Merge tag 'core-debugobjects-2023-05-28' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59
60 #include <asm/sections.h>
61
62 #include "lockdep_internals.h"
63
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83         {
84                 .procname       = "prove_locking",
85                 .data           = &prove_locking,
86                 .maxlen         = sizeof(int),
87                 .mode           = 0644,
88                 .proc_handler   = proc_dointvec,
89         },
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92         {
93                 .procname       = "lock_stat",
94                 .data           = &lock_stat,
95                 .maxlen         = sizeof(int),
96                 .mode           = 0644,
97                 .proc_handler   = proc_dointvec,
98         },
99 #endif /* CONFIG_LOCK_STAT */
100         { }
101 };
102
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105         register_sysctl_init("kernel", kern_lockdep_table);
106         return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113
114 static __always_inline bool lockdep_enabled(void)
115 {
116         if (!debug_locks)
117                 return false;
118
119         if (this_cpu_read(lockdep_recursion))
120                 return false;
121
122         if (current->lockdep_recursion)
123                 return false;
124
125         return true;
126 }
127
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138
139 static inline void lockdep_lock(void)
140 {
141         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142
143         __this_cpu_inc(lockdep_recursion);
144         arch_spin_lock(&__lock);
145         __owner = current;
146 }
147
148 static inline void lockdep_unlock(void)
149 {
150         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151
152         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153                 return;
154
155         __owner = NULL;
156         arch_spin_unlock(&__lock);
157         __this_cpu_dec(lockdep_recursion);
158 }
159
160 static inline bool lockdep_assert_locked(void)
161 {
162         return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164
165 static struct task_struct *lockdep_selftest_task_struct;
166
167
168 static int graph_lock(void)
169 {
170         lockdep_lock();
171         /*
172          * Make sure that if another CPU detected a bug while
173          * walking the graph we dont change it (while the other
174          * CPU is busy printing out stuff with the graph lock
175          * dropped already)
176          */
177         if (!debug_locks) {
178                 lockdep_unlock();
179                 return 0;
180         }
181         return 1;
182 }
183
184 static inline void graph_unlock(void)
185 {
186         lockdep_unlock();
187 }
188
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195         int ret = debug_locks_off();
196
197         lockdep_unlock();
198
199         return ret;
200 }
201
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223         unsigned int class_idx = hlock->class_idx;
224
225         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226         barrier();
227
228         if (!test_bit(class_idx, lock_classes_in_use)) {
229                 /*
230                  * Someone passed in garbage, we give up.
231                  */
232                 DEBUG_LOCKS_WARN_ON(1);
233                 return NULL;
234         }
235
236         /*
237          * At this point, if the passed hlock->class_idx is still garbage,
238          * we just have to live with it
239          */
240         return lock_classes + class_idx;
241 }
242
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245
246 static inline u64 lockstat_clock(void)
247 {
248         return local_clock();
249 }
250
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253         int i;
254
255         for (i = 0; i < LOCKSTAT_POINTS; i++) {
256                 if (points[i] == 0) {
257                         points[i] = ip;
258                         break;
259                 }
260                 if (points[i] == ip)
261                         break;
262         }
263
264         return i;
265 }
266
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269         if (time > lt->max)
270                 lt->max = time;
271
272         if (time < lt->min || !lt->nr)
273                 lt->min = time;
274
275         lt->total += time;
276         lt->nr++;
277 }
278
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281         if (!src->nr)
282                 return;
283
284         if (src->max > dst->max)
285                 dst->max = src->max;
286
287         if (src->min < dst->min || !dst->nr)
288                 dst->min = src->min;
289
290         dst->total += src->total;
291         dst->nr += src->nr;
292 }
293
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296         struct lock_class_stats stats;
297         int cpu, i;
298
299         memset(&stats, 0, sizeof(struct lock_class_stats));
300         for_each_possible_cpu(cpu) {
301                 struct lock_class_stats *pcs =
302                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303
304                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305                         stats.contention_point[i] += pcs->contention_point[i];
306
307                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308                         stats.contending_point[i] += pcs->contending_point[i];
309
310                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312
313                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315
316                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317                         stats.bounces[i] += pcs->bounces[i];
318         }
319
320         return stats;
321 }
322
323 void clear_lock_stats(struct lock_class *class)
324 {
325         int cpu;
326
327         for_each_possible_cpu(cpu) {
328                 struct lock_class_stats *cpu_stats =
329                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330
331                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332         }
333         memset(class->contention_point, 0, sizeof(class->contention_point));
334         memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344         struct lock_class_stats *stats;
345         u64 holdtime;
346
347         if (!lock_stat)
348                 return;
349
350         holdtime = lockstat_clock() - hlock->holdtime_stamp;
351
352         stats = get_lock_stats(hlock_class(hlock));
353         if (hlock->read)
354                 lock_time_inc(&stats->read_holdtime, holdtime);
355         else
356                 lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *      are about to be freed.
378  */
379 struct pending_free {
380         struct list_head zapped;
381         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396         struct rcu_head         rcu_head;
397         int                     index;
398         int                     scheduled;
399         struct pending_free     pf[2];
400 } delayed_free;
401
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
409
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
420
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429
430         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446         u32 k0 = key, k1 = key >> 32;
447
448         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449
450         return k0 | (u64)k1 << 32;
451 }
452
453 void lockdep_init_task(struct task_struct *task)
454 {
455         task->lockdep_depth = 0; /* no locks held yet */
456         task->curr_chain_key = INITIAL_CHAIN_KEY;
457         task->lockdep_recursion = 0;
458 }
459
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462         __this_cpu_inc(lockdep_recursion);
463 }
464
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468                 __this_cpu_write(lockdep_recursion, 0);
469 }
470
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473         lockdep_selftest_task_struct = task;
474 }
475
476 /*
477  * Debugging switches:
478  */
479
480 #define VERBOSE                 0
481 #define VERY_VERBOSE            0
482
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE        1
485 # define SOFTIRQ_VERBOSE        1
486 #else
487 # define HARDIRQ_VERBOSE        0
488 # define SOFTIRQ_VERBOSE        0
489 #endif
490
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498         /* Example */
499         if (class->name_version == 1 &&
500                         !strcmp(class->name, "lockname"))
501                 return 1;
502         if (class->name_version == 1 &&
503                         !strcmp(class->name, "&struct->lockfield"))
504                 return 1;
505 #endif
506         /* Filter everything else. 1 would be to allow everything else */
507         return 0;
508 }
509 #endif
510
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514         return class_filter(class);
515 #endif
516         return 0;
517 }
518
519 static void print_lockdep_off(const char *bug_msg)
520 {
521         printk(KERN_DEBUG "%s\n", bug_msg);
522         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527
528 unsigned long nr_stack_trace_entries;
529
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry: Entry in a stack_trace_hash[] list.
534  * @hash:       jhash() of @entries.
535  * @nr_entries: Number of entries in @entries.
536  * @entries:    Actual stack backtrace.
537  */
538 struct lock_trace {
539         struct hlist_node       hash_entry;
540         u32                     hash;
541         u32                     nr_entries;
542         unsigned long           entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS                                \
545         (sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555                 memcmp(t1->entries, t2->entries,
556                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558
559 static struct lock_trace *save_trace(void)
560 {
561         struct lock_trace *trace, *t2;
562         struct hlist_head *hash_head;
563         u32 hash;
564         int max_entries;
565
566         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568
569         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571                 LOCK_TRACE_SIZE_IN_LONGS;
572
573         if (max_entries <= 0) {
574                 if (!debug_locks_off_graph_unlock())
575                         return NULL;
576
577                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578                 dump_stack();
579
580                 return NULL;
581         }
582         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583
584         hash = jhash(trace->entries, trace->nr_entries *
585                      sizeof(trace->entries[0]), 0);
586         trace->hash = hash;
587         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588         hlist_for_each_entry(t2, hash_head, hash_entry) {
589                 if (traces_identical(trace, t2))
590                         return t2;
591         }
592         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593         hlist_add_head(&trace->hash_entry, hash_head);
594
595         return trace;
596 }
597
598 /* Return the number of stack traces in the stack_trace[] array. */
599 u64 lockdep_stack_trace_count(void)
600 {
601         struct lock_trace *trace;
602         u64 c = 0;
603         int i;
604
605         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607                         c++;
608                 }
609         }
610
611         return c;
612 }
613
614 /* Return the number of stack hash chains that have at least one stack trace. */
615 u64 lockdep_stack_hash_count(void)
616 {
617         u64 c = 0;
618         int i;
619
620         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621                 if (!hlist_empty(&stack_trace_hash[i]))
622                         c++;
623
624         return c;
625 }
626 #endif
627
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644
645 #define __USAGE(__STATE)                                                \
646         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
647         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
648         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656         [LOCK_USED] = "INITIAL USE",
657         [LOCK_USED_READ] = "INITIAL READ USE",
658         /* abused as string storage for verify_lock_unused() */
659         [LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662
663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667
668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670         return 1UL << bit;
671 }
672
673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675         /*
676          * The usage character defaults to '.' (i.e., irqs disabled and not in
677          * irq context), which is the safest usage category.
678          */
679         char c = '.';
680
681         /*
682          * The order of the following usage checks matters, which will
683          * result in the outcome character as follows:
684          *
685          * - '+': irq is enabled and not in irq context
686          * - '-': in irq context and irq is disabled
687          * - '?': in irq context and irq is enabled
688          */
689         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690                 c = '+';
691                 if (class->usage_mask & lock_flag(bit))
692                         c = '?';
693         } else if (class->usage_mask & lock_flag(bit))
694                 c = '-';
695
696         return c;
697 }
698
699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701         int i = 0;
702
703 #define LOCKDEP_STATE(__STATE)                                          \
704         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
705         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708
709         usage[i] = '\0';
710 }
711
712 static void __print_lock_name(struct lock_class *class)
713 {
714         char str[KSYM_NAME_LEN];
715         const char *name;
716
717         name = class->name;
718         if (!name) {
719                 name = __get_key_name(class->key, str);
720                 printk(KERN_CONT "%s", name);
721         } else {
722                 printk(KERN_CONT "%s", name);
723                 if (class->name_version > 1)
724                         printk(KERN_CONT "#%d", class->name_version);
725                 if (class->subclass)
726                         printk(KERN_CONT "/%d", class->subclass);
727         }
728 }
729
730 static void print_lock_name(struct lock_class *class)
731 {
732         char usage[LOCK_USAGE_CHARS];
733
734         get_usage_chars(class, usage);
735
736         printk(KERN_CONT " (");
737         __print_lock_name(class);
738         printk(KERN_CONT "){%s}-{%d:%d}", usage,
739                         class->wait_type_outer ?: class->wait_type_inner,
740                         class->wait_type_inner);
741 }
742
743 static void print_lockdep_cache(struct lockdep_map *lock)
744 {
745         const char *name;
746         char str[KSYM_NAME_LEN];
747
748         name = lock->name;
749         if (!name)
750                 name = __get_key_name(lock->key->subkeys, str);
751
752         printk(KERN_CONT "%s", name);
753 }
754
755 static void print_lock(struct held_lock *hlock)
756 {
757         /*
758          * We can be called locklessly through debug_show_all_locks() so be
759          * extra careful, the hlock might have been released and cleared.
760          *
761          * If this indeed happens, lets pretend it does not hurt to continue
762          * to print the lock unless the hlock class_idx does not point to a
763          * registered class. The rationale here is: since we don't attempt
764          * to distinguish whether we are in this situation, if it just
765          * happened we can't count on class_idx to tell either.
766          */
767         struct lock_class *lock = hlock_class(hlock);
768
769         if (!lock) {
770                 printk(KERN_CONT "<RELEASED>\n");
771                 return;
772         }
773
774         printk(KERN_CONT "%px", hlock->instance);
775         print_lock_name(lock);
776         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
777 }
778
779 static void lockdep_print_held_locks(struct task_struct *p)
780 {
781         int i, depth = READ_ONCE(p->lockdep_depth);
782
783         if (!depth)
784                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
785         else
786                 printk("%d lock%s held by %s/%d:\n", depth,
787                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
788         /*
789          * It's not reliable to print a task's held locks if it's not sleeping
790          * and it's not the current task.
791          */
792         if (p != current && task_is_running(p))
793                 return;
794         for (i = 0; i < depth; i++) {
795                 printk(" #%d: ", i);
796                 print_lock(p->held_locks + i);
797         }
798 }
799
800 static void print_kernel_ident(void)
801 {
802         printk("%s %.*s %s\n", init_utsname()->release,
803                 (int)strcspn(init_utsname()->version, " "),
804                 init_utsname()->version,
805                 print_tainted());
806 }
807
808 static int very_verbose(struct lock_class *class)
809 {
810 #if VERY_VERBOSE
811         return class_filter(class);
812 #endif
813         return 0;
814 }
815
816 /*
817  * Is this the address of a static object:
818  */
819 #ifdef __KERNEL__
820 /*
821  * Check if an address is part of freed initmem. After initmem is freed,
822  * memory can be allocated from it, and such allocations would then have
823  * addresses within the range [_stext, _end].
824  */
825 #ifndef arch_is_kernel_initmem_freed
826 static int arch_is_kernel_initmem_freed(unsigned long addr)
827 {
828         if (system_state < SYSTEM_FREEING_INITMEM)
829                 return 0;
830
831         return init_section_contains((void *)addr, 1);
832 }
833 #endif
834
835 static int static_obj(const void *obj)
836 {
837         unsigned long start = (unsigned long) &_stext,
838                       end   = (unsigned long) &_end,
839                       addr  = (unsigned long) obj;
840
841         if (arch_is_kernel_initmem_freed(addr))
842                 return 0;
843
844         /*
845          * static variable?
846          */
847         if ((addr >= start) && (addr < end))
848                 return 1;
849
850         /*
851          * in-kernel percpu var?
852          */
853         if (is_kernel_percpu_address(addr))
854                 return 1;
855
856         /*
857          * module static or percpu var?
858          */
859         return is_module_address(addr) || is_module_percpu_address(addr);
860 }
861 #endif
862
863 /*
864  * To make lock name printouts unique, we calculate a unique
865  * class->name_version generation counter. The caller must hold the graph
866  * lock.
867  */
868 static int count_matching_names(struct lock_class *new_class)
869 {
870         struct lock_class *class;
871         int count = 0;
872
873         if (!new_class->name)
874                 return 0;
875
876         list_for_each_entry(class, &all_lock_classes, lock_entry) {
877                 if (new_class->key - new_class->subclass == class->key)
878                         return class->name_version;
879                 if (class->name && !strcmp(class->name, new_class->name))
880                         count = max(count, class->name_version);
881         }
882
883         return count + 1;
884 }
885
886 /* used from NMI context -- must be lockless */
887 static noinstr struct lock_class *
888 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
889 {
890         struct lockdep_subclass_key *key;
891         struct hlist_head *hash_head;
892         struct lock_class *class;
893
894         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
895                 instrumentation_begin();
896                 debug_locks_off();
897                 printk(KERN_ERR
898                         "BUG: looking up invalid subclass: %u\n", subclass);
899                 printk(KERN_ERR
900                         "turning off the locking correctness validator.\n");
901                 dump_stack();
902                 instrumentation_end();
903                 return NULL;
904         }
905
906         /*
907          * If it is not initialised then it has never been locked,
908          * so it won't be present in the hash table.
909          */
910         if (unlikely(!lock->key))
911                 return NULL;
912
913         /*
914          * NOTE: the class-key must be unique. For dynamic locks, a static
915          * lock_class_key variable is passed in through the mutex_init()
916          * (or spin_lock_init()) call - which acts as the key. For static
917          * locks we use the lock object itself as the key.
918          */
919         BUILD_BUG_ON(sizeof(struct lock_class_key) >
920                         sizeof(struct lockdep_map));
921
922         key = lock->key->subkeys + subclass;
923
924         hash_head = classhashentry(key);
925
926         /*
927          * We do an RCU walk of the hash, see lockdep_free_key_range().
928          */
929         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
930                 return NULL;
931
932         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
933                 if (class->key == key) {
934                         /*
935                          * Huh! same key, different name? Did someone trample
936                          * on some memory? We're most confused.
937                          */
938                         WARN_ONCE(class->name != lock->name &&
939                                   lock->key != &__lockdep_no_validate__,
940                                   "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
941                                   lock->name, lock->key, class->name);
942                         return class;
943                 }
944         }
945
946         return NULL;
947 }
948
949 /*
950  * Static locks do not have their class-keys yet - for them the key is
951  * the lock object itself. If the lock is in the per cpu area, the
952  * canonical address of the lock (per cpu offset removed) is used.
953  */
954 static bool assign_lock_key(struct lockdep_map *lock)
955 {
956         unsigned long can_addr, addr = (unsigned long)lock;
957
958 #ifdef __KERNEL__
959         /*
960          * lockdep_free_key_range() assumes that struct lock_class_key
961          * objects do not overlap. Since we use the address of lock
962          * objects as class key for static objects, check whether the
963          * size of lock_class_key objects does not exceed the size of
964          * the smallest lock object.
965          */
966         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
967 #endif
968
969         if (__is_kernel_percpu_address(addr, &can_addr))
970                 lock->key = (void *)can_addr;
971         else if (__is_module_percpu_address(addr, &can_addr))
972                 lock->key = (void *)can_addr;
973         else if (static_obj(lock))
974                 lock->key = (void *)lock;
975         else {
976                 /* Debug-check: all keys must be persistent! */
977                 debug_locks_off();
978                 pr_err("INFO: trying to register non-static key.\n");
979                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
980                 pr_err("you didn't initialize this object before use?\n");
981                 pr_err("turning off the locking correctness validator.\n");
982                 dump_stack();
983                 return false;
984         }
985
986         return true;
987 }
988
989 #ifdef CONFIG_DEBUG_LOCKDEP
990
991 /* Check whether element @e occurs in list @h */
992 static bool in_list(struct list_head *e, struct list_head *h)
993 {
994         struct list_head *f;
995
996         list_for_each(f, h) {
997                 if (e == f)
998                         return true;
999         }
1000
1001         return false;
1002 }
1003
1004 /*
1005  * Check whether entry @e occurs in any of the locks_after or locks_before
1006  * lists.
1007  */
1008 static bool in_any_class_list(struct list_head *e)
1009 {
1010         struct lock_class *class;
1011         int i;
1012
1013         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1014                 class = &lock_classes[i];
1015                 if (in_list(e, &class->locks_after) ||
1016                     in_list(e, &class->locks_before))
1017                         return true;
1018         }
1019         return false;
1020 }
1021
1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1023 {
1024         struct lock_list *e;
1025
1026         list_for_each_entry(e, h, entry) {
1027                 if (e->links_to != c) {
1028                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1029                                c->name ? : "(?)",
1030                                (unsigned long)(e - list_entries),
1031                                e->links_to && e->links_to->name ?
1032                                e->links_to->name : "(?)",
1033                                e->class && e->class->name ? e->class->name :
1034                                "(?)");
1035                         return false;
1036                 }
1037         }
1038         return true;
1039 }
1040
1041 #ifdef CONFIG_PROVE_LOCKING
1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1043 #endif
1044
1045 static bool check_lock_chain_key(struct lock_chain *chain)
1046 {
1047 #ifdef CONFIG_PROVE_LOCKING
1048         u64 chain_key = INITIAL_CHAIN_KEY;
1049         int i;
1050
1051         for (i = chain->base; i < chain->base + chain->depth; i++)
1052                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1053         /*
1054          * The 'unsigned long long' casts avoid that a compiler warning
1055          * is reported when building tools/lib/lockdep.
1056          */
1057         if (chain->chain_key != chain_key) {
1058                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1059                        (unsigned long long)(chain - lock_chains),
1060                        (unsigned long long)chain->chain_key,
1061                        (unsigned long long)chain_key);
1062                 return false;
1063         }
1064 #endif
1065         return true;
1066 }
1067
1068 static bool in_any_zapped_class_list(struct lock_class *class)
1069 {
1070         struct pending_free *pf;
1071         int i;
1072
1073         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1074                 if (in_list(&class->lock_entry, &pf->zapped))
1075                         return true;
1076         }
1077
1078         return false;
1079 }
1080
1081 static bool __check_data_structures(void)
1082 {
1083         struct lock_class *class;
1084         struct lock_chain *chain;
1085         struct hlist_head *head;
1086         struct lock_list *e;
1087         int i;
1088
1089         /* Check whether all classes occur in a lock list. */
1090         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1091                 class = &lock_classes[i];
1092                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1093                     !in_list(&class->lock_entry, &free_lock_classes) &&
1094                     !in_any_zapped_class_list(class)) {
1095                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1096                                class, class->name ? : "(?)");
1097                         return false;
1098                 }
1099         }
1100
1101         /* Check whether all classes have valid lock lists. */
1102         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1103                 class = &lock_classes[i];
1104                 if (!class_lock_list_valid(class, &class->locks_before))
1105                         return false;
1106                 if (!class_lock_list_valid(class, &class->locks_after))
1107                         return false;
1108         }
1109
1110         /* Check the chain_key of all lock chains. */
1111         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1112                 head = chainhash_table + i;
1113                 hlist_for_each_entry_rcu(chain, head, entry) {
1114                         if (!check_lock_chain_key(chain))
1115                                 return false;
1116                 }
1117         }
1118
1119         /*
1120          * Check whether all list entries that are in use occur in a class
1121          * lock list.
1122          */
1123         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1124                 e = list_entries + i;
1125                 if (!in_any_class_list(&e->entry)) {
1126                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1127                                (unsigned int)(e - list_entries),
1128                                e->class->name ? : "(?)",
1129                                e->links_to->name ? : "(?)");
1130                         return false;
1131                 }
1132         }
1133
1134         /*
1135          * Check whether all list entries that are not in use do not occur in
1136          * a class lock list.
1137          */
1138         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1139                 e = list_entries + i;
1140                 if (in_any_class_list(&e->entry)) {
1141                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1142                                (unsigned int)(e - list_entries),
1143                                e->class && e->class->name ? e->class->name :
1144                                "(?)",
1145                                e->links_to && e->links_to->name ?
1146                                e->links_to->name : "(?)");
1147                         return false;
1148                 }
1149         }
1150
1151         return true;
1152 }
1153
1154 int check_consistency = 0;
1155 module_param(check_consistency, int, 0644);
1156
1157 static void check_data_structures(void)
1158 {
1159         static bool once = false;
1160
1161         if (check_consistency && !once) {
1162                 if (!__check_data_structures()) {
1163                         once = true;
1164                         WARN_ON(once);
1165                 }
1166         }
1167 }
1168
1169 #else /* CONFIG_DEBUG_LOCKDEP */
1170
1171 static inline void check_data_structures(void) { }
1172
1173 #endif /* CONFIG_DEBUG_LOCKDEP */
1174
1175 static void init_chain_block_buckets(void);
1176
1177 /*
1178  * Initialize the lock_classes[] array elements, the free_lock_classes list
1179  * and also the delayed_free structure.
1180  */
1181 static void init_data_structures_once(void)
1182 {
1183         static bool __read_mostly ds_initialized, rcu_head_initialized;
1184         int i;
1185
1186         if (likely(rcu_head_initialized))
1187                 return;
1188
1189         if (system_state >= SYSTEM_SCHEDULING) {
1190                 init_rcu_head(&delayed_free.rcu_head);
1191                 rcu_head_initialized = true;
1192         }
1193
1194         if (ds_initialized)
1195                 return;
1196
1197         ds_initialized = true;
1198
1199         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1200         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1201
1202         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1203                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1204                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1205                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1206         }
1207         init_chain_block_buckets();
1208 }
1209
1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1211 {
1212         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1213
1214         return lock_keys_hash + hash;
1215 }
1216
1217 /* Register a dynamically allocated key. */
1218 void lockdep_register_key(struct lock_class_key *key)
1219 {
1220         struct hlist_head *hash_head;
1221         struct lock_class_key *k;
1222         unsigned long flags;
1223
1224         if (WARN_ON_ONCE(static_obj(key)))
1225                 return;
1226         hash_head = keyhashentry(key);
1227
1228         raw_local_irq_save(flags);
1229         if (!graph_lock())
1230                 goto restore_irqs;
1231         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1232                 if (WARN_ON_ONCE(k == key))
1233                         goto out_unlock;
1234         }
1235         hlist_add_head_rcu(&key->hash_entry, hash_head);
1236 out_unlock:
1237         graph_unlock();
1238 restore_irqs:
1239         raw_local_irq_restore(flags);
1240 }
1241 EXPORT_SYMBOL_GPL(lockdep_register_key);
1242
1243 /* Check whether a key has been registered as a dynamic key. */
1244 static bool is_dynamic_key(const struct lock_class_key *key)
1245 {
1246         struct hlist_head *hash_head;
1247         struct lock_class_key *k;
1248         bool found = false;
1249
1250         if (WARN_ON_ONCE(static_obj(key)))
1251                 return false;
1252
1253         /*
1254          * If lock debugging is disabled lock_keys_hash[] may contain
1255          * pointers to memory that has already been freed. Avoid triggering
1256          * a use-after-free in that case by returning early.
1257          */
1258         if (!debug_locks)
1259                 return true;
1260
1261         hash_head = keyhashentry(key);
1262
1263         rcu_read_lock();
1264         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1265                 if (k == key) {
1266                         found = true;
1267                         break;
1268                 }
1269         }
1270         rcu_read_unlock();
1271
1272         return found;
1273 }
1274
1275 /*
1276  * Register a lock's class in the hash-table, if the class is not present
1277  * yet. Otherwise we look it up. We cache the result in the lock object
1278  * itself, so actual lookup of the hash should be once per lock object.
1279  */
1280 static struct lock_class *
1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1282 {
1283         struct lockdep_subclass_key *key;
1284         struct hlist_head *hash_head;
1285         struct lock_class *class;
1286         int idx;
1287
1288         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1289
1290         class = look_up_lock_class(lock, subclass);
1291         if (likely(class))
1292                 goto out_set_class_cache;
1293
1294         if (!lock->key) {
1295                 if (!assign_lock_key(lock))
1296                         return NULL;
1297         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1298                 return NULL;
1299         }
1300
1301         key = lock->key->subkeys + subclass;
1302         hash_head = classhashentry(key);
1303
1304         if (!graph_lock()) {
1305                 return NULL;
1306         }
1307         /*
1308          * We have to do the hash-walk again, to avoid races
1309          * with another CPU:
1310          */
1311         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1312                 if (class->key == key)
1313                         goto out_unlock_set;
1314         }
1315
1316         init_data_structures_once();
1317
1318         /* Allocate a new lock class and add it to the hash. */
1319         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1320                                          lock_entry);
1321         if (!class) {
1322                 if (!debug_locks_off_graph_unlock()) {
1323                         return NULL;
1324                 }
1325
1326                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1327                 dump_stack();
1328                 return NULL;
1329         }
1330         nr_lock_classes++;
1331         __set_bit(class - lock_classes, lock_classes_in_use);
1332         debug_atomic_inc(nr_unused_locks);
1333         class->key = key;
1334         class->name = lock->name;
1335         class->subclass = subclass;
1336         WARN_ON_ONCE(!list_empty(&class->locks_before));
1337         WARN_ON_ONCE(!list_empty(&class->locks_after));
1338         class->name_version = count_matching_names(class);
1339         class->wait_type_inner = lock->wait_type_inner;
1340         class->wait_type_outer = lock->wait_type_outer;
1341         class->lock_type = lock->lock_type;
1342         /*
1343          * We use RCU's safe list-add method to make
1344          * parallel walking of the hash-list safe:
1345          */
1346         hlist_add_head_rcu(&class->hash_entry, hash_head);
1347         /*
1348          * Remove the class from the free list and add it to the global list
1349          * of classes.
1350          */
1351         list_move_tail(&class->lock_entry, &all_lock_classes);
1352         idx = class - lock_classes;
1353         if (idx > max_lock_class_idx)
1354                 max_lock_class_idx = idx;
1355
1356         if (verbose(class)) {
1357                 graph_unlock();
1358
1359                 printk("\nnew class %px: %s", class->key, class->name);
1360                 if (class->name_version > 1)
1361                         printk(KERN_CONT "#%d", class->name_version);
1362                 printk(KERN_CONT "\n");
1363                 dump_stack();
1364
1365                 if (!graph_lock()) {
1366                         return NULL;
1367                 }
1368         }
1369 out_unlock_set:
1370         graph_unlock();
1371
1372 out_set_class_cache:
1373         if (!subclass || force)
1374                 lock->class_cache[0] = class;
1375         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1376                 lock->class_cache[subclass] = class;
1377
1378         /*
1379          * Hash collision, did we smoke some? We found a class with a matching
1380          * hash but the subclass -- which is hashed in -- didn't match.
1381          */
1382         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1383                 return NULL;
1384
1385         return class;
1386 }
1387
1388 #ifdef CONFIG_PROVE_LOCKING
1389 /*
1390  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1391  * with NULL on failure)
1392  */
1393 static struct lock_list *alloc_list_entry(void)
1394 {
1395         int idx = find_first_zero_bit(list_entries_in_use,
1396                                       ARRAY_SIZE(list_entries));
1397
1398         if (idx >= ARRAY_SIZE(list_entries)) {
1399                 if (!debug_locks_off_graph_unlock())
1400                         return NULL;
1401
1402                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1403                 dump_stack();
1404                 return NULL;
1405         }
1406         nr_list_entries++;
1407         __set_bit(idx, list_entries_in_use);
1408         return list_entries + idx;
1409 }
1410
1411 /*
1412  * Add a new dependency to the head of the list:
1413  */
1414 static int add_lock_to_list(struct lock_class *this,
1415                             struct lock_class *links_to, struct list_head *head,
1416                             u16 distance, u8 dep,
1417                             const struct lock_trace *trace)
1418 {
1419         struct lock_list *entry;
1420         /*
1421          * Lock not present yet - get a new dependency struct and
1422          * add it to the list:
1423          */
1424         entry = alloc_list_entry();
1425         if (!entry)
1426                 return 0;
1427
1428         entry->class = this;
1429         entry->links_to = links_to;
1430         entry->dep = dep;
1431         entry->distance = distance;
1432         entry->trace = trace;
1433         /*
1434          * Both allocation and removal are done under the graph lock; but
1435          * iteration is under RCU-sched; see look_up_lock_class() and
1436          * lockdep_free_key_range().
1437          */
1438         list_add_tail_rcu(&entry->entry, head);
1439
1440         return 1;
1441 }
1442
1443 /*
1444  * For good efficiency of modular, we use power of 2
1445  */
1446 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1447 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1448
1449 /*
1450  * The circular_queue and helpers are used to implement graph
1451  * breadth-first search (BFS) algorithm, by which we can determine
1452  * whether there is a path from a lock to another. In deadlock checks,
1453  * a path from the next lock to be acquired to a previous held lock
1454  * indicates that adding the <prev> -> <next> lock dependency will
1455  * produce a circle in the graph. Breadth-first search instead of
1456  * depth-first search is used in order to find the shortest (circular)
1457  * path.
1458  */
1459 struct circular_queue {
1460         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1461         unsigned int  front, rear;
1462 };
1463
1464 static struct circular_queue lock_cq;
1465
1466 unsigned int max_bfs_queue_depth;
1467
1468 static unsigned int lockdep_dependency_gen_id;
1469
1470 static inline void __cq_init(struct circular_queue *cq)
1471 {
1472         cq->front = cq->rear = 0;
1473         lockdep_dependency_gen_id++;
1474 }
1475
1476 static inline int __cq_empty(struct circular_queue *cq)
1477 {
1478         return (cq->front == cq->rear);
1479 }
1480
1481 static inline int __cq_full(struct circular_queue *cq)
1482 {
1483         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1484 }
1485
1486 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1487 {
1488         if (__cq_full(cq))
1489                 return -1;
1490
1491         cq->element[cq->rear] = elem;
1492         cq->rear = (cq->rear + 1) & CQ_MASK;
1493         return 0;
1494 }
1495
1496 /*
1497  * Dequeue an element from the circular_queue, return a lock_list if
1498  * the queue is not empty, or NULL if otherwise.
1499  */
1500 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1501 {
1502         struct lock_list * lock;
1503
1504         if (__cq_empty(cq))
1505                 return NULL;
1506
1507         lock = cq->element[cq->front];
1508         cq->front = (cq->front + 1) & CQ_MASK;
1509
1510         return lock;
1511 }
1512
1513 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1514 {
1515         return (cq->rear - cq->front) & CQ_MASK;
1516 }
1517
1518 static inline void mark_lock_accessed(struct lock_list *lock)
1519 {
1520         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1521 }
1522
1523 static inline void visit_lock_entry(struct lock_list *lock,
1524                                     struct lock_list *parent)
1525 {
1526         lock->parent = parent;
1527 }
1528
1529 static inline unsigned long lock_accessed(struct lock_list *lock)
1530 {
1531         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1532 }
1533
1534 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1535 {
1536         return child->parent;
1537 }
1538
1539 static inline int get_lock_depth(struct lock_list *child)
1540 {
1541         int depth = 0;
1542         struct lock_list *parent;
1543
1544         while ((parent = get_lock_parent(child))) {
1545                 child = parent;
1546                 depth++;
1547         }
1548         return depth;
1549 }
1550
1551 /*
1552  * Return the forward or backward dependency list.
1553  *
1554  * @lock:   the lock_list to get its class's dependency list
1555  * @offset: the offset to struct lock_class to determine whether it is
1556  *          locks_after or locks_before
1557  */
1558 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1559 {
1560         void *lock_class = lock->class;
1561
1562         return lock_class + offset;
1563 }
1564 /*
1565  * Return values of a bfs search:
1566  *
1567  * BFS_E* indicates an error
1568  * BFS_R* indicates a result (match or not)
1569  *
1570  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1571  *
1572  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1573  *
1574  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1575  *             *@target_entry.
1576  *
1577  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1578  *               _unchanged_.
1579  */
1580 enum bfs_result {
1581         BFS_EINVALIDNODE = -2,
1582         BFS_EQUEUEFULL = -1,
1583         BFS_RMATCH = 0,
1584         BFS_RNOMATCH = 1,
1585 };
1586
1587 /*
1588  * bfs_result < 0 means error
1589  */
1590 static inline bool bfs_error(enum bfs_result res)
1591 {
1592         return res < 0;
1593 }
1594
1595 /*
1596  * DEP_*_BIT in lock_list::dep
1597  *
1598  * For dependency @prev -> @next:
1599  *
1600  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1601  *       (->read == 2)
1602  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1603  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1604  *   EN: @prev is exclusive locker and @next is non-recursive locker
1605  *
1606  * Note that we define the value of DEP_*_BITs so that:
1607  *   bit0 is prev->read == 0
1608  *   bit1 is next->read != 2
1609  */
1610 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1611 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1612 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1613 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1614
1615 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1616 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1617 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1618 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1619
1620 static inline unsigned int
1621 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1622 {
1623         return (prev->read == 0) + ((next->read != 2) << 1);
1624 }
1625
1626 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1627 {
1628         return 1U << __calc_dep_bit(prev, next);
1629 }
1630
1631 /*
1632  * calculate the dep_bit for backwards edges. We care about whether @prev is
1633  * shared and whether @next is recursive.
1634  */
1635 static inline unsigned int
1636 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1637 {
1638         return (next->read != 2) + ((prev->read == 0) << 1);
1639 }
1640
1641 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1642 {
1643         return 1U << __calc_dep_bitb(prev, next);
1644 }
1645
1646 /*
1647  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1648  * search.
1649  */
1650 static inline void __bfs_init_root(struct lock_list *lock,
1651                                    struct lock_class *class)
1652 {
1653         lock->class = class;
1654         lock->parent = NULL;
1655         lock->only_xr = 0;
1656 }
1657
1658 /*
1659  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1660  * root for a BFS search.
1661  *
1662  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1663  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1664  * and -(S*)->.
1665  */
1666 static inline void bfs_init_root(struct lock_list *lock,
1667                                  struct held_lock *hlock)
1668 {
1669         __bfs_init_root(lock, hlock_class(hlock));
1670         lock->only_xr = (hlock->read == 2);
1671 }
1672
1673 /*
1674  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1675  *
1676  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1677  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1678  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1679  */
1680 static inline void bfs_init_rootb(struct lock_list *lock,
1681                                   struct held_lock *hlock)
1682 {
1683         __bfs_init_root(lock, hlock_class(hlock));
1684         lock->only_xr = (hlock->read != 0);
1685 }
1686
1687 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1688 {
1689         if (!lock || !lock->parent)
1690                 return NULL;
1691
1692         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1693                                      &lock->entry, struct lock_list, entry);
1694 }
1695
1696 /*
1697  * Breadth-First Search to find a strong path in the dependency graph.
1698  *
1699  * @source_entry: the source of the path we are searching for.
1700  * @data: data used for the second parameter of @match function
1701  * @match: match function for the search
1702  * @target_entry: pointer to the target of a matched path
1703  * @offset: the offset to struct lock_class to determine whether it is
1704  *          locks_after or locks_before
1705  *
1706  * We may have multiple edges (considering different kinds of dependencies,
1707  * e.g. ER and SN) between two nodes in the dependency graph. But
1708  * only the strong dependency path in the graph is relevant to deadlocks. A
1709  * strong dependency path is a dependency path that doesn't have two adjacent
1710  * dependencies as -(*R)-> -(S*)->, please see:
1711  *
1712  *         Documentation/locking/lockdep-design.rst
1713  *
1714  * for more explanation of the definition of strong dependency paths
1715  *
1716  * In __bfs(), we only traverse in the strong dependency path:
1717  *
1718  *     In lock_list::only_xr, we record whether the previous dependency only
1719  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1720  *     filter out any -(S*)-> in the current dependency and after that, the
1721  *     ->only_xr is set according to whether we only have -(*R)-> left.
1722  */
1723 static enum bfs_result __bfs(struct lock_list *source_entry,
1724                              void *data,
1725                              bool (*match)(struct lock_list *entry, void *data),
1726                              bool (*skip)(struct lock_list *entry, void *data),
1727                              struct lock_list **target_entry,
1728                              int offset)
1729 {
1730         struct circular_queue *cq = &lock_cq;
1731         struct lock_list *lock = NULL;
1732         struct lock_list *entry;
1733         struct list_head *head;
1734         unsigned int cq_depth;
1735         bool first;
1736
1737         lockdep_assert_locked();
1738
1739         __cq_init(cq);
1740         __cq_enqueue(cq, source_entry);
1741
1742         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1743                 if (!lock->class)
1744                         return BFS_EINVALIDNODE;
1745
1746                 /*
1747                  * Step 1: check whether we already finish on this one.
1748                  *
1749                  * If we have visited all the dependencies from this @lock to
1750                  * others (iow, if we have visited all lock_list entries in
1751                  * @lock->class->locks_{after,before}) we skip, otherwise go
1752                  * and visit all the dependencies in the list and mark this
1753                  * list accessed.
1754                  */
1755                 if (lock_accessed(lock))
1756                         continue;
1757                 else
1758                         mark_lock_accessed(lock);
1759
1760                 /*
1761                  * Step 2: check whether prev dependency and this form a strong
1762                  *         dependency path.
1763                  */
1764                 if (lock->parent) { /* Parent exists, check prev dependency */
1765                         u8 dep = lock->dep;
1766                         bool prev_only_xr = lock->parent->only_xr;
1767
1768                         /*
1769                          * Mask out all -(S*)-> if we only have *R in previous
1770                          * step, because -(*R)-> -(S*)-> don't make up a strong
1771                          * dependency.
1772                          */
1773                         if (prev_only_xr)
1774                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1775
1776                         /* If nothing left, we skip */
1777                         if (!dep)
1778                                 continue;
1779
1780                         /* If there are only -(*R)-> left, set that for the next step */
1781                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1782                 }
1783
1784                 /*
1785                  * Step 3: we haven't visited this and there is a strong
1786                  *         dependency path to this, so check with @match.
1787                  *         If @skip is provide and returns true, we skip this
1788                  *         lock (and any path this lock is in).
1789                  */
1790                 if (skip && skip(lock, data))
1791                         continue;
1792
1793                 if (match(lock, data)) {
1794                         *target_entry = lock;
1795                         return BFS_RMATCH;
1796                 }
1797
1798                 /*
1799                  * Step 4: if not match, expand the path by adding the
1800                  *         forward or backwards dependencies in the search
1801                  *
1802                  */
1803                 first = true;
1804                 head = get_dep_list(lock, offset);
1805                 list_for_each_entry_rcu(entry, head, entry) {
1806                         visit_lock_entry(entry, lock);
1807
1808                         /*
1809                          * Note we only enqueue the first of the list into the
1810                          * queue, because we can always find a sibling
1811                          * dependency from one (see __bfs_next()), as a result
1812                          * the space of queue is saved.
1813                          */
1814                         if (!first)
1815                                 continue;
1816
1817                         first = false;
1818
1819                         if (__cq_enqueue(cq, entry))
1820                                 return BFS_EQUEUEFULL;
1821
1822                         cq_depth = __cq_get_elem_count(cq);
1823                         if (max_bfs_queue_depth < cq_depth)
1824                                 max_bfs_queue_depth = cq_depth;
1825                 }
1826         }
1827
1828         return BFS_RNOMATCH;
1829 }
1830
1831 static inline enum bfs_result
1832 __bfs_forwards(struct lock_list *src_entry,
1833                void *data,
1834                bool (*match)(struct lock_list *entry, void *data),
1835                bool (*skip)(struct lock_list *entry, void *data),
1836                struct lock_list **target_entry)
1837 {
1838         return __bfs(src_entry, data, match, skip, target_entry,
1839                      offsetof(struct lock_class, locks_after));
1840
1841 }
1842
1843 static inline enum bfs_result
1844 __bfs_backwards(struct lock_list *src_entry,
1845                 void *data,
1846                 bool (*match)(struct lock_list *entry, void *data),
1847                bool (*skip)(struct lock_list *entry, void *data),
1848                 struct lock_list **target_entry)
1849 {
1850         return __bfs(src_entry, data, match, skip, target_entry,
1851                      offsetof(struct lock_class, locks_before));
1852
1853 }
1854
1855 static void print_lock_trace(const struct lock_trace *trace,
1856                              unsigned int spaces)
1857 {
1858         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1859 }
1860
1861 /*
1862  * Print a dependency chain entry (this is only done when a deadlock
1863  * has been detected):
1864  */
1865 static noinline void
1866 print_circular_bug_entry(struct lock_list *target, int depth)
1867 {
1868         if (debug_locks_silent)
1869                 return;
1870         printk("\n-> #%u", depth);
1871         print_lock_name(target->class);
1872         printk(KERN_CONT ":\n");
1873         print_lock_trace(target->trace, 6);
1874 }
1875
1876 static void
1877 print_circular_lock_scenario(struct held_lock *src,
1878                              struct held_lock *tgt,
1879                              struct lock_list *prt)
1880 {
1881         struct lock_class *source = hlock_class(src);
1882         struct lock_class *target = hlock_class(tgt);
1883         struct lock_class *parent = prt->class;
1884         int src_read = src->read;
1885         int tgt_read = tgt->read;
1886
1887         /*
1888          * A direct locking problem where unsafe_class lock is taken
1889          * directly by safe_class lock, then all we need to show
1890          * is the deadlock scenario, as it is obvious that the
1891          * unsafe lock is taken under the safe lock.
1892          *
1893          * But if there is a chain instead, where the safe lock takes
1894          * an intermediate lock (middle_class) where this lock is
1895          * not the same as the safe lock, then the lock chain is
1896          * used to describe the problem. Otherwise we would need
1897          * to show a different CPU case for each link in the chain
1898          * from the safe_class lock to the unsafe_class lock.
1899          */
1900         if (parent != source) {
1901                 printk("Chain exists of:\n  ");
1902                 __print_lock_name(source);
1903                 printk(KERN_CONT " --> ");
1904                 __print_lock_name(parent);
1905                 printk(KERN_CONT " --> ");
1906                 __print_lock_name(target);
1907                 printk(KERN_CONT "\n\n");
1908         }
1909
1910         printk(" Possible unsafe locking scenario:\n\n");
1911         printk("       CPU0                    CPU1\n");
1912         printk("       ----                    ----\n");
1913         if (tgt_read != 0)
1914                 printk("  rlock(");
1915         else
1916                 printk("  lock(");
1917         __print_lock_name(target);
1918         printk(KERN_CONT ");\n");
1919         printk("                               lock(");
1920         __print_lock_name(parent);
1921         printk(KERN_CONT ");\n");
1922         printk("                               lock(");
1923         __print_lock_name(target);
1924         printk(KERN_CONT ");\n");
1925         if (src_read != 0)
1926                 printk("  rlock(");
1927         else if (src->sync)
1928                 printk("  sync(");
1929         else
1930                 printk("  lock(");
1931         __print_lock_name(source);
1932         printk(KERN_CONT ");\n");
1933         printk("\n *** DEADLOCK ***\n\n");
1934 }
1935
1936 /*
1937  * When a circular dependency is detected, print the
1938  * header first:
1939  */
1940 static noinline void
1941 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1942                         struct held_lock *check_src,
1943                         struct held_lock *check_tgt)
1944 {
1945         struct task_struct *curr = current;
1946
1947         if (debug_locks_silent)
1948                 return;
1949
1950         pr_warn("\n");
1951         pr_warn("======================================================\n");
1952         pr_warn("WARNING: possible circular locking dependency detected\n");
1953         print_kernel_ident();
1954         pr_warn("------------------------------------------------------\n");
1955         pr_warn("%s/%d is trying to acquire lock:\n",
1956                 curr->comm, task_pid_nr(curr));
1957         print_lock(check_src);
1958
1959         pr_warn("\nbut task is already holding lock:\n");
1960
1961         print_lock(check_tgt);
1962         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1963         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1964
1965         print_circular_bug_entry(entry, depth);
1966 }
1967
1968 /*
1969  * We are about to add A -> B into the dependency graph, and in __bfs() a
1970  * strong dependency path A -> .. -> B is found: hlock_class equals
1971  * entry->class.
1972  *
1973  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1974  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1975  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1976  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1977  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1978  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1979  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1980  *
1981  * We need to make sure both the start and the end of A -> .. -> B is not
1982  * weaker than A -> B. For the start part, please see the comment in
1983  * check_redundant(). For the end part, we need:
1984  *
1985  * Either
1986  *
1987  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1988  *
1989  * or
1990  *
1991  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1992  *
1993  */
1994 static inline bool hlock_equal(struct lock_list *entry, void *data)
1995 {
1996         struct held_lock *hlock = (struct held_lock *)data;
1997
1998         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1999                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2000                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2001 }
2002
2003 /*
2004  * We are about to add B -> A into the dependency graph, and in __bfs() a
2005  * strong dependency path A -> .. -> B is found: hlock_class equals
2006  * entry->class.
2007  *
2008  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2009  * dependency cycle, that means:
2010  *
2011  * Either
2012  *
2013  *     a) B -> A is -(E*)->
2014  *
2015  * or
2016  *
2017  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2018  *
2019  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2020  */
2021 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2022 {
2023         struct held_lock *hlock = (struct held_lock *)data;
2024
2025         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2026                (hlock->read == 0 || /* B -> A is -(E*)-> */
2027                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2028 }
2029
2030 static noinline void print_circular_bug(struct lock_list *this,
2031                                 struct lock_list *target,
2032                                 struct held_lock *check_src,
2033                                 struct held_lock *check_tgt)
2034 {
2035         struct task_struct *curr = current;
2036         struct lock_list *parent;
2037         struct lock_list *first_parent;
2038         int depth;
2039
2040         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2041                 return;
2042
2043         this->trace = save_trace();
2044         if (!this->trace)
2045                 return;
2046
2047         depth = get_lock_depth(target);
2048
2049         print_circular_bug_header(target, depth, check_src, check_tgt);
2050
2051         parent = get_lock_parent(target);
2052         first_parent = parent;
2053
2054         while (parent) {
2055                 print_circular_bug_entry(parent, --depth);
2056                 parent = get_lock_parent(parent);
2057         }
2058
2059         printk("\nother info that might help us debug this:\n\n");
2060         print_circular_lock_scenario(check_src, check_tgt,
2061                                      first_parent);
2062
2063         lockdep_print_held_locks(curr);
2064
2065         printk("\nstack backtrace:\n");
2066         dump_stack();
2067 }
2068
2069 static noinline void print_bfs_bug(int ret)
2070 {
2071         if (!debug_locks_off_graph_unlock())
2072                 return;
2073
2074         /*
2075          * Breadth-first-search failed, graph got corrupted?
2076          */
2077         WARN(1, "lockdep bfs error:%d\n", ret);
2078 }
2079
2080 static bool noop_count(struct lock_list *entry, void *data)
2081 {
2082         (*(unsigned long *)data)++;
2083         return false;
2084 }
2085
2086 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2087 {
2088         unsigned long  count = 0;
2089         struct lock_list *target_entry;
2090
2091         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2092
2093         return count;
2094 }
2095 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2096 {
2097         unsigned long ret, flags;
2098         struct lock_list this;
2099
2100         __bfs_init_root(&this, class);
2101
2102         raw_local_irq_save(flags);
2103         lockdep_lock();
2104         ret = __lockdep_count_forward_deps(&this);
2105         lockdep_unlock();
2106         raw_local_irq_restore(flags);
2107
2108         return ret;
2109 }
2110
2111 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2112 {
2113         unsigned long  count = 0;
2114         struct lock_list *target_entry;
2115
2116         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2117
2118         return count;
2119 }
2120
2121 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2122 {
2123         unsigned long ret, flags;
2124         struct lock_list this;
2125
2126         __bfs_init_root(&this, class);
2127
2128         raw_local_irq_save(flags);
2129         lockdep_lock();
2130         ret = __lockdep_count_backward_deps(&this);
2131         lockdep_unlock();
2132         raw_local_irq_restore(flags);
2133
2134         return ret;
2135 }
2136
2137 /*
2138  * Check that the dependency graph starting at <src> can lead to
2139  * <target> or not.
2140  */
2141 static noinline enum bfs_result
2142 check_path(struct held_lock *target, struct lock_list *src_entry,
2143            bool (*match)(struct lock_list *entry, void *data),
2144            bool (*skip)(struct lock_list *entry, void *data),
2145            struct lock_list **target_entry)
2146 {
2147         enum bfs_result ret;
2148
2149         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2150
2151         if (unlikely(bfs_error(ret)))
2152                 print_bfs_bug(ret);
2153
2154         return ret;
2155 }
2156
2157 /*
2158  * Prove that the dependency graph starting at <src> can not
2159  * lead to <target>. If it can, there is a circle when adding
2160  * <target> -> <src> dependency.
2161  *
2162  * Print an error and return BFS_RMATCH if it does.
2163  */
2164 static noinline enum bfs_result
2165 check_noncircular(struct held_lock *src, struct held_lock *target,
2166                   struct lock_trace **const trace)
2167 {
2168         enum bfs_result ret;
2169         struct lock_list *target_entry;
2170         struct lock_list src_entry;
2171
2172         bfs_init_root(&src_entry, src);
2173
2174         debug_atomic_inc(nr_cyclic_checks);
2175
2176         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2177
2178         if (unlikely(ret == BFS_RMATCH)) {
2179                 if (!*trace) {
2180                         /*
2181                          * If save_trace fails here, the printing might
2182                          * trigger a WARN but because of the !nr_entries it
2183                          * should not do bad things.
2184                          */
2185                         *trace = save_trace();
2186                 }
2187
2188                 print_circular_bug(&src_entry, target_entry, src, target);
2189         }
2190
2191         return ret;
2192 }
2193
2194 #ifdef CONFIG_TRACE_IRQFLAGS
2195
2196 /*
2197  * Forwards and backwards subgraph searching, for the purposes of
2198  * proving that two subgraphs can be connected by a new dependency
2199  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2200  *
2201  * A irq safe->unsafe deadlock happens with the following conditions:
2202  *
2203  * 1) We have a strong dependency path A -> ... -> B
2204  *
2205  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2206  *    irq can create a new dependency B -> A (consider the case that a holder
2207  *    of B gets interrupted by an irq whose handler will try to acquire A).
2208  *
2209  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2210  *    strong circle:
2211  *
2212  *      For the usage bits of B:
2213  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2214  *           ENABLED_IRQ usage suffices.
2215  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2216  *           ENABLED_IRQ_*_READ usage suffices.
2217  *
2218  *      For the usage bits of A:
2219  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2220  *           USED_IN_IRQ usage suffices.
2221  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2222  *           USED_IN_IRQ_*_READ usage suffices.
2223  */
2224
2225 /*
2226  * There is a strong dependency path in the dependency graph: A -> B, and now
2227  * we need to decide which usage bit of A should be accumulated to detect
2228  * safe->unsafe bugs.
2229  *
2230  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2231  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2232  *
2233  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2234  * path, any usage of A should be considered. Otherwise, we should only
2235  * consider _READ usage.
2236  */
2237 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2238 {
2239         if (!entry->only_xr)
2240                 *(unsigned long *)mask |= entry->class->usage_mask;
2241         else /* Mask out _READ usage bits */
2242                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2243
2244         return false;
2245 }
2246
2247 /*
2248  * There is a strong dependency path in the dependency graph: A -> B, and now
2249  * we need to decide which usage bit of B conflicts with the usage bits of A,
2250  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2251  *
2252  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2253  * path, any usage of B should be considered. Otherwise, we should only
2254  * consider _READ usage.
2255  */
2256 static inline bool usage_match(struct lock_list *entry, void *mask)
2257 {
2258         if (!entry->only_xr)
2259                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2260         else /* Mask out _READ usage bits */
2261                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2262 }
2263
2264 static inline bool usage_skip(struct lock_list *entry, void *mask)
2265 {
2266         if (entry->class->lock_type == LD_LOCK_NORMAL)
2267                 return false;
2268
2269         /*
2270          * Skip local_lock() for irq inversion detection.
2271          *
2272          * For !RT, local_lock() is not a real lock, so it won't carry any
2273          * dependency.
2274          *
2275          * For RT, an irq inversion happens when we have lock A and B, and on
2276          * some CPU we can have:
2277          *
2278          *      lock(A);
2279          *      <interrupted>
2280          *        lock(B);
2281          *
2282          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2283          *
2284          * Now we prove local_lock() cannot exist in that dependency. First we
2285          * have the observation for any lock chain L1 -> ... -> Ln, for any
2286          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2287          * wait context check will complain. And since B is not a sleep lock,
2288          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2289          * local_lock() is 3, which is greater than 2, therefore there is no
2290          * way the local_lock() exists in the dependency B -> ... -> A.
2291          *
2292          * As a result, we will skip local_lock(), when we search for irq
2293          * inversion bugs.
2294          */
2295         if (entry->class->lock_type == LD_LOCK_PERCPU &&
2296             DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2297                 return false;
2298
2299         /*
2300          * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2301          * a lock and only used to override the wait_type.
2302          */
2303
2304         return true;
2305 }
2306
2307 /*
2308  * Find a node in the forwards-direction dependency sub-graph starting
2309  * at @root->class that matches @bit.
2310  *
2311  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2312  * into *@target_entry.
2313  */
2314 static enum bfs_result
2315 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2316                         struct lock_list **target_entry)
2317 {
2318         enum bfs_result result;
2319
2320         debug_atomic_inc(nr_find_usage_forwards_checks);
2321
2322         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2323
2324         return result;
2325 }
2326
2327 /*
2328  * Find a node in the backwards-direction dependency sub-graph starting
2329  * at @root->class that matches @bit.
2330  */
2331 static enum bfs_result
2332 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2333                         struct lock_list **target_entry)
2334 {
2335         enum bfs_result result;
2336
2337         debug_atomic_inc(nr_find_usage_backwards_checks);
2338
2339         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2340
2341         return result;
2342 }
2343
2344 static void print_lock_class_header(struct lock_class *class, int depth)
2345 {
2346         int bit;
2347
2348         printk("%*s->", depth, "");
2349         print_lock_name(class);
2350 #ifdef CONFIG_DEBUG_LOCKDEP
2351         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2352 #endif
2353         printk(KERN_CONT " {\n");
2354
2355         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2356                 if (class->usage_mask & (1 << bit)) {
2357                         int len = depth;
2358
2359                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2360                         len += printk(KERN_CONT " at:\n");
2361                         print_lock_trace(class->usage_traces[bit], len);
2362                 }
2363         }
2364         printk("%*s }\n", depth, "");
2365
2366         printk("%*s ... key      at: [<%px>] %pS\n",
2367                 depth, "", class->key, class->key);
2368 }
2369
2370 /*
2371  * Dependency path printing:
2372  *
2373  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2374  * printing out each lock in the dependency path will help on understanding how
2375  * the deadlock could happen. Here are some details about dependency path
2376  * printing:
2377  *
2378  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2379  *      for a lock dependency A -> B, there are two lock_lists:
2380  *
2381  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2382  *              ->links_to is A. In this case, we can say the lock_list is
2383  *              "A -> B" (forwards case).
2384  *
2385  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2386  *              and ->links_to is B. In this case, we can say the lock_list is
2387  *              "B <- A" (bacwards case).
2388  *
2389  *      The ->trace of both a) and b) point to the call trace where B was
2390  *      acquired with A held.
2391  *
2392  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2393  *      represent a certain lock dependency, it only provides an initial entry
2394  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2395  *      ->class is A, as a result BFS will search all dependencies starting with
2396  *      A, e.g. A -> B or A -> C.
2397  *
2398  *      The notation of a forwards helper lock_list is like "-> A", which means
2399  *      we should search the forwards dependencies starting with "A", e.g A -> B
2400  *      or A -> C.
2401  *
2402  *      The notation of a bacwards helper lock_list is like "<- B", which means
2403  *      we should search the backwards dependencies ending with "B", e.g.
2404  *      B <- A or B <- C.
2405  */
2406
2407 /*
2408  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2409  *
2410  * We have a lock dependency path as follow:
2411  *
2412  *    @root                                                                 @leaf
2413  *      |                                                                     |
2414  *      V                                                                     V
2415  *                ->parent                                   ->parent
2416  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2417  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2418  *
2419  * , so it's natural that we start from @leaf and print every ->class and
2420  * ->trace until we reach the @root.
2421  */
2422 static void __used
2423 print_shortest_lock_dependencies(struct lock_list *leaf,
2424                                  struct lock_list *root)
2425 {
2426         struct lock_list *entry = leaf;
2427         int depth;
2428
2429         /*compute depth from generated tree by BFS*/
2430         depth = get_lock_depth(leaf);
2431
2432         do {
2433                 print_lock_class_header(entry->class, depth);
2434                 printk("%*s ... acquired at:\n", depth, "");
2435                 print_lock_trace(entry->trace, 2);
2436                 printk("\n");
2437
2438                 if (depth == 0 && (entry != root)) {
2439                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2440                         break;
2441                 }
2442
2443                 entry = get_lock_parent(entry);
2444                 depth--;
2445         } while (entry && (depth >= 0));
2446 }
2447
2448 /*
2449  * printk the shortest lock dependencies from @leaf to @root.
2450  *
2451  * We have a lock dependency path (from a backwards search) as follow:
2452  *
2453  *    @leaf                                                                 @root
2454  *      |                                                                     |
2455  *      V                                                                     V
2456  *                ->parent                                   ->parent
2457  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2458  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2459  *
2460  * , so when we iterate from @leaf to @root, we actually print the lock
2461  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2462  *
2463  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2464  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2465  * trace of L1 in the dependency path, which is alright, because most of the
2466  * time we can figure out where L1 is held from the call trace of L2.
2467  */
2468 static void __used
2469 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2470                                            struct lock_list *root)
2471 {
2472         struct lock_list *entry = leaf;
2473         const struct lock_trace *trace = NULL;
2474         int depth;
2475
2476         /*compute depth from generated tree by BFS*/
2477         depth = get_lock_depth(leaf);
2478
2479         do {
2480                 print_lock_class_header(entry->class, depth);
2481                 if (trace) {
2482                         printk("%*s ... acquired at:\n", depth, "");
2483                         print_lock_trace(trace, 2);
2484                         printk("\n");
2485                 }
2486
2487                 /*
2488                  * Record the pointer to the trace for the next lock_list
2489                  * entry, see the comments for the function.
2490                  */
2491                 trace = entry->trace;
2492
2493                 if (depth == 0 && (entry != root)) {
2494                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2495                         break;
2496                 }
2497
2498                 entry = get_lock_parent(entry);
2499                 depth--;
2500         } while (entry && (depth >= 0));
2501 }
2502
2503 static void
2504 print_irq_lock_scenario(struct lock_list *safe_entry,
2505                         struct lock_list *unsafe_entry,
2506                         struct lock_class *prev_class,
2507                         struct lock_class *next_class)
2508 {
2509         struct lock_class *safe_class = safe_entry->class;
2510         struct lock_class *unsafe_class = unsafe_entry->class;
2511         struct lock_class *middle_class = prev_class;
2512
2513         if (middle_class == safe_class)
2514                 middle_class = next_class;
2515
2516         /*
2517          * A direct locking problem where unsafe_class lock is taken
2518          * directly by safe_class lock, then all we need to show
2519          * is the deadlock scenario, as it is obvious that the
2520          * unsafe lock is taken under the safe lock.
2521          *
2522          * But if there is a chain instead, where the safe lock takes
2523          * an intermediate lock (middle_class) where this lock is
2524          * not the same as the safe lock, then the lock chain is
2525          * used to describe the problem. Otherwise we would need
2526          * to show a different CPU case for each link in the chain
2527          * from the safe_class lock to the unsafe_class lock.
2528          */
2529         if (middle_class != unsafe_class) {
2530                 printk("Chain exists of:\n  ");
2531                 __print_lock_name(safe_class);
2532                 printk(KERN_CONT " --> ");
2533                 __print_lock_name(middle_class);
2534                 printk(KERN_CONT " --> ");
2535                 __print_lock_name(unsafe_class);
2536                 printk(KERN_CONT "\n\n");
2537         }
2538
2539         printk(" Possible interrupt unsafe locking scenario:\n\n");
2540         printk("       CPU0                    CPU1\n");
2541         printk("       ----                    ----\n");
2542         printk("  lock(");
2543         __print_lock_name(unsafe_class);
2544         printk(KERN_CONT ");\n");
2545         printk("                               local_irq_disable();\n");
2546         printk("                               lock(");
2547         __print_lock_name(safe_class);
2548         printk(KERN_CONT ");\n");
2549         printk("                               lock(");
2550         __print_lock_name(middle_class);
2551         printk(KERN_CONT ");\n");
2552         printk("  <Interrupt>\n");
2553         printk("    lock(");
2554         __print_lock_name(safe_class);
2555         printk(KERN_CONT ");\n");
2556         printk("\n *** DEADLOCK ***\n\n");
2557 }
2558
2559 static void
2560 print_bad_irq_dependency(struct task_struct *curr,
2561                          struct lock_list *prev_root,
2562                          struct lock_list *next_root,
2563                          struct lock_list *backwards_entry,
2564                          struct lock_list *forwards_entry,
2565                          struct held_lock *prev,
2566                          struct held_lock *next,
2567                          enum lock_usage_bit bit1,
2568                          enum lock_usage_bit bit2,
2569                          const char *irqclass)
2570 {
2571         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2572                 return;
2573
2574         pr_warn("\n");
2575         pr_warn("=====================================================\n");
2576         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2577                 irqclass, irqclass);
2578         print_kernel_ident();
2579         pr_warn("-----------------------------------------------------\n");
2580         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2581                 curr->comm, task_pid_nr(curr),
2582                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2583                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2584                 lockdep_hardirqs_enabled(),
2585                 curr->softirqs_enabled);
2586         print_lock(next);
2587
2588         pr_warn("\nand this task is already holding:\n");
2589         print_lock(prev);
2590         pr_warn("which would create a new lock dependency:\n");
2591         print_lock_name(hlock_class(prev));
2592         pr_cont(" ->");
2593         print_lock_name(hlock_class(next));
2594         pr_cont("\n");
2595
2596         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2597                 irqclass);
2598         print_lock_name(backwards_entry->class);
2599         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2600
2601         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2602
2603         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2604         print_lock_name(forwards_entry->class);
2605         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2606         pr_warn("...");
2607
2608         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2609
2610         pr_warn("\nother info that might help us debug this:\n\n");
2611         print_irq_lock_scenario(backwards_entry, forwards_entry,
2612                                 hlock_class(prev), hlock_class(next));
2613
2614         lockdep_print_held_locks(curr);
2615
2616         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2617         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2618
2619         pr_warn("\nthe dependencies between the lock to be acquired");
2620         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2621         next_root->trace = save_trace();
2622         if (!next_root->trace)
2623                 return;
2624         print_shortest_lock_dependencies(forwards_entry, next_root);
2625
2626         pr_warn("\nstack backtrace:\n");
2627         dump_stack();
2628 }
2629
2630 static const char *state_names[] = {
2631 #define LOCKDEP_STATE(__STATE) \
2632         __stringify(__STATE),
2633 #include "lockdep_states.h"
2634 #undef LOCKDEP_STATE
2635 };
2636
2637 static const char *state_rnames[] = {
2638 #define LOCKDEP_STATE(__STATE) \
2639         __stringify(__STATE)"-READ",
2640 #include "lockdep_states.h"
2641 #undef LOCKDEP_STATE
2642 };
2643
2644 static inline const char *state_name(enum lock_usage_bit bit)
2645 {
2646         if (bit & LOCK_USAGE_READ_MASK)
2647                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2648         else
2649                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2650 }
2651
2652 /*
2653  * The bit number is encoded like:
2654  *
2655  *  bit0: 0 exclusive, 1 read lock
2656  *  bit1: 0 used in irq, 1 irq enabled
2657  *  bit2-n: state
2658  */
2659 static int exclusive_bit(int new_bit)
2660 {
2661         int state = new_bit & LOCK_USAGE_STATE_MASK;
2662         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2663
2664         /*
2665          * keep state, bit flip the direction and strip read.
2666          */
2667         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2668 }
2669
2670 /*
2671  * Observe that when given a bitmask where each bitnr is encoded as above, a
2672  * right shift of the mask transforms the individual bitnrs as -1 and
2673  * conversely, a left shift transforms into +1 for the individual bitnrs.
2674  *
2675  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2676  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2677  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2678  *
2679  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2680  *
2681  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2682  * all bits set) and recompose with bitnr1 flipped.
2683  */
2684 static unsigned long invert_dir_mask(unsigned long mask)
2685 {
2686         unsigned long excl = 0;
2687
2688         /* Invert dir */
2689         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2690         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2691
2692         return excl;
2693 }
2694
2695 /*
2696  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2697  * usage may cause deadlock too, for example:
2698  *
2699  * P1                           P2
2700  * <irq disabled>
2701  * write_lock(l1);              <irq enabled>
2702  *                              read_lock(l2);
2703  * write_lock(l2);
2704  *                              <in irq>
2705  *                              read_lock(l1);
2706  *
2707  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2708  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2709  * deadlock.
2710  *
2711  * In fact, all of the following cases may cause deadlocks:
2712  *
2713  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2714  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2715  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2716  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2717  *
2718  * As a result, to calculate the "exclusive mask", first we invert the
2719  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2720  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2721  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2722  */
2723 static unsigned long exclusive_mask(unsigned long mask)
2724 {
2725         unsigned long excl = invert_dir_mask(mask);
2726
2727         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2728         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2729
2730         return excl;
2731 }
2732
2733 /*
2734  * Retrieve the _possible_ original mask to which @mask is
2735  * exclusive. Ie: this is the opposite of exclusive_mask().
2736  * Note that 2 possible original bits can match an exclusive
2737  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2738  * cleared. So both are returned for each exclusive bit.
2739  */
2740 static unsigned long original_mask(unsigned long mask)
2741 {
2742         unsigned long excl = invert_dir_mask(mask);
2743
2744         /* Include read in existing usages */
2745         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2746         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2747
2748         return excl;
2749 }
2750
2751 /*
2752  * Find the first pair of bit match between an original
2753  * usage mask and an exclusive usage mask.
2754  */
2755 static int find_exclusive_match(unsigned long mask,
2756                                 unsigned long excl_mask,
2757                                 enum lock_usage_bit *bitp,
2758                                 enum lock_usage_bit *excl_bitp)
2759 {
2760         int bit, excl, excl_read;
2761
2762         for_each_set_bit(bit, &mask, LOCK_USED) {
2763                 /*
2764                  * exclusive_bit() strips the read bit, however,
2765                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2766                  * to search excl | LOCK_USAGE_READ_MASK as well.
2767                  */
2768                 excl = exclusive_bit(bit);
2769                 excl_read = excl | LOCK_USAGE_READ_MASK;
2770                 if (excl_mask & lock_flag(excl)) {
2771                         *bitp = bit;
2772                         *excl_bitp = excl;
2773                         return 0;
2774                 } else if (excl_mask & lock_flag(excl_read)) {
2775                         *bitp = bit;
2776                         *excl_bitp = excl_read;
2777                         return 0;
2778                 }
2779         }
2780         return -1;
2781 }
2782
2783 /*
2784  * Prove that the new dependency does not connect a hardirq-safe(-read)
2785  * lock with a hardirq-unsafe lock - to achieve this we search
2786  * the backwards-subgraph starting at <prev>, and the
2787  * forwards-subgraph starting at <next>:
2788  */
2789 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2790                            struct held_lock *next)
2791 {
2792         unsigned long usage_mask = 0, forward_mask, backward_mask;
2793         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2794         struct lock_list *target_entry1;
2795         struct lock_list *target_entry;
2796         struct lock_list this, that;
2797         enum bfs_result ret;
2798
2799         /*
2800          * Step 1: gather all hard/soft IRQs usages backward in an
2801          * accumulated usage mask.
2802          */
2803         bfs_init_rootb(&this, prev);
2804
2805         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2806         if (bfs_error(ret)) {
2807                 print_bfs_bug(ret);
2808                 return 0;
2809         }
2810
2811         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2812         if (!usage_mask)
2813                 return 1;
2814
2815         /*
2816          * Step 2: find exclusive uses forward that match the previous
2817          * backward accumulated mask.
2818          */
2819         forward_mask = exclusive_mask(usage_mask);
2820
2821         bfs_init_root(&that, next);
2822
2823         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2824         if (bfs_error(ret)) {
2825                 print_bfs_bug(ret);
2826                 return 0;
2827         }
2828         if (ret == BFS_RNOMATCH)
2829                 return 1;
2830
2831         /*
2832          * Step 3: we found a bad match! Now retrieve a lock from the backward
2833          * list whose usage mask matches the exclusive usage mask from the
2834          * lock found on the forward list.
2835          *
2836          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2837          * the follow case:
2838          *
2839          * When trying to add A -> B to the graph, we find that there is a
2840          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2841          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2842          * invert bits of M's usage_mask, we will find another lock N that is
2843          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2844          * cause a inversion deadlock.
2845          */
2846         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2847
2848         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2849         if (bfs_error(ret)) {
2850                 print_bfs_bug(ret);
2851                 return 0;
2852         }
2853         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2854                 return 1;
2855
2856         /*
2857          * Step 4: narrow down to a pair of incompatible usage bits
2858          * and report it.
2859          */
2860         ret = find_exclusive_match(target_entry->class->usage_mask,
2861                                    target_entry1->class->usage_mask,
2862                                    &backward_bit, &forward_bit);
2863         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2864                 return 1;
2865
2866         print_bad_irq_dependency(curr, &this, &that,
2867                                  target_entry, target_entry1,
2868                                  prev, next,
2869                                  backward_bit, forward_bit,
2870                                  state_name(backward_bit));
2871
2872         return 0;
2873 }
2874
2875 #else
2876
2877 static inline int check_irq_usage(struct task_struct *curr,
2878                                   struct held_lock *prev, struct held_lock *next)
2879 {
2880         return 1;
2881 }
2882
2883 static inline bool usage_skip(struct lock_list *entry, void *mask)
2884 {
2885         return false;
2886 }
2887
2888 #endif /* CONFIG_TRACE_IRQFLAGS */
2889
2890 #ifdef CONFIG_LOCKDEP_SMALL
2891 /*
2892  * Check that the dependency graph starting at <src> can lead to
2893  * <target> or not. If it can, <src> -> <target> dependency is already
2894  * in the graph.
2895  *
2896  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2897  * any error appears in the bfs search.
2898  */
2899 static noinline enum bfs_result
2900 check_redundant(struct held_lock *src, struct held_lock *target)
2901 {
2902         enum bfs_result ret;
2903         struct lock_list *target_entry;
2904         struct lock_list src_entry;
2905
2906         bfs_init_root(&src_entry, src);
2907         /*
2908          * Special setup for check_redundant().
2909          *
2910          * To report redundant, we need to find a strong dependency path that
2911          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2912          * we need to let __bfs() only search for a path starting at a -(E*)->,
2913          * we achieve this by setting the initial node's ->only_xr to true in
2914          * that case. And if <prev> is S, we set initial ->only_xr to false
2915          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2916          */
2917         src_entry.only_xr = src->read == 0;
2918
2919         debug_atomic_inc(nr_redundant_checks);
2920
2921         /*
2922          * Note: we skip local_lock() for redundant check, because as the
2923          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2924          * the same.
2925          */
2926         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2927
2928         if (ret == BFS_RMATCH)
2929                 debug_atomic_inc(nr_redundant);
2930
2931         return ret;
2932 }
2933
2934 #else
2935
2936 static inline enum bfs_result
2937 check_redundant(struct held_lock *src, struct held_lock *target)
2938 {
2939         return BFS_RNOMATCH;
2940 }
2941
2942 #endif
2943
2944 static void inc_chains(int irq_context)
2945 {
2946         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2947                 nr_hardirq_chains++;
2948         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2949                 nr_softirq_chains++;
2950         else
2951                 nr_process_chains++;
2952 }
2953
2954 static void dec_chains(int irq_context)
2955 {
2956         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2957                 nr_hardirq_chains--;
2958         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2959                 nr_softirq_chains--;
2960         else
2961                 nr_process_chains--;
2962 }
2963
2964 static void
2965 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2966 {
2967         struct lock_class *next = hlock_class(nxt);
2968         struct lock_class *prev = hlock_class(prv);
2969
2970         printk(" Possible unsafe locking scenario:\n\n");
2971         printk("       CPU0\n");
2972         printk("       ----\n");
2973         printk("  lock(");
2974         __print_lock_name(prev);
2975         printk(KERN_CONT ");\n");
2976         printk("  lock(");
2977         __print_lock_name(next);
2978         printk(KERN_CONT ");\n");
2979         printk("\n *** DEADLOCK ***\n\n");
2980         printk(" May be due to missing lock nesting notation\n\n");
2981 }
2982
2983 static void
2984 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2985                    struct held_lock *next)
2986 {
2987         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2988                 return;
2989
2990         pr_warn("\n");
2991         pr_warn("============================================\n");
2992         pr_warn("WARNING: possible recursive locking detected\n");
2993         print_kernel_ident();
2994         pr_warn("--------------------------------------------\n");
2995         pr_warn("%s/%d is trying to acquire lock:\n",
2996                 curr->comm, task_pid_nr(curr));
2997         print_lock(next);
2998         pr_warn("\nbut task is already holding lock:\n");
2999         print_lock(prev);
3000
3001         pr_warn("\nother info that might help us debug this:\n");
3002         print_deadlock_scenario(next, prev);
3003         lockdep_print_held_locks(curr);
3004
3005         pr_warn("\nstack backtrace:\n");
3006         dump_stack();
3007 }
3008
3009 /*
3010  * Check whether we are holding such a class already.
3011  *
3012  * (Note that this has to be done separately, because the graph cannot
3013  * detect such classes of deadlocks.)
3014  *
3015  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3016  * lock class is held but nest_lock is also held, i.e. we rely on the
3017  * nest_lock to avoid the deadlock.
3018  */
3019 static int
3020 check_deadlock(struct task_struct *curr, struct held_lock *next)
3021 {
3022         struct held_lock *prev;
3023         struct held_lock *nest = NULL;
3024         int i;
3025
3026         for (i = 0; i < curr->lockdep_depth; i++) {
3027                 prev = curr->held_locks + i;
3028
3029                 if (prev->instance == next->nest_lock)
3030                         nest = prev;
3031
3032                 if (hlock_class(prev) != hlock_class(next))
3033                         continue;
3034
3035                 /*
3036                  * Allow read-after-read recursion of the same
3037                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
3038                  */
3039                 if ((next->read == 2) && prev->read)
3040                         continue;
3041
3042                 /*
3043                  * We're holding the nest_lock, which serializes this lock's
3044                  * nesting behaviour.
3045                  */
3046                 if (nest)
3047                         return 2;
3048
3049                 print_deadlock_bug(curr, prev, next);
3050                 return 0;
3051         }
3052         return 1;
3053 }
3054
3055 /*
3056  * There was a chain-cache miss, and we are about to add a new dependency
3057  * to a previous lock. We validate the following rules:
3058  *
3059  *  - would the adding of the <prev> -> <next> dependency create a
3060  *    circular dependency in the graph? [== circular deadlock]
3061  *
3062  *  - does the new prev->next dependency connect any hardirq-safe lock
3063  *    (in the full backwards-subgraph starting at <prev>) with any
3064  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3065  *    <next>)? [== illegal lock inversion with hardirq contexts]
3066  *
3067  *  - does the new prev->next dependency connect any softirq-safe lock
3068  *    (in the full backwards-subgraph starting at <prev>) with any
3069  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3070  *    <next>)? [== illegal lock inversion with softirq contexts]
3071  *
3072  * any of these scenarios could lead to a deadlock.
3073  *
3074  * Then if all the validations pass, we add the forwards and backwards
3075  * dependency.
3076  */
3077 static int
3078 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3079                struct held_lock *next, u16 distance,
3080                struct lock_trace **const trace)
3081 {
3082         struct lock_list *entry;
3083         enum bfs_result ret;
3084
3085         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3086                 /*
3087                  * The warning statements below may trigger a use-after-free
3088                  * of the class name. It is better to trigger a use-after free
3089                  * and to have the class name most of the time instead of not
3090                  * having the class name available.
3091                  */
3092                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3093                           "Detected use-after-free of lock class %px/%s\n",
3094                           hlock_class(prev),
3095                           hlock_class(prev)->name);
3096                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3097                           "Detected use-after-free of lock class %px/%s\n",
3098                           hlock_class(next),
3099                           hlock_class(next)->name);
3100                 return 2;
3101         }
3102
3103         /*
3104          * Prove that the new <prev> -> <next> dependency would not
3105          * create a circular dependency in the graph. (We do this by
3106          * a breadth-first search into the graph starting at <next>,
3107          * and check whether we can reach <prev>.)
3108          *
3109          * The search is limited by the size of the circular queue (i.e.,
3110          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3111          * in the graph whose neighbours are to be checked.
3112          */
3113         ret = check_noncircular(next, prev, trace);
3114         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3115                 return 0;
3116
3117         if (!check_irq_usage(curr, prev, next))
3118                 return 0;
3119
3120         /*
3121          * Is the <prev> -> <next> dependency already present?
3122          *
3123          * (this may occur even though this is a new chain: consider
3124          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3125          *  chains - the second one will be new, but L1 already has
3126          *  L2 added to its dependency list, due to the first chain.)
3127          */
3128         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3129                 if (entry->class == hlock_class(next)) {
3130                         if (distance == 1)
3131                                 entry->distance = 1;
3132                         entry->dep |= calc_dep(prev, next);
3133
3134                         /*
3135                          * Also, update the reverse dependency in @next's
3136                          * ->locks_before list.
3137                          *
3138                          *  Here we reuse @entry as the cursor, which is fine
3139                          *  because we won't go to the next iteration of the
3140                          *  outer loop:
3141                          *
3142                          *  For normal cases, we return in the inner loop.
3143                          *
3144                          *  If we fail to return, we have inconsistency, i.e.
3145                          *  <prev>::locks_after contains <next> while
3146                          *  <next>::locks_before doesn't contain <prev>. In
3147                          *  that case, we return after the inner and indicate
3148                          *  something is wrong.
3149                          */
3150                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3151                                 if (entry->class == hlock_class(prev)) {
3152                                         if (distance == 1)
3153                                                 entry->distance = 1;
3154                                         entry->dep |= calc_depb(prev, next);
3155                                         return 1;
3156                                 }
3157                         }
3158
3159                         /* <prev> is not found in <next>::locks_before */
3160                         return 0;
3161                 }
3162         }
3163
3164         /*
3165          * Is the <prev> -> <next> link redundant?
3166          */
3167         ret = check_redundant(prev, next);
3168         if (bfs_error(ret))
3169                 return 0;
3170         else if (ret == BFS_RMATCH)
3171                 return 2;
3172
3173         if (!*trace) {
3174                 *trace = save_trace();
3175                 if (!*trace)
3176                         return 0;
3177         }
3178
3179         /*
3180          * Ok, all validations passed, add the new lock
3181          * to the previous lock's dependency list:
3182          */
3183         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3184                                &hlock_class(prev)->locks_after, distance,
3185                                calc_dep(prev, next), *trace);
3186
3187         if (!ret)
3188                 return 0;
3189
3190         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3191                                &hlock_class(next)->locks_before, distance,
3192                                calc_depb(prev, next), *trace);
3193         if (!ret)
3194                 return 0;
3195
3196         return 2;
3197 }
3198
3199 /*
3200  * Add the dependency to all directly-previous locks that are 'relevant'.
3201  * The ones that are relevant are (in increasing distance from curr):
3202  * all consecutive trylock entries and the final non-trylock entry - or
3203  * the end of this context's lock-chain - whichever comes first.
3204  */
3205 static int
3206 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3207 {
3208         struct lock_trace *trace = NULL;
3209         int depth = curr->lockdep_depth;
3210         struct held_lock *hlock;
3211
3212         /*
3213          * Debugging checks.
3214          *
3215          * Depth must not be zero for a non-head lock:
3216          */
3217         if (!depth)
3218                 goto out_bug;
3219         /*
3220          * At least two relevant locks must exist for this
3221          * to be a head:
3222          */
3223         if (curr->held_locks[depth].irq_context !=
3224                         curr->held_locks[depth-1].irq_context)
3225                 goto out_bug;
3226
3227         for (;;) {
3228                 u16 distance = curr->lockdep_depth - depth + 1;
3229                 hlock = curr->held_locks + depth - 1;
3230
3231                 if (hlock->check) {
3232                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3233                         if (!ret)
3234                                 return 0;
3235
3236                         /*
3237                          * Stop after the first non-trylock entry,
3238                          * as non-trylock entries have added their
3239                          * own direct dependencies already, so this
3240                          * lock is connected to them indirectly:
3241                          */
3242                         if (!hlock->trylock)
3243                                 break;
3244                 }
3245
3246                 depth--;
3247                 /*
3248                  * End of lock-stack?
3249                  */
3250                 if (!depth)
3251                         break;
3252                 /*
3253                  * Stop the search if we cross into another context:
3254                  */
3255                 if (curr->held_locks[depth].irq_context !=
3256                                 curr->held_locks[depth-1].irq_context)
3257                         break;
3258         }
3259         return 1;
3260 out_bug:
3261         if (!debug_locks_off_graph_unlock())
3262                 return 0;
3263
3264         /*
3265          * Clearly we all shouldn't be here, but since we made it we
3266          * can reliable say we messed up our state. See the above two
3267          * gotos for reasons why we could possibly end up here.
3268          */
3269         WARN_ON(1);
3270
3271         return 0;
3272 }
3273
3274 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3275 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3276 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3277 unsigned long nr_zapped_lock_chains;
3278 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3279 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3280 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3281
3282 /*
3283  * The first 2 chain_hlocks entries in the chain block in the bucket
3284  * list contains the following meta data:
3285  *
3286  *   entry[0]:
3287  *     Bit    15 - always set to 1 (it is not a class index)
3288  *     Bits 0-14 - upper 15 bits of the next block index
3289  *   entry[1]    - lower 16 bits of next block index
3290  *
3291  * A next block index of all 1 bits means it is the end of the list.
3292  *
3293  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3294  * the chain block size:
3295  *
3296  *   entry[2] - upper 16 bits of the chain block size
3297  *   entry[3] - lower 16 bits of the chain block size
3298  */
3299 #define MAX_CHAIN_BUCKETS       16
3300 #define CHAIN_BLK_FLAG          (1U << 15)
3301 #define CHAIN_BLK_LIST_END      0xFFFFU
3302
3303 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3304
3305 static inline int size_to_bucket(int size)
3306 {
3307         if (size > MAX_CHAIN_BUCKETS)
3308                 return 0;
3309
3310         return size - 1;
3311 }
3312
3313 /*
3314  * Iterate all the chain blocks in a bucket.
3315  */
3316 #define for_each_chain_block(bucket, prev, curr)                \
3317         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3318              (curr) >= 0;                                       \
3319              (prev) = (curr), (curr) = chain_block_next(curr))
3320
3321 /*
3322  * next block or -1
3323  */
3324 static inline int chain_block_next(int offset)
3325 {
3326         int next = chain_hlocks[offset];
3327
3328         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3329
3330         if (next == CHAIN_BLK_LIST_END)
3331                 return -1;
3332
3333         next &= ~CHAIN_BLK_FLAG;
3334         next <<= 16;
3335         next |= chain_hlocks[offset + 1];
3336
3337         return next;
3338 }
3339
3340 /*
3341  * bucket-0 only
3342  */
3343 static inline int chain_block_size(int offset)
3344 {
3345         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3346 }
3347
3348 static inline void init_chain_block(int offset, int next, int bucket, int size)
3349 {
3350         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3351         chain_hlocks[offset + 1] = (u16)next;
3352
3353         if (size && !bucket) {
3354                 chain_hlocks[offset + 2] = size >> 16;
3355                 chain_hlocks[offset + 3] = (u16)size;
3356         }
3357 }
3358
3359 static inline void add_chain_block(int offset, int size)
3360 {
3361         int bucket = size_to_bucket(size);
3362         int next = chain_block_buckets[bucket];
3363         int prev, curr;
3364
3365         if (unlikely(size < 2)) {
3366                 /*
3367                  * We can't store single entries on the freelist. Leak them.
3368                  *
3369                  * One possible way out would be to uniquely mark them, other
3370                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3371                  * the block before it is re-added.
3372                  */
3373                 if (size)
3374                         nr_lost_chain_hlocks++;
3375                 return;
3376         }
3377
3378         nr_free_chain_hlocks += size;
3379         if (!bucket) {
3380                 nr_large_chain_blocks++;
3381
3382                 /*
3383                  * Variable sized, sort large to small.
3384                  */
3385                 for_each_chain_block(0, prev, curr) {
3386                         if (size >= chain_block_size(curr))
3387                                 break;
3388                 }
3389                 init_chain_block(offset, curr, 0, size);
3390                 if (prev < 0)
3391                         chain_block_buckets[0] = offset;
3392                 else
3393                         init_chain_block(prev, offset, 0, 0);
3394                 return;
3395         }
3396         /*
3397          * Fixed size, add to head.
3398          */
3399         init_chain_block(offset, next, bucket, size);
3400         chain_block_buckets[bucket] = offset;
3401 }
3402
3403 /*
3404  * Only the first block in the list can be deleted.
3405  *
3406  * For the variable size bucket[0], the first block (the largest one) is
3407  * returned, broken up and put back into the pool. So if a chain block of
3408  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3409  * queued up after the primordial chain block and never be used until the
3410  * hlock entries in the primordial chain block is almost used up. That
3411  * causes fragmentation and reduce allocation efficiency. That can be
3412  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3413  */
3414 static inline void del_chain_block(int bucket, int size, int next)
3415 {
3416         nr_free_chain_hlocks -= size;
3417         chain_block_buckets[bucket] = next;
3418
3419         if (!bucket)
3420                 nr_large_chain_blocks--;
3421 }
3422
3423 static void init_chain_block_buckets(void)
3424 {
3425         int i;
3426
3427         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3428                 chain_block_buckets[i] = -1;
3429
3430         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3431 }
3432
3433 /*
3434  * Return offset of a chain block of the right size or -1 if not found.
3435  *
3436  * Fairly simple worst-fit allocator with the addition of a number of size
3437  * specific free lists.
3438  */
3439 static int alloc_chain_hlocks(int req)
3440 {
3441         int bucket, curr, size;
3442
3443         /*
3444          * We rely on the MSB to act as an escape bit to denote freelist
3445          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3446          */
3447         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3448
3449         init_data_structures_once();
3450
3451         if (nr_free_chain_hlocks < req)
3452                 return -1;
3453
3454         /*
3455          * We require a minimum of 2 (u16) entries to encode a freelist
3456          * 'pointer'.
3457          */
3458         req = max(req, 2);
3459         bucket = size_to_bucket(req);
3460         curr = chain_block_buckets[bucket];
3461
3462         if (bucket) {
3463                 if (curr >= 0) {
3464                         del_chain_block(bucket, req, chain_block_next(curr));
3465                         return curr;
3466                 }
3467                 /* Try bucket 0 */
3468                 curr = chain_block_buckets[0];
3469         }
3470
3471         /*
3472          * The variable sized freelist is sorted by size; the first entry is
3473          * the largest. Use it if it fits.
3474          */
3475         if (curr >= 0) {
3476                 size = chain_block_size(curr);
3477                 if (likely(size >= req)) {
3478                         del_chain_block(0, size, chain_block_next(curr));
3479                         add_chain_block(curr + req, size - req);
3480                         return curr;
3481                 }
3482         }
3483
3484         /*
3485          * Last resort, split a block in a larger sized bucket.
3486          */
3487         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3488                 bucket = size_to_bucket(size);
3489                 curr = chain_block_buckets[bucket];
3490                 if (curr < 0)
3491                         continue;
3492
3493                 del_chain_block(bucket, size, chain_block_next(curr));
3494                 add_chain_block(curr + req, size - req);
3495                 return curr;
3496         }
3497
3498         return -1;
3499 }
3500
3501 static inline void free_chain_hlocks(int base, int size)
3502 {
3503         add_chain_block(base, max(size, 2));
3504 }
3505
3506 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3507 {
3508         u16 chain_hlock = chain_hlocks[chain->base + i];
3509         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3510
3511         return lock_classes + class_idx;
3512 }
3513
3514 /*
3515  * Returns the index of the first held_lock of the current chain
3516  */
3517 static inline int get_first_held_lock(struct task_struct *curr,
3518                                         struct held_lock *hlock)
3519 {
3520         int i;
3521         struct held_lock *hlock_curr;
3522
3523         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3524                 hlock_curr = curr->held_locks + i;
3525                 if (hlock_curr->irq_context != hlock->irq_context)
3526                         break;
3527
3528         }
3529
3530         return ++i;
3531 }
3532
3533 #ifdef CONFIG_DEBUG_LOCKDEP
3534 /*
3535  * Returns the next chain_key iteration
3536  */
3537 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3538 {
3539         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3540
3541         printk(" hlock_id:%d -> chain_key:%016Lx",
3542                 (unsigned int)hlock_id,
3543                 (unsigned long long)new_chain_key);
3544         return new_chain_key;
3545 }
3546
3547 static void
3548 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3549 {
3550         struct held_lock *hlock;
3551         u64 chain_key = INITIAL_CHAIN_KEY;
3552         int depth = curr->lockdep_depth;
3553         int i = get_first_held_lock(curr, hlock_next);
3554
3555         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3556                 hlock_next->irq_context);
3557         for (; i < depth; i++) {
3558                 hlock = curr->held_locks + i;
3559                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3560
3561                 print_lock(hlock);
3562         }
3563
3564         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3565         print_lock(hlock_next);
3566 }
3567
3568 static void print_chain_keys_chain(struct lock_chain *chain)
3569 {
3570         int i;
3571         u64 chain_key = INITIAL_CHAIN_KEY;
3572         u16 hlock_id;
3573
3574         printk("depth: %u\n", chain->depth);
3575         for (i = 0; i < chain->depth; i++) {
3576                 hlock_id = chain_hlocks[chain->base + i];
3577                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3578
3579                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3580                 printk("\n");
3581         }
3582 }
3583
3584 static void print_collision(struct task_struct *curr,
3585                         struct held_lock *hlock_next,
3586                         struct lock_chain *chain)
3587 {
3588         pr_warn("\n");
3589         pr_warn("============================\n");
3590         pr_warn("WARNING: chain_key collision\n");
3591         print_kernel_ident();
3592         pr_warn("----------------------------\n");
3593         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3594         pr_warn("Hash chain already cached but the contents don't match!\n");
3595
3596         pr_warn("Held locks:");
3597         print_chain_keys_held_locks(curr, hlock_next);
3598
3599         pr_warn("Locks in cached chain:");
3600         print_chain_keys_chain(chain);
3601
3602         pr_warn("\nstack backtrace:\n");
3603         dump_stack();
3604 }
3605 #endif
3606
3607 /*
3608  * Checks whether the chain and the current held locks are consistent
3609  * in depth and also in content. If they are not it most likely means
3610  * that there was a collision during the calculation of the chain_key.
3611  * Returns: 0 not passed, 1 passed
3612  */
3613 static int check_no_collision(struct task_struct *curr,
3614                         struct held_lock *hlock,
3615                         struct lock_chain *chain)
3616 {
3617 #ifdef CONFIG_DEBUG_LOCKDEP
3618         int i, j, id;
3619
3620         i = get_first_held_lock(curr, hlock);
3621
3622         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3623                 print_collision(curr, hlock, chain);
3624                 return 0;
3625         }
3626
3627         for (j = 0; j < chain->depth - 1; j++, i++) {
3628                 id = hlock_id(&curr->held_locks[i]);
3629
3630                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3631                         print_collision(curr, hlock, chain);
3632                         return 0;
3633                 }
3634         }
3635 #endif
3636         return 1;
3637 }
3638
3639 /*
3640  * Given an index that is >= -1, return the index of the next lock chain.
3641  * Return -2 if there is no next lock chain.
3642  */
3643 long lockdep_next_lockchain(long i)
3644 {
3645         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3646         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3647 }
3648
3649 unsigned long lock_chain_count(void)
3650 {
3651         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3652 }
3653
3654 /* Must be called with the graph lock held. */
3655 static struct lock_chain *alloc_lock_chain(void)
3656 {
3657         int idx = find_first_zero_bit(lock_chains_in_use,
3658                                       ARRAY_SIZE(lock_chains));
3659
3660         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3661                 return NULL;
3662         __set_bit(idx, lock_chains_in_use);
3663         return lock_chains + idx;
3664 }
3665
3666 /*
3667  * Adds a dependency chain into chain hashtable. And must be called with
3668  * graph_lock held.
3669  *
3670  * Return 0 if fail, and graph_lock is released.
3671  * Return 1 if succeed, with graph_lock held.
3672  */
3673 static inline int add_chain_cache(struct task_struct *curr,
3674                                   struct held_lock *hlock,
3675                                   u64 chain_key)
3676 {
3677         struct hlist_head *hash_head = chainhashentry(chain_key);
3678         struct lock_chain *chain;
3679         int i, j;
3680
3681         /*
3682          * The caller must hold the graph lock, ensure we've got IRQs
3683          * disabled to make this an IRQ-safe lock.. for recursion reasons
3684          * lockdep won't complain about its own locking errors.
3685          */
3686         if (lockdep_assert_locked())
3687                 return 0;
3688
3689         chain = alloc_lock_chain();
3690         if (!chain) {
3691                 if (!debug_locks_off_graph_unlock())
3692                         return 0;
3693
3694                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3695                 dump_stack();
3696                 return 0;
3697         }
3698         chain->chain_key = chain_key;
3699         chain->irq_context = hlock->irq_context;
3700         i = get_first_held_lock(curr, hlock);
3701         chain->depth = curr->lockdep_depth + 1 - i;
3702
3703         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3704         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3705         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3706
3707         j = alloc_chain_hlocks(chain->depth);
3708         if (j < 0) {
3709                 if (!debug_locks_off_graph_unlock())
3710                         return 0;
3711
3712                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3713                 dump_stack();
3714                 return 0;
3715         }
3716
3717         chain->base = j;
3718         for (j = 0; j < chain->depth - 1; j++, i++) {
3719                 int lock_id = hlock_id(curr->held_locks + i);
3720
3721                 chain_hlocks[chain->base + j] = lock_id;
3722         }
3723         chain_hlocks[chain->base + j] = hlock_id(hlock);
3724         hlist_add_head_rcu(&chain->entry, hash_head);
3725         debug_atomic_inc(chain_lookup_misses);
3726         inc_chains(chain->irq_context);
3727
3728         return 1;
3729 }
3730
3731 /*
3732  * Look up a dependency chain. Must be called with either the graph lock or
3733  * the RCU read lock held.
3734  */
3735 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3736 {
3737         struct hlist_head *hash_head = chainhashentry(chain_key);
3738         struct lock_chain *chain;
3739
3740         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3741                 if (READ_ONCE(chain->chain_key) == chain_key) {
3742                         debug_atomic_inc(chain_lookup_hits);
3743                         return chain;
3744                 }
3745         }
3746         return NULL;
3747 }
3748
3749 /*
3750  * If the key is not present yet in dependency chain cache then
3751  * add it and return 1 - in this case the new dependency chain is
3752  * validated. If the key is already hashed, return 0.
3753  * (On return with 1 graph_lock is held.)
3754  */
3755 static inline int lookup_chain_cache_add(struct task_struct *curr,
3756                                          struct held_lock *hlock,
3757                                          u64 chain_key)
3758 {
3759         struct lock_class *class = hlock_class(hlock);
3760         struct lock_chain *chain = lookup_chain_cache(chain_key);
3761
3762         if (chain) {
3763 cache_hit:
3764                 if (!check_no_collision(curr, hlock, chain))
3765                         return 0;
3766
3767                 if (very_verbose(class)) {
3768                         printk("\nhash chain already cached, key: "
3769                                         "%016Lx tail class: [%px] %s\n",
3770                                         (unsigned long long)chain_key,
3771                                         class->key, class->name);
3772                 }
3773
3774                 return 0;
3775         }
3776
3777         if (very_verbose(class)) {
3778                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3779                         (unsigned long long)chain_key, class->key, class->name);
3780         }
3781
3782         if (!graph_lock())
3783                 return 0;
3784
3785         /*
3786          * We have to walk the chain again locked - to avoid duplicates:
3787          */
3788         chain = lookup_chain_cache(chain_key);
3789         if (chain) {
3790                 graph_unlock();
3791                 goto cache_hit;
3792         }
3793
3794         if (!add_chain_cache(curr, hlock, chain_key))
3795                 return 0;
3796
3797         return 1;
3798 }
3799
3800 static int validate_chain(struct task_struct *curr,
3801                           struct held_lock *hlock,
3802                           int chain_head, u64 chain_key)
3803 {
3804         /*
3805          * Trylock needs to maintain the stack of held locks, but it
3806          * does not add new dependencies, because trylock can be done
3807          * in any order.
3808          *
3809          * We look up the chain_key and do the O(N^2) check and update of
3810          * the dependencies only if this is a new dependency chain.
3811          * (If lookup_chain_cache_add() return with 1 it acquires
3812          * graph_lock for us)
3813          */
3814         if (!hlock->trylock && hlock->check &&
3815             lookup_chain_cache_add(curr, hlock, chain_key)) {
3816                 /*
3817                  * Check whether last held lock:
3818                  *
3819                  * - is irq-safe, if this lock is irq-unsafe
3820                  * - is softirq-safe, if this lock is hardirq-unsafe
3821                  *
3822                  * And check whether the new lock's dependency graph
3823                  * could lead back to the previous lock:
3824                  *
3825                  * - within the current held-lock stack
3826                  * - across our accumulated lock dependency records
3827                  *
3828                  * any of these scenarios could lead to a deadlock.
3829                  */
3830                 /*
3831                  * The simple case: does the current hold the same lock
3832                  * already?
3833                  */
3834                 int ret = check_deadlock(curr, hlock);
3835
3836                 if (!ret)
3837                         return 0;
3838                 /*
3839                  * Add dependency only if this lock is not the head
3840                  * of the chain, and if the new lock introduces no more
3841                  * lock dependency (because we already hold a lock with the
3842                  * same lock class) nor deadlock (because the nest_lock
3843                  * serializes nesting locks), see the comments for
3844                  * check_deadlock().
3845                  */
3846                 if (!chain_head && ret != 2) {
3847                         if (!check_prevs_add(curr, hlock))
3848                                 return 0;
3849                 }
3850
3851                 graph_unlock();
3852         } else {
3853                 /* after lookup_chain_cache_add(): */
3854                 if (unlikely(!debug_locks))
3855                         return 0;
3856         }
3857
3858         return 1;
3859 }
3860 #else
3861 static inline int validate_chain(struct task_struct *curr,
3862                                  struct held_lock *hlock,
3863                                  int chain_head, u64 chain_key)
3864 {
3865         return 1;
3866 }
3867
3868 static void init_chain_block_buckets(void)      { }
3869 #endif /* CONFIG_PROVE_LOCKING */
3870
3871 /*
3872  * We are building curr_chain_key incrementally, so double-check
3873  * it from scratch, to make sure that it's done correctly:
3874  */
3875 static void check_chain_key(struct task_struct *curr)
3876 {
3877 #ifdef CONFIG_DEBUG_LOCKDEP
3878         struct held_lock *hlock, *prev_hlock = NULL;
3879         unsigned int i;
3880         u64 chain_key = INITIAL_CHAIN_KEY;
3881
3882         for (i = 0; i < curr->lockdep_depth; i++) {
3883                 hlock = curr->held_locks + i;
3884                 if (chain_key != hlock->prev_chain_key) {
3885                         debug_locks_off();
3886                         /*
3887                          * We got mighty confused, our chain keys don't match
3888                          * with what we expect, someone trample on our task state?
3889                          */
3890                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3891                                 curr->lockdep_depth, i,
3892                                 (unsigned long long)chain_key,
3893                                 (unsigned long long)hlock->prev_chain_key);
3894                         return;
3895                 }
3896
3897                 /*
3898                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3899                  * it registered lock class index?
3900                  */
3901                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3902                         return;
3903
3904                 if (prev_hlock && (prev_hlock->irq_context !=
3905                                                         hlock->irq_context))
3906                         chain_key = INITIAL_CHAIN_KEY;
3907                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3908                 prev_hlock = hlock;
3909         }
3910         if (chain_key != curr->curr_chain_key) {
3911                 debug_locks_off();
3912                 /*
3913                  * More smoking hash instead of calculating it, damn see these
3914                  * numbers float.. I bet that a pink elephant stepped on my memory.
3915                  */
3916                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3917                         curr->lockdep_depth, i,
3918                         (unsigned long long)chain_key,
3919                         (unsigned long long)curr->curr_chain_key);
3920         }
3921 #endif
3922 }
3923
3924 #ifdef CONFIG_PROVE_LOCKING
3925 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3926                      enum lock_usage_bit new_bit);
3927
3928 static void print_usage_bug_scenario(struct held_lock *lock)
3929 {
3930         struct lock_class *class = hlock_class(lock);
3931
3932         printk(" Possible unsafe locking scenario:\n\n");
3933         printk("       CPU0\n");
3934         printk("       ----\n");
3935         printk("  lock(");
3936         __print_lock_name(class);
3937         printk(KERN_CONT ");\n");
3938         printk("  <Interrupt>\n");
3939         printk("    lock(");
3940         __print_lock_name(class);
3941         printk(KERN_CONT ");\n");
3942         printk("\n *** DEADLOCK ***\n\n");
3943 }
3944
3945 static void
3946 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3947                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3948 {
3949         if (!debug_locks_off() || debug_locks_silent)
3950                 return;
3951
3952         pr_warn("\n");
3953         pr_warn("================================\n");
3954         pr_warn("WARNING: inconsistent lock state\n");
3955         print_kernel_ident();
3956         pr_warn("--------------------------------\n");
3957
3958         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3959                 usage_str[prev_bit], usage_str[new_bit]);
3960
3961         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3962                 curr->comm, task_pid_nr(curr),
3963                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3964                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3965                 lockdep_hardirqs_enabled(),
3966                 lockdep_softirqs_enabled(curr));
3967         print_lock(this);
3968
3969         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3970         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3971
3972         print_irqtrace_events(curr);
3973         pr_warn("\nother info that might help us debug this:\n");
3974         print_usage_bug_scenario(this);
3975
3976         lockdep_print_held_locks(curr);
3977
3978         pr_warn("\nstack backtrace:\n");
3979         dump_stack();
3980 }
3981
3982 /*
3983  * Print out an error if an invalid bit is set:
3984  */
3985 static inline int
3986 valid_state(struct task_struct *curr, struct held_lock *this,
3987             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3988 {
3989         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3990                 graph_unlock();
3991                 print_usage_bug(curr, this, bad_bit, new_bit);
3992                 return 0;
3993         }
3994         return 1;
3995 }
3996
3997
3998 /*
3999  * print irq inversion bug:
4000  */
4001 static void
4002 print_irq_inversion_bug(struct task_struct *curr,
4003                         struct lock_list *root, struct lock_list *other,
4004                         struct held_lock *this, int forwards,
4005                         const char *irqclass)
4006 {
4007         struct lock_list *entry = other;
4008         struct lock_list *middle = NULL;
4009         int depth;
4010
4011         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4012                 return;
4013
4014         pr_warn("\n");
4015         pr_warn("========================================================\n");
4016         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4017         print_kernel_ident();
4018         pr_warn("--------------------------------------------------------\n");
4019         pr_warn("%s/%d just changed the state of lock:\n",
4020                 curr->comm, task_pid_nr(curr));
4021         print_lock(this);
4022         if (forwards)
4023                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4024         else
4025                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4026         print_lock_name(other->class);
4027         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4028
4029         pr_warn("\nother info that might help us debug this:\n");
4030
4031         /* Find a middle lock (if one exists) */
4032         depth = get_lock_depth(other);
4033         do {
4034                 if (depth == 0 && (entry != root)) {
4035                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4036                         break;
4037                 }
4038                 middle = entry;
4039                 entry = get_lock_parent(entry);
4040                 depth--;
4041         } while (entry && entry != root && (depth >= 0));
4042         if (forwards)
4043                 print_irq_lock_scenario(root, other,
4044                         middle ? middle->class : root->class, other->class);
4045         else
4046                 print_irq_lock_scenario(other, root,
4047                         middle ? middle->class : other->class, root->class);
4048
4049         lockdep_print_held_locks(curr);
4050
4051         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4052         root->trace = save_trace();
4053         if (!root->trace)
4054                 return;
4055         print_shortest_lock_dependencies(other, root);
4056
4057         pr_warn("\nstack backtrace:\n");
4058         dump_stack();
4059 }
4060
4061 /*
4062  * Prove that in the forwards-direction subgraph starting at <this>
4063  * there is no lock matching <mask>:
4064  */
4065 static int
4066 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4067                      enum lock_usage_bit bit)
4068 {
4069         enum bfs_result ret;
4070         struct lock_list root;
4071         struct lock_list *target_entry;
4072         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4073         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4074
4075         bfs_init_root(&root, this);
4076         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4077         if (bfs_error(ret)) {
4078                 print_bfs_bug(ret);
4079                 return 0;
4080         }
4081         if (ret == BFS_RNOMATCH)
4082                 return 1;
4083
4084         /* Check whether write or read usage is the match */
4085         if (target_entry->class->usage_mask & lock_flag(bit)) {
4086                 print_irq_inversion_bug(curr, &root, target_entry,
4087                                         this, 1, state_name(bit));
4088         } else {
4089                 print_irq_inversion_bug(curr, &root, target_entry,
4090                                         this, 1, state_name(read_bit));
4091         }
4092
4093         return 0;
4094 }
4095
4096 /*
4097  * Prove that in the backwards-direction subgraph starting at <this>
4098  * there is no lock matching <mask>:
4099  */
4100 static int
4101 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4102                       enum lock_usage_bit bit)
4103 {
4104         enum bfs_result ret;
4105         struct lock_list root;
4106         struct lock_list *target_entry;
4107         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4108         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4109
4110         bfs_init_rootb(&root, this);
4111         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4112         if (bfs_error(ret)) {
4113                 print_bfs_bug(ret);
4114                 return 0;
4115         }
4116         if (ret == BFS_RNOMATCH)
4117                 return 1;
4118
4119         /* Check whether write or read usage is the match */
4120         if (target_entry->class->usage_mask & lock_flag(bit)) {
4121                 print_irq_inversion_bug(curr, &root, target_entry,
4122                                         this, 0, state_name(bit));
4123         } else {
4124                 print_irq_inversion_bug(curr, &root, target_entry,
4125                                         this, 0, state_name(read_bit));
4126         }
4127
4128         return 0;
4129 }
4130
4131 void print_irqtrace_events(struct task_struct *curr)
4132 {
4133         const struct irqtrace_events *trace = &curr->irqtrace;
4134
4135         printk("irq event stamp: %u\n", trace->irq_events);
4136         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4137                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4138                 (void *)trace->hardirq_enable_ip);
4139         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4140                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4141                 (void *)trace->hardirq_disable_ip);
4142         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4143                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4144                 (void *)trace->softirq_enable_ip);
4145         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4146                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4147                 (void *)trace->softirq_disable_ip);
4148 }
4149
4150 static int HARDIRQ_verbose(struct lock_class *class)
4151 {
4152 #if HARDIRQ_VERBOSE
4153         return class_filter(class);
4154 #endif
4155         return 0;
4156 }
4157
4158 static int SOFTIRQ_verbose(struct lock_class *class)
4159 {
4160 #if SOFTIRQ_VERBOSE
4161         return class_filter(class);
4162 #endif
4163         return 0;
4164 }
4165
4166 static int (*state_verbose_f[])(struct lock_class *class) = {
4167 #define LOCKDEP_STATE(__STATE) \
4168         __STATE##_verbose,
4169 #include "lockdep_states.h"
4170 #undef LOCKDEP_STATE
4171 };
4172
4173 static inline int state_verbose(enum lock_usage_bit bit,
4174                                 struct lock_class *class)
4175 {
4176         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4177 }
4178
4179 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4180                              enum lock_usage_bit bit, const char *name);
4181
4182 static int
4183 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4184                 enum lock_usage_bit new_bit)
4185 {
4186         int excl_bit = exclusive_bit(new_bit);
4187         int read = new_bit & LOCK_USAGE_READ_MASK;
4188         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4189
4190         /*
4191          * Validate that this particular lock does not have conflicting
4192          * usage states.
4193          */
4194         if (!valid_state(curr, this, new_bit, excl_bit))
4195                 return 0;
4196
4197         /*
4198          * Check for read in write conflicts
4199          */
4200         if (!read && !valid_state(curr, this, new_bit,
4201                                   excl_bit + LOCK_USAGE_READ_MASK))
4202                 return 0;
4203
4204
4205         /*
4206          * Validate that the lock dependencies don't have conflicting usage
4207          * states.
4208          */
4209         if (dir) {
4210                 /*
4211                  * mark ENABLED has to look backwards -- to ensure no dependee
4212                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4213                  */
4214                 if (!check_usage_backwards(curr, this, excl_bit))
4215                         return 0;
4216         } else {
4217                 /*
4218                  * mark USED_IN has to look forwards -- to ensure no dependency
4219                  * has ENABLED state, which would allow recursion deadlocks.
4220                  */
4221                 if (!check_usage_forwards(curr, this, excl_bit))
4222                         return 0;
4223         }
4224
4225         if (state_verbose(new_bit, hlock_class(this)))
4226                 return 2;
4227
4228         return 1;
4229 }
4230
4231 /*
4232  * Mark all held locks with a usage bit:
4233  */
4234 static int
4235 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4236 {
4237         struct held_lock *hlock;
4238         int i;
4239
4240         for (i = 0; i < curr->lockdep_depth; i++) {
4241                 enum lock_usage_bit hlock_bit = base_bit;
4242                 hlock = curr->held_locks + i;
4243
4244                 if (hlock->read)
4245                         hlock_bit += LOCK_USAGE_READ_MASK;
4246
4247                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4248
4249                 if (!hlock->check)
4250                         continue;
4251
4252                 if (!mark_lock(curr, hlock, hlock_bit))
4253                         return 0;
4254         }
4255
4256         return 1;
4257 }
4258
4259 /*
4260  * Hardirqs will be enabled:
4261  */
4262 static void __trace_hardirqs_on_caller(void)
4263 {
4264         struct task_struct *curr = current;
4265
4266         /*
4267          * We are going to turn hardirqs on, so set the
4268          * usage bit for all held locks:
4269          */
4270         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4271                 return;
4272         /*
4273          * If we have softirqs enabled, then set the usage
4274          * bit for all held locks. (disabled hardirqs prevented
4275          * this bit from being set before)
4276          */
4277         if (curr->softirqs_enabled)
4278                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4279 }
4280
4281 /**
4282  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4283  *
4284  * Invoked before a possible transition to RCU idle from exit to user or
4285  * guest mode. This ensures that all RCU operations are done before RCU
4286  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4287  * invoked to set the final state.
4288  */
4289 void lockdep_hardirqs_on_prepare(void)
4290 {
4291         if (unlikely(!debug_locks))
4292                 return;
4293
4294         /*
4295          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4296          */
4297         if (unlikely(in_nmi()))
4298                 return;
4299
4300         if (unlikely(this_cpu_read(lockdep_recursion)))
4301                 return;
4302
4303         if (unlikely(lockdep_hardirqs_enabled())) {
4304                 /*
4305                  * Neither irq nor preemption are disabled here
4306                  * so this is racy by nature but losing one hit
4307                  * in a stat is not a big deal.
4308                  */
4309                 __debug_atomic_inc(redundant_hardirqs_on);
4310                 return;
4311         }
4312
4313         /*
4314          * We're enabling irqs and according to our state above irqs weren't
4315          * already enabled, yet we find the hardware thinks they are in fact
4316          * enabled.. someone messed up their IRQ state tracing.
4317          */
4318         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4319                 return;
4320
4321         /*
4322          * See the fine text that goes along with this variable definition.
4323          */
4324         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4325                 return;
4326
4327         /*
4328          * Can't allow enabling interrupts while in an interrupt handler,
4329          * that's general bad form and such. Recursion, limited stack etc..
4330          */
4331         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4332                 return;
4333
4334         current->hardirq_chain_key = current->curr_chain_key;
4335
4336         lockdep_recursion_inc();
4337         __trace_hardirqs_on_caller();
4338         lockdep_recursion_finish();
4339 }
4340 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4341
4342 void noinstr lockdep_hardirqs_on(unsigned long ip)
4343 {
4344         struct irqtrace_events *trace = &current->irqtrace;
4345
4346         if (unlikely(!debug_locks))
4347                 return;
4348
4349         /*
4350          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4351          * tracking state and hardware state are out of sync.
4352          *
4353          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4354          * and not rely on hardware state like normal interrupts.
4355          */
4356         if (unlikely(in_nmi())) {
4357                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4358                         return;
4359
4360                 /*
4361                  * Skip:
4362                  *  - recursion check, because NMI can hit lockdep;
4363                  *  - hardware state check, because above;
4364                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4365                  */
4366                 goto skip_checks;
4367         }
4368
4369         if (unlikely(this_cpu_read(lockdep_recursion)))
4370                 return;
4371
4372         if (lockdep_hardirqs_enabled()) {
4373                 /*
4374                  * Neither irq nor preemption are disabled here
4375                  * so this is racy by nature but losing one hit
4376                  * in a stat is not a big deal.
4377                  */
4378                 __debug_atomic_inc(redundant_hardirqs_on);
4379                 return;
4380         }
4381
4382         /*
4383          * We're enabling irqs and according to our state above irqs weren't
4384          * already enabled, yet we find the hardware thinks they are in fact
4385          * enabled.. someone messed up their IRQ state tracing.
4386          */
4387         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4388                 return;
4389
4390         /*
4391          * Ensure the lock stack remained unchanged between
4392          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4393          */
4394         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4395                             current->curr_chain_key);
4396
4397 skip_checks:
4398         /* we'll do an OFF -> ON transition: */
4399         __this_cpu_write(hardirqs_enabled, 1);
4400         trace->hardirq_enable_ip = ip;
4401         trace->hardirq_enable_event = ++trace->irq_events;
4402         debug_atomic_inc(hardirqs_on_events);
4403 }
4404 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4405
4406 /*
4407  * Hardirqs were disabled:
4408  */
4409 void noinstr lockdep_hardirqs_off(unsigned long ip)
4410 {
4411         if (unlikely(!debug_locks))
4412                 return;
4413
4414         /*
4415          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4416          * they will restore the software state. This ensures the software
4417          * state is consistent inside NMIs as well.
4418          */
4419         if (in_nmi()) {
4420                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4421                         return;
4422         } else if (__this_cpu_read(lockdep_recursion))
4423                 return;
4424
4425         /*
4426          * So we're supposed to get called after you mask local IRQs, but for
4427          * some reason the hardware doesn't quite think you did a proper job.
4428          */
4429         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4430                 return;
4431
4432         if (lockdep_hardirqs_enabled()) {
4433                 struct irqtrace_events *trace = &current->irqtrace;
4434
4435                 /*
4436                  * We have done an ON -> OFF transition:
4437                  */
4438                 __this_cpu_write(hardirqs_enabled, 0);
4439                 trace->hardirq_disable_ip = ip;
4440                 trace->hardirq_disable_event = ++trace->irq_events;
4441                 debug_atomic_inc(hardirqs_off_events);
4442         } else {
4443                 debug_atomic_inc(redundant_hardirqs_off);
4444         }
4445 }
4446 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4447
4448 /*
4449  * Softirqs will be enabled:
4450  */
4451 void lockdep_softirqs_on(unsigned long ip)
4452 {
4453         struct irqtrace_events *trace = &current->irqtrace;
4454
4455         if (unlikely(!lockdep_enabled()))
4456                 return;
4457
4458         /*
4459          * We fancy IRQs being disabled here, see softirq.c, avoids
4460          * funny state and nesting things.
4461          */
4462         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4463                 return;
4464
4465         if (current->softirqs_enabled) {
4466                 debug_atomic_inc(redundant_softirqs_on);
4467                 return;
4468         }
4469
4470         lockdep_recursion_inc();
4471         /*
4472          * We'll do an OFF -> ON transition:
4473          */
4474         current->softirqs_enabled = 1;
4475         trace->softirq_enable_ip = ip;
4476         trace->softirq_enable_event = ++trace->irq_events;
4477         debug_atomic_inc(softirqs_on_events);
4478         /*
4479          * We are going to turn softirqs on, so set the
4480          * usage bit for all held locks, if hardirqs are
4481          * enabled too:
4482          */
4483         if (lockdep_hardirqs_enabled())
4484                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4485         lockdep_recursion_finish();
4486 }
4487
4488 /*
4489  * Softirqs were disabled:
4490  */
4491 void lockdep_softirqs_off(unsigned long ip)
4492 {
4493         if (unlikely(!lockdep_enabled()))
4494                 return;
4495
4496         /*
4497          * We fancy IRQs being disabled here, see softirq.c
4498          */
4499         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4500                 return;
4501
4502         if (current->softirqs_enabled) {
4503                 struct irqtrace_events *trace = &current->irqtrace;
4504
4505                 /*
4506                  * We have done an ON -> OFF transition:
4507                  */
4508                 current->softirqs_enabled = 0;
4509                 trace->softirq_disable_ip = ip;
4510                 trace->softirq_disable_event = ++trace->irq_events;
4511                 debug_atomic_inc(softirqs_off_events);
4512                 /*
4513                  * Whoops, we wanted softirqs off, so why aren't they?
4514                  */
4515                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4516         } else
4517                 debug_atomic_inc(redundant_softirqs_off);
4518 }
4519
4520 static int
4521 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4522 {
4523         if (!check)
4524                 goto lock_used;
4525
4526         /*
4527          * If non-trylock use in a hardirq or softirq context, then
4528          * mark the lock as used in these contexts:
4529          */
4530         if (!hlock->trylock) {
4531                 if (hlock->read) {
4532                         if (lockdep_hardirq_context())
4533                                 if (!mark_lock(curr, hlock,
4534                                                 LOCK_USED_IN_HARDIRQ_READ))
4535                                         return 0;
4536                         if (curr->softirq_context)
4537                                 if (!mark_lock(curr, hlock,
4538                                                 LOCK_USED_IN_SOFTIRQ_READ))
4539                                         return 0;
4540                 } else {
4541                         if (lockdep_hardirq_context())
4542                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4543                                         return 0;
4544                         if (curr->softirq_context)
4545                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4546                                         return 0;
4547                 }
4548         }
4549
4550         /*
4551          * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4552          * creates no critical section and no extra dependency can be introduced
4553          * by interrupts
4554          */
4555         if (!hlock->hardirqs_off && !hlock->sync) {
4556                 if (hlock->read) {
4557                         if (!mark_lock(curr, hlock,
4558                                         LOCK_ENABLED_HARDIRQ_READ))
4559                                 return 0;
4560                         if (curr->softirqs_enabled)
4561                                 if (!mark_lock(curr, hlock,
4562                                                 LOCK_ENABLED_SOFTIRQ_READ))
4563                                         return 0;
4564                 } else {
4565                         if (!mark_lock(curr, hlock,
4566                                         LOCK_ENABLED_HARDIRQ))
4567                                 return 0;
4568                         if (curr->softirqs_enabled)
4569                                 if (!mark_lock(curr, hlock,
4570                                                 LOCK_ENABLED_SOFTIRQ))
4571                                         return 0;
4572                 }
4573         }
4574
4575 lock_used:
4576         /* mark it as used: */
4577         if (!mark_lock(curr, hlock, LOCK_USED))
4578                 return 0;
4579
4580         return 1;
4581 }
4582
4583 static inline unsigned int task_irq_context(struct task_struct *task)
4584 {
4585         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4586                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4587 }
4588
4589 static int separate_irq_context(struct task_struct *curr,
4590                 struct held_lock *hlock)
4591 {
4592         unsigned int depth = curr->lockdep_depth;
4593
4594         /*
4595          * Keep track of points where we cross into an interrupt context:
4596          */
4597         if (depth) {
4598                 struct held_lock *prev_hlock;
4599
4600                 prev_hlock = curr->held_locks + depth-1;
4601                 /*
4602                  * If we cross into another context, reset the
4603                  * hash key (this also prevents the checking and the
4604                  * adding of the dependency to 'prev'):
4605                  */
4606                 if (prev_hlock->irq_context != hlock->irq_context)
4607                         return 1;
4608         }
4609         return 0;
4610 }
4611
4612 /*
4613  * Mark a lock with a usage bit, and validate the state transition:
4614  */
4615 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4616                              enum lock_usage_bit new_bit)
4617 {
4618         unsigned int new_mask, ret = 1;
4619
4620         if (new_bit >= LOCK_USAGE_STATES) {
4621                 DEBUG_LOCKS_WARN_ON(1);
4622                 return 0;
4623         }
4624
4625         if (new_bit == LOCK_USED && this->read)
4626                 new_bit = LOCK_USED_READ;
4627
4628         new_mask = 1 << new_bit;
4629
4630         /*
4631          * If already set then do not dirty the cacheline,
4632          * nor do any checks:
4633          */
4634         if (likely(hlock_class(this)->usage_mask & new_mask))
4635                 return 1;
4636
4637         if (!graph_lock())
4638                 return 0;
4639         /*
4640          * Make sure we didn't race:
4641          */
4642         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4643                 goto unlock;
4644
4645         if (!hlock_class(this)->usage_mask)
4646                 debug_atomic_dec(nr_unused_locks);
4647
4648         hlock_class(this)->usage_mask |= new_mask;
4649
4650         if (new_bit < LOCK_TRACE_STATES) {
4651                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4652                         return 0;
4653         }
4654
4655         if (new_bit < LOCK_USED) {
4656                 ret = mark_lock_irq(curr, this, new_bit);
4657                 if (!ret)
4658                         return 0;
4659         }
4660
4661 unlock:
4662         graph_unlock();
4663
4664         /*
4665          * We must printk outside of the graph_lock:
4666          */
4667         if (ret == 2) {
4668                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4669                 print_lock(this);
4670                 print_irqtrace_events(curr);
4671                 dump_stack();
4672         }
4673
4674         return ret;
4675 }
4676
4677 static inline short task_wait_context(struct task_struct *curr)
4678 {
4679         /*
4680          * Set appropriate wait type for the context; for IRQs we have to take
4681          * into account force_irqthread as that is implied by PREEMPT_RT.
4682          */
4683         if (lockdep_hardirq_context()) {
4684                 /*
4685                  * Check if force_irqthreads will run us threaded.
4686                  */
4687                 if (curr->hardirq_threaded || curr->irq_config)
4688                         return LD_WAIT_CONFIG;
4689
4690                 return LD_WAIT_SPIN;
4691         } else if (curr->softirq_context) {
4692                 /*
4693                  * Softirqs are always threaded.
4694                  */
4695                 return LD_WAIT_CONFIG;
4696         }
4697
4698         return LD_WAIT_MAX;
4699 }
4700
4701 static int
4702 print_lock_invalid_wait_context(struct task_struct *curr,
4703                                 struct held_lock *hlock)
4704 {
4705         short curr_inner;
4706
4707         if (!debug_locks_off())
4708                 return 0;
4709         if (debug_locks_silent)
4710                 return 0;
4711
4712         pr_warn("\n");
4713         pr_warn("=============================\n");
4714         pr_warn("[ BUG: Invalid wait context ]\n");
4715         print_kernel_ident();
4716         pr_warn("-----------------------------\n");
4717
4718         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4719         print_lock(hlock);
4720
4721         pr_warn("other info that might help us debug this:\n");
4722
4723         curr_inner = task_wait_context(curr);
4724         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4725
4726         lockdep_print_held_locks(curr);
4727
4728         pr_warn("stack backtrace:\n");
4729         dump_stack();
4730
4731         return 0;
4732 }
4733
4734 /*
4735  * Verify the wait_type context.
4736  *
4737  * This check validates we take locks in the right wait-type order; that is it
4738  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4739  * acquire spinlocks inside raw_spinlocks and the sort.
4740  *
4741  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4742  * can be taken from (pretty much) any context but also has constraints.
4743  * However when taken in a stricter environment the RCU lock does not loosen
4744  * the constraints.
4745  *
4746  * Therefore we must look for the strictest environment in the lock stack and
4747  * compare that to the lock we're trying to acquire.
4748  */
4749 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4750 {
4751         u8 next_inner = hlock_class(next)->wait_type_inner;
4752         u8 next_outer = hlock_class(next)->wait_type_outer;
4753         u8 curr_inner;
4754         int depth;
4755
4756         if (!next_inner || next->trylock)
4757                 return 0;
4758
4759         if (!next_outer)
4760                 next_outer = next_inner;
4761
4762         /*
4763          * Find start of current irq_context..
4764          */
4765         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4766                 struct held_lock *prev = curr->held_locks + depth;
4767                 if (prev->irq_context != next->irq_context)
4768                         break;
4769         }
4770         depth++;
4771
4772         curr_inner = task_wait_context(curr);
4773
4774         for (; depth < curr->lockdep_depth; depth++) {
4775                 struct held_lock *prev = curr->held_locks + depth;
4776                 struct lock_class *class = hlock_class(prev);
4777                 u8 prev_inner = class->wait_type_inner;
4778
4779                 if (prev_inner) {
4780                         /*
4781                          * We can have a bigger inner than a previous one
4782                          * when outer is smaller than inner, as with RCU.
4783                          *
4784                          * Also due to trylocks.
4785                          */
4786                         curr_inner = min(curr_inner, prev_inner);
4787
4788                         /*
4789                          * Allow override for annotations -- this is typically
4790                          * only valid/needed for code that only exists when
4791                          * CONFIG_PREEMPT_RT=n.
4792                          */
4793                         if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4794                                 curr_inner = prev_inner;
4795                 }
4796         }
4797
4798         if (next_outer > curr_inner)
4799                 return print_lock_invalid_wait_context(curr, next);
4800
4801         return 0;
4802 }
4803
4804 #else /* CONFIG_PROVE_LOCKING */
4805
4806 static inline int
4807 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4808 {
4809         return 1;
4810 }
4811
4812 static inline unsigned int task_irq_context(struct task_struct *task)
4813 {
4814         return 0;
4815 }
4816
4817 static inline int separate_irq_context(struct task_struct *curr,
4818                 struct held_lock *hlock)
4819 {
4820         return 0;
4821 }
4822
4823 static inline int check_wait_context(struct task_struct *curr,
4824                                      struct held_lock *next)
4825 {
4826         return 0;
4827 }
4828
4829 #endif /* CONFIG_PROVE_LOCKING */
4830
4831 /*
4832  * Initialize a lock instance's lock-class mapping info:
4833  */
4834 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4835                             struct lock_class_key *key, int subclass,
4836                             u8 inner, u8 outer, u8 lock_type)
4837 {
4838         int i;
4839
4840         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4841                 lock->class_cache[i] = NULL;
4842
4843 #ifdef CONFIG_LOCK_STAT
4844         lock->cpu = raw_smp_processor_id();
4845 #endif
4846
4847         /*
4848          * Can't be having no nameless bastards around this place!
4849          */
4850         if (DEBUG_LOCKS_WARN_ON(!name)) {
4851                 lock->name = "NULL";
4852                 return;
4853         }
4854
4855         lock->name = name;
4856
4857         lock->wait_type_outer = outer;
4858         lock->wait_type_inner = inner;
4859         lock->lock_type = lock_type;
4860
4861         /*
4862          * No key, no joy, we need to hash something.
4863          */
4864         if (DEBUG_LOCKS_WARN_ON(!key))
4865                 return;
4866         /*
4867          * Sanity check, the lock-class key must either have been allocated
4868          * statically or must have been registered as a dynamic key.
4869          */
4870         if (!static_obj(key) && !is_dynamic_key(key)) {
4871                 if (debug_locks)
4872                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4873                 DEBUG_LOCKS_WARN_ON(1);
4874                 return;
4875         }
4876         lock->key = key;
4877
4878         if (unlikely(!debug_locks))
4879                 return;
4880
4881         if (subclass) {
4882                 unsigned long flags;
4883
4884                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4885                         return;
4886
4887                 raw_local_irq_save(flags);
4888                 lockdep_recursion_inc();
4889                 register_lock_class(lock, subclass, 1);
4890                 lockdep_recursion_finish();
4891                 raw_local_irq_restore(flags);
4892         }
4893 }
4894 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4895
4896 struct lock_class_key __lockdep_no_validate__;
4897 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4898
4899 static void
4900 print_lock_nested_lock_not_held(struct task_struct *curr,
4901                                 struct held_lock *hlock)
4902 {
4903         if (!debug_locks_off())
4904                 return;
4905         if (debug_locks_silent)
4906                 return;
4907
4908         pr_warn("\n");
4909         pr_warn("==================================\n");
4910         pr_warn("WARNING: Nested lock was not taken\n");
4911         print_kernel_ident();
4912         pr_warn("----------------------------------\n");
4913
4914         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4915         print_lock(hlock);
4916
4917         pr_warn("\nbut this task is not holding:\n");
4918         pr_warn("%s\n", hlock->nest_lock->name);
4919
4920         pr_warn("\nstack backtrace:\n");
4921         dump_stack();
4922
4923         pr_warn("\nother info that might help us debug this:\n");
4924         lockdep_print_held_locks(curr);
4925
4926         pr_warn("\nstack backtrace:\n");
4927         dump_stack();
4928 }
4929
4930 static int __lock_is_held(const struct lockdep_map *lock, int read);
4931
4932 /*
4933  * This gets called for every mutex_lock*()/spin_lock*() operation.
4934  * We maintain the dependency maps and validate the locking attempt:
4935  *
4936  * The callers must make sure that IRQs are disabled before calling it,
4937  * otherwise we could get an interrupt which would want to take locks,
4938  * which would end up in lockdep again.
4939  */
4940 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4941                           int trylock, int read, int check, int hardirqs_off,
4942                           struct lockdep_map *nest_lock, unsigned long ip,
4943                           int references, int pin_count, int sync)
4944 {
4945         struct task_struct *curr = current;
4946         struct lock_class *class = NULL;
4947         struct held_lock *hlock;
4948         unsigned int depth;
4949         int chain_head = 0;
4950         int class_idx;
4951         u64 chain_key;
4952
4953         if (unlikely(!debug_locks))
4954                 return 0;
4955
4956         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4957                 check = 0;
4958
4959         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4960                 class = lock->class_cache[subclass];
4961         /*
4962          * Not cached?
4963          */
4964         if (unlikely(!class)) {
4965                 class = register_lock_class(lock, subclass, 0);
4966                 if (!class)
4967                         return 0;
4968         }
4969
4970         debug_class_ops_inc(class);
4971
4972         if (very_verbose(class)) {
4973                 printk("\nacquire class [%px] %s", class->key, class->name);
4974                 if (class->name_version > 1)
4975                         printk(KERN_CONT "#%d", class->name_version);
4976                 printk(KERN_CONT "\n");
4977                 dump_stack();
4978         }
4979
4980         /*
4981          * Add the lock to the list of currently held locks.
4982          * (we dont increase the depth just yet, up until the
4983          * dependency checks are done)
4984          */
4985         depth = curr->lockdep_depth;
4986         /*
4987          * Ran out of static storage for our per-task lock stack again have we?
4988          */
4989         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4990                 return 0;
4991
4992         class_idx = class - lock_classes;
4993
4994         if (depth && !sync) {
4995                 /* we're holding locks and the new held lock is not a sync */
4996                 hlock = curr->held_locks + depth - 1;
4997                 if (hlock->class_idx == class_idx && nest_lock) {
4998                         if (!references)
4999                                 references++;
5000
5001                         if (!hlock->references)
5002                                 hlock->references++;
5003
5004                         hlock->references += references;
5005
5006                         /* Overflow */
5007                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5008                                 return 0;
5009
5010                         return 2;
5011                 }
5012         }
5013
5014         hlock = curr->held_locks + depth;
5015         /*
5016          * Plain impossible, we just registered it and checked it weren't no
5017          * NULL like.. I bet this mushroom I ate was good!
5018          */
5019         if (DEBUG_LOCKS_WARN_ON(!class))
5020                 return 0;
5021         hlock->class_idx = class_idx;
5022         hlock->acquire_ip = ip;
5023         hlock->instance = lock;
5024         hlock->nest_lock = nest_lock;
5025         hlock->irq_context = task_irq_context(curr);
5026         hlock->trylock = trylock;
5027         hlock->read = read;
5028         hlock->check = check;
5029         hlock->sync = !!sync;
5030         hlock->hardirqs_off = !!hardirqs_off;
5031         hlock->references = references;
5032 #ifdef CONFIG_LOCK_STAT
5033         hlock->waittime_stamp = 0;
5034         hlock->holdtime_stamp = lockstat_clock();
5035 #endif
5036         hlock->pin_count = pin_count;
5037
5038         if (check_wait_context(curr, hlock))
5039                 return 0;
5040
5041         /* Initialize the lock usage bit */
5042         if (!mark_usage(curr, hlock, check))
5043                 return 0;
5044
5045         /*
5046          * Calculate the chain hash: it's the combined hash of all the
5047          * lock keys along the dependency chain. We save the hash value
5048          * at every step so that we can get the current hash easily
5049          * after unlock. The chain hash is then used to cache dependency
5050          * results.
5051          *
5052          * The 'key ID' is what is the most compact key value to drive
5053          * the hash, not class->key.
5054          */
5055         /*
5056          * Whoops, we did it again.. class_idx is invalid.
5057          */
5058         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5059                 return 0;
5060
5061         chain_key = curr->curr_chain_key;
5062         if (!depth) {
5063                 /*
5064                  * How can we have a chain hash when we ain't got no keys?!
5065                  */
5066                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5067                         return 0;
5068                 chain_head = 1;
5069         }
5070
5071         hlock->prev_chain_key = chain_key;
5072         if (separate_irq_context(curr, hlock)) {
5073                 chain_key = INITIAL_CHAIN_KEY;
5074                 chain_head = 1;
5075         }
5076         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5077
5078         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5079                 print_lock_nested_lock_not_held(curr, hlock);
5080                 return 0;
5081         }
5082
5083         if (!debug_locks_silent) {
5084                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5085                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5086         }
5087
5088         if (!validate_chain(curr, hlock, chain_head, chain_key))
5089                 return 0;
5090
5091         /* For lock_sync(), we are done here since no actual critical section */
5092         if (hlock->sync)
5093                 return 1;
5094
5095         curr->curr_chain_key = chain_key;
5096         curr->lockdep_depth++;
5097         check_chain_key(curr);
5098 #ifdef CONFIG_DEBUG_LOCKDEP
5099         if (unlikely(!debug_locks))
5100                 return 0;
5101 #endif
5102         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5103                 debug_locks_off();
5104                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5105                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5106                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5107
5108                 lockdep_print_held_locks(current);
5109                 debug_show_all_locks();
5110                 dump_stack();
5111
5112                 return 0;
5113         }
5114
5115         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5116                 max_lockdep_depth = curr->lockdep_depth;
5117
5118         return 1;
5119 }
5120
5121 static void print_unlock_imbalance_bug(struct task_struct *curr,
5122                                        struct lockdep_map *lock,
5123                                        unsigned long ip)
5124 {
5125         if (!debug_locks_off())
5126                 return;
5127         if (debug_locks_silent)
5128                 return;
5129
5130         pr_warn("\n");
5131         pr_warn("=====================================\n");
5132         pr_warn("WARNING: bad unlock balance detected!\n");
5133         print_kernel_ident();
5134         pr_warn("-------------------------------------\n");
5135         pr_warn("%s/%d is trying to release lock (",
5136                 curr->comm, task_pid_nr(curr));
5137         print_lockdep_cache(lock);
5138         pr_cont(") at:\n");
5139         print_ip_sym(KERN_WARNING, ip);
5140         pr_warn("but there are no more locks to release!\n");
5141         pr_warn("\nother info that might help us debug this:\n");
5142         lockdep_print_held_locks(curr);
5143
5144         pr_warn("\nstack backtrace:\n");
5145         dump_stack();
5146 }
5147
5148 static noinstr int match_held_lock(const struct held_lock *hlock,
5149                                    const struct lockdep_map *lock)
5150 {
5151         if (hlock->instance == lock)
5152                 return 1;
5153
5154         if (hlock->references) {
5155                 const struct lock_class *class = lock->class_cache[0];
5156
5157                 if (!class)
5158                         class = look_up_lock_class(lock, 0);
5159
5160                 /*
5161                  * If look_up_lock_class() failed to find a class, we're trying
5162                  * to test if we hold a lock that has never yet been acquired.
5163                  * Clearly if the lock hasn't been acquired _ever_, we're not
5164                  * holding it either, so report failure.
5165                  */
5166                 if (!class)
5167                         return 0;
5168
5169                 /*
5170                  * References, but not a lock we're actually ref-counting?
5171                  * State got messed up, follow the sites that change ->references
5172                  * and try to make sense of it.
5173                  */
5174                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5175                         return 0;
5176
5177                 if (hlock->class_idx == class - lock_classes)
5178                         return 1;
5179         }
5180
5181         return 0;
5182 }
5183
5184 /* @depth must not be zero */
5185 static struct held_lock *find_held_lock(struct task_struct *curr,
5186                                         struct lockdep_map *lock,
5187                                         unsigned int depth, int *idx)
5188 {
5189         struct held_lock *ret, *hlock, *prev_hlock;
5190         int i;
5191
5192         i = depth - 1;
5193         hlock = curr->held_locks + i;
5194         ret = hlock;
5195         if (match_held_lock(hlock, lock))
5196                 goto out;
5197
5198         ret = NULL;
5199         for (i--, prev_hlock = hlock--;
5200              i >= 0;
5201              i--, prev_hlock = hlock--) {
5202                 /*
5203                  * We must not cross into another context:
5204                  */
5205                 if (prev_hlock->irq_context != hlock->irq_context) {
5206                         ret = NULL;
5207                         break;
5208                 }
5209                 if (match_held_lock(hlock, lock)) {
5210                         ret = hlock;
5211                         break;
5212                 }
5213         }
5214
5215 out:
5216         *idx = i;
5217         return ret;
5218 }
5219
5220 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5221                                 int idx, unsigned int *merged)
5222 {
5223         struct held_lock *hlock;
5224         int first_idx = idx;
5225
5226         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5227                 return 0;
5228
5229         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5230                 switch (__lock_acquire(hlock->instance,
5231                                     hlock_class(hlock)->subclass,
5232                                     hlock->trylock,
5233                                     hlock->read, hlock->check,
5234                                     hlock->hardirqs_off,
5235                                     hlock->nest_lock, hlock->acquire_ip,
5236                                     hlock->references, hlock->pin_count, 0)) {
5237                 case 0:
5238                         return 1;
5239                 case 1:
5240                         break;
5241                 case 2:
5242                         *merged += (idx == first_idx);
5243                         break;
5244                 default:
5245                         WARN_ON(1);
5246                         return 0;
5247                 }
5248         }
5249         return 0;
5250 }
5251
5252 static int
5253 __lock_set_class(struct lockdep_map *lock, const char *name,
5254                  struct lock_class_key *key, unsigned int subclass,
5255                  unsigned long ip)
5256 {
5257         struct task_struct *curr = current;
5258         unsigned int depth, merged = 0;
5259         struct held_lock *hlock;
5260         struct lock_class *class;
5261         int i;
5262
5263         if (unlikely(!debug_locks))
5264                 return 0;
5265
5266         depth = curr->lockdep_depth;
5267         /*
5268          * This function is about (re)setting the class of a held lock,
5269          * yet we're not actually holding any locks. Naughty user!
5270          */
5271         if (DEBUG_LOCKS_WARN_ON(!depth))
5272                 return 0;
5273
5274         hlock = find_held_lock(curr, lock, depth, &i);
5275         if (!hlock) {
5276                 print_unlock_imbalance_bug(curr, lock, ip);
5277                 return 0;
5278         }
5279
5280         lockdep_init_map_type(lock, name, key, 0,
5281                               lock->wait_type_inner,
5282                               lock->wait_type_outer,
5283                               lock->lock_type);
5284         class = register_lock_class(lock, subclass, 0);
5285         hlock->class_idx = class - lock_classes;
5286
5287         curr->lockdep_depth = i;
5288         curr->curr_chain_key = hlock->prev_chain_key;
5289
5290         if (reacquire_held_locks(curr, depth, i, &merged))
5291                 return 0;
5292
5293         /*
5294          * I took it apart and put it back together again, except now I have
5295          * these 'spare' parts.. where shall I put them.
5296          */
5297         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5298                 return 0;
5299         return 1;
5300 }
5301
5302 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5303 {
5304         struct task_struct *curr = current;
5305         unsigned int depth, merged = 0;
5306         struct held_lock *hlock;
5307         int i;
5308
5309         if (unlikely(!debug_locks))
5310                 return 0;
5311
5312         depth = curr->lockdep_depth;
5313         /*
5314          * This function is about (re)setting the class of a held lock,
5315          * yet we're not actually holding any locks. Naughty user!
5316          */
5317         if (DEBUG_LOCKS_WARN_ON(!depth))
5318                 return 0;
5319
5320         hlock = find_held_lock(curr, lock, depth, &i);
5321         if (!hlock) {
5322                 print_unlock_imbalance_bug(curr, lock, ip);
5323                 return 0;
5324         }
5325
5326         curr->lockdep_depth = i;
5327         curr->curr_chain_key = hlock->prev_chain_key;
5328
5329         WARN(hlock->read, "downgrading a read lock");
5330         hlock->read = 1;
5331         hlock->acquire_ip = ip;
5332
5333         if (reacquire_held_locks(curr, depth, i, &merged))
5334                 return 0;
5335
5336         /* Merging can't happen with unchanged classes.. */
5337         if (DEBUG_LOCKS_WARN_ON(merged))
5338                 return 0;
5339
5340         /*
5341          * I took it apart and put it back together again, except now I have
5342          * these 'spare' parts.. where shall I put them.
5343          */
5344         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5345                 return 0;
5346
5347         return 1;
5348 }
5349
5350 /*
5351  * Remove the lock from the list of currently held locks - this gets
5352  * called on mutex_unlock()/spin_unlock*() (or on a failed
5353  * mutex_lock_interruptible()).
5354  */
5355 static int
5356 __lock_release(struct lockdep_map *lock, unsigned long ip)
5357 {
5358         struct task_struct *curr = current;
5359         unsigned int depth, merged = 1;
5360         struct held_lock *hlock;
5361         int i;
5362
5363         if (unlikely(!debug_locks))
5364                 return 0;
5365
5366         depth = curr->lockdep_depth;
5367         /*
5368          * So we're all set to release this lock.. wait what lock? We don't
5369          * own any locks, you've been drinking again?
5370          */
5371         if (depth <= 0) {
5372                 print_unlock_imbalance_bug(curr, lock, ip);
5373                 return 0;
5374         }
5375
5376         /*
5377          * Check whether the lock exists in the current stack
5378          * of held locks:
5379          */
5380         hlock = find_held_lock(curr, lock, depth, &i);
5381         if (!hlock) {
5382                 print_unlock_imbalance_bug(curr, lock, ip);
5383                 return 0;
5384         }
5385
5386         if (hlock->instance == lock)
5387                 lock_release_holdtime(hlock);
5388
5389         WARN(hlock->pin_count, "releasing a pinned lock\n");
5390
5391         if (hlock->references) {
5392                 hlock->references--;
5393                 if (hlock->references) {
5394                         /*
5395                          * We had, and after removing one, still have
5396                          * references, the current lock stack is still
5397                          * valid. We're done!
5398                          */
5399                         return 1;
5400                 }
5401         }
5402
5403         /*
5404          * We have the right lock to unlock, 'hlock' points to it.
5405          * Now we remove it from the stack, and add back the other
5406          * entries (if any), recalculating the hash along the way:
5407          */
5408
5409         curr->lockdep_depth = i;
5410         curr->curr_chain_key = hlock->prev_chain_key;
5411
5412         /*
5413          * The most likely case is when the unlock is on the innermost
5414          * lock. In this case, we are done!
5415          */
5416         if (i == depth-1)
5417                 return 1;
5418
5419         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5420                 return 0;
5421
5422         /*
5423          * We had N bottles of beer on the wall, we drank one, but now
5424          * there's not N-1 bottles of beer left on the wall...
5425          * Pouring two of the bottles together is acceptable.
5426          */
5427         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5428
5429         /*
5430          * Since reacquire_held_locks() would have called check_chain_key()
5431          * indirectly via __lock_acquire(), we don't need to do it again
5432          * on return.
5433          */
5434         return 0;
5435 }
5436
5437 static __always_inline
5438 int __lock_is_held(const struct lockdep_map *lock, int read)
5439 {
5440         struct task_struct *curr = current;
5441         int i;
5442
5443         for (i = 0; i < curr->lockdep_depth; i++) {
5444                 struct held_lock *hlock = curr->held_locks + i;
5445
5446                 if (match_held_lock(hlock, lock)) {
5447                         if (read == -1 || !!hlock->read == read)
5448                                 return LOCK_STATE_HELD;
5449
5450                         return LOCK_STATE_NOT_HELD;
5451                 }
5452         }
5453
5454         return LOCK_STATE_NOT_HELD;
5455 }
5456
5457 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5458 {
5459         struct pin_cookie cookie = NIL_COOKIE;
5460         struct task_struct *curr = current;
5461         int i;
5462
5463         if (unlikely(!debug_locks))
5464                 return cookie;
5465
5466         for (i = 0; i < curr->lockdep_depth; i++) {
5467                 struct held_lock *hlock = curr->held_locks + i;
5468
5469                 if (match_held_lock(hlock, lock)) {
5470                         /*
5471                          * Grab 16bits of randomness; this is sufficient to not
5472                          * be guessable and still allows some pin nesting in
5473                          * our u32 pin_count.
5474                          */
5475                         cookie.val = 1 + (sched_clock() & 0xffff);
5476                         hlock->pin_count += cookie.val;
5477                         return cookie;
5478                 }
5479         }
5480
5481         WARN(1, "pinning an unheld lock\n");
5482         return cookie;
5483 }
5484
5485 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5486 {
5487         struct task_struct *curr = current;
5488         int i;
5489
5490         if (unlikely(!debug_locks))
5491                 return;
5492
5493         for (i = 0; i < curr->lockdep_depth; i++) {
5494                 struct held_lock *hlock = curr->held_locks + i;
5495
5496                 if (match_held_lock(hlock, lock)) {
5497                         hlock->pin_count += cookie.val;
5498                         return;
5499                 }
5500         }
5501
5502         WARN(1, "pinning an unheld lock\n");
5503 }
5504
5505 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5506 {
5507         struct task_struct *curr = current;
5508         int i;
5509
5510         if (unlikely(!debug_locks))
5511                 return;
5512
5513         for (i = 0; i < curr->lockdep_depth; i++) {
5514                 struct held_lock *hlock = curr->held_locks + i;
5515
5516                 if (match_held_lock(hlock, lock)) {
5517                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5518                                 return;
5519
5520                         hlock->pin_count -= cookie.val;
5521
5522                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5523                                 hlock->pin_count = 0;
5524
5525                         return;
5526                 }
5527         }
5528
5529         WARN(1, "unpinning an unheld lock\n");
5530 }
5531
5532 /*
5533  * Check whether we follow the irq-flags state precisely:
5534  */
5535 static noinstr void check_flags(unsigned long flags)
5536 {
5537 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5538         if (!debug_locks)
5539                 return;
5540
5541         /* Get the warning out..  */
5542         instrumentation_begin();
5543
5544         if (irqs_disabled_flags(flags)) {
5545                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5546                         printk("possible reason: unannotated irqs-off.\n");
5547                 }
5548         } else {
5549                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5550                         printk("possible reason: unannotated irqs-on.\n");
5551                 }
5552         }
5553
5554 #ifndef CONFIG_PREEMPT_RT
5555         /*
5556          * We dont accurately track softirq state in e.g.
5557          * hardirq contexts (such as on 4KSTACKS), so only
5558          * check if not in hardirq contexts:
5559          */
5560         if (!hardirq_count()) {
5561                 if (softirq_count()) {
5562                         /* like the above, but with softirqs */
5563                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5564                 } else {
5565                         /* lick the above, does it taste good? */
5566                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5567                 }
5568         }
5569 #endif
5570
5571         if (!debug_locks)
5572                 print_irqtrace_events(current);
5573
5574         instrumentation_end();
5575 #endif
5576 }
5577
5578 void lock_set_class(struct lockdep_map *lock, const char *name,
5579                     struct lock_class_key *key, unsigned int subclass,
5580                     unsigned long ip)
5581 {
5582         unsigned long flags;
5583
5584         if (unlikely(!lockdep_enabled()))
5585                 return;
5586
5587         raw_local_irq_save(flags);
5588         lockdep_recursion_inc();
5589         check_flags(flags);
5590         if (__lock_set_class(lock, name, key, subclass, ip))
5591                 check_chain_key(current);
5592         lockdep_recursion_finish();
5593         raw_local_irq_restore(flags);
5594 }
5595 EXPORT_SYMBOL_GPL(lock_set_class);
5596
5597 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5598 {
5599         unsigned long flags;
5600
5601         if (unlikely(!lockdep_enabled()))
5602                 return;
5603
5604         raw_local_irq_save(flags);
5605         lockdep_recursion_inc();
5606         check_flags(flags);
5607         if (__lock_downgrade(lock, ip))
5608                 check_chain_key(current);
5609         lockdep_recursion_finish();
5610         raw_local_irq_restore(flags);
5611 }
5612 EXPORT_SYMBOL_GPL(lock_downgrade);
5613
5614 /* NMI context !!! */
5615 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5616 {
5617 #ifdef CONFIG_PROVE_LOCKING
5618         struct lock_class *class = look_up_lock_class(lock, subclass);
5619         unsigned long mask = LOCKF_USED;
5620
5621         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5622         if (!class)
5623                 return;
5624
5625         /*
5626          * READ locks only conflict with USED, such that if we only ever use
5627          * READ locks, there is no deadlock possible -- RCU.
5628          */
5629         if (!hlock->read)
5630                 mask |= LOCKF_USED_READ;
5631
5632         if (!(class->usage_mask & mask))
5633                 return;
5634
5635         hlock->class_idx = class - lock_classes;
5636
5637         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5638 #endif
5639 }
5640
5641 static bool lockdep_nmi(void)
5642 {
5643         if (raw_cpu_read(lockdep_recursion))
5644                 return false;
5645
5646         if (!in_nmi())
5647                 return false;
5648
5649         return true;
5650 }
5651
5652 /*
5653  * read_lock() is recursive if:
5654  * 1. We force lockdep think this way in selftests or
5655  * 2. The implementation is not queued read/write lock or
5656  * 3. The locker is at an in_interrupt() context.
5657  */
5658 bool read_lock_is_recursive(void)
5659 {
5660         return force_read_lock_recursive ||
5661                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5662                in_interrupt();
5663 }
5664 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5665
5666 /*
5667  * We are not always called with irqs disabled - do that here,
5668  * and also avoid lockdep recursion:
5669  */
5670 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5671                           int trylock, int read, int check,
5672                           struct lockdep_map *nest_lock, unsigned long ip)
5673 {
5674         unsigned long flags;
5675
5676         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5677
5678         if (!debug_locks)
5679                 return;
5680
5681         if (unlikely(!lockdep_enabled())) {
5682                 /* XXX allow trylock from NMI ?!? */
5683                 if (lockdep_nmi() && !trylock) {
5684                         struct held_lock hlock;
5685
5686                         hlock.acquire_ip = ip;
5687                         hlock.instance = lock;
5688                         hlock.nest_lock = nest_lock;
5689                         hlock.irq_context = 2; // XXX
5690                         hlock.trylock = trylock;
5691                         hlock.read = read;
5692                         hlock.check = check;
5693                         hlock.hardirqs_off = true;
5694                         hlock.references = 0;
5695
5696                         verify_lock_unused(lock, &hlock, subclass);
5697                 }
5698                 return;
5699         }
5700
5701         raw_local_irq_save(flags);
5702         check_flags(flags);
5703
5704         lockdep_recursion_inc();
5705         __lock_acquire(lock, subclass, trylock, read, check,
5706                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5707         lockdep_recursion_finish();
5708         raw_local_irq_restore(flags);
5709 }
5710 EXPORT_SYMBOL_GPL(lock_acquire);
5711
5712 void lock_release(struct lockdep_map *lock, unsigned long ip)
5713 {
5714         unsigned long flags;
5715
5716         trace_lock_release(lock, ip);
5717
5718         if (unlikely(!lockdep_enabled()))
5719                 return;
5720
5721         raw_local_irq_save(flags);
5722         check_flags(flags);
5723
5724         lockdep_recursion_inc();
5725         if (__lock_release(lock, ip))
5726                 check_chain_key(current);
5727         lockdep_recursion_finish();
5728         raw_local_irq_restore(flags);
5729 }
5730 EXPORT_SYMBOL_GPL(lock_release);
5731
5732 /*
5733  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5734  *
5735  * No actual critical section is created by the APIs annotated with this: these
5736  * APIs are used to wait for one or multiple critical sections (on other CPUs
5737  * or threads), and it means that calling these APIs inside these critical
5738  * sections is potential deadlock.
5739  */
5740 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5741                int check, struct lockdep_map *nest_lock, unsigned long ip)
5742 {
5743         unsigned long flags;
5744
5745         if (unlikely(!lockdep_enabled()))
5746                 return;
5747
5748         raw_local_irq_save(flags);
5749         check_flags(flags);
5750
5751         lockdep_recursion_inc();
5752         __lock_acquire(lock, subclass, 0, read, check,
5753                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5754         check_chain_key(current);
5755         lockdep_recursion_finish();
5756         raw_local_irq_restore(flags);
5757 }
5758 EXPORT_SYMBOL_GPL(lock_sync);
5759
5760 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5761 {
5762         unsigned long flags;
5763         int ret = LOCK_STATE_NOT_HELD;
5764
5765         /*
5766          * Avoid false negative lockdep_assert_held() and
5767          * lockdep_assert_not_held().
5768          */
5769         if (unlikely(!lockdep_enabled()))
5770                 return LOCK_STATE_UNKNOWN;
5771
5772         raw_local_irq_save(flags);
5773         check_flags(flags);
5774
5775         lockdep_recursion_inc();
5776         ret = __lock_is_held(lock, read);
5777         lockdep_recursion_finish();
5778         raw_local_irq_restore(flags);
5779
5780         return ret;
5781 }
5782 EXPORT_SYMBOL_GPL(lock_is_held_type);
5783 NOKPROBE_SYMBOL(lock_is_held_type);
5784
5785 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5786 {
5787         struct pin_cookie cookie = NIL_COOKIE;
5788         unsigned long flags;
5789
5790         if (unlikely(!lockdep_enabled()))
5791                 return cookie;
5792
5793         raw_local_irq_save(flags);
5794         check_flags(flags);
5795
5796         lockdep_recursion_inc();
5797         cookie = __lock_pin_lock(lock);
5798         lockdep_recursion_finish();
5799         raw_local_irq_restore(flags);
5800
5801         return cookie;
5802 }
5803 EXPORT_SYMBOL_GPL(lock_pin_lock);
5804
5805 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5806 {
5807         unsigned long flags;
5808
5809         if (unlikely(!lockdep_enabled()))
5810                 return;
5811
5812         raw_local_irq_save(flags);
5813         check_flags(flags);
5814
5815         lockdep_recursion_inc();
5816         __lock_repin_lock(lock, cookie);
5817         lockdep_recursion_finish();
5818         raw_local_irq_restore(flags);
5819 }
5820 EXPORT_SYMBOL_GPL(lock_repin_lock);
5821
5822 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5823 {
5824         unsigned long flags;
5825
5826         if (unlikely(!lockdep_enabled()))
5827                 return;
5828
5829         raw_local_irq_save(flags);
5830         check_flags(flags);
5831
5832         lockdep_recursion_inc();
5833         __lock_unpin_lock(lock, cookie);
5834         lockdep_recursion_finish();
5835         raw_local_irq_restore(flags);
5836 }
5837 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5838
5839 #ifdef CONFIG_LOCK_STAT
5840 static void print_lock_contention_bug(struct task_struct *curr,
5841                                       struct lockdep_map *lock,
5842                                       unsigned long ip)
5843 {
5844         if (!debug_locks_off())
5845                 return;
5846         if (debug_locks_silent)
5847                 return;
5848
5849         pr_warn("\n");
5850         pr_warn("=================================\n");
5851         pr_warn("WARNING: bad contention detected!\n");
5852         print_kernel_ident();
5853         pr_warn("---------------------------------\n");
5854         pr_warn("%s/%d is trying to contend lock (",
5855                 curr->comm, task_pid_nr(curr));
5856         print_lockdep_cache(lock);
5857         pr_cont(") at:\n");
5858         print_ip_sym(KERN_WARNING, ip);
5859         pr_warn("but there are no locks held!\n");
5860         pr_warn("\nother info that might help us debug this:\n");
5861         lockdep_print_held_locks(curr);
5862
5863         pr_warn("\nstack backtrace:\n");
5864         dump_stack();
5865 }
5866
5867 static void
5868 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5869 {
5870         struct task_struct *curr = current;
5871         struct held_lock *hlock;
5872         struct lock_class_stats *stats;
5873         unsigned int depth;
5874         int i, contention_point, contending_point;
5875
5876         depth = curr->lockdep_depth;
5877         /*
5878          * Whee, we contended on this lock, except it seems we're not
5879          * actually trying to acquire anything much at all..
5880          */
5881         if (DEBUG_LOCKS_WARN_ON(!depth))
5882                 return;
5883
5884         hlock = find_held_lock(curr, lock, depth, &i);
5885         if (!hlock) {
5886                 print_lock_contention_bug(curr, lock, ip);
5887                 return;
5888         }
5889
5890         if (hlock->instance != lock)
5891                 return;
5892
5893         hlock->waittime_stamp = lockstat_clock();
5894
5895         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5896         contending_point = lock_point(hlock_class(hlock)->contending_point,
5897                                       lock->ip);
5898
5899         stats = get_lock_stats(hlock_class(hlock));
5900         if (contention_point < LOCKSTAT_POINTS)
5901                 stats->contention_point[contention_point]++;
5902         if (contending_point < LOCKSTAT_POINTS)
5903                 stats->contending_point[contending_point]++;
5904         if (lock->cpu != smp_processor_id())
5905                 stats->bounces[bounce_contended + !!hlock->read]++;
5906 }
5907
5908 static void
5909 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5910 {
5911         struct task_struct *curr = current;
5912         struct held_lock *hlock;
5913         struct lock_class_stats *stats;
5914         unsigned int depth;
5915         u64 now, waittime = 0;
5916         int i, cpu;
5917
5918         depth = curr->lockdep_depth;
5919         /*
5920          * Yay, we acquired ownership of this lock we didn't try to
5921          * acquire, how the heck did that happen?
5922          */
5923         if (DEBUG_LOCKS_WARN_ON(!depth))
5924                 return;
5925
5926         hlock = find_held_lock(curr, lock, depth, &i);
5927         if (!hlock) {
5928                 print_lock_contention_bug(curr, lock, _RET_IP_);
5929                 return;
5930         }
5931
5932         if (hlock->instance != lock)
5933                 return;
5934
5935         cpu = smp_processor_id();
5936         if (hlock->waittime_stamp) {
5937                 now = lockstat_clock();
5938                 waittime = now - hlock->waittime_stamp;
5939                 hlock->holdtime_stamp = now;
5940         }
5941
5942         stats = get_lock_stats(hlock_class(hlock));
5943         if (waittime) {
5944                 if (hlock->read)
5945                         lock_time_inc(&stats->read_waittime, waittime);
5946                 else
5947                         lock_time_inc(&stats->write_waittime, waittime);
5948         }
5949         if (lock->cpu != cpu)
5950                 stats->bounces[bounce_acquired + !!hlock->read]++;
5951
5952         lock->cpu = cpu;
5953         lock->ip = ip;
5954 }
5955
5956 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5957 {
5958         unsigned long flags;
5959
5960         trace_lock_contended(lock, ip);
5961
5962         if (unlikely(!lock_stat || !lockdep_enabled()))
5963                 return;
5964
5965         raw_local_irq_save(flags);
5966         check_flags(flags);
5967         lockdep_recursion_inc();
5968         __lock_contended(lock, ip);
5969         lockdep_recursion_finish();
5970         raw_local_irq_restore(flags);
5971 }
5972 EXPORT_SYMBOL_GPL(lock_contended);
5973
5974 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5975 {
5976         unsigned long flags;
5977
5978         trace_lock_acquired(lock, ip);
5979
5980         if (unlikely(!lock_stat || !lockdep_enabled()))
5981                 return;
5982
5983         raw_local_irq_save(flags);
5984         check_flags(flags);
5985         lockdep_recursion_inc();
5986         __lock_acquired(lock, ip);
5987         lockdep_recursion_finish();
5988         raw_local_irq_restore(flags);
5989 }
5990 EXPORT_SYMBOL_GPL(lock_acquired);
5991 #endif
5992
5993 /*
5994  * Used by the testsuite, sanitize the validator state
5995  * after a simulated failure:
5996  */
5997
5998 void lockdep_reset(void)
5999 {
6000         unsigned long flags;
6001         int i;
6002
6003         raw_local_irq_save(flags);
6004         lockdep_init_task(current);
6005         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6006         nr_hardirq_chains = 0;
6007         nr_softirq_chains = 0;
6008         nr_process_chains = 0;
6009         debug_locks = 1;
6010         for (i = 0; i < CHAINHASH_SIZE; i++)
6011                 INIT_HLIST_HEAD(chainhash_table + i);
6012         raw_local_irq_restore(flags);
6013 }
6014
6015 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6016 static void remove_class_from_lock_chain(struct pending_free *pf,
6017                                          struct lock_chain *chain,
6018                                          struct lock_class *class)
6019 {
6020 #ifdef CONFIG_PROVE_LOCKING
6021         int i;
6022
6023         for (i = chain->base; i < chain->base + chain->depth; i++) {
6024                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6025                         continue;
6026                 /*
6027                  * Each lock class occurs at most once in a lock chain so once
6028                  * we found a match we can break out of this loop.
6029                  */
6030                 goto free_lock_chain;
6031         }
6032         /* Since the chain has not been modified, return. */
6033         return;
6034
6035 free_lock_chain:
6036         free_chain_hlocks(chain->base, chain->depth);
6037         /* Overwrite the chain key for concurrent RCU readers. */
6038         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6039         dec_chains(chain->irq_context);
6040
6041         /*
6042          * Note: calling hlist_del_rcu() from inside a
6043          * hlist_for_each_entry_rcu() loop is safe.
6044          */
6045         hlist_del_rcu(&chain->entry);
6046         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6047         nr_zapped_lock_chains++;
6048 #endif
6049 }
6050
6051 /* Must be called with the graph lock held. */
6052 static void remove_class_from_lock_chains(struct pending_free *pf,
6053                                           struct lock_class *class)
6054 {
6055         struct lock_chain *chain;
6056         struct hlist_head *head;
6057         int i;
6058
6059         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6060                 head = chainhash_table + i;
6061                 hlist_for_each_entry_rcu(chain, head, entry) {
6062                         remove_class_from_lock_chain(pf, chain, class);
6063                 }
6064         }
6065 }
6066
6067 /*
6068  * Remove all references to a lock class. The caller must hold the graph lock.
6069  */
6070 static void zap_class(struct pending_free *pf, struct lock_class *class)
6071 {
6072         struct lock_list *entry;
6073         int i;
6074
6075         WARN_ON_ONCE(!class->key);
6076
6077         /*
6078          * Remove all dependencies this lock is
6079          * involved in:
6080          */
6081         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6082                 entry = list_entries + i;
6083                 if (entry->class != class && entry->links_to != class)
6084                         continue;
6085                 __clear_bit(i, list_entries_in_use);
6086                 nr_list_entries--;
6087                 list_del_rcu(&entry->entry);
6088         }
6089         if (list_empty(&class->locks_after) &&
6090             list_empty(&class->locks_before)) {
6091                 list_move_tail(&class->lock_entry, &pf->zapped);
6092                 hlist_del_rcu(&class->hash_entry);
6093                 WRITE_ONCE(class->key, NULL);
6094                 WRITE_ONCE(class->name, NULL);
6095                 nr_lock_classes--;
6096                 __clear_bit(class - lock_classes, lock_classes_in_use);
6097                 if (class - lock_classes == max_lock_class_idx)
6098                         max_lock_class_idx--;
6099         } else {
6100                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6101                           class->name);
6102         }
6103
6104         remove_class_from_lock_chains(pf, class);
6105         nr_zapped_classes++;
6106 }
6107
6108 static void reinit_class(struct lock_class *class)
6109 {
6110         WARN_ON_ONCE(!class->lock_entry.next);
6111         WARN_ON_ONCE(!list_empty(&class->locks_after));
6112         WARN_ON_ONCE(!list_empty(&class->locks_before));
6113         memset_startat(class, 0, key);
6114         WARN_ON_ONCE(!class->lock_entry.next);
6115         WARN_ON_ONCE(!list_empty(&class->locks_after));
6116         WARN_ON_ONCE(!list_empty(&class->locks_before));
6117 }
6118
6119 static inline int within(const void *addr, void *start, unsigned long size)
6120 {
6121         return addr >= start && addr < start + size;
6122 }
6123
6124 static bool inside_selftest(void)
6125 {
6126         return current == lockdep_selftest_task_struct;
6127 }
6128
6129 /* The caller must hold the graph lock. */
6130 static struct pending_free *get_pending_free(void)
6131 {
6132         return delayed_free.pf + delayed_free.index;
6133 }
6134
6135 static void free_zapped_rcu(struct rcu_head *cb);
6136
6137 /*
6138  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6139  * the graph lock held.
6140  */
6141 static void call_rcu_zapped(struct pending_free *pf)
6142 {
6143         WARN_ON_ONCE(inside_selftest());
6144
6145         if (list_empty(&pf->zapped))
6146                 return;
6147
6148         if (delayed_free.scheduled)
6149                 return;
6150
6151         delayed_free.scheduled = true;
6152
6153         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6154         delayed_free.index ^= 1;
6155
6156         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6157 }
6158
6159 /* The caller must hold the graph lock. May be called from RCU context. */
6160 static void __free_zapped_classes(struct pending_free *pf)
6161 {
6162         struct lock_class *class;
6163
6164         check_data_structures();
6165
6166         list_for_each_entry(class, &pf->zapped, lock_entry)
6167                 reinit_class(class);
6168
6169         list_splice_init(&pf->zapped, &free_lock_classes);
6170
6171 #ifdef CONFIG_PROVE_LOCKING
6172         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6173                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6174         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6175 #endif
6176 }
6177
6178 static void free_zapped_rcu(struct rcu_head *ch)
6179 {
6180         struct pending_free *pf;
6181         unsigned long flags;
6182
6183         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6184                 return;
6185
6186         raw_local_irq_save(flags);
6187         lockdep_lock();
6188
6189         /* closed head */
6190         pf = delayed_free.pf + (delayed_free.index ^ 1);
6191         __free_zapped_classes(pf);
6192         delayed_free.scheduled = false;
6193
6194         /*
6195          * If there's anything on the open list, close and start a new callback.
6196          */
6197         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6198
6199         lockdep_unlock();
6200         raw_local_irq_restore(flags);
6201 }
6202
6203 /*
6204  * Remove all lock classes from the class hash table and from the
6205  * all_lock_classes list whose key or name is in the address range [start,
6206  * start + size). Move these lock classes to the zapped_classes list. Must
6207  * be called with the graph lock held.
6208  */
6209 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6210                                      unsigned long size)
6211 {
6212         struct lock_class *class;
6213         struct hlist_head *head;
6214         int i;
6215
6216         /* Unhash all classes that were created by a module. */
6217         for (i = 0; i < CLASSHASH_SIZE; i++) {
6218                 head = classhash_table + i;
6219                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6220                         if (!within(class->key, start, size) &&
6221                             !within(class->name, start, size))
6222                                 continue;
6223                         zap_class(pf, class);
6224                 }
6225         }
6226 }
6227
6228 /*
6229  * Used in module.c to remove lock classes from memory that is going to be
6230  * freed; and possibly re-used by other modules.
6231  *
6232  * We will have had one synchronize_rcu() before getting here, so we're
6233  * guaranteed nobody will look up these exact classes -- they're properly dead
6234  * but still allocated.
6235  */
6236 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6237 {
6238         struct pending_free *pf;
6239         unsigned long flags;
6240
6241         init_data_structures_once();
6242
6243         raw_local_irq_save(flags);
6244         lockdep_lock();
6245         pf = get_pending_free();
6246         __lockdep_free_key_range(pf, start, size);
6247         call_rcu_zapped(pf);
6248         lockdep_unlock();
6249         raw_local_irq_restore(flags);
6250
6251         /*
6252          * Wait for any possible iterators from look_up_lock_class() to pass
6253          * before continuing to free the memory they refer to.
6254          */
6255         synchronize_rcu();
6256 }
6257
6258 /*
6259  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6260  * Ignores debug_locks. Must only be used by the lockdep selftests.
6261  */
6262 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6263 {
6264         struct pending_free *pf = delayed_free.pf;
6265         unsigned long flags;
6266
6267         init_data_structures_once();
6268
6269         raw_local_irq_save(flags);
6270         lockdep_lock();
6271         __lockdep_free_key_range(pf, start, size);
6272         __free_zapped_classes(pf);
6273         lockdep_unlock();
6274         raw_local_irq_restore(flags);
6275 }
6276
6277 void lockdep_free_key_range(void *start, unsigned long size)
6278 {
6279         init_data_structures_once();
6280
6281         if (inside_selftest())
6282                 lockdep_free_key_range_imm(start, size);
6283         else
6284                 lockdep_free_key_range_reg(start, size);
6285 }
6286
6287 /*
6288  * Check whether any element of the @lock->class_cache[] array refers to a
6289  * registered lock class. The caller must hold either the graph lock or the
6290  * RCU read lock.
6291  */
6292 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6293 {
6294         struct lock_class *class;
6295         struct hlist_head *head;
6296         int i, j;
6297
6298         for (i = 0; i < CLASSHASH_SIZE; i++) {
6299                 head = classhash_table + i;
6300                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6301                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6302                                 if (lock->class_cache[j] == class)
6303                                         return true;
6304                 }
6305         }
6306         return false;
6307 }
6308
6309 /* The caller must hold the graph lock. Does not sleep. */
6310 static void __lockdep_reset_lock(struct pending_free *pf,
6311                                  struct lockdep_map *lock)
6312 {
6313         struct lock_class *class;
6314         int j;
6315
6316         /*
6317          * Remove all classes this lock might have:
6318          */
6319         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6320                 /*
6321                  * If the class exists we look it up and zap it:
6322                  */
6323                 class = look_up_lock_class(lock, j);
6324                 if (class)
6325                         zap_class(pf, class);
6326         }
6327         /*
6328          * Debug check: in the end all mapped classes should
6329          * be gone.
6330          */
6331         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6332                 debug_locks_off();
6333 }
6334
6335 /*
6336  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6337  * released data structures from RCU context.
6338  */
6339 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6340 {
6341         struct pending_free *pf;
6342         unsigned long flags;
6343         int locked;
6344
6345         raw_local_irq_save(flags);
6346         locked = graph_lock();
6347         if (!locked)
6348                 goto out_irq;
6349
6350         pf = get_pending_free();
6351         __lockdep_reset_lock(pf, lock);
6352         call_rcu_zapped(pf);
6353
6354         graph_unlock();
6355 out_irq:
6356         raw_local_irq_restore(flags);
6357 }
6358
6359 /*
6360  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6361  * lockdep selftests.
6362  */
6363 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6364 {
6365         struct pending_free *pf = delayed_free.pf;
6366         unsigned long flags;
6367
6368         raw_local_irq_save(flags);
6369         lockdep_lock();
6370         __lockdep_reset_lock(pf, lock);
6371         __free_zapped_classes(pf);
6372         lockdep_unlock();
6373         raw_local_irq_restore(flags);
6374 }
6375
6376 void lockdep_reset_lock(struct lockdep_map *lock)
6377 {
6378         init_data_structures_once();
6379
6380         if (inside_selftest())
6381                 lockdep_reset_lock_imm(lock);
6382         else
6383                 lockdep_reset_lock_reg(lock);
6384 }
6385
6386 /*
6387  * Unregister a dynamically allocated key.
6388  *
6389  * Unlike lockdep_register_key(), a search is always done to find a matching
6390  * key irrespective of debug_locks to avoid potential invalid access to freed
6391  * memory in lock_class entry.
6392  */
6393 void lockdep_unregister_key(struct lock_class_key *key)
6394 {
6395         struct hlist_head *hash_head = keyhashentry(key);
6396         struct lock_class_key *k;
6397         struct pending_free *pf;
6398         unsigned long flags;
6399         bool found = false;
6400
6401         might_sleep();
6402
6403         if (WARN_ON_ONCE(static_obj(key)))
6404                 return;
6405
6406         raw_local_irq_save(flags);
6407         lockdep_lock();
6408
6409         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6410                 if (k == key) {
6411                         hlist_del_rcu(&k->hash_entry);
6412                         found = true;
6413                         break;
6414                 }
6415         }
6416         WARN_ON_ONCE(!found && debug_locks);
6417         if (found) {
6418                 pf = get_pending_free();
6419                 __lockdep_free_key_range(pf, key, 1);
6420                 call_rcu_zapped(pf);
6421         }
6422         lockdep_unlock();
6423         raw_local_irq_restore(flags);
6424
6425         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6426         synchronize_rcu();
6427 }
6428 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6429
6430 void __init lockdep_init(void)
6431 {
6432         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6433
6434         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6435         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6436         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6437         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6438         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6439         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6440         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6441
6442         printk(" memory used by lock dependency info: %zu kB\n",
6443                (sizeof(lock_classes) +
6444                 sizeof(lock_classes_in_use) +
6445                 sizeof(classhash_table) +
6446                 sizeof(list_entries) +
6447                 sizeof(list_entries_in_use) +
6448                 sizeof(chainhash_table) +
6449                 sizeof(delayed_free)
6450 #ifdef CONFIG_PROVE_LOCKING
6451                 + sizeof(lock_cq)
6452                 + sizeof(lock_chains)
6453                 + sizeof(lock_chains_in_use)
6454                 + sizeof(chain_hlocks)
6455 #endif
6456                 ) / 1024
6457                 );
6458
6459 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6460         printk(" memory used for stack traces: %zu kB\n",
6461                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6462                );
6463 #endif
6464
6465         printk(" per task-struct memory footprint: %zu bytes\n",
6466                sizeof(((struct task_struct *)NULL)->held_locks));
6467 }
6468
6469 static void
6470 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6471                      const void *mem_to, struct held_lock *hlock)
6472 {
6473         if (!debug_locks_off())
6474                 return;
6475         if (debug_locks_silent)
6476                 return;
6477
6478         pr_warn("\n");
6479         pr_warn("=========================\n");
6480         pr_warn("WARNING: held lock freed!\n");
6481         print_kernel_ident();
6482         pr_warn("-------------------------\n");
6483         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6484                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6485         print_lock(hlock);
6486         lockdep_print_held_locks(curr);
6487
6488         pr_warn("\nstack backtrace:\n");
6489         dump_stack();
6490 }
6491
6492 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6493                                 const void* lock_from, unsigned long lock_len)
6494 {
6495         return lock_from + lock_len <= mem_from ||
6496                 mem_from + mem_len <= lock_from;
6497 }
6498
6499 /*
6500  * Called when kernel memory is freed (or unmapped), or if a lock
6501  * is destroyed or reinitialized - this code checks whether there is
6502  * any held lock in the memory range of <from> to <to>:
6503  */
6504 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6505 {
6506         struct task_struct *curr = current;
6507         struct held_lock *hlock;
6508         unsigned long flags;
6509         int i;
6510
6511         if (unlikely(!debug_locks))
6512                 return;
6513
6514         raw_local_irq_save(flags);
6515         for (i = 0; i < curr->lockdep_depth; i++) {
6516                 hlock = curr->held_locks + i;
6517
6518                 if (not_in_range(mem_from, mem_len, hlock->instance,
6519                                         sizeof(*hlock->instance)))
6520                         continue;
6521
6522                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6523                 break;
6524         }
6525         raw_local_irq_restore(flags);
6526 }
6527 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6528
6529 static void print_held_locks_bug(void)
6530 {
6531         if (!debug_locks_off())
6532                 return;
6533         if (debug_locks_silent)
6534                 return;
6535
6536         pr_warn("\n");
6537         pr_warn("====================================\n");
6538         pr_warn("WARNING: %s/%d still has locks held!\n",
6539                current->comm, task_pid_nr(current));
6540         print_kernel_ident();
6541         pr_warn("------------------------------------\n");
6542         lockdep_print_held_locks(current);
6543         pr_warn("\nstack backtrace:\n");
6544         dump_stack();
6545 }
6546
6547 void debug_check_no_locks_held(void)
6548 {
6549         if (unlikely(current->lockdep_depth > 0))
6550                 print_held_locks_bug();
6551 }
6552 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6553
6554 #ifdef __KERNEL__
6555 void debug_show_all_locks(void)
6556 {
6557         struct task_struct *g, *p;
6558
6559         if (unlikely(!debug_locks)) {
6560                 pr_warn("INFO: lockdep is turned off.\n");
6561                 return;
6562         }
6563         pr_warn("\nShowing all locks held in the system:\n");
6564
6565         rcu_read_lock();
6566         for_each_process_thread(g, p) {
6567                 if (!p->lockdep_depth)
6568                         continue;
6569                 lockdep_print_held_locks(p);
6570                 touch_nmi_watchdog();
6571                 touch_all_softlockup_watchdogs();
6572         }
6573         rcu_read_unlock();
6574
6575         pr_warn("\n");
6576         pr_warn("=============================================\n\n");
6577 }
6578 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6579 #endif
6580
6581 /*
6582  * Careful: only use this function if you are sure that
6583  * the task cannot run in parallel!
6584  */
6585 void debug_show_held_locks(struct task_struct *task)
6586 {
6587         if (unlikely(!debug_locks)) {
6588                 printk("INFO: lockdep is turned off.\n");
6589                 return;
6590         }
6591         lockdep_print_held_locks(task);
6592 }
6593 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6594
6595 asmlinkage __visible void lockdep_sys_exit(void)
6596 {
6597         struct task_struct *curr = current;
6598
6599         if (unlikely(curr->lockdep_depth)) {
6600                 if (!debug_locks_off())
6601                         return;
6602                 pr_warn("\n");
6603                 pr_warn("================================================\n");
6604                 pr_warn("WARNING: lock held when returning to user space!\n");
6605                 print_kernel_ident();
6606                 pr_warn("------------------------------------------------\n");
6607                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6608                                 curr->comm, curr->pid);
6609                 lockdep_print_held_locks(curr);
6610         }
6611
6612         /*
6613          * The lock history for each syscall should be independent. So wipe the
6614          * slate clean on return to userspace.
6615          */
6616         lockdep_invariant_state(false);
6617 }
6618
6619 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6620 {
6621         struct task_struct *curr = current;
6622         int dl = READ_ONCE(debug_locks);
6623         bool rcu = warn_rcu_enter();
6624
6625         /* Note: the following can be executed concurrently, so be careful. */
6626         pr_warn("\n");
6627         pr_warn("=============================\n");
6628         pr_warn("WARNING: suspicious RCU usage\n");
6629         print_kernel_ident();
6630         pr_warn("-----------------------------\n");
6631         pr_warn("%s:%d %s!\n", file, line, s);
6632         pr_warn("\nother info that might help us debug this:\n\n");
6633         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6634                !rcu_lockdep_current_cpu_online()
6635                         ? "RCU used illegally from offline CPU!\n"
6636                         : "",
6637                rcu_scheduler_active, dl,
6638                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6639
6640         /*
6641          * If a CPU is in the RCU-free window in idle (ie: in the section
6642          * between ct_idle_enter() and ct_idle_exit(), then RCU
6643          * considers that CPU to be in an "extended quiescent state",
6644          * which means that RCU will be completely ignoring that CPU.
6645          * Therefore, rcu_read_lock() and friends have absolutely no
6646          * effect on a CPU running in that state. In other words, even if
6647          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6648          * delete data structures out from under it.  RCU really has no
6649          * choice here: we need to keep an RCU-free window in idle where
6650          * the CPU may possibly enter into low power mode. This way we can
6651          * notice an extended quiescent state to other CPUs that started a grace
6652          * period. Otherwise we would delay any grace period as long as we run
6653          * in the idle task.
6654          *
6655          * So complain bitterly if someone does call rcu_read_lock(),
6656          * rcu_read_lock_bh() and so on from extended quiescent states.
6657          */
6658         if (!rcu_is_watching())
6659                 pr_warn("RCU used illegally from extended quiescent state!\n");
6660
6661         lockdep_print_held_locks(curr);
6662         pr_warn("\nstack backtrace:\n");
6663         dump_stack();
6664         warn_rcu_exit(rcu);
6665 }
6666 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);