,
3786                           int chain_head, u64 chain_key)
3787 {
3788         /*
3789          * Trylock needs to maintain the stack of held locks, but it
3790          * does not add new dependencies, because trylock can be done
3791          * in any order.
3792          *
3793          * We look up the chain_key and do the O(N^2) check and update of
3794          * the dependencies only if this is a new dependency chain.
3795          * (If lookup_chain_cache_add() return with 1 it acquires
3796          * graph_lock for us)
3797          */
3798         if (!hlock->trylock && hlock->check &&
3799             lookup_chain_cache_add(curr, hlock, chain_key)) {
3800                 /*
3801                  * Check whether last held lock:
3802                  *
3803                  * - is irq-safe, if this lock is irq-unsafe
3804                  * - is softirq-safe, if this lock is hardirq-unsafe
3805                  *
3806                  * And check whether the new lock's dependency graph
3807                  * could lead back to the previous lock:
3808                  *
3809                  * - within the current held-lock stack
3810                  * - across our accumulated lock dependency records
3811                  *
3812                  * any of these scenarios could lead to a deadlock.
3813                  */
3814                 /*
3815                  * The simple case: does the current hold the same lock
3816                  * already?
3817                  */
3818                 int ret = check_deadlock(curr, hlock);
3819
3820                 if (!ret)
3821                         return 0;
3822                 /*
3823                  * Add dependency only if this lock is not the head
3824                  * of the chain, and if the new lock introduces no more
3825                  * lock dependency (because we already hold a lock with the
3826                  * same lock class) nor deadlock (because the nest_lock
3827                  * serializes nesting locks), see the comments for
3828                  * check_deadlock().
3829                  */
3830                 if (!chain_head && ret != 2) {
3831                         if (!check_prevs_add(curr, hlock))
3832                                 return 0;
3833                 }
3834
3835                 graph_unlock();
3836         } else {
3837                 /* after lookup_chain_cache_add(): */
3838                 if (unlikely(!debug_locks))
3839                         return 0;
3840         }
3841
3842         return 1;
3843 }
3844 #else
3845 static inline int validate_chain(struct task_struct *curr,
3846                                  struct held_lock *hlock,
3847                                  int chain_head, u64 chain_key)
3848 {
3849         return 1;
3850 }
3851
3852 static void init_chain_block_buckets(void)      { }
3853 #endif /* CONFIG_PROVE_LOCKING */
3854
3855 /*
3856  * We are building curr_chain_key incrementally, so double-check
3857  * it from scratch, to make sure that it's done correctly:
3858  */
3859 static void check_chain_key(struct task_struct *curr)
3860 {
3861 #ifdef CONFIG_DEBUG_LOCKDEP
3862         struct held_lock *hlock, *prev_hlock = NULL;
3863         unsigned int i;
3864         u64 chain_key = INITIAL_CHAIN_KEY;
3865
3866         for (i = 0; i < curr->lockdep_depth; i++) {
3867                 hlock = curr->held_locks + i;
3868                 if (chain_key != hlock->prev_chain_key) {
3869                         debug_locks_off();
3870                         /*
3871                          * We got mighty confused, our chain keys don't match
3872                          * with what we expect, someone trample on our task state?
3873                          */
3874                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3875                                 curr->lockdep_depth, i,
3876                                 (unsigned long long)chain_key,
3877                                 (unsigned long long)hlock->prev_chain_key);
3878                         return;
3879                 }
3880
3881                 /*
3882                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3883                  * it registered lock class index?
3884                  */
3885                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3886                         return;
3887
3888                 if (prev_hlock && (prev_hlock->irq_context !=
3889                                                         hlock->irq_context))
3890                         chain_key = INITIAL_CHAIN_KEY;
3891                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3892                 prev_hlock = hlock;
3893         }
3894         if (chain_key != curr->curr_chain_key) {
3895                 debug_locks_off();
3896                 /*
3897                  * More smoking hash instead of calculating it, damn see these
3898                  * numbers float.. I bet that a pink elephant stepped on my memory.
3899                  */
3900                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3901                         curr->lockdep_depth, i,
3902                         (unsigned long long)chain_key,
3903                         (unsigned long long)curr->curr_chain_key);
3904         }
3905 #endif
3906 }
3907
3908 #ifdef CONFIG_PROVE_LOCKING
3909 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3910                      enum lock_usage_bit new_bit);
3911
3912 static void print_usage_bug_scenario(struct held_lock *lock)
3913 {
3914         struct lock_class *class = hlock_class(lock);
3915
3916         printk(" Possible unsafe locking scenario:\n\n");
3917         printk("       CPU0\n");
3918         printk("       ----\n");
3919         printk("  lock(");
3920         __print_lock_name(class);
3921         printk(KERN_CONT ");\n");
3922         printk("  <Interrupt>\n");
3923         printk("    lock(");
3924         __print_lock_name(class);
3925         printk(KERN_CONT ");\n");
3926         printk("\n *** DEADLOCK ***\n\n");
3927 }
3928
3929 static void
3930 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3931                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3932 {
3933         if (!debug_locks_off() || debug_locks_silent)
3934                 return;
3935
3936         pr_warn("\n");
3937         pr_warn("================================\n");
3938         pr_warn("WARNING: inconsistent lock state\n");
3939         print_kernel_ident();
3940         pr_warn("--------------------------------\n");
3941
3942         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3943                 usage_str[prev_bit], usage_str[new_bit]);
3944
3945         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3946                 curr->comm, task_pid_nr(curr),
3947                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3948                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3949                 lockdep_hardirqs_enabled(),
3950                 lockdep_softirqs_enabled(curr));
3951         print_lock(this);
3952
3953         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3954         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3955
3956         print_irqtrace_events(curr);
3957         pr_warn("\nother info that might help us debug this:\n");
3958         print_usage_bug_scenario(this);
3959
3960         lockdep_print_held_locks(curr);
3961
3962         pr_warn("\nstack backtrace:\n");
3963         dump_stack();
3964 }
3965
3966 /*
3967  * Print out an error if an invalid bit is set:
3968  */
3969 static inline int
3970 valid_state(struct task_struct *curr, struct held_lock *this,
3971             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3972 {
3973         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3974                 graph_unlock();
3975                 print_usage_bug(curr, this, bad_bit, new_bit);
3976                 return 0;
3977         }
3978         return 1;
3979 }
3980
3981
3982 /*
3983  * print irq inversion bug:
3984  */
3985 static void
3986 print_irq_inversion_bug(struct task_struct *curr,
3987                         struct lock_list *root, struct lock_list *other,
3988                         struct held_lock *this, int forwards,
3989                         const char *irqclass)
3990 {
3991         struct lock_list *entry = other;
3992         struct lock_list *middle = NULL;
3993         int depth;
3994
3995         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3996                 return;
3997
3998         pr_warn("\n");
3999         pr_warn("========================================================\n");
4000         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4001         print_kernel_ident();
4002         pr_warn("--------------------------------------------------------\n");
4003         pr_warn("%s/%d just changed the state of lock:\n",
4004                 curr->comm, task_pid_nr(curr));
4005         print_lock(this);
4006         if (forwards)
4007                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4008         else
4009                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4010         print_lock_name(other->class);
4011         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4012
4013         pr_warn("\nother info that might help us debug this:\n");
4014
4015         /* Find a middle lock (if one exists) */
4016         depth = get_lock_depth(other);
4017         do {
4018                 if (depth == 0 && (entry != root)) {
4019                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4020                         break;
4021                 }
4022                 middle = entry;
4023                 entry = get_lock_parent(entry);
4024                 depth--;
4025         } while (entry && entry != root && (depth >= 0));
4026         if (forwards)
4027                 print_irq_lock_scenario(root, other,
4028                         middle ? middle->class : root->class, other->class);
4029         else
4030                 print_irq_lock_scenario(other, root,
4031                         middle ? middle->class : other->class, root->class);
4032
4033         lockdep_print_held_locks(curr);
4034
4035         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4036         root->trace = save_trace();
4037         if (!root->trace)
4038                 return;
4039         print_shortest_lock_dependencies(other, root);
4040
4041         pr_warn("\nstack backtrace:\n");
4042         dump_stack();
4043 }
4044
4045 /*
4046  * Prove that in the forwards-direction subgraph starting at <this>
4047  * there is no lock matching <mask>:
4048  */
4049 static int
4050 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4051                      enum lock_usage_bit bit)
4052 {
4053         enum bfs_result ret;
4054         struct lock_list root;
4055         struct lock_list *target_entry;
4056         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4057         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4058
4059         bfs_init_root(&root, this);
4060         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4061         if (bfs_error(ret)) {
4062                 print_bfs_bug(ret);
4063                 return 0;
4064         }
4065         if (ret == BFS_RNOMATCH)
4066                 return 1;
4067
4068         /* Check whether write or read usage is the match */
4069         if (target_entry->class->usage_mask & lock_flag(bit)) {
4070                 print_irq_inversion_bug(curr, &root, target_entry,
4071                                         this, 1, state_name(bit));
4072         } else {
4073                 print_irq_inversion_bug(curr, &root, target_entry,
4074                                         this, 1, state_name(read_bit));
4075         }
4076
4077         return 0;
4078 }
4079
4080 /*
4081  * Prove that in the backwards-direction subgraph starting at <this>
4082  * there is no lock matching <mask>:
4083  */
4084 static int
4085 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4086                       enum lock_usage_bit bit)
4087 {
4088         enum bfs_result ret;
4089         struct lock_list root;
4090         struct lock_list *target_entry;
4091         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4092         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4093
4094         bfs_init_rootb(&root, this);
4095         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4096         if (bfs_error(ret)) {
4097                 print_bfs_bug(ret);
4098                 return 0;
4099         }
4100         if (ret == BFS_RNOMATCH)
4101                 return 1;
4102
4103         /* Check whether write or read usage is the match */
4104         if (target_entry->class->usage_mask & lock_flag(bit)) {
4105                 print_irq_inversion_bug(curr, &root, target_entry,
4106                                         this, 0, state_name(bit));
4107         } else {
4108                 print_irq_inversion_bug(curr, &root, target_entry,
4109                                         this, 0, state_name(read_bit));
4110         }
4111
4112         return 0;
4113 }
4114
4115 void print_irqtrace_events(struct task_struct *curr)
4116 {
4117         const struct irqtrace_events *trace = &curr->irqtrace;
4118
4119         printk("irq event stamp: %u\n", trace->irq_events);
4120         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4121                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4122                 (void *)trace->hardirq_enable_ip);
4123         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4124                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4125                 (void *)trace->hardirq_disable_ip);
4126         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4127                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4128                 (void *)trace->softirq_enable_ip);
4129         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4130                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4131                 (void *)trace->softirq_disable_ip);
4132 }
4133
4134 static int HARDIRQ_verbose(struct lock_class *class)
4135 {
4136 #if HARDIRQ_VERBOSE
4137         return class_filter(class);
4138 #endif
4139         return 0;
4140 }
4141
4142 static int SOFTIRQ_verbose(struct lock_class *class)
4143 {
4144 #if SOFTIRQ_VERBOSE
4145         return class_filter(class);
4146 #endif
4147         return 0;
4148 }
4149
4150 static int (*state_verbose_f[])(struct lock_class *class) = {
4151 #define LOCKDEP_STATE(__STATE) \
4152         __STATE##_verbose,
4153 #include "lockdep_states.h"
4154 #undef LOCKDEP_STATE
4155 };
4156
4157 static inline int state_verbose(enum lock_usage_bit bit,
4158                                 struct lock_class *class)
4159 {
4160         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4161 }
4162
4163 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4164                              enum lock_usage_bit bit, const char *name);
4165
4166 static int
4167 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4168                 enum lock_usage_bit new_bit)
4169 {
4170         int excl_bit = exclusive_bit(new_bit);
4171         int read = new_bit & LOCK_USAGE_READ_MASK;
4172         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4173
4174         /*
4175          * Validate that this particular lock does not have conflicting
4176          * usage states.
4177          */
4178         if (!valid_state(curr, this, new_bit, excl_bit))
4179                 return 0;
4180
4181         /*
4182          * Check for read in write conflicts
4183          */
4184         if (!read && !valid_state(curr, this, new_bit,
4185                                   excl_bit + LOCK_USAGE_READ_MASK))
4186                 return 0;
4187
4188
4189         /*
4190          * Validate that the lock dependencies don't have conflicting usage
4191          * states.
4192          */
4193         if (dir) {
4194                 /*
4195                  * mark ENABLED has to look backwards -- to ensure no dependee
4196                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4197                  */
4198                 if (!check_usage_backwards(curr, this, excl_bit))
4199                         return 0;
4200         } else {
4201                 /*
4202                  * mark USED_IN has to look forwards -- to ensure no dependency
4203                  * has ENABLED state, which would allow recursion deadlocks.
4204                  */
4205                 if (!check_usage_forwards(curr, this, excl_bit))
4206                         return 0;
4207         }
4208
4209         if (state_verbose(new_bit, hlock_class(this)))
4210                 return 2;
4211
4212         return 1;
4213 }
4214
4215 /*
4216  * Mark all held locks with a usage bit:
4217  */
4218 static int
4219 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4220 {
4221         struct held_lock *hlock;
4222         int i;
4223
4224         for (i = 0; i < curr->lockdep_depth; i++) {
4225                 enum lock_usage_bit hlock_bit = base_bit;
4226                 hlock = curr->held_locks + i;
4227
4228                 if (hlock->read)
4229                         hlock_bit += LOCK_USAGE_READ_MASK;
4230
4231                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4232
4233                 if (!hlock->check)
4234                         continue;
4235
4236                 if (!mark_lock(curr, hlock, hlock_bit))
4237                         return 0;
4238         }
4239
4240         return 1;
4241 }
4242
4243 /*
4244  * Hardirqs will be enabled:
4245  */
4246 static void __trace_hardirqs_on_caller(void)
4247 {
4248         struct task_struct *curr = current;
4249
4250         /*
4251          * We are going to turn hardirqs on, so set the
4252          * usage bit for all held locks:
4253          */
4254         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4255                 return;
4256         /*
4257          * If we have softirqs enabled, then set the usage
4258          * bit for all held locks. (disabled hardirqs prevented
4259          * this bit from being set before)
4260          */
4261         if (curr->softirqs_enabled)
4262                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4263 }
4264
4265 /**
4266  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4267  *
4268  * Invoked before a possible transition to RCU idle from exit to user or
4269  * guest mode. This ensures that all RCU operations are done before RCU
4270  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4271  * invoked to set the final state.
4272  */
4273 void lockdep_hardirqs_on_prepare(void)
4274 {
4275         if (unlikely(!debug_locks))
4276                 return;
4277
4278         /*
4279          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4280          */
4281         if (unlikely(in_nmi()))
4282                 return;
4283
4284         if (unlikely(this_cpu_read(lockdep_recursion)))
4285                 return;
4286
4287         if (unlikely(lockdep_hardirqs_enabled())) {
4288                 /*
4289                  * Neither irq nor preemption are disabled here
4290                  * so this is racy by nature but losing one hit
4291                  * in a stat is not a big deal.
4292                  */
4293                 __debug_atomic_inc(redundant_hardirqs_on);
4294                 return;
4295         }
4296
4297         /*
4298          * We're enabling irqs and according to our state above irqs weren't
4299          * already enabled, yet we find the hardware thinks they are in fact
4300          * enabled.. someone messed up their IRQ state tracing.
4301          */
4302         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4303                 return;
4304
4305         /*
4306          * See the fine text that goes along with this variable definition.
4307          */
4308         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4309                 return;
4310
4311         /*
4312          * Can't allow enabling interrupts while in an interrupt handler,
4313          * that's general bad form and such. Recursion, limited stack etc..
4314          */
4315         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4316                 return;
4317
4318         current->hardirq_chain_key = current->curr_chain_key;
4319
4320         lockdep_recursion_inc();
4321         __trace_hardirqs_on_caller();
4322         lockdep_recursion_finish();
4323 }
4324 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4325
4326 void noinstr lockdep_hardirqs_on(unsigned long ip)
4327 {
4328         struct irqtrace_events *trace = &current->irqtrace;
4329
4330         if (unlikely(!debug_locks))
4331                 return;
4332
4333         /*
4334          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4335          * tracking state and hardware state are out of sync.
4336          *
4337          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4338          * and not rely on hardware state like normal interrupts.
4339          */
4340         if (unlikely(in_nmi())) {
4341                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4342                         return;
4343
4344                 /*
4345                  * Skip:
4346                  *  - recursion check, because NMI can hit lockdep;
4347                  *  - hardware state check, because above;
4348                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4349                  */
4350                 goto skip_checks;
4351         }
4352
4353         if (unlikely(this_cpu_read(lockdep_recursion)))
4354                 return;
4355
4356         if (lockdep_hardirqs_enabled()) {
4357                 /*
4358                  * Neither irq nor preemption are disabled here
4359                  * so this is racy by nature but losing one hit
4360                  * in a stat is not a big deal.
4361                  */
4362                 __debug_atomic_inc(redundant_hardirqs_on);
4363                 return;
4364         }
4365
4366         /*
4367          * We're enabling irqs and according to our state above irqs weren't
4368          * already enabled, yet we find the hardware thinks they are in fact
4369          * enabled.. someone messed up their IRQ state tracing.
4370          */
4371         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4372                 return;
4373
4374         /*
4375          * Ensure the lock stack remained unchanged between
4376          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4377          */
4378         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4379                             current->curr_chain_key);
4380
4381 skip_checks:
4382         /* we'll do an OFF -> ON transition: */
4383         __this_cpu_write(hardirqs_enabled, 1);
4384         trace->hardirq_enable_ip = ip;
4385         trace->hardirq_enable_event = ++trace->irq_events;
4386         debug_atomic_inc(hardirqs_on_events);
4387 }
4388 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4389
4390 /*
4391  * Hardirqs were disabled:
4392  */
4393 void noinstr lockdep_hardirqs_off(unsigned long ip)
4394 {
4395         if (unlikely(!debug_locks))
4396                 return;
4397
4398         /*
4399          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4400          * they will restore the software state. This ensures the software
4401          * state is consistent inside NMIs as well.
4402          */
4403         if (in_nmi()) {
4404                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4405                         return;
4406         } else if (__this_cpu_read(lockdep_recursion))
4407                 return;
4408
4409         /*
4410          * So we're supposed to get called after you mask local IRQs, but for
4411          * some reason the hardware doesn't quite think you did a proper job.
4412          */
4413         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4414                 return;
4415
4416         if (lockdep_hardirqs_enabled()) {
4417                 struct irqtrace_events *trace = &current->irqtrace;
4418
4419                 /*
4420                  * We have done an ON -> OFF transition:
4421                  */
4422                 __this_cpu_write(hardirqs_enabled, 0);
4423                 trace->hardirq_disable_ip = ip;
4424                 trace->hardirq_disable_event = ++trace->irq_events;
4425                 debug_atomic_inc(hardirqs_off_events);
4426         } else {
4427                 debug_atomic_inc(redundant_hardirqs_off);
4428         }
4429 }
4430 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4431
4432 /*
4433  * Softirqs will be enabled:
4434  */
4435 void lockdep_softirqs_on(unsigned long ip)
4436 {
4437         struct irqtrace_events *trace = &current->irqtrace;
4438
4439         if (unlikely(!lockdep_enabled()))
4440                 return;
4441
4442         /*
4443          * We fancy IRQs being disabled here, see softirq.c, avoids
4444          * funny state and nesting things.
4445          */
4446         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4447                 return;
4448
4449         if (current->softirqs_enabled) {
4450                 debug_atomic_inc(redundant_softirqs_on);
4451                 return;
4452         }
4453
4454         lockdep_recursion_inc();
4455         /*
4456          * We'll do an OFF -> ON transition:
4457          */
4458         current->softirqs_enabled = 1;
4459         trace->softirq_enable_ip = ip;
4460         trace->softirq_enable_event = ++trace->irq_events;
4461         debug_atomic_inc(softirqs_on_events);
4462         /*
4463          * We are going to turn softirqs on, so set the
4464          * usage bit for all held locks, if hardirqs are
4465          * enabled too:
4466          */
4467         if (lockdep_hardirqs_enabled())
4468                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4469         lockdep_recursion_finish();
4470 }
4471
4472 /*
4473  * Softirqs were disabled:
4474  */
4475 void lockdep_softirqs_off(unsigned long ip)
4476 {
4477         if (unlikely(!lockdep_enabled()))
4478                 return;
4479
4480         /*
4481          * We fancy IRQs being disabled here, see softirq.c
4482          */
4483         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4484                 return;
4485
4486         if (current->softirqs_enabled) {
4487                 struct irqtrace_events *trace = &current->irqtrace;
4488
4489                 /*
4490                  * We have done an ON -> OFF transition:
4491                  */
4492                 current->softirqs_enabled = 0;
4493                 trace->softirq_disable_ip = ip;
4494                 trace->softirq_disable_event = ++trace->irq_events;
4495                 debug_atomic_inc(softirqs_off_events);
4496                 /*
4497                  * Whoops, we wanted softirqs off, so why aren't they?
4498                  */
4499                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4500         } else
4501                 debug_atomic_inc(redundant_softirqs_off);
4502 }
4503
4504 static int
4505 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4506 {
4507         if (!check)
4508                 goto lock_used;
4509
4510         /*
4511          * If non-trylock use in a hardirq or softirq context, then
4512          * mark the lock as used in these contexts:
4513          */
4514         if (!hlock->trylock) {
4515                 if (hlock->read) {
4516                         if (lockdep_hardirq_context())
4517                                 if (!mark_lock(curr, hlock,
4518                                                 LOCK_USED_IN_HARDIRQ_READ))
4519                                         return 0;
4520                         if (curr->softirq_context)
4521                                 if (!mark_lock(curr, hlock,
4522                                                 LOCK_USED_IN_SOFTIRQ_READ))
4523                                         return 0;
4524                 } else {
4525                         if (lockdep_hardirq_context())
4526                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4527                                         return 0;
4528                         if (curr->softirq_context)
4529                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4530                                         return 0;
4531                 }
4532         }
4533         if (!hlock->hardirqs_off) {
4534                 if (hlock->read) {
4535                         if (!mark_lock(curr, hlock,
4536                                         LOCK_ENABLED_HARDIRQ_READ))
4537                                 return 0;
4538                         if (curr->softirqs_enabled)
4539                                 if (!mark_lock(curr, hlock,
4540                                                 LOCK_ENABLED_SOFTIRQ_READ))
4541                                         return 0;
4542                 } else {
4543                         if (!mark_lock(curr, hlock,
4544                                         LOCK_ENABLED_HARDIRQ))
4545                                 return 0;
4546                         if (curr->softirqs_enabled)
4547                                 if (!mark_lock(curr, hlock,
4548                                                 LOCK_ENABLED_SOFTIRQ))
4549                                         return 0;
4550                 }
4551         }
4552
4553 lock_used:
4554         /* mark it as used: */
4555         if (!mark_lock(curr, hlock, LOCK_USED))
4556                 return 0;
4557
4558         return 1;
4559 }
4560
4561 static inline unsigned int task_irq_context(struct task_struct *task)
4562 {
4563         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4564                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4565 }
4566
4567 static int separate_irq_context(struct task_struct *curr,
4568                 struct held_lock *hlock)
4569 {
4570         unsigned int depth = curr->lockdep_depth;
4571
4572         /*
4573          * Keep track of points where we cross into an interrupt context:
4574          */
4575         if (depth) {
4576                 struct held_lock *prev_hlock;
4577
4578                 prev_hlock = curr->held_locks + depth-1;
4579                 /*
4580                  * If we cross into another context, reset the
4581                  * hash key (this also prevents the checking and the
4582                  * adding of the dependency to 'prev'):
4583                  */
4584                 if (prev_hlock->irq_context != hlock->irq_context)
4585                         return 1;
4586         }
4587         return 0;
4588 }
4589
4590 /*
4591  * Mark a lock with a usage bit, and validate the state transition:
4592  */
4593 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4594                              enum lock_usage_bit new_bit)
4595 {
4596         unsigned int new_mask, ret = 1;
4597
4598         if (new_bit >= LOCK_USAGE_STATES) {
4599                 DEBUG_LOCKS_WARN_ON(1);
4600                 return 0;
4601         }
4602
4603         if (new_bit == LOCK_USED && this->read)
4604                 new_bit = LOCK_USED_READ;
4605
4606         new_mask = 1 << new_bit;
4607
4608         /*
4609          * If already set then do not dirty the cacheline,
4610          * nor do any checks:
4611          */
4612         if (likely(hlock_class(this)->usage_mask & new_mask))
4613                 return 1;
4614
4615         if (!graph_lock())
4616                 return 0;
4617         /*
4618          * Make sure we didn't race:
4619          */
4620         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4621                 goto unlock;
4622
4623         if (!hlock_class(this)->usage_mask)
4624                 debug_atomic_dec(nr_unused_locks);
4625
4626         hlock_class(this)->usage_mask |= new_mask;
4627
4628         if (new_bit < LOCK_TRACE_STATES) {
4629                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4630                         return 0;
4631         }
4632
4633         if (new_bit < LOCK_USED) {
4634                 ret = mark_lock_irq(curr, this, new_bit);
4635                 if (!ret)
4636                         return 0;
4637         }
4638
4639 unlock:
4640         graph_unlock();
4641
4642         /*
4643          * We must printk outside of the graph_lock:
4644          */
4645         if (ret == 2) {
4646                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4647                 print_lock(this);
4648                 print_irqtrace_events(curr);
4649                 dump_stack();
4650         }
4651
4652         return ret;
4653 }
4654
4655 static inline short task_wait_context(struct task_struct *curr)
4656 {
4657         /*
4658          * Set appropriate wait type for the context; for IRQs we have to take
4659          * into account force_irqthread as that is implied by PREEMPT_RT.
4660          */
4661         if (lockdep_hardirq_context()) {
4662                 /*
4663                  * Check if force_irqthreads will run us threaded.
4664                  */
4665                 if (curr->hardirq_threaded || curr->irq_config)
4666                         return LD_WAIT_CONFIG;
4667
4668                 return LD_WAIT_SPIN;
4669         } else if (curr->softirq_context) {
4670                 /*
4671                  * Softirqs are always threaded.
4672                  */
4673                 return LD_WAIT_CONFIG;
4674         }
4675
4676         return LD_WAIT_MAX;
4677 }
4678
4679 static int
4680 print_lock_invalid_wait_context(struct task_struct *curr,
4681                                 struct held_lock *hlock)
4682 {
4683         short curr_inner;
4684
4685         if (!debug_locks_off())
4686                 return 0;
4687         if (debug_locks_silent)
4688                 return 0;
4689
4690         pr_warn("\n");
4691         pr_warn("=============================\n");
4692         pr_warn("[ BUG: Invalid wait context ]\n");
4693         print_kernel_ident();
4694         pr_warn("-----------------------------\n");
4695
4696         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4697         print_lock(hlock);
4698
4699         pr_warn("other info that might help us debug this:\n");
4700
4701         curr_inner = task_wait_context(curr);
4702         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4703
4704         lockdep_print_held_locks(curr);
4705
4706         pr_warn("stack backtrace:\n");
4707         dump_stack();
4708
4709         return 0;
4710 }
4711
4712 /*
4713  * Verify the wait_type context.
4714  *
4715  * This check validates we take locks in the right wait-type order; that is it
4716  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4717  * acquire spinlocks inside raw_spinlocks and the sort.
4718  *
4719  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4720  * can be taken from (pretty much) any context but also has constraints.
4721  * However when taken in a stricter environment the RCU lock does not loosen
4722  * the constraints.
4723  *
4724  * Therefore we must look for the strictest environment in the lock stack and
4725  * compare that to the lock we're trying to acquire.
4726  */
4727 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4728 {
4729         u8 next_inner = hlock_class(next)->wait_type_inner;
4730         u8 next_outer = hlock_class(next)->wait_type_outer;
4731         u8 curr_inner;
4732         int depth;
4733
4734         if (!next_inner || next->trylock)
4735                 return 0;
4736
4737         if (!next_outer)
4738                 next_outer = next_inner;
4739
4740         /*
4741          * Find start of current irq_context..
4742          */
4743         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4744                 struct held_lock *prev = curr->held_locks + depth;
4745                 if (prev->irq_context != next->irq_context)
4746                         break;
4747         }
4748         depth++;
4749
4750         curr_inner = task_wait_context(curr);
4751
4752         for (; depth < curr->lockdep_depth; depth++) {
4753                 struct held_lock *prev = curr->held_locks + depth;
4754                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4755
4756                 if (prev_inner) {
4757                         /*
4758                          * We can have a bigger inner than a previous one
4759                          * when outer is smaller than inner, as with RCU.
4760                          *
4761                          * Also due to trylocks.
4762                          */
4763                         curr_inner = min(curr_inner, prev_inner);
4764                 }
4765         }
4766
4767         if (next_outer > curr_inner)
4768                 return print_lock_invalid_wait_context(curr, next);
4769
4770         return 0;
4771 }
4772
4773 #else /* CONFIG_PROVE_LOCKING */
4774
4775 static inline int
4776 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4777 {
4778         return 1;
4779 }
4780
4781 static inline unsigned int task_irq_context(struct task_struct *task)
4782 {
4783         return 0;
4784 }
4785
4786 static inline int separate_irq_context(struct task_struct *curr,
4787                 struct held_lock *hlock)
4788 {
4789         return 0;
4790 }
4791
4792 static inline int check_wait_context(struct task_struct *curr,
4793                                      struct held_lock *next)
4794 {
4795         return 0;
4796 }
4797
4798 #endif /* CONFIG_PROVE_LOCKING */
4799
4800 /*
4801  * Initialize a lock instance's lock-class mapping info:
4802  */
4803 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4804                             struct lock_class_key *key, int subclass,
4805                             u8 inner, u8 outer, u8 lock_type)
4806 {
4807         int i;
4808
4809         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4810                 lock->class_cache[i] = NULL;
4811
4812 #ifdef CONFIG_LOCK_STAT
4813         lock->cpu = raw_smp_processor_id();
4814 #endif
4815
4816         /*
4817          * Can't be having no nameless bastards around this place!
4818          */
4819         if (DEBUG_LOCKS_WARN_ON(!name)) {
4820                 lock->name = "NULL";
4821                 return;
4822         }
4823
4824         lock->name = name;
4825
4826         lock->wait_type_outer = outer;
4827         lock->wait_type_inner = inner;
4828         lock->lock_type = lock_type;
4829
4830         /*
4831          * No key, no joy, we need to hash something.
4832          */
4833         if (DEBUG_LOCKS_WARN_ON(!key))
4834                 return;
4835         /*
4836          * Sanity check, the lock-class key must either have been allocated
4837          * statically or must have been registered as a dynamic key.
4838          */
4839         if (!static_obj(key) && !is_dynamic_key(key)) {
4840                 if (debug_locks)
4841                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4842                 DEBUG_LOCKS_WARN_ON(1);
4843                 return;
4844         }
4845         lock->key = key;
4846
4847         if (unlikely(!debug_locks))
4848                 return;
4849
4850         if (subclass) {
4851                 unsigned long flags;
4852
4853                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4854                         return;
4855
4856                 raw_local_irq_save(flags);
4857                 lockdep_recursion_inc();
4858                 register_lock_class(lock, subclass, 1);
4859                 lockdep_recursion_finish();
4860                 raw_local_irq_restore(flags);
4861         }
4862 }
4863 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4864
4865 struct lock_class_key __lockdep_no_validate__;
4866 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4867
4868 static void
4869 print_lock_nested_lock_not_held(struct task_struct *curr,
4870                                 struct held_lock *hlock)
4871 {
4872         if (!debug_locks_off())
4873                 return;
4874         if (debug_locks_silent)
4875                 return;
4876
4877         pr_warn("\n");
4878         pr_warn("==================================\n");
4879         pr_warn("WARNING: Nested lock was not taken\n");
4880         print_kernel_ident();
4881         pr_warn("----------------------------------\n");
4882
4883         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4884         print_lock(hlock);
4885
4886         pr_warn("\nbut this task is not holding:\n");
4887         pr_warn("%s\n", hlock->nest_lock->name);
4888
4889         pr_warn("\nstack backtrace:\n");
4890         dump_stack();
4891
4892         pr_warn("\nother info that might help us debug this:\n");
4893         lockdep_print_held_locks(curr);
4894
4895         pr_warn("\nstack backtrace:\n");
4896         dump_stack();
4897 }
4898
4899 static int __lock_is_held(const struct lockdep_map *lock, int read);
4900
4901 /*
4902  * This gets called for every mutex_lock*()/spin_lock*() operation.
4903  * We maintain the dependency maps and validate the locking attempt:
4904  *
4905  * The callers must make sure that IRQs are disabled before calling it,
4906  * otherwise we could get an interrupt which would want to take locks,
4907  * which would end up in lockdep again.
4908  */
4909 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4910                           int trylock, int read, int check, int hardirqs_off,
4911                           struct lockdep_map *nest_lock, unsigned long ip,
4912                           int references, int pin_count)
4913 {
4914         struct task_struct *curr = current;
4915         struct lock_class *class = NULL;
4916         struct held_lock *hlock;
4917         unsigned int depth;
4918         int chain_head = 0;
4919         int class_idx;
4920         u64 chain_key;
4921
4922         if (unlikely(!debug_locks))
4923                 return 0;
4924
4925         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4926                 check = 0;
4927
4928         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4929                 class = lock->class_cache[subclass];
4930         /*
4931          * Not cached?
4932          */
4933         if (unlikely(!class)) {
4934                 class = register_lock_class(lock, subclass, 0);
4935                 if (!class)
4936                         return 0;
4937         }
4938
4939         debug_class_ops_inc(class);
4940
4941         if (very_verbose(class)) {
4942                 printk("\nacquire class [%px] %s", class->key, class->name);
4943                 if (class->name_version > 1)
4944                         printk(KERN_CONT "#%d", class->name_version);
4945                 printk(KERN_CONT "\n");
4946                 dump_stack();
4947         }
4948
4949         /*
4950          * Add the lock to the list of currently held locks.
4951          * (we dont increase the depth just yet, up until the
4952          * dependency checks are done)
4953          */
4954         depth = curr->lockdep_depth;
4955         /*
4956          * Ran out of static storage for our per-task lock stack again have we?
4957          */
4958         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4959                 return 0;
4960
4961         class_idx = class - lock_classes;
4962
4963         if (depth) { /* we're holding locks */
4964                 hlock = curr->held_locks + depth - 1;
4965                 if (hlock->class_idx == class_idx && nest_lock) {
4966                         if (!references)
4967                                 references++;
4968
4969                         if (!hlock->references)
4970                                 hlock->references++;
4971
4972                         hlock->references += references;
4973
4974                         /* Overflow */
4975                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4976                                 return 0;
4977
4978                         return 2;
4979                 }
4980         }
4981
4982         hlock = curr->held_locks + depth;
4983         /*
4984          * Plain impossible, we just registered it and checked it weren't no
4985          * NULL like.. I bet this mushroom I ate was good!
4986          */
4987         if (DEBUG_LOCKS_WARN_ON(!class))
4988                 return 0;
4989         hlock->class_idx = class_idx;
4990         hlock->acquire_ip = ip;
4991         hlock->instance = lock;
4992         hlock->nest_lock = nest_lock;
4993         hlock->irq_context = task_irq_context(curr);
4994         hlock->trylock = trylock;
4995         hlock->read = read;
4996         hlock->check = check;
4997         hlock->hardirqs_off = !!hardirqs_off;
4998         hlock->references = references;
4999 #ifdef CONFIG_LOCK_STAT
5000         hlock->waittime_stamp = 0;
5001         hlock->holdtime_stamp = lockstat_clock();
5002 #endif
5003         hlock->pin_count = pin_count;
5004
5005         if (check_wait_context(curr, hlock))
5006                 return 0;
5007
5008         /* Initialize the lock usage bit */
5009         if (!mark_usage(curr, hlock, check))
5010                 return 0;
5011
5012         /*
5013          * Calculate the chain hash: it's the combined hash of all the
5014          * lock keys along the dependency chain. We save the hash value
5015          * at every step so that we can get the current hash easily
5016          * after unlock. The chain hash is then used to cache dependency
5017          * results.
5018          *
5019          * The 'key ID' is what is the most compact key value to drive
5020          * the hash, not class->key.
5021          */
5022         /*
5023          * Whoops, we did it again.. class_idx is invalid.
5024          */
5025         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5026                 return 0;
5027
5028         chain_key = curr->curr_chain_key;
5029         if (!depth) {
5030                 /*
5031                  * How can we have a chain hash when we ain't got no keys?!
5032                  */
5033                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5034                         return 0;
5035                 chain_head = 1;
5036         }
5037
5038         hlock->prev_chain_key = chain_key;
5039         if (separate_irq_context(curr, hlock)) {
5040                 chain_key = INITIAL_CHAIN_KEY;
5041                 chain_head = 1;
5042         }
5043         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5044
5045         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5046                 print_lock_nested_lock_not_held(curr, hlock);
5047                 return 0;
5048         }
5049
5050         if (!debug_locks_silent) {
5051                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5052                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5053         }
5054
5055         if (!validate_chain(curr, hlock, chain_head, chain_key))
5056                 return 0;
5057
5058         curr->curr_chain_key = chain_key;
5059         curr->lockdep_depth++;
5060         check_chain_key(curr);
5061 #ifdef CONFIG_DEBUG_LOCKDEP
5062         if (unlikely(!debug_locks))
5063                 return 0;
5064 #endif
5065         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5066                 debug_locks_off();
5067                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5068                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5069                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5070
5071                 lockdep_print_held_locks(current);
5072                 debug_show_all_locks();
5073                 dump_stack();
5074
5075                 return 0;
5076         }
5077
5078         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5079                 max_lockdep_depth = curr->lockdep_depth;
5080
5081         return 1;
5082 }
5083
5084 static void print_unlock_imbalance_bug(struct task_struct *curr,
5085                                        struct lockdep_map *lock,
5086                                        unsigned long ip)
5087 {
5088         if (!debug_locks_off())
5089                 return;
5090         if (debug_locks_silent)
5091                 return;
5092
5093         pr_warn("\n");
5094         pr_warn("=====================================\n");
5095         pr_warn("WARNING: bad unlock balance detected!\n");
5096         print_kernel_ident();
5097         pr_warn("-------------------------------------\n");
5098         pr_warn("%s/%d is trying to release lock (",
5099                 curr->comm, task_pid_nr(curr));
5100         print_lockdep_cache(lock);
5101         pr_cont(") at:\n");
5102         print_ip_sym(KERN_WARNING, ip);
5103         pr_warn("but there are no more locks to release!\n");
5104         pr_warn("\nother info that might help us debug this:\n");
5105         lockdep_print_held_locks(curr);
5106
5107         pr_warn("\nstack backtrace:\n");
5108         dump_stack();
5109 }
5110
5111 static noinstr int match_held_lock(const struct held_lock *hlock,
5112                                    const struct lockdep_map *lock)
5113 {
5114         if (hlock->instance == lock)
5115                 return 1;
5116
5117         if (hlock->references) {
5118                 const struct lock_class *class = lock->class_cache[0];
5119
5120                 if (!class)
5121                         class = look_up_lock_class(lock, 0);
5122
5123                 /*
5124                  * If look_up_lock_class() failed to find a class, we're trying
5125                  * to test if we hold a lock that has never yet been acquired.
5126                  * Clearly if the lock hasn't been acquired _ever_, we're not
5127                  * holding it either, so report failure.
5128                  */
5129                 if (!class)
5130                         return 0;
5131
5132                 /*
5133                  * References, but not a lock we're actually ref-counting?
5134                  * State got messed up, follow the sites that change ->references
5135                  * and try to make sense of it.
5136                  */
5137                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5138                         return 0;
5139
5140                 if (hlock->class_idx == class - lock_classes)
5141                         return 1;
5142         }
5143
5144         return 0;
5145 }
5146
5147 /* @depth must not be zero */
5148 static struct held_lock *find_held_lock(struct task_struct *curr,
5149                                         struct lockdep_map *lock,
5150                                         unsigned int depth, int *idx)
5151 {
5152         struct held_lock *ret, *hlock, *prev_hlock;
5153         int i;
5154
5155         i = depth - 1;
5156         hlock = curr->held_locks + i;
5157         ret = hlock;
5158         if (match_held_lock(hlock, lock))
5159                 goto out;
5160
5161         ret = NULL;
5162         for (i--, prev_hlock = hlock--;
5163              i >= 0;
5164              i--, prev_hlock = hlock--) {
5165                 /*
5166                  * We must not cross into another context:
5167                  */
5168                 if (prev_hlock->irq_context != hlock->irq_context) {
5169                         ret = NULL;
5170                         break;
5171                 }
5172                 if (match_held_lock(hlock, lock)) {
5173                         ret = hlock;
5174                         break;
5175                 }
5176         }
5177
5178 out:
5179         *idx = i;
5180         return ret;
5181 }
5182
5183 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5184                                 int idx, unsigned int *merged)
5185 {
5186         struct held_lock *hlock;
5187         int first_idx = idx;
5188
5189         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5190                 return 0;
5191
5192         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5193                 switch (__lock_acquire(hlock->instance,
5194                                     hlock_class(hlock)->subclass,
5195                                     hlock->trylock,
5196                                     hlock->read, hlock->check,
5197                                     hlock->hardirqs_off,
5198                                     hlock->nest_lock, hlock->acquire_ip,
5199                                     hlock->references, hlock->pin_count)) {
5200                 case 0:
5201                         return 1;
5202                 case 1:
5203                         break;
5204                 case 2:
5205                         *merged += (idx == first_idx);
5206                         break;
5207                 default:
5208                         WARN_ON(1);
5209                         return 0;
5210                 }
5211         }
5212         return 0;
5213 }
5214
5215 static int
5216 __lock_set_class(struct lockdep_map *lock, const char *name,
5217                  struct lock_class_key *key, unsigned int subclass,
5218                  unsigned long ip)
5219 {
5220         struct task_struct *curr = current;
5221         unsigned int depth, merged = 0;
5222         struct held_lock *hlock;
5223         struct lock_class *class;
5224         int i;
5225
5226         if (unlikely(!debug_locks))
5227                 return 0;
5228
5229         depth = curr->lockdep_depth;
5230         /*
5231          * This function is about (re)setting the class of a held lock,
5232          * yet we're not actually holding any locks. Naughty user!
5233          */
5234         if (DEBUG_LOCKS_WARN_ON(!depth))
5235                 return 0;
5236
5237         hlock = find_held_lock(curr, lock, depth, &i);
5238         if (!hlock) {
5239                 print_unlock_imbalance_bug(curr, lock, ip);
5240                 return 0;
5241         }
5242
5243         lockdep_init_map_type(lock, name, key, 0,
5244                               lock->wait_type_inner,
5245                               lock->wait_type_outer,
5246                               lock->lock_type);
5247         class = register_lock_class(lock, subclass, 0);
5248         hlock->class_idx = class - lock_classes;
5249
5250         curr->lockdep_depth = i;
5251         curr->curr_chain_key = hlock->prev_chain_key;
5252
5253         if (reacquire_held_locks(curr, depth, i, &merged))
5254                 return 0;
5255
5256         /*
5257          * I took it apart and put it back together again, except now I have
5258          * these 'spare' parts.. where shall I put them.
5259          */
5260         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5261                 return 0;
5262         return 1;
5263 }
5264
5265 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5266 {
5267         struct task_struct *curr = current;
5268         unsigned int depth, merged = 0;
5269         struct held_lock *hlock;
5270         int i;
5271
5272         if (unlikely(!debug_locks))
5273                 return 0;
5274
5275         depth = curr->lockdep_depth;
5276         /*
5277          * This function is about (re)setting the class of a held lock,
5278          * yet we're not actually holding any locks. Naughty user!
5279          */
5280         if (DEBUG_LOCKS_WARN_ON(!depth))
5281                 return 0;
5282
5283         hlock = find_held_lock(curr, lock, depth, &i);
5284         if (!hlock) {
5285                 print_unlock_imbalance_bug(curr, lock, ip);
5286                 return 0;
5287         }
5288
5289         curr->lockdep_depth = i;
5290         curr->curr_chain_key = hlock->prev_chain_key;
5291
5292         WARN(hlock->read, "downgrading a read lock");
5293         hlock->read = 1;
5294         hlock->acquire_ip = ip;
5295
5296         if (reacquire_held_locks(curr, depth, i, &merged))
5297                 return 0;
5298
5299         /* Merging can't happen with unchanged classes.. */
5300         if (DEBUG_LOCKS_WARN_ON(merged))
5301                 return 0;
5302
5303         /*
5304          * I took it apart and put it back together again, except now I have
5305          * these 'spare' parts.. where shall I put them.
5306          */
5307         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5308                 return 0;
5309
5310         return 1;
5311 }
5312
5313 /*
5314  * Remove the lock from the list of currently held locks - this gets
5315  * called on mutex_unlock()/spin_unlock*() (or on a failed
5316  * mutex_lock_interruptible()).
5317  */
5318 static int
5319 __lock_release(struct lockdep_map *lock, unsigned long ip)
5320 {
5321         struct task_struct *curr = current;
5322         unsigned int depth, merged = 1;
5323         struct held_lock *hlock;
5324         int i;
5325
5326         if (unlikely(!debug_locks))
5327                 return 0;
5328
5329         depth = curr->lockdep_depth;
5330         /*
5331          * So we're all set to release this lock.. wait what lock? We don't
5332          * own any locks, you've been drinking again?
5333          */
5334         if (depth <= 0) {
5335                 print_unlock_imbalance_bug(curr, lock, ip);
5336                 return 0;
5337         }
5338
5339         /*
5340          * Check whether the lock exists in the current stack
5341          * of held locks:
5342          */
5343         hlock = find_held_lock(curr, lock, depth, &i);
5344         if (!hlock) {
5345                 print_unlock_imbalance_bug(curr, lock, ip);
5346                 return 0;
5347         }
5348
5349         if (hlock->instance == lock)
5350                 lock_release_holdtime(hlock);
5351
5352         WARN(hlock->pin_count, "releasing a pinned lock\n");
5353
5354         if (hlock->references) {
5355                 hlock->references--;
5356                 if (hlock->references) {
5357                         /*
5358                          * We had, and after removing one, still have
5359                          * references, the current lock stack is still
5360                          * valid. We're done!
5361                          */
5362                         return 1;
5363                 }
5364         }
5365
5366         /*
5367          * We have the right lock to unlock, 'hlock' points to it.
5368          * Now we remove it from the stack, and add back the other
5369          * entries (if any), recalculating the hash along the way:
5370          */
5371
5372         curr->lockdep_depth = i;
5373         curr->curr_chain_key = hlock->prev_chain_key;
5374
5375         /*
5376          * The most likely case is when the unlock is on the innermost
5377          * lock. In this case, we are done!
5378          */
5379         if (i == depth-1)
5380                 return 1;
5381
5382         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5383                 return 0;
5384
5385         /*
5386          * We had N bottles of beer on the wall, we drank one, but now
5387          * there's not N-1 bottles of beer left on the wall...
5388          * Pouring two of the bottles together is acceptable.
5389          */
5390         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5391
5392         /*
5393          * Since reacquire_held_locks() would have called check_chain_key()
5394          * indirectly via __lock_acquire(), we don't need to do it again
5395          * on return.
5396          */
5397         return 0;
5398 }
5399
5400 static __always_inline
5401 int __lock_is_held(const struct lockdep_map *lock, int read)
5402 {
5403         struct task_struct *curr = current;
5404         int i;
5405
5406         for (i = 0; i < curr->lockdep_depth; i++) {
5407                 struct held_lock *hlock = curr->held_locks + i;
5408
5409                 if (match_held_lock(hlock, lock)) {
5410                         if (read == -1 || !!hlock->read == read)
5411                                 return LOCK_STATE_HELD;
5412
5413                         return LOCK_STATE_NOT_HELD;
5414                 }
5415         }
5416
5417         return LOCK_STATE_NOT_HELD;
5418 }
5419
5420 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5421 {
5422         struct pin_cookie cookie = NIL_COOKIE;
5423         struct task_struct *curr = current;
5424         int i;
5425
5426         if (unlikely(!debug_locks))
5427                 return cookie;
5428
5429         for (i = 0; i < curr->lockdep_depth; i++) {
5430                 struct held_lock *hlock = curr->held_locks + i;
5431
5432                 if (match_held_lock(hlock, lock)) {
5433                         /*
5434                          * Grab 16bits of randomness; this is sufficient to not
5435                          * be guessable and still allows some pin nesting in
5436                          * our u32 pin_count.
5437                          */
5438                         cookie.val = 1 + (sched_clock() & 0xffff);
5439                         hlock->pin_count += cookie.val;
5440                         return cookie;
5441                 }
5442         }
5443
5444         WARN(1, "pinning an unheld lock\n");
5445         return cookie;
5446 }
5447
5448 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5449 {
5450         struct task_struct *curr = current;
5451         int i;
5452
5453         if (unlikely(!debug_locks))
5454                 return;
5455
5456         for (i = 0; i < curr->lockdep_depth; i++) {
5457                 struct held_lock *hlock = curr->held_locks + i;
5458
5459                 if (match_held_lock(hlock, lock)) {
5460                         hlock->pin_count += cookie.val;
5461                         return;
5462                 }
5463         }
5464
5465         WARN(1, "pinning an unheld lock\n");
5466 }
5467
5468 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5469 {
5470         struct task_struct *curr = current;
5471         int i;
5472
5473         if (unlikely(!debug_locks))
5474                 return;
5475
5476         for (i = 0; i < curr->lockdep_depth; i++) {
5477                 struct held_lock *hlock = curr->held_locks + i;
5478
5479                 if (match_held_lock(hlock, lock)) {
5480                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5481                                 return;
5482
5483                         hlock->pin_count -= cookie.val;
5484
5485                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5486                                 hlock->pin_count = 0;
5487
5488                         return;
5489                 }
5490         }
5491
5492         WARN(1, "unpinning an unheld lock\n");
5493 }
5494
5495 /*
5496  * Check whether we follow the irq-flags state precisely:
5497  */
5498 static noinstr void check_flags(unsigned long flags)
5499 {
5500 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5501         if (!debug_locks)
5502                 return;
5503
5504         /* Get the warning out..  */
5505         instrumentation_begin();
5506
5507         if (irqs_disabled_flags(flags)) {
5508                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5509                         printk("possible reason: unannotated irqs-off.\n");
5510                 }
5511         } else {
5512                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5513                         printk("possible reason: unannotated irqs-on.\n");
5514                 }
5515         }
5516
5517 #ifndef CONFIG_PREEMPT_RT
5518         /*
5519          * We dont accurately track softirq state in e.g.
5520          * hardirq contexts (such as on 4KSTACKS), so only
5521          * check if not in hardirq contexts:
5522          */
5523         if (!hardirq_count()) {
5524                 if (softirq_count()) {
5525                         /* like the above, but with softirqs */
5526                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5527                 } else {
5528                         /* lick the above, does it taste good? */
5529                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5530                 }
5531         }
5532 #endif
5533
5534         if (!debug_locks)
5535                 print_irqtrace_events(current);
5536
5537         instrumentation_end();
5538 #endif
5539 }
5540
5541 void lock_set_class(struct lockdep_map *lock, const char *name,
5542                     struct lock_class_key *key, unsigned int subclass,
5543                     unsigned long ip)
5544 {
5545         unsigned long flags;
5546
5547         if (unlikely(!lockdep_enabled()))
5548                 return;
5549
5550         raw_local_irq_save(flags);
5551         lockdep_recursion_inc();
5552         check_flags(flags);
5553         if (__lock_set_class(lock, name, key, subclass, ip))
5554                 check_chain_key(current);
5555         lockdep_recursion_finish();
5556         raw_local_irq_restore(flags);
5557 }
5558 EXPORT_SYMBOL_GPL(lock_set_class);
5559
5560 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5561 {
5562         unsigned long flags;
5563
5564         if (unlikely(!lockdep_enabled()))
5565                 return;
5566
5567         raw_local_irq_save(flags);
5568         lockdep_recursion_inc();
5569         check_flags(flags);
5570         if (__lock_downgrade(lock, ip))
5571                 check_chain_key(current);
5572         lockdep_recursion_finish();
5573         raw_local_irq_restore(flags);
5574 }
5575 EXPORT_SYMBOL_GPL(lock_downgrade);
5576
5577 /* NMI context !!! */
5578 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5579 {
5580 #ifdef CONFIG_PROVE_LOCKING
5581         struct lock_class *class = look_up_lock_class(lock, subclass);
5582         unsigned long mask = LOCKF_USED;
5583
5584         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5585         if (!class)
5586                 return;
5587
5588         /*
5589          * READ locks only conflict with USED, such that if we only ever use
5590          * READ locks, there is no deadlock possible -- RCU.
5591          */
5592         if (!hlock->read)
5593                 mask |= LOCKF_USED_READ;
5594
5595         if (!(class->usage_mask & mask))
5596                 return;
5597
5598         hlock->class_idx = class - lock_classes;
5599
5600         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5601 #endif
5602 }
5603
5604 static bool lockdep_nmi(void)
5605 {
5606         if (raw_cpu_read(lockdep_recursion))
5607                 return false;
5608
5609         if (!in_nmi())
5610                 return false;
5611
5612         return true;
5613 }
5614
5615 /*
5616  * read_lock() is recursive if:
5617  * 1. We force lockdep think this way in selftests or
5618  * 2. The implementation is not queued read/write lock or
5619  * 3. The locker is at an in_interrupt() context.
5620  */
5621 bool read_lock_is_recursive(void)
5622 {
5623         return force_read_lock_recursive ||
5624                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5625                in_interrupt();
5626 }
5627 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5628
5629 /*
5630  * We are not always called with irqs disabled - do that here,
5631  * and also avoid lockdep recursion:
5632  */
5633 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5634                           int trylock, int read, int check,
5635                           struct lockdep_map *nest_lock, unsigned long ip)
5636 {
5637         unsigned long flags;
5638
5639         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5640
5641         if (!debug_locks)
5642                 return;
5643
5644         if (unlikely(!lockdep_enabled())) {
5645                 /* XXX allow trylock from NMI ?!? */
5646                 if (lockdep_nmi() && !trylock) {
5647                         struct held_lock hlock;
5648
5649                         hlock.acquire_ip = ip;
5650                         hlock.instance = lock;
5651                         hlock.nest_lock = nest_lock;
5652                         hlock.irq_context = 2; // XXX
5653                         hlock.trylock = trylock;
5654                         hlock.read = read;
5655                         hlock.check = check;
5656                         hlock.hardirqs_off = true;
5657                         hlock.references = 0;
5658
5659                         verify_lock_unused(lock, &hlock, subclass);
5660                 }
5661                 return;
5662         }
5663
5664         raw_local_irq_save(flags);
5665         check_flags(flags);
5666
5667         lockdep_recursion_inc();
5668         __lock_acquire(lock, subclass, trylock, read, check,
5669                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5670         lockdep_recursion_finish();
5671         raw_local_irq_restore(flags);
5672 }
5673 EXPORT_SYMBOL_GPL(lock_acquire);
5674
5675 void lock_release(struct lockdep_map *lock, unsigned long ip)
5676 {
5677         unsigned long flags;
5678
5679         trace_lock_release(lock, ip);
5680
5681         if (unlikely(!lockdep_enabled()))
5682                 return;
5683
5684         raw_local_irq_save(flags);
5685         check_flags(flags);
5686
5687         lockdep_recursion_inc();
5688         if (__lock_release(lock, ip))
5689                 check_chain_key(current);
5690         lockdep_recursion_finish();
5691         raw_local_irq_restore(flags);
5692 }
5693 EXPORT_SYMBOL_GPL(lock_release);
5694
5695 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5696 {
5697         unsigned long flags;
5698         int ret = LOCK_STATE_NOT_HELD;
5699
5700         /*
5701          * Avoid false negative lockdep_assert_held() and
5702          * lockdep_assert_not_held().
5703          */
5704         if (unlikely(!lockdep_enabled()))
5705                 return LOCK_STATE_UNKNOWN;
5706
5707         raw_local_irq_save(flags);
5708         check_flags(flags);
5709
5710         lockdep_recursion_inc();
5711         ret = __lock_is_held(lock, read);
5712         lockdep_recursion_finish();
5713         raw_local_irq_restore(flags);
5714
5715         return ret;
5716 }
5717 EXPORT_SYMBOL_GPL(lock_is_held_type);
5718 NOKPROBE_SYMBOL(lock_is_held_type);
5719
5720 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5721 {
5722         struct pin_cookie cookie = NIL_COOKIE;
5723         unsigned long flags;
5724
5725         if (unlikely(!lockdep_enabled()))
5726                 return cookie;
5727
5728         raw_local_irq_save(flags);
5729         check_flags(flags);
5730
5731         lockdep_recursion_inc();
5732         cookie = __lock_pin_lock(lock);
5733         lockdep_recursion_finish();
5734         raw_local_irq_restore(flags);
5735
5736         return cookie;
5737 }
5738 EXPORT_SYMBOL_GPL(lock_pin_lock);
5739
5740 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5741 {
5742         unsigned long flags;
5743
5744         if (unlikely(!lockdep_enabled()))
5745                 return;
5746
5747         raw_local_irq_save(flags);
5748         check_flags(flags);
5749
5750         lockdep_recursion_inc();
5751         __lock_repin_lock(lock, cookie);
5752         lockdep_recursion_finish();
5753         raw_local_irq_restore(flags);
5754 }
5755 EXPORT_SYMBOL_GPL(lock_repin_lock);
5756
5757 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5758 {
5759         unsigned long flags;
5760
5761         if (unlikely(!lockdep_enabled()))
5762                 return;
5763
5764         raw_local_irq_save(flags);
5765         check_flags(flags);
5766
5767         lockdep_recursion_inc();
5768         __lock_unpin_lock(lock, cookie);
5769         lockdep_recursion_finish();
5770         raw_local_irq_restore(flags);
5771 }
5772 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5773
5774 #ifdef CONFIG_LOCK_STAT
5775 static void print_lock_contention_bug(struct task_struct *curr,
5776                                       struct lockdep_map *lock,
5777                                       unsigned long ip)
5778 {
5779         if (!debug_locks_off())
5780                 return;
5781         if (debug_locks_silent)
5782                 return;
5783
5784         pr_warn("\n");
5785         pr_warn("=================================\n");
5786         pr_warn("WARNING: bad contention detected!\n");
5787         print_kernel_ident();
5788         pr_warn("---------------------------------\n");
5789         pr_warn("%s/%d is trying to contend lock (",
5790                 curr->comm, task_pid_nr(curr));
5791         print_lockdep_cache(lock);
5792         pr_cont(") at:\n");
5793         print_ip_sym(KERN_WARNING, ip);
5794         pr_warn("but there are no locks held!\n");
5795         pr_warn("\nother info that might help us debug this:\n");
5796         lockdep_print_held_locks(curr);
5797
5798         pr_warn("\nstack backtrace:\n");
5799         dump_stack();
5800 }
5801
5802 static void
5803 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5804 {
5805         struct task_struct *curr = current;
5806         struct held_lock *hlock;
5807         struct lock_class_stats *stats;
5808         unsigned int depth;
5809         int i, contention_point, contending_point;
5810
5811         depth = curr->lockdep_depth;
5812         /*
5813          * Whee, we contended on this lock, except it seems we're not
5814          * actually trying to acquire anything much at all..
5815          */
5816         if (DEBUG_LOCKS_WARN_ON(!depth))
5817                 return;
5818
5819         hlock = find_held_lock(curr, lock, depth, &i);
5820         if (!hlock) {
5821                 print_lock_contention_bug(curr, lock, ip);
5822                 return;
5823         }
5824
5825         if (hlock->instance != lock)
5826                 return;
5827
5828         hlock->waittime_stamp = lockstat_clock();
5829
5830         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5831         contending_point = lock_point(hlock_class(hlock)->contending_point,
5832                                       lock->ip);
5833
5834         stats = get_lock_stats(hlock_class(hlock));
5835         if (contention_point < LOCKSTAT_POINTS)
5836                 stats->contention_point[contention_point]++;
5837         if (contending_point < LOCKSTAT_POINTS)
5838                 stats->contending_point[contending_point]++;
5839         if (lock->cpu != smp_processor_id())
5840                 stats->bounces[bounce_contended + !!hlock->read]++;
5841 }
5842
5843 static void
5844 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5845 {
5846         struct task_struct *curr = current;
5847         struct held_lock *hlock;
5848         struct lock_class_stats *stats;
5849         unsigned int depth;
5850         u64 now, waittime = 0;
5851         int i, cpu;
5852
5853         depth = curr->lockdep_depth;
5854         /*
5855          * Yay, we acquired ownership of this lock we didn't try to
5856          * acquire, how the heck did that happen?
5857          */
5858         if (DEBUG_LOCKS_WARN_ON(!depth))
5859                 return;
5860
5861         hlock = find_held_lock(curr, lock, depth, &i);
5862         if (!hlock) {
5863                 print_lock_contention_bug(curr, lock, _RET_IP_);
5864                 return;
5865         }
5866
5867         if (hlock->instance != lock)
5868                 return;
5869
5870         cpu = smp_processor_id();
5871         if (hlock->waittime_stamp) {
5872                 now = lockstat_clock();
5873                 waittime = now - hlock->waittime_stamp;
5874                 hlock->holdtime_stamp = now;
5875         }
5876
5877         stats = get_lock_stats(hlock_class(hlock));
5878         if (waittime) {
5879                 if (hlock->read)
5880                         lock_time_inc(&stats->read_waittime, waittime);
5881                 else
5882                         lock_time_inc(&stats->write_waittime, waittime);
5883         }
5884         if (lock->cpu != cpu)
5885                 stats->bounces[bounce_acquired + !!hlock->read]++;
5886
5887         lock->cpu = cpu;
5888         lock->ip = ip;
5889 }
5890
5891 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5892 {
5893         unsigned long flags;
5894
5895         trace_lock_contended(lock, ip);
5896
5897         if (unlikely(!lock_stat || !lockdep_enabled()))
5898                 return;
5899
5900         raw_local_irq_save(flags);
5901         check_flags(flags);
5902         lockdep_recursion_inc();
5903         __lock_contended(lock, ip);
5904         lockdep_recursion_finish();
5905         raw_local_irq_restore(flags);
5906 }
5907 EXPORT_SYMBOL_GPL(lock_contended);
5908
5909 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5910 {
5911         unsigned long flags;
5912
5913         trace_lock_acquired(lock, ip);
5914
5915         if (unlikely(!lock_stat || !lockdep_enabled()))
5916                 return;
5917
5918         raw_local_irq_save(flags);
5919         check_flags(flags);
5920         lockdep_recursion_inc();
5921         __lock_acquired(lock, ip);
5922         lockdep_recursion_finish();
5923         raw_local_irq_restore(flags);
5924 }
5925 EXPORT_SYMBOL_GPL(lock_acquired);
5926 #endif
5927
5928 /*
5929  * Used by the testsuite, sanitize the validator state
5930  * after a simulated failure:
5931  */
5932
5933 void lockdep_reset(void)
5934 {
5935         unsigned long flags;
5936         int i;
5937
5938         raw_local_irq_save(flags);
5939         lockdep_init_task(current);
5940         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5941         nr_hardirq_chains = 0;
5942         nr_softirq_chains = 0;
5943         nr_process_chains = 0;
5944         debug_locks = 1;
5945         for (i = 0; i < CHAINHASH_SIZE; i++)
5946                 INIT_HLIST_HEAD(chainhash_table + i);
5947         raw_local_irq_restore(flags);
5948 }
5949
5950 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5951 static void remove_class_from_lock_chain(struct pending_free *pf,
5952                                          struct lock_chain *chain,
5953                                          struct lock_class *class)
5954 {
5955 #ifdef CONFIG_PROVE_LOCKING
5956         int i;
5957
5958         for (i = chain->base; i < chain->base + chain->depth; i++) {
5959                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5960                         continue;
5961                 /*
5962                  * Each lock class occurs at most once in a lock chain so once
5963                  * we found a match we can break out of this loop.
5964                  */
5965                 goto free_lock_chain;
5966         }
5967         /* Since the chain has not been modified, return. */
5968         return;
5969
5970 free_lock_chain:
5971         free_chain_hlocks(chain->base, chain->depth);
5972         /* Overwrite the chain key for concurrent RCU readers. */
5973         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5974         dec_chains(chain->irq_context);
5975
5976         /*
5977          * Note: calling hlist_del_rcu() from inside a
5978          * hlist_for_each_entry_rcu() loop is safe.
5979          */
5980         hlist_del_rcu(&chain->entry);
5981         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5982         nr_zapped_lock_chains++;
5983 #endif
5984 }
5985
5986 /* Must be called with the graph lock held. */
5987 static void remove_class_from_lock_chains(struct pending_free *pf,
5988                                           struct lock_class *class)
5989 {
5990         struct lock_chain *chain;
5991         struct hlist_head *head;
5992         int i;
5993
5994         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5995                 head = chainhash_table + i;
5996                 hlist_for_each_entry_rcu(chain, head, entry) {
5997                         remove_class_from_lock_chain(pf, chain, class);
5998                 }
5999         }
6000 }
6001
6002 /*
6003  * Remove all references to a lock class. The caller must hold the graph lock.
6004  */
6005 static void zap_class(struct pending_free *pf, struct lock_class *class)
6006 {
6007         struct lock_list *entry;
6008         int i;
6009
6010         WARN_ON_ONCE(!class->key);
6011
6012         /*
6013          * Remove all dependencies this lock is
6014          * involved in:
6015          */
6016         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6017                 entry = list_entries + i;
6018                 if (entry->class != class && entry->links_to != class)
6019                         continue;
6020                 __clear_bit(i, list_entries_in_use);
6021                 nr_list_entries--;
6022                 list_del_rcu(&entry->entry);
6023         }
6024         if (list_empty(&class->locks_after) &&
6025             list_empty(&class->locks_before)) {
6026                 list_move_tail(&class->lock_entry, &pf->zapped);
6027                 hlist_del_rcu(&class->hash_entry);
6028                 WRITE_ONCE(class->key, NULL);
6029                 WRITE_ONCE(class->name, NULL);
6030                 nr_lock_classes--;
6031                 __clear_bit(class - lock_classes, lock_classes_in_use);
6032                 if (class - lock_classes == max_lock_class_idx)
6033                         max_lock_class_idx--;
6034         } else {
6035                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6036                           class->name);
6037         }
6038
6039         remove_class_from_lock_chains(pf, class);
6040         nr_zapped_classes++;
6041 }
6042
6043 static void reinit_class(struct lock_class *class)
6044 {
6045         WARN_ON_ONCE(!class->lock_entry.next);
6046         WARN_ON_ONCE(!list_empty(&class->locks_after));
6047         WARN_ON_ONCE(!list_empty(&class->locks_before));
6048         memset_startat(class, 0, key);
6049         WARN_ON_ONCE(!class->lock_entry.next);
6050         WARN_ON_ONCE(!list_empty(&class->locks_after));
6051         WARN_ON_ONCE(!list_empty(&class->locks_before));
6052 }
6053
6054 static inline int within(const void *addr, void *start, unsigned long size)
6055 {
6056         return addr >= start && addr < start + size;
6057 }
6058
6059 static bool inside_selftest(void)
6060 {
6061         return current == lockdep_selftest_task_struct;
6062 }
6063
6064 /* The caller must hold the graph lock. */
6065 static struct pending_free *get_pending_free(void)
6066 {
6067         return delayed_free.pf + delayed_free.index;
6068 }
6069
6070 static void free_zapped_rcu(struct rcu_head *cb);
6071
6072 /*
6073  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6074  * the graph lock held.
6075  */
6076 static void call_rcu_zapped(struct pending_free *pf)
6077 {
6078         WARN_ON_ONCE(inside_selftest());
6079
6080         if (list_empty(&pf->zapped))
6081                 return;
6082
6083         if (delayed_free.scheduled)
6084                 return;
6085
6086         delayed_free.scheduled = true;
6087
6088         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6089         delayed_free.index ^= 1;
6090
6091         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6092 }
6093
6094 /* The caller must hold the graph lock. May be called from RCU context. */
6095 static void __free_zapped_classes(struct pending_free *pf)
6096 {
6097         struct lock_class *class;
6098
6099         check_data_structures();
6100
6101         list_for_each_entry(class, &pf->zapped, lock_entry)
6102                 reinit_class(class);
6103
6104         list_splice_init(&pf->zapped, &free_lock_classes);
6105
6106 #ifdef CONFIG_PROVE_LOCKING
6107         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6108                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6109         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6110 #endif
6111 }
6112
6113 static void free_zapped_rcu(struct rcu_head *ch)
6114 {
6115         struct pending_free *pf;
6116         unsigned long flags;
6117
6118         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6119                 return;
6120
6121         raw_local_irq_save(flags);
6122         lockdep_lock();
6123
6124         /* closed head */
6125         pf = delayed_free.pf + (delayed_free.index ^ 1);
6126         __free_zapped_classes(pf);
6127         delayed_free.scheduled = false;
6128
6129         /*
6130          * If there's anything on the open list, close and start a new callback.
6131          */
6132         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6133
6134         lockdep_unlock();
6135         raw_local_irq_restore(flags);
6136 }
6137
6138 /*
6139  * Remove all lock classes from the class hash table and from the
6140  * all_lock_classes list whose key or name is in the address range [start,
6141  * start + size). Move these lock classes to the zapped_classes list. Must
6142  * be called with the graph lock held.
6143  */
6144 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6145                                      unsigned long size)
6146 {
6147         struct lock_class *class;
6148         struct hlist_head *head;
6149         int i;
6150
6151         /* Unhash all classes that were created by a module. */
6152         for (i = 0; i < CLASSHASH_SIZE; i++) {
6153                 head = classhash_table + i;
6154                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6155                         if (!within(class->key, start, size) &&
6156                             !within(class->name, start, size))
6157                                 continue;
6158                         zap_class(pf, class);
6159                 }
6160         }
6161 }
6162
6163 /*
6164  * Used in module.c to remove lock classes from memory that is going to be
6165  * freed; and possibly re-used by other modules.
6166  *
6167  * We will have had one synchronize_rcu() before getting here, so we're
6168  * guaranteed nobody will look up these exact classes -- they're properly dead
6169  * but still allocated.
6170  */
6171 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6172 {
6173         struct pending_free *pf;
6174         unsigned long flags;
6175
6176         init_data_structures_once();
6177
6178         raw_local_irq_save(flags);
6179         lockdep_lock();
6180         pf = get_pending_free();
6181         __lockdep_free_key_range(pf, start, size);
6182         call_rcu_zapped(pf);
6183         lockdep_unlock();
6184         raw_local_irq_restore(flags);
6185
6186         /*
6187          * Wait for any possible iterators from look_up_lock_class() to pass
6188          * before continuing to free the memory they refer to.
6189          */
6190         synchronize_rcu();
6191 }
6192
6193 /*
6194  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6195  * Ignores debug_locks. Must only be used by the lockdep selftests.
6196  */
6197 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6198 {
6199         struct pending_free *pf = delayed_free.pf;
6200         unsigned long flags;
6201
6202         init_data_structures_once();
6203
6204         raw_local_irq_save(flags);
6205         lockdep_lock();
6206         __lockdep_free_key_range(pf, start, size);
6207         __free_zapped_classes(pf);
6208         lockdep_unlock();
6209         raw_local_irq_restore(flags);
6210 }
6211
6212 void lockdep_free_key_range(void *start, unsigned long size)
6213 {
6214         init_data_structures_once();
6215
6216         if (inside_selftest())
6217                 lockdep_free_key_range_imm(start, size);
6218         else
6219                 lockdep_free_key_range_reg(start, size);
6220 }
6221
6222 /*
6223  * Check whether any element of the @lock->class_cache[] array refers to a
6224  * registered lock class. The caller must hold either the graph lock or the
6225  * RCU read lock.
6226  */
6227 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6228 {
6229         struct lock_class *class;
6230         struct hlist_head *head;
6231         int i, j;
6232
6233         for (i = 0; i < CLASSHASH_SIZE; i++) {
6234                 head = classhash_table + i;
6235                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6236                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6237                                 if (lock->class_cache[j] == class)
6238                                         return true;
6239                 }
6240         }
6241         return false;
6242 }
6243
6244 /* The caller must hold the graph lock. Does not sleep. */
6245 static void __lockdep_reset_lock(struct pending_free *pf,
6246                                  struct lockdep_map *lock)
6247 {
6248         struct lock_class *class;
6249         int j;
6250
6251         /*
6252          * Remove all classes this lock might have:
6253          */
6254         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6255                 /*
6256                  * If the class exists we look it up and zap it:
6257                  */
6258                 class = look_up_lock_class(lock, j);
6259                 if (class)
6260                         zap_class(pf, class);
6261         }
6262         /*
6263          * Debug check: in the end all mapped classes should
6264          * be gone.
6265          */
6266         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6267                 debug_locks_off();
6268 }
6269
6270 /*
6271  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6272  * released data structures from RCU context.
6273  */
6274 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6275 {
6276         struct pending_free *pf;
6277         unsigned long flags;
6278         int locked;
6279
6280         raw_local_irq_save(flags);
6281         locked = graph_lock();
6282         if (!locked)
6283                 goto out_irq;
6284
6285         pf = get_pending_free();
6286         __lockdep_reset_lock(pf, lock);
6287         call_rcu_zapped(pf);
6288
6289         graph_unlock();
6290 out_irq:
6291         raw_local_irq_restore(flags);
6292 }
6293
6294 /*
6295  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6296  * lockdep selftests.
6297  */
6298 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6299 {
6300         struct pending_free *pf = delayed_free.pf;
6301         unsigned long flags;
6302
6303         raw_local_irq_save(flags);
6304         lockdep_lock();
6305         __lockdep_reset_lock(pf, lock);
6306         __free_zapped_classes(pf);
6307         lockdep_unlock();
6308         raw_local_irq_restore(flags);
6309 }
6310
6311 void lockdep_reset_lock(struct lockdep_map *lock)
6312 {
6313         init_data_structures_once();
6314
6315         if (inside_selftest())
6316                 lockdep_reset_lock_imm(lock);
6317         else
6318                 lockdep_reset_lock_reg(lock);
6319 }
6320
6321 /*
6322  * Unregister a dynamically allocated key.
6323  *
6324  * Unlike lockdep_register_key(), a search is always done to find a matching
6325  * key irrespective of debug_locks to avoid potential invalid access to freed
6326  * memory in lock_class entry.
6327  */
6328 void lockdep_unregister_key(struct lock_class_key *key)
6329 {
6330         struct hlist_head *hash_head = keyhashentry(key);
6331         struct lock_class_key *k;
6332         struct pending_free *pf;
6333         unsigned long flags;
6334         bool found = false;
6335
6336         might_sleep();
6337
6338         if (WARN_ON_ONCE(static_obj(key)))
6339                 return;
6340
6341         raw_local_irq_save(flags);
6342         lockdep_lock();
6343
6344         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6345                 if (k == key) {
6346                         hlist_del_rcu(&k->hash_entry);
6347                         found = true;
6348                         break;
6349                 }
6350         }
6351         WARN_ON_ONCE(!found && debug_locks);
6352         if (found) {
6353                 pf = get_pending_free();
6354                 __lockdep_free_key_range(pf, key, 1);
6355                 call_rcu_zapped(pf);
6356         }
6357         lockdep_unlock();
6358         raw_local_irq_restore(flags);
6359
6360         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6361         synchronize_rcu();
6362 }
6363 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6364
6365 void __init lockdep_init(void)
6366 {
6367         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6368
6369         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6370         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6371         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6372         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6373         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6374         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6375         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6376
6377         printk(" memory used by lock dependency info: %zu kB\n",
6378                (sizeof(lock_classes) +
6379                 sizeof(lock_classes_in_use) +
6380                 sizeof(classhash_table) +
6381                 sizeof(list_entries) +
6382                 sizeof(list_entries_in_use) +
6383                 sizeof(chainhash_table) +
6384                 sizeof(delayed_free)
6385 #ifdef CONFIG_PROVE_LOCKING
6386                 + sizeof(lock_cq)
6387                 + sizeof(lock_chains)
6388                 + sizeof(lock_chains_in_use)
6389                 + sizeof(chain_hlocks)
6390 #endif
6391                 ) / 1024
6392                 );
6393
6394 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6395         printk(" memory used for stack traces: %zu kB\n",
6396                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6397                );
6398 #endif
6399
6400         printk(" per task-struct memory footprint: %zu bytes\n",
6401                sizeof(((struct task_struct *)NULL)->held_locks));
6402 }
6403
6404 static void
6405 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6406                      const void *mem_to, struct held_lock *hlock)
6407 {
6408         if (!debug_locks_off())
6409                 return;
6410         if (debug_locks_silent)
6411                 return;
6412
6413         pr_warn("\n");
6414         pr_warn("=========================\n");
6415         pr_warn("WARNING: held lock freed!\n");
6416         print_kernel_ident();
6417         pr_warn("-------------------------\n");
6418         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6419                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6420         print_lock(hlock);
6421         lockdep_print_held_locks(curr);
6422
6423         pr_warn("\nstack backtrace:\n");
6424         dump_stack();
6425 }
6426
6427 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6428                                 const void* lock_from, unsigned long lock_len)
6429 {
6430         return lock_from + lock_len <= mem_from ||
6431                 mem_from + mem_len <= lock_from;
6432 }
6433
6434 /*
6435  * Called when kernel memory is freed (or unmapped), or if a lock
6436  * is destroyed or reinitialized - this code checks whether there is
6437  * any held lock in the memory range of <from> to <to>:
6438  */
6439 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6440 {
6441         struct task_struct *curr = current;
6442         struct held_lock *hlock;
6443         unsigned long flags;
6444         int i;
6445
6446         if (unlikely(!debug_locks))
6447                 return;
6448
6449         raw_local_irq_save(flags);
6450         for (i = 0; i < curr->lockdep_depth; i++) {
6451                 hlock = curr->held_locks + i;
6452
6453                 if (not_in_range(mem_from, mem_len, hlock->instance,
6454                                         sizeof(*hlock->instance)))
6455                         continue;
6456
6457                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6458                 break;
6459         }
6460         raw_local_irq_restore(flags);
6461 }
6462 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6463
6464 static void print_held_locks_bug(void)
6465 {
6466         if (!debug_locks_off())
6467                 return;
6468         if (debug_locks_silent)
6469                 return;
6470
6471         pr_warn("\n");
6472         pr_warn("====================================\n");
6473         pr_warn("WARNING: %s/%d still has locks held!\n",
6474                current->comm, task_pid_nr(current));
6475         print_kernel_ident();
6476         pr_warn("------------------------------------\n");
6477         lockdep_print_held_locks(current);
6478         pr_warn("\nstack backtrace:\n");
6479         dump_stack();
6480 }
6481
6482 void debug_check_no_locks_held(void)
6483 {
6484         if (unlikely(current->lockdep_depth > 0))
6485                 print_held_locks_bug();
6486 }
6487 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6488
6489 #ifdef __KERNEL__
6490 void debug_show_all_locks(void)
6491 {
6492         struct task_struct *g, *p;
6493
6494         if (unlikely(!debug_locks)) {
6495                 pr_warn("INFO: lockdep is turned off.\n");
6496                 return;
6497         }
6498         pr_warn("\nShowing all locks held in the system:\n");
6499
6500         rcu_read_lock();
6501         for_each_process_thread(g, p) {
6502                 if (!p->lockdep_depth)
6503                         continue;
6504                 lockdep_print_held_locks(p);
6505                 touch_nmi_watchdog();
6506                 touch_all_softlockup_watchdogs();
6507         }
6508         rcu_read_unlock();
6509
6510         pr_warn("\n");
6511         pr_warn("=============================================\n\n");
6512 }
6513 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6514 #endif
6515
6516 /*
6517  * Careful: only use this function if you are sure that
6518  * the task cannot run in parallel!
6519  */
6520 void debug_show_held_locks(struct task_struct *task)
6521 {
6522         if (unlikely(!debug_locks)) {
6523                 printk("INFO: lockdep is turned off.\n");
6524                 return;
6525         }
6526         lockdep_print_held_locks(task);
6527 }
6528 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6529
6530 asmlinkage __visible void lockdep_sys_exit(void)
6531 {
6532         struct task_struct *curr = current;
6533
6534         if (unlikely(curr->lockdep_depth)) {
6535                 if (!debug_locks_off())
6536                         return;
6537                 pr_warn("\n");
6538                 pr_warn("================================================\n");
6539                 pr_warn("WARNING: lock held when returning to user space!\n");
6540                 print_kernel_ident();
6541                 pr_warn("------------------------------------------------\n");
6542                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6543                                 curr->comm, curr->pid);
6544                 lockdep_print_held_locks(curr);
6545         }
6546
6547         /*
6548          * The lock history for each syscall should be independent. So wipe the
6549          * slate clean on return to userspace.
6550          */
6551         lockdep_invariant_state(false);
6552 }
6553
6554 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6555 {
6556         struct task_struct *curr = current;
6557         int dl = READ_ONCE(debug_locks);
6558
6559         /* Note: the following can be executed concurrently, so be careful. */
6560         pr_warn("\n");
6561         pr_warn("=============================\n");
6562         pr_warn("WARNING: suspicious RCU usage\n");
6563         print_kernel_ident();
6564         pr_warn("-----------------------------\n");
6565         pr_warn("%s:%d %s!\n", file, line, s);
6566         pr_warn("\nother info that might help us debug this:\n\n");
6567         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6568                !rcu_lockdep_current_cpu_online()
6569                         ? "RCU used illegally from offline CPU!\n"
6570                         : "",
6571                rcu_scheduler_active, dl,
6572                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6573
6574         /*
6575          * If a CPU is in the RCU-free window in idle (ie: in the section
6576          * between ct_idle_enter() and ct_idle_exit(), then RCU
6577          * considers that CPU to be in an "extended quiescent state",
6578          * which means that RCU will be completely ignoring that CPU.
6579          * Therefore, rcu_read_lock() and friends have absolutely no
6580          * effect on a CPU running in that state. In other words, even if
6581          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6582          * delete data structures out from under it.  RCU really has no
6583          * choice here: we need to keep an RCU-free window in idle where
6584          * the CPU may possibly enter into low power mode. This way we can
6585          * notice an extended quiescent state to other CPUs that started a grace
6586          * period. Otherwise we would delay any grace period as long as we run
6587          * in the idle task.
6588          *
6589          * So complain bitterly if someone does call rcu_read_lock(),
6590          * rcu_read_lock_bh() and so on from extended quiescent states.
6591          */
6592         if (!rcu_is_watching())
6593                 pr_warn("RCU used illegally from extended quiescent state!\n");
6594
6595         lockdep_print_held_locks(curr);
6596         pr_warn("\nstack backtrace:\n");
6597         dump_stack();
6598 }
6599 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);