perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file
[platform/kernel/linux-starfive.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59
60 #include <asm/sections.h>
61
62 #include "lockdep_internals.h"
63
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83         {
84                 .procname       = "prove_locking",
85                 .data           = &prove_locking,
86                 .maxlen         = sizeof(int),
87                 .mode           = 0644,
88                 .proc_handler   = proc_dointvec,
89         },
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92         {
93                 .procname       = "lock_stat",
94                 .data           = &lock_stat,
95                 .maxlen         = sizeof(int),
96                 .mode           = 0644,
97                 .proc_handler   = proc_dointvec,
98         },
99 #endif /* CONFIG_LOCK_STAT */
100         { }
101 };
102
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105         register_sysctl_init("kernel", kern_lockdep_table);
106         return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113
114 static __always_inline bool lockdep_enabled(void)
115 {
116         if (!debug_locks)
117                 return false;
118
119         if (this_cpu_read(lockdep_recursion))
120                 return false;
121
122         if (current->lockdep_recursion)
123                 return false;
124
125         return true;
126 }
127
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138
139 static inline void lockdep_lock(void)
140 {
141         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142
143         __this_cpu_inc(lockdep_recursion);
144         arch_spin_lock(&__lock);
145         __owner = current;
146 }
147
148 static inline void lockdep_unlock(void)
149 {
150         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151
152         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153                 return;
154
155         __owner = NULL;
156         arch_spin_unlock(&__lock);
157         __this_cpu_dec(lockdep_recursion);
158 }
159
160 static inline bool lockdep_assert_locked(void)
161 {
162         return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164
165 static struct task_struct *lockdep_selftest_task_struct;
166
167
168 static int graph_lock(void)
169 {
170         lockdep_lock();
171         /*
172          * Make sure that if another CPU detected a bug while
173          * walking the graph we dont change it (while the other
174          * CPU is busy printing out stuff with the graph lock
175          * dropped already)
176          */
177         if (!debug_locks) {
178                 lockdep_unlock();
179                 return 0;
180         }
181         return 1;
182 }
183
184 static inline void graph_unlock(void)
185 {
186         lockdep_unlock();
187 }
188
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195         int ret = debug_locks_off();
196
197         lockdep_unlock();
198
199         return ret;
200 }
201
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223         unsigned int class_idx = hlock->class_idx;
224
225         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226         barrier();
227
228         if (!test_bit(class_idx, lock_classes_in_use)) {
229                 /*
230                  * Someone passed in garbage, we give up.
231                  */
232                 DEBUG_LOCKS_WARN_ON(1);
233                 return NULL;
234         }
235
236         /*
237          * At this point, if the passed hlock->class_idx is still garbage,
238          * we just have to live with it
239          */
240         return lock_classes + class_idx;
241 }
242
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245
246 static inline u64 lockstat_clock(void)
247 {
248         return local_clock();
249 }
250
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253         int i;
254
255         for (i = 0; i < LOCKSTAT_POINTS; i++) {
256                 if (points[i] == 0) {
257                         points[i] = ip;
258                         break;
259                 }
260                 if (points[i] == ip)
261                         break;
262         }
263
264         return i;
265 }
266
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269         if (time > lt->max)
270                 lt->max = time;
271
272         if (time < lt->min || !lt->nr)
273                 lt->min = time;
274
275         lt->total += time;
276         lt->nr++;
277 }
278
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281         if (!src->nr)
282                 return;
283
284         if (src->max > dst->max)
285                 dst->max = src->max;
286
287         if (src->min < dst->min || !dst->nr)
288                 dst->min = src->min;
289
290         dst->total += src->total;
291         dst->nr += src->nr;
292 }
293
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296         struct lock_class_stats stats;
297         int cpu, i;
298
299         memset(&stats, 0, sizeof(struct lock_class_stats));
300         for_each_possible_cpu(cpu) {
301                 struct lock_class_stats *pcs =
302                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303
304                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305                         stats.contention_point[i] += pcs->contention_point[i];
306
307                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308                         stats.contending_point[i] += pcs->contending_point[i];
309
310                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312
313                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315
316                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317                         stats.bounces[i] += pcs->bounces[i];
318         }
319
320         return stats;
321 }
322
323 void clear_lock_stats(struct lock_class *class)
324 {
325         int cpu;
326
327         for_each_possible_cpu(cpu) {
328                 struct lock_class_stats *cpu_stats =
329                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330
331                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332         }
333         memset(class->contention_point, 0, sizeof(class->contention_point));
334         memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344         struct lock_class_stats *stats;
345         u64 holdtime;
346
347         if (!lock_stat)
348                 return;
349
350         holdtime = lockstat_clock() - hlock->holdtime_stamp;
351
352         stats = get_lock_stats(hlock_class(hlock));
353         if (hlock->read)
354                 lock_time_inc(&stats->read_holdtime, holdtime);
355         else
356                 lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *      are about to be freed.
378  */
379 struct pending_free {
380         struct list_head zapped;
381         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396         struct rcu_head         rcu_head;
397         int                     index;
398         int                     scheduled;
399         struct pending_free     pf[2];
400 } delayed_free;
401
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
409
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
420
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429
430         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446         u32 k0 = key, k1 = key >> 32;
447
448         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449
450         return k0 | (u64)k1 << 32;
451 }
452
453 void lockdep_init_task(struct task_struct *task)
454 {
455         task->lockdep_depth = 0; /* no locks held yet */
456         task->curr_chain_key = INITIAL_CHAIN_KEY;
457         task->lockdep_recursion = 0;
458 }
459
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462         __this_cpu_inc(lockdep_recursion);
463 }
464
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468                 __this_cpu_write(lockdep_recursion, 0);
469 }
470
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473         lockdep_selftest_task_struct = task;
474 }
475
476 /*
477  * Debugging switches:
478  */
479
480 #define VERBOSE                 0
481 #define VERY_VERBOSE            0
482
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE        1
485 # define SOFTIRQ_VERBOSE        1
486 #else
487 # define HARDIRQ_VERBOSE        0
488 # define SOFTIRQ_VERBOSE        0
489 #endif
490
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498         /* Example */
499         if (class->name_version == 1 &&
500                         !strcmp(class->name, "lockname"))
501                 return 1;
502         if (class->name_version == 1 &&
503                         !strcmp(class->name, "&struct->lockfield"))
504                 return 1;
505 #endif
506         /* Filter everything else. 1 would be to allow everything else */
507         return 0;
508 }
509 #endif
510
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514         return class_filter(class);
515 #endif
516         return 0;
517 }
518
519 static void print_lockdep_off(const char *bug_msg)
520 {
521         printk(KERN_DEBUG "%s\n", bug_msg);
522         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527
528 unsigned long nr_stack_trace_entries;
529
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry: Entry in a stack_trace_hash[] list.
534  * @hash:       jhash() of @entries.
535  * @nr_entries: Number of entries in @entries.
536  * @entries:    Actual stack backtrace.
537  */
538 struct lock_trace {
539         struct hlist_node       hash_entry;
540         u32                     hash;
541         u32                     nr_entries;
542         unsigned long           entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS                                \
545         (sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555                 memcmp(t1->entries, t2->entries,
556                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558
559 static struct lock_trace *save_trace(void)
560 {
561         struct lock_trace *trace, *t2;
562         struct hlist_head *hash_head;
563         u32 hash;
564         int max_entries;
565
566         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568
569         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571                 LOCK_TRACE_SIZE_IN_LONGS;
572
573         if (max_entries <= 0) {
574                 if (!debug_locks_off_graph_unlock())
575                         return NULL;
576
577                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578                 dump_stack();
579
580                 return NULL;
581         }
582         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583
584         hash = jhash(trace->entries, trace->nr_entries *
585                      sizeof(trace->entries[0]), 0);
586         trace->hash = hash;
587         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588         hlist_for_each_entry(t2, hash_head, hash_entry) {
589                 if (traces_identical(trace, t2))
590                         return t2;
591         }
592         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593         hlist_add_head(&trace->hash_entry, hash_head);
594
595         return trace;
596 }
597
598 /* Return the number of stack traces in the stack_trace[] array. */
599 u64 lockdep_stack_trace_count(void)
600 {
601         struct lock_trace *trace;
602         u64 c = 0;
603         int i;
604
605         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607                         c++;
608                 }
609         }
610
611         return c;
612 }
613
614 /* Return the number of stack hash chains that have at least one stack trace. */
615 u64 lockdep_stack_hash_count(void)
616 {
617         u64 c = 0;
618         int i;
619
620         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621                 if (!hlist_empty(&stack_trace_hash[i]))
622                         c++;
623
624         return c;
625 }
626 #endif
627
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644
645 #define __USAGE(__STATE)                                                \
646         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
647         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
648         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656         [LOCK_USED] = "INITIAL USE",
657         [LOCK_USED_READ] = "INITIAL READ USE",
658         /* abused as string storage for verify_lock_unused() */
659         [LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662
663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667
668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670         return 1UL << bit;
671 }
672
673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675         /*
676          * The usage character defaults to '.' (i.e., irqs disabled and not in
677          * irq context), which is the safest usage category.
678          */
679         char c = '.';
680
681         /*
682          * The order of the following usage checks matters, which will
683          * result in the outcome character as follows:
684          *
685          * - '+': irq is enabled and not in irq context
686          * - '-': in irq context and irq is disabled
687          * - '?': in irq context and irq is enabled
688          */
689         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690                 c = '+';
691                 if (class->usage_mask & lock_flag(bit))
692                         c = '?';
693         } else if (class->usage_mask & lock_flag(bit))
694                 c = '-';
695
696         return c;
697 }
698
699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701         int i = 0;
702
703 #define LOCKDEP_STATE(__STATE)                                          \
704         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
705         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708
709         usage[i] = '\0';
710 }
711
712 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
713 {
714         char str[KSYM_NAME_LEN];
715         const char *name;
716
717         name = class->name;
718         if (!name) {
719                 name = __get_key_name(class->key, str);
720                 printk(KERN_CONT "%s", name);
721         } else {
722                 printk(KERN_CONT "%s", name);
723                 if (class->name_version > 1)
724                         printk(KERN_CONT "#%d", class->name_version);
725                 if (class->subclass)
726                         printk(KERN_CONT "/%d", class->subclass);
727                 if (hlock && class->print_fn)
728                         class->print_fn(hlock->instance);
729         }
730 }
731
732 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
733 {
734         char usage[LOCK_USAGE_CHARS];
735
736         get_usage_chars(class, usage);
737
738         printk(KERN_CONT " (");
739         __print_lock_name(hlock, class);
740         printk(KERN_CONT "){%s}-{%d:%d}", usage,
741                         class->wait_type_outer ?: class->wait_type_inner,
742                         class->wait_type_inner);
743 }
744
745 static void print_lockdep_cache(struct lockdep_map *lock)
746 {
747         const char *name;
748         char str[KSYM_NAME_LEN];
749
750         name = lock->name;
751         if (!name)
752                 name = __get_key_name(lock->key->subkeys, str);
753
754         printk(KERN_CONT "%s", name);
755 }
756
757 static void print_lock(struct held_lock *hlock)
758 {
759         /*
760          * We can be called locklessly through debug_show_all_locks() so be
761          * extra careful, the hlock might have been released and cleared.
762          *
763          * If this indeed happens, lets pretend it does not hurt to continue
764          * to print the lock unless the hlock class_idx does not point to a
765          * registered class. The rationale here is: since we don't attempt
766          * to distinguish whether we are in this situation, if it just
767          * happened we can't count on class_idx to tell either.
768          */
769         struct lock_class *lock = hlock_class(hlock);
770
771         if (!lock) {
772                 printk(KERN_CONT "<RELEASED>\n");
773                 return;
774         }
775
776         printk(KERN_CONT "%px", hlock->instance);
777         print_lock_name(hlock, lock);
778         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
779 }
780
781 static void lockdep_print_held_locks(struct task_struct *p)
782 {
783         int i, depth = READ_ONCE(p->lockdep_depth);
784
785         if (!depth)
786                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
787         else
788                 printk("%d lock%s held by %s/%d:\n", depth,
789                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
790         /*
791          * It's not reliable to print a task's held locks if it's not sleeping
792          * and it's not the current task.
793          */
794         if (p != current && task_is_running(p))
795                 return;
796         for (i = 0; i < depth; i++) {
797                 printk(" #%d: ", i);
798                 print_lock(p->held_locks + i);
799         }
800 }
801
802 static void print_kernel_ident(void)
803 {
804         printk("%s %.*s %s\n", init_utsname()->release,
805                 (int)strcspn(init_utsname()->version, " "),
806                 init_utsname()->version,
807                 print_tainted());
808 }
809
810 static int very_verbose(struct lock_class *class)
811 {
812 #if VERY_VERBOSE
813         return class_filter(class);
814 #endif
815         return 0;
816 }
817
818 /*
819  * Is this the address of a static object:
820  */
821 #ifdef __KERNEL__
822 static int static_obj(const void *obj)
823 {
824         unsigned long addr = (unsigned long) obj;
825
826         if (is_kernel_core_data(addr))
827                 return 1;
828
829         /*
830          * keys are allowed in the __ro_after_init section.
831          */
832         if (is_kernel_rodata(addr))
833                 return 1;
834
835         /*
836          * in initdata section and used during bootup only?
837          * NOTE: On some platforms the initdata section is
838          * outside of the _stext ... _end range.
839          */
840         if (system_state < SYSTEM_FREEING_INITMEM &&
841                 init_section_contains((void *)addr, 1))
842                 return 1;
843
844         /*
845          * in-kernel percpu var?
846          */
847         if (is_kernel_percpu_address(addr))
848                 return 1;
849
850         /*
851          * module static or percpu var?
852          */
853         return is_module_address(addr) || is_module_percpu_address(addr);
854 }
855 #endif
856
857 /*
858  * To make lock name printouts unique, we calculate a unique
859  * class->name_version generation counter. The caller must hold the graph
860  * lock.
861  */
862 static int count_matching_names(struct lock_class *new_class)
863 {
864         struct lock_class *class;
865         int count = 0;
866
867         if (!new_class->name)
868                 return 0;
869
870         list_for_each_entry(class, &all_lock_classes, lock_entry) {
871                 if (new_class->key - new_class->subclass == class->key)
872                         return class->name_version;
873                 if (class->name && !strcmp(class->name, new_class->name))
874                         count = max(count, class->name_version);
875         }
876
877         return count + 1;
878 }
879
880 /* used from NMI context -- must be lockless */
881 static noinstr struct lock_class *
882 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
883 {
884         struct lockdep_subclass_key *key;
885         struct hlist_head *hash_head;
886         struct lock_class *class;
887
888         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
889                 instrumentation_begin();
890                 debug_locks_off();
891                 printk(KERN_ERR
892                         "BUG: looking up invalid subclass: %u\n", subclass);
893                 printk(KERN_ERR
894                         "turning off the locking correctness validator.\n");
895                 dump_stack();
896                 instrumentation_end();
897                 return NULL;
898         }
899
900         /*
901          * If it is not initialised then it has never been locked,
902          * so it won't be present in the hash table.
903          */
904         if (unlikely(!lock->key))
905                 return NULL;
906
907         /*
908          * NOTE: the class-key must be unique. For dynamic locks, a static
909          * lock_class_key variable is passed in through the mutex_init()
910          * (or spin_lock_init()) call - which acts as the key. For static
911          * locks we use the lock object itself as the key.
912          */
913         BUILD_BUG_ON(sizeof(struct lock_class_key) >
914                         sizeof(struct lockdep_map));
915
916         key = lock->key->subkeys + subclass;
917
918         hash_head = classhashentry(key);
919
920         /*
921          * We do an RCU walk of the hash, see lockdep_free_key_range().
922          */
923         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
924                 return NULL;
925
926         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
927                 if (class->key == key) {
928                         /*
929                          * Huh! same key, different name? Did someone trample
930                          * on some memory? We're most confused.
931                          */
932                         WARN_ONCE(class->name != lock->name &&
933                                   lock->key != &__lockdep_no_validate__,
934                                   "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
935                                   lock->name, lock->key, class->name);
936                         return class;
937                 }
938         }
939
940         return NULL;
941 }
942
943 /*
944  * Static locks do not have their class-keys yet - for them the key is
945  * the lock object itself. If the lock is in the per cpu area, the
946  * canonical address of the lock (per cpu offset removed) is used.
947  */
948 static bool assign_lock_key(struct lockdep_map *lock)
949 {
950         unsigned long can_addr, addr = (unsigned long)lock;
951
952 #ifdef __KERNEL__
953         /*
954          * lockdep_free_key_range() assumes that struct lock_class_key
955          * objects do not overlap. Since we use the address of lock
956          * objects as class key for static objects, check whether the
957          * size of lock_class_key objects does not exceed the size of
958          * the smallest lock object.
959          */
960         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
961 #endif
962
963         if (__is_kernel_percpu_address(addr, &can_addr))
964                 lock->key = (void *)can_addr;
965         else if (__is_module_percpu_address(addr, &can_addr))
966                 lock->key = (void *)can_addr;
967         else if (static_obj(lock))
968                 lock->key = (void *)lock;
969         else {
970                 /* Debug-check: all keys must be persistent! */
971                 debug_locks_off();
972                 pr_err("INFO: trying to register non-static key.\n");
973                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
974                 pr_err("you didn't initialize this object before use?\n");
975                 pr_err("turning off the locking correctness validator.\n");
976                 dump_stack();
977                 return false;
978         }
979
980         return true;
981 }
982
983 #ifdef CONFIG_DEBUG_LOCKDEP
984
985 /* Check whether element @e occurs in list @h */
986 static bool in_list(struct list_head *e, struct list_head *h)
987 {
988         struct list_head *f;
989
990         list_for_each(f, h) {
991                 if (e == f)
992                         return true;
993         }
994
995         return false;
996 }
997
998 /*
999  * Check whether entry @e occurs in any of the locks_after or locks_before
1000  * lists.
1001  */
1002 static bool in_any_class_list(struct list_head *e)
1003 {
1004         struct lock_class *class;
1005         int i;
1006
1007         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1008                 class = &lock_classes[i];
1009                 if (in_list(e, &class->locks_after) ||
1010                     in_list(e, &class->locks_before))
1011                         return true;
1012         }
1013         return false;
1014 }
1015
1016 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1017 {
1018         struct lock_list *e;
1019
1020         list_for_each_entry(e, h, entry) {
1021                 if (e->links_to != c) {
1022                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1023                                c->name ? : "(?)",
1024                                (unsigned long)(e - list_entries),
1025                                e->links_to && e->links_to->name ?
1026                                e->links_to->name : "(?)",
1027                                e->class && e->class->name ? e->class->name :
1028                                "(?)");
1029                         return false;
1030                 }
1031         }
1032         return true;
1033 }
1034
1035 #ifdef CONFIG_PROVE_LOCKING
1036 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1037 #endif
1038
1039 static bool check_lock_chain_key(struct lock_chain *chain)
1040 {
1041 #ifdef CONFIG_PROVE_LOCKING
1042         u64 chain_key = INITIAL_CHAIN_KEY;
1043         int i;
1044
1045         for (i = chain->base; i < chain->base + chain->depth; i++)
1046                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1047         /*
1048          * The 'unsigned long long' casts avoid that a compiler warning
1049          * is reported when building tools/lib/lockdep.
1050          */
1051         if (chain->chain_key != chain_key) {
1052                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1053                        (unsigned long long)(chain - lock_chains),
1054                        (unsigned long long)chain->chain_key,
1055                        (unsigned long long)chain_key);
1056                 return false;
1057         }
1058 #endif
1059         return true;
1060 }
1061
1062 static bool in_any_zapped_class_list(struct lock_class *class)
1063 {
1064         struct pending_free *pf;
1065         int i;
1066
1067         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1068                 if (in_list(&class->lock_entry, &pf->zapped))
1069                         return true;
1070         }
1071
1072         return false;
1073 }
1074
1075 static bool __check_data_structures(void)
1076 {
1077         struct lock_class *class;
1078         struct lock_chain *chain;
1079         struct hlist_head *head;
1080         struct lock_list *e;
1081         int i;
1082
1083         /* Check whether all classes occur in a lock list. */
1084         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1085                 class = &lock_classes[i];
1086                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1087                     !in_list(&class->lock_entry, &free_lock_classes) &&
1088                     !in_any_zapped_class_list(class)) {
1089                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1090                                class, class->name ? : "(?)");
1091                         return false;
1092                 }
1093         }
1094
1095         /* Check whether all classes have valid lock lists. */
1096         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1097                 class = &lock_classes[i];
1098                 if (!class_lock_list_valid(class, &class->locks_before))
1099                         return false;
1100                 if (!class_lock_list_valid(class, &class->locks_after))
1101                         return false;
1102         }
1103
1104         /* Check the chain_key of all lock chains. */
1105         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1106                 head = chainhash_table + i;
1107                 hlist_for_each_entry_rcu(chain, head, entry) {
1108                         if (!check_lock_chain_key(chain))
1109                                 return false;
1110                 }
1111         }
1112
1113         /*
1114          * Check whether all list entries that are in use occur in a class
1115          * lock list.
1116          */
1117         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1118                 e = list_entries + i;
1119                 if (!in_any_class_list(&e->entry)) {
1120                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1121                                (unsigned int)(e - list_entries),
1122                                e->class->name ? : "(?)",
1123                                e->links_to->name ? : "(?)");
1124                         return false;
1125                 }
1126         }
1127
1128         /*
1129          * Check whether all list entries that are not in use do not occur in
1130          * a class lock list.
1131          */
1132         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1133                 e = list_entries + i;
1134                 if (in_any_class_list(&e->entry)) {
1135                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1136                                (unsigned int)(e - list_entries),
1137                                e->class && e->class->name ? e->class->name :
1138                                "(?)",
1139                                e->links_to && e->links_to->name ?
1140                                e->links_to->name : "(?)");
1141                         return false;
1142                 }
1143         }
1144
1145         return true;
1146 }
1147
1148 int check_consistency = 0;
1149 module_param(check_consistency, int, 0644);
1150
1151 static void check_data_structures(void)
1152 {
1153         static bool once = false;
1154
1155         if (check_consistency && !once) {
1156                 if (!__check_data_structures()) {
1157                         once = true;
1158                         WARN_ON(once);
1159                 }
1160         }
1161 }
1162
1163 #else /* CONFIG_DEBUG_LOCKDEP */
1164
1165 static inline void check_data_structures(void) { }
1166
1167 #endif /* CONFIG_DEBUG_LOCKDEP */
1168
1169 static void init_chain_block_buckets(void);
1170
1171 /*
1172  * Initialize the lock_classes[] array elements, the free_lock_classes list
1173  * and also the delayed_free structure.
1174  */
1175 static void init_data_structures_once(void)
1176 {
1177         static bool __read_mostly ds_initialized, rcu_head_initialized;
1178         int i;
1179
1180         if (likely(rcu_head_initialized))
1181                 return;
1182
1183         if (system_state >= SYSTEM_SCHEDULING) {
1184                 init_rcu_head(&delayed_free.rcu_head);
1185                 rcu_head_initialized = true;
1186         }
1187
1188         if (ds_initialized)
1189                 return;
1190
1191         ds_initialized = true;
1192
1193         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1194         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1195
1196         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1197                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1198                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1199                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1200         }
1201         init_chain_block_buckets();
1202 }
1203
1204 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1205 {
1206         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1207
1208         return lock_keys_hash + hash;
1209 }
1210
1211 /* Register a dynamically allocated key. */
1212 void lockdep_register_key(struct lock_class_key *key)
1213 {
1214         struct hlist_head *hash_head;
1215         struct lock_class_key *k;
1216         unsigned long flags;
1217
1218         if (WARN_ON_ONCE(static_obj(key)))
1219                 return;
1220         hash_head = keyhashentry(key);
1221
1222         raw_local_irq_save(flags);
1223         if (!graph_lock())
1224                 goto restore_irqs;
1225         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1226                 if (WARN_ON_ONCE(k == key))
1227                         goto out_unlock;
1228         }
1229         hlist_add_head_rcu(&key->hash_entry, hash_head);
1230 out_unlock:
1231         graph_unlock();
1232 restore_irqs:
1233         raw_local_irq_restore(flags);
1234 }
1235 EXPORT_SYMBOL_GPL(lockdep_register_key);
1236
1237 /* Check whether a key has been registered as a dynamic key. */
1238 static bool is_dynamic_key(const struct lock_class_key *key)
1239 {
1240         struct hlist_head *hash_head;
1241         struct lock_class_key *k;
1242         bool found = false;
1243
1244         if (WARN_ON_ONCE(static_obj(key)))
1245                 return false;
1246
1247         /*
1248          * If lock debugging is disabled lock_keys_hash[] may contain
1249          * pointers to memory that has already been freed. Avoid triggering
1250          * a use-after-free in that case by returning early.
1251          */
1252         if (!debug_locks)
1253                 return true;
1254
1255         hash_head = keyhashentry(key);
1256
1257         rcu_read_lock();
1258         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1259                 if (k == key) {
1260                         found = true;
1261                         break;
1262                 }
1263         }
1264         rcu_read_unlock();
1265
1266         return found;
1267 }
1268
1269 /*
1270  * Register a lock's class in the hash-table, if the class is not present
1271  * yet. Otherwise we look it up. We cache the result in the lock object
1272  * itself, so actual lookup of the hash should be once per lock object.
1273  */
1274 static struct lock_class *
1275 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1276 {
1277         struct lockdep_subclass_key *key;
1278         struct hlist_head *hash_head;
1279         struct lock_class *class;
1280         int idx;
1281
1282         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1283
1284         class = look_up_lock_class(lock, subclass);
1285         if (likely(class))
1286                 goto out_set_class_cache;
1287
1288         if (!lock->key) {
1289                 if (!assign_lock_key(lock))
1290                         return NULL;
1291         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1292                 return NULL;
1293         }
1294
1295         key = lock->key->subkeys + subclass;
1296         hash_head = classhashentry(key);
1297
1298         if (!graph_lock()) {
1299                 return NULL;
1300         }
1301         /*
1302          * We have to do the hash-walk again, to avoid races
1303          * with another CPU:
1304          */
1305         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1306                 if (class->key == key)
1307                         goto out_unlock_set;
1308         }
1309
1310         init_data_structures_once();
1311
1312         /* Allocate a new lock class and add it to the hash. */
1313         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1314                                          lock_entry);
1315         if (!class) {
1316                 if (!debug_locks_off_graph_unlock()) {
1317                         return NULL;
1318                 }
1319
1320                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1321                 dump_stack();
1322                 return NULL;
1323         }
1324         nr_lock_classes++;
1325         __set_bit(class - lock_classes, lock_classes_in_use);
1326         debug_atomic_inc(nr_unused_locks);
1327         class->key = key;
1328         class->name = lock->name;
1329         class->subclass = subclass;
1330         WARN_ON_ONCE(!list_empty(&class->locks_before));
1331         WARN_ON_ONCE(!list_empty(&class->locks_after));
1332         class->name_version = count_matching_names(class);
1333         class->wait_type_inner = lock->wait_type_inner;
1334         class->wait_type_outer = lock->wait_type_outer;
1335         class->lock_type = lock->lock_type;
1336         /*
1337          * We use RCU's safe list-add method to make
1338          * parallel walking of the hash-list safe:
1339          */
1340         hlist_add_head_rcu(&class->hash_entry, hash_head);
1341         /*
1342          * Remove the class from the free list and add it to the global list
1343          * of classes.
1344          */
1345         list_move_tail(&class->lock_entry, &all_lock_classes);
1346         idx = class - lock_classes;
1347         if (idx > max_lock_class_idx)
1348                 max_lock_class_idx = idx;
1349
1350         if (verbose(class)) {
1351                 graph_unlock();
1352
1353                 printk("\nnew class %px: %s", class->key, class->name);
1354                 if (class->name_version > 1)
1355                         printk(KERN_CONT "#%d", class->name_version);
1356                 printk(KERN_CONT "\n");
1357                 dump_stack();
1358
1359                 if (!graph_lock()) {
1360                         return NULL;
1361                 }
1362         }
1363 out_unlock_set:
1364         graph_unlock();
1365
1366 out_set_class_cache:
1367         if (!subclass || force)
1368                 lock->class_cache[0] = class;
1369         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1370                 lock->class_cache[subclass] = class;
1371
1372         /*
1373          * Hash collision, did we smoke some? We found a class with a matching
1374          * hash but the subclass -- which is hashed in -- didn't match.
1375          */
1376         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1377                 return NULL;
1378
1379         return class;
1380 }
1381
1382 #ifdef CONFIG_PROVE_LOCKING
1383 /*
1384  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1385  * with NULL on failure)
1386  */
1387 static struct lock_list *alloc_list_entry(void)
1388 {
1389         int idx = find_first_zero_bit(list_entries_in_use,
1390                                       ARRAY_SIZE(list_entries));
1391
1392         if (idx >= ARRAY_SIZE(list_entries)) {
1393                 if (!debug_locks_off_graph_unlock())
1394                         return NULL;
1395
1396                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1397                 dump_stack();
1398                 return NULL;
1399         }
1400         nr_list_entries++;
1401         __set_bit(idx, list_entries_in_use);
1402         return list_entries + idx;
1403 }
1404
1405 /*
1406  * Add a new dependency to the head of the list:
1407  */
1408 static int add_lock_to_list(struct lock_class *this,
1409                             struct lock_class *links_to, struct list_head *head,
1410                             u16 distance, u8 dep,
1411                             const struct lock_trace *trace)
1412 {
1413         struct lock_list *entry;
1414         /*
1415          * Lock not present yet - get a new dependency struct and
1416          * add it to the list:
1417          */
1418         entry = alloc_list_entry();
1419         if (!entry)
1420                 return 0;
1421
1422         entry->class = this;
1423         entry->links_to = links_to;
1424         entry->dep = dep;
1425         entry->distance = distance;
1426         entry->trace = trace;
1427         /*
1428          * Both allocation and removal are done under the graph lock; but
1429          * iteration is under RCU-sched; see look_up_lock_class() and
1430          * lockdep_free_key_range().
1431          */
1432         list_add_tail_rcu(&entry->entry, head);
1433
1434         return 1;
1435 }
1436
1437 /*
1438  * For good efficiency of modular, we use power of 2
1439  */
1440 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1441 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1442
1443 /*
1444  * The circular_queue and helpers are used to implement graph
1445  * breadth-first search (BFS) algorithm, by which we can determine
1446  * whether there is a path from a lock to another. In deadlock checks,
1447  * a path from the next lock to be acquired to a previous held lock
1448  * indicates that adding the <prev> -> <next> lock dependency will
1449  * produce a circle in the graph. Breadth-first search instead of
1450  * depth-first search is used in order to find the shortest (circular)
1451  * path.
1452  */
1453 struct circular_queue {
1454         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1455         unsigned int  front, rear;
1456 };
1457
1458 static struct circular_queue lock_cq;
1459
1460 unsigned int max_bfs_queue_depth;
1461
1462 static unsigned int lockdep_dependency_gen_id;
1463
1464 static inline void __cq_init(struct circular_queue *cq)
1465 {
1466         cq->front = cq->rear = 0;
1467         lockdep_dependency_gen_id++;
1468 }
1469
1470 static inline int __cq_empty(struct circular_queue *cq)
1471 {
1472         return (cq->front == cq->rear);
1473 }
1474
1475 static inline int __cq_full(struct circular_queue *cq)
1476 {
1477         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1478 }
1479
1480 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1481 {
1482         if (__cq_full(cq))
1483                 return -1;
1484
1485         cq->element[cq->rear] = elem;
1486         cq->rear = (cq->rear + 1) & CQ_MASK;
1487         return 0;
1488 }
1489
1490 /*
1491  * Dequeue an element from the circular_queue, return a lock_list if
1492  * the queue is not empty, or NULL if otherwise.
1493  */
1494 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1495 {
1496         struct lock_list * lock;
1497
1498         if (__cq_empty(cq))
1499                 return NULL;
1500
1501         lock = cq->element[cq->front];
1502         cq->front = (cq->front + 1) & CQ_MASK;
1503
1504         return lock;
1505 }
1506
1507 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1508 {
1509         return (cq->rear - cq->front) & CQ_MASK;
1510 }
1511
1512 static inline void mark_lock_accessed(struct lock_list *lock)
1513 {
1514         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1515 }
1516
1517 static inline void visit_lock_entry(struct lock_list *lock,
1518                                     struct lock_list *parent)
1519 {
1520         lock->parent = parent;
1521 }
1522
1523 static inline unsigned long lock_accessed(struct lock_list *lock)
1524 {
1525         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1526 }
1527
1528 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1529 {
1530         return child->parent;
1531 }
1532
1533 static inline int get_lock_depth(struct lock_list *child)
1534 {
1535         int depth = 0;
1536         struct lock_list *parent;
1537
1538         while ((parent = get_lock_parent(child))) {
1539                 child = parent;
1540                 depth++;
1541         }
1542         return depth;
1543 }
1544
1545 /*
1546  * Return the forward or backward dependency list.
1547  *
1548  * @lock:   the lock_list to get its class's dependency list
1549  * @offset: the offset to struct lock_class to determine whether it is
1550  *          locks_after or locks_before
1551  */
1552 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1553 {
1554         void *lock_class = lock->class;
1555
1556         return lock_class + offset;
1557 }
1558 /*
1559  * Return values of a bfs search:
1560  *
1561  * BFS_E* indicates an error
1562  * BFS_R* indicates a result (match or not)
1563  *
1564  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1565  *
1566  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1567  *
1568  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1569  *             *@target_entry.
1570  *
1571  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1572  *               _unchanged_.
1573  */
1574 enum bfs_result {
1575         BFS_EINVALIDNODE = -2,
1576         BFS_EQUEUEFULL = -1,
1577         BFS_RMATCH = 0,
1578         BFS_RNOMATCH = 1,
1579 };
1580
1581 /*
1582  * bfs_result < 0 means error
1583  */
1584 static inline bool bfs_error(enum bfs_result res)
1585 {
1586         return res < 0;
1587 }
1588
1589 /*
1590  * DEP_*_BIT in lock_list::dep
1591  *
1592  * For dependency @prev -> @next:
1593  *
1594  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1595  *       (->read == 2)
1596  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1597  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1598  *   EN: @prev is exclusive locker and @next is non-recursive locker
1599  *
1600  * Note that we define the value of DEP_*_BITs so that:
1601  *   bit0 is prev->read == 0
1602  *   bit1 is next->read != 2
1603  */
1604 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1605 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1606 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1607 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1608
1609 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1610 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1611 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1612 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1613
1614 static inline unsigned int
1615 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1616 {
1617         return (prev->read == 0) + ((next->read != 2) << 1);
1618 }
1619
1620 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1621 {
1622         return 1U << __calc_dep_bit(prev, next);
1623 }
1624
1625 /*
1626  * calculate the dep_bit for backwards edges. We care about whether @prev is
1627  * shared and whether @next is recursive.
1628  */
1629 static inline unsigned int
1630 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1631 {
1632         return (next->read != 2) + ((prev->read == 0) << 1);
1633 }
1634
1635 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1636 {
1637         return 1U << __calc_dep_bitb(prev, next);
1638 }
1639
1640 /*
1641  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1642  * search.
1643  */
1644 static inline void __bfs_init_root(struct lock_list *lock,
1645                                    struct lock_class *class)
1646 {
1647         lock->class = class;
1648         lock->parent = NULL;
1649         lock->only_xr = 0;
1650 }
1651
1652 /*
1653  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1654  * root for a BFS search.
1655  *
1656  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1657  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1658  * and -(S*)->.
1659  */
1660 static inline void bfs_init_root(struct lock_list *lock,
1661                                  struct held_lock *hlock)
1662 {
1663         __bfs_init_root(lock, hlock_class(hlock));
1664         lock->only_xr = (hlock->read == 2);
1665 }
1666
1667 /*
1668  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1669  *
1670  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1671  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1672  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1673  */
1674 static inline void bfs_init_rootb(struct lock_list *lock,
1675                                   struct held_lock *hlock)
1676 {
1677         __bfs_init_root(lock, hlock_class(hlock));
1678         lock->only_xr = (hlock->read != 0);
1679 }
1680
1681 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1682 {
1683         if (!lock || !lock->parent)
1684                 return NULL;
1685
1686         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1687                                      &lock->entry, struct lock_list, entry);
1688 }
1689
1690 /*
1691  * Breadth-First Search to find a strong path in the dependency graph.
1692  *
1693  * @source_entry: the source of the path we are searching for.
1694  * @data: data used for the second parameter of @match function
1695  * @match: match function for the search
1696  * @target_entry: pointer to the target of a matched path
1697  * @offset: the offset to struct lock_class to determine whether it is
1698  *          locks_after or locks_before
1699  *
1700  * We may have multiple edges (considering different kinds of dependencies,
1701  * e.g. ER and SN) between two nodes in the dependency graph. But
1702  * only the strong dependency path in the graph is relevant to deadlocks. A
1703  * strong dependency path is a dependency path that doesn't have two adjacent
1704  * dependencies as -(*R)-> -(S*)->, please see:
1705  *
1706  *         Documentation/locking/lockdep-design.rst
1707  *
1708  * for more explanation of the definition of strong dependency paths
1709  *
1710  * In __bfs(), we only traverse in the strong dependency path:
1711  *
1712  *     In lock_list::only_xr, we record whether the previous dependency only
1713  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1714  *     filter out any -(S*)-> in the current dependency and after that, the
1715  *     ->only_xr is set according to whether we only have -(*R)-> left.
1716  */
1717 static enum bfs_result __bfs(struct lock_list *source_entry,
1718                              void *data,
1719                              bool (*match)(struct lock_list *entry, void *data),
1720                              bool (*skip)(struct lock_list *entry, void *data),
1721                              struct lock_list **target_entry,
1722                              int offset)
1723 {
1724         struct circular_queue *cq = &lock_cq;
1725         struct lock_list *lock = NULL;
1726         struct lock_list *entry;
1727         struct list_head *head;
1728         unsigned int cq_depth;
1729         bool first;
1730
1731         lockdep_assert_locked();
1732
1733         __cq_init(cq);
1734         __cq_enqueue(cq, source_entry);
1735
1736         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1737                 if (!lock->class)
1738                         return BFS_EINVALIDNODE;
1739
1740                 /*
1741                  * Step 1: check whether we already finish on this one.
1742                  *
1743                  * If we have visited all the dependencies from this @lock to
1744                  * others (iow, if we have visited all lock_list entries in
1745                  * @lock->class->locks_{after,before}) we skip, otherwise go
1746                  * and visit all the dependencies in the list and mark this
1747                  * list accessed.
1748                  */
1749                 if (lock_accessed(lock))
1750                         continue;
1751                 else
1752                         mark_lock_accessed(lock);
1753
1754                 /*
1755                  * Step 2: check whether prev dependency and this form a strong
1756                  *         dependency path.
1757                  */
1758                 if (lock->parent) { /* Parent exists, check prev dependency */
1759                         u8 dep = lock->dep;
1760                         bool prev_only_xr = lock->parent->only_xr;
1761
1762                         /*
1763                          * Mask out all -(S*)-> if we only have *R in previous
1764                          * step, because -(*R)-> -(S*)-> don't make up a strong
1765                          * dependency.
1766                          */
1767                         if (prev_only_xr)
1768                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1769
1770                         /* If nothing left, we skip */
1771                         if (!dep)
1772                                 continue;
1773
1774                         /* If there are only -(*R)-> left, set that for the next step */
1775                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1776                 }
1777
1778                 /*
1779                  * Step 3: we haven't visited this and there is a strong
1780                  *         dependency path to this, so check with @match.
1781                  *         If @skip is provide and returns true, we skip this
1782                  *         lock (and any path this lock is in).
1783                  */
1784                 if (skip && skip(lock, data))
1785                         continue;
1786
1787                 if (match(lock, data)) {
1788                         *target_entry = lock;
1789                         return BFS_RMATCH;
1790                 }
1791
1792                 /*
1793                  * Step 4: if not match, expand the path by adding the
1794                  *         forward or backwards dependencies in the search
1795                  *
1796                  */
1797                 first = true;
1798                 head = get_dep_list(lock, offset);
1799                 list_for_each_entry_rcu(entry, head, entry) {
1800                         visit_lock_entry(entry, lock);
1801
1802                         /*
1803                          * Note we only enqueue the first of the list into the
1804                          * queue, because we can always find a sibling
1805                          * dependency from one (see __bfs_next()), as a result
1806                          * the space of queue is saved.
1807                          */
1808                         if (!first)
1809                                 continue;
1810
1811                         first = false;
1812
1813                         if (__cq_enqueue(cq, entry))
1814                                 return BFS_EQUEUEFULL;
1815
1816                         cq_depth = __cq_get_elem_count(cq);
1817                         if (max_bfs_queue_depth < cq_depth)
1818                                 max_bfs_queue_depth = cq_depth;
1819                 }
1820         }
1821
1822         return BFS_RNOMATCH;
1823 }
1824
1825 static inline enum bfs_result
1826 __bfs_forwards(struct lock_list *src_entry,
1827                void *data,
1828                bool (*match)(struct lock_list *entry, void *data),
1829                bool (*skip)(struct lock_list *entry, void *data),
1830                struct lock_list **target_entry)
1831 {
1832         return __bfs(src_entry, data, match, skip, target_entry,
1833                      offsetof(struct lock_class, locks_after));
1834
1835 }
1836
1837 static inline enum bfs_result
1838 __bfs_backwards(struct lock_list *src_entry,
1839                 void *data,
1840                 bool (*match)(struct lock_list *entry, void *data),
1841                bool (*skip)(struct lock_list *entry, void *data),
1842                 struct lock_list **target_entry)
1843 {
1844         return __bfs(src_entry, data, match, skip, target_entry,
1845                      offsetof(struct lock_class, locks_before));
1846
1847 }
1848
1849 static void print_lock_trace(const struct lock_trace *trace,
1850                              unsigned int spaces)
1851 {
1852         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1853 }
1854
1855 /*
1856  * Print a dependency chain entry (this is only done when a deadlock
1857  * has been detected):
1858  */
1859 static noinline void
1860 print_circular_bug_entry(struct lock_list *target, int depth)
1861 {
1862         if (debug_locks_silent)
1863                 return;
1864         printk("\n-> #%u", depth);
1865         print_lock_name(NULL, target->class);
1866         printk(KERN_CONT ":\n");
1867         print_lock_trace(target->trace, 6);
1868 }
1869
1870 static void
1871 print_circular_lock_scenario(struct held_lock *src,
1872                              struct held_lock *tgt,
1873                              struct lock_list *prt)
1874 {
1875         struct lock_class *source = hlock_class(src);
1876         struct lock_class *target = hlock_class(tgt);
1877         struct lock_class *parent = prt->class;
1878         int src_read = src->read;
1879         int tgt_read = tgt->read;
1880
1881         /*
1882          * A direct locking problem where unsafe_class lock is taken
1883          * directly by safe_class lock, then all we need to show
1884          * is the deadlock scenario, as it is obvious that the
1885          * unsafe lock is taken under the safe lock.
1886          *
1887          * But if there is a chain instead, where the safe lock takes
1888          * an intermediate lock (middle_class) where this lock is
1889          * not the same as the safe lock, then the lock chain is
1890          * used to describe the problem. Otherwise we would need
1891          * to show a different CPU case for each link in the chain
1892          * from the safe_class lock to the unsafe_class lock.
1893          */
1894         if (parent != source) {
1895                 printk("Chain exists of:\n  ");
1896                 __print_lock_name(src, source);
1897                 printk(KERN_CONT " --> ");
1898                 __print_lock_name(NULL, parent);
1899                 printk(KERN_CONT " --> ");
1900                 __print_lock_name(tgt, target);
1901                 printk(KERN_CONT "\n\n");
1902         }
1903
1904         printk(" Possible unsafe locking scenario:\n\n");
1905         printk("       CPU0                    CPU1\n");
1906         printk("       ----                    ----\n");
1907         if (tgt_read != 0)
1908                 printk("  rlock(");
1909         else
1910                 printk("  lock(");
1911         __print_lock_name(tgt, target);
1912         printk(KERN_CONT ");\n");
1913         printk("                               lock(");
1914         __print_lock_name(NULL, parent);
1915         printk(KERN_CONT ");\n");
1916         printk("                               lock(");
1917         __print_lock_name(tgt, target);
1918         printk(KERN_CONT ");\n");
1919         if (src_read != 0)
1920                 printk("  rlock(");
1921         else if (src->sync)
1922                 printk("  sync(");
1923         else
1924                 printk("  lock(");
1925         __print_lock_name(src, source);
1926         printk(KERN_CONT ");\n");
1927         printk("\n *** DEADLOCK ***\n\n");
1928 }
1929
1930 /*
1931  * When a circular dependency is detected, print the
1932  * header first:
1933  */
1934 static noinline void
1935 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1936                         struct held_lock *check_src,
1937                         struct held_lock *check_tgt)
1938 {
1939         struct task_struct *curr = current;
1940
1941         if (debug_locks_silent)
1942                 return;
1943
1944         pr_warn("\n");
1945         pr_warn("======================================================\n");
1946         pr_warn("WARNING: possible circular locking dependency detected\n");
1947         print_kernel_ident();
1948         pr_warn("------------------------------------------------------\n");
1949         pr_warn("%s/%d is trying to acquire lock:\n",
1950                 curr->comm, task_pid_nr(curr));
1951         print_lock(check_src);
1952
1953         pr_warn("\nbut task is already holding lock:\n");
1954
1955         print_lock(check_tgt);
1956         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1957         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1958
1959         print_circular_bug_entry(entry, depth);
1960 }
1961
1962 /*
1963  * We are about to add A -> B into the dependency graph, and in __bfs() a
1964  * strong dependency path A -> .. -> B is found: hlock_class equals
1965  * entry->class.
1966  *
1967  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1968  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1969  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1970  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1971  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1972  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1973  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1974  *
1975  * We need to make sure both the start and the end of A -> .. -> B is not
1976  * weaker than A -> B. For the start part, please see the comment in
1977  * check_redundant(). For the end part, we need:
1978  *
1979  * Either
1980  *
1981  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1982  *
1983  * or
1984  *
1985  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1986  *
1987  */
1988 static inline bool hlock_equal(struct lock_list *entry, void *data)
1989 {
1990         struct held_lock *hlock = (struct held_lock *)data;
1991
1992         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1993                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1994                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1995 }
1996
1997 /*
1998  * We are about to add B -> A into the dependency graph, and in __bfs() a
1999  * strong dependency path A -> .. -> B is found: hlock_class equals
2000  * entry->class.
2001  *
2002  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2003  * dependency cycle, that means:
2004  *
2005  * Either
2006  *
2007  *     a) B -> A is -(E*)->
2008  *
2009  * or
2010  *
2011  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2012  *
2013  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2014  */
2015 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2016 {
2017         struct held_lock *hlock = (struct held_lock *)data;
2018
2019         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2020                (hlock->read == 0 || /* B -> A is -(E*)-> */
2021                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2022 }
2023
2024 static noinline void print_circular_bug(struct lock_list *this,
2025                                 struct lock_list *target,
2026                                 struct held_lock *check_src,
2027                                 struct held_lock *check_tgt)
2028 {
2029         struct task_struct *curr = current;
2030         struct lock_list *parent;
2031         struct lock_list *first_parent;
2032         int depth;
2033
2034         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2035                 return;
2036
2037         this->trace = save_trace();
2038         if (!this->trace)
2039                 return;
2040
2041         depth = get_lock_depth(target);
2042
2043         print_circular_bug_header(target, depth, check_src, check_tgt);
2044
2045         parent = get_lock_parent(target);
2046         first_parent = parent;
2047
2048         while (parent) {
2049                 print_circular_bug_entry(parent, --depth);
2050                 parent = get_lock_parent(parent);
2051         }
2052
2053         printk("\nother info that might help us debug this:\n\n");
2054         print_circular_lock_scenario(check_src, check_tgt,
2055                                      first_parent);
2056
2057         lockdep_print_held_locks(curr);
2058
2059         printk("\nstack backtrace:\n");
2060         dump_stack();
2061 }
2062
2063 static noinline void print_bfs_bug(int ret)
2064 {
2065         if (!debug_locks_off_graph_unlock())
2066                 return;
2067
2068         /*
2069          * Breadth-first-search failed, graph got corrupted?
2070          */
2071         WARN(1, "lockdep bfs error:%d\n", ret);
2072 }
2073
2074 static bool noop_count(struct lock_list *entry, void *data)
2075 {
2076         (*(unsigned long *)data)++;
2077         return false;
2078 }
2079
2080 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2081 {
2082         unsigned long  count = 0;
2083         struct lock_list *target_entry;
2084
2085         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2086
2087         return count;
2088 }
2089 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2090 {
2091         unsigned long ret, flags;
2092         struct lock_list this;
2093
2094         __bfs_init_root(&this, class);
2095
2096         raw_local_irq_save(flags);
2097         lockdep_lock();
2098         ret = __lockdep_count_forward_deps(&this);
2099         lockdep_unlock();
2100         raw_local_irq_restore(flags);
2101
2102         return ret;
2103 }
2104
2105 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2106 {
2107         unsigned long  count = 0;
2108         struct lock_list *target_entry;
2109
2110         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2111
2112         return count;
2113 }
2114
2115 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2116 {
2117         unsigned long ret, flags;
2118         struct lock_list this;
2119
2120         __bfs_init_root(&this, class);
2121
2122         raw_local_irq_save(flags);
2123         lockdep_lock();
2124         ret = __lockdep_count_backward_deps(&this);
2125         lockdep_unlock();
2126         raw_local_irq_restore(flags);
2127
2128         return ret;
2129 }
2130
2131 /*
2132  * Check that the dependency graph starting at <src> can lead to
2133  * <target> or not.
2134  */
2135 static noinline enum bfs_result
2136 check_path(struct held_lock *target, struct lock_list *src_entry,
2137            bool (*match)(struct lock_list *entry, void *data),
2138            bool (*skip)(struct lock_list *entry, void *data),
2139            struct lock_list **target_entry)
2140 {
2141         enum bfs_result ret;
2142
2143         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2144
2145         if (unlikely(bfs_error(ret)))
2146                 print_bfs_bug(ret);
2147
2148         return ret;
2149 }
2150
2151 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2152
2153 /*
2154  * Prove that the dependency graph starting at <src> can not
2155  * lead to <target>. If it can, there is a circle when adding
2156  * <target> -> <src> dependency.
2157  *
2158  * Print an error and return BFS_RMATCH if it does.
2159  */
2160 static noinline enum bfs_result
2161 check_noncircular(struct held_lock *src, struct held_lock *target,
2162                   struct lock_trace **const trace)
2163 {
2164         enum bfs_result ret;
2165         struct lock_list *target_entry;
2166         struct lock_list src_entry;
2167
2168         bfs_init_root(&src_entry, src);
2169
2170         debug_atomic_inc(nr_cyclic_checks);
2171
2172         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2173
2174         if (unlikely(ret == BFS_RMATCH)) {
2175                 if (!*trace) {
2176                         /*
2177                          * If save_trace fails here, the printing might
2178                          * trigger a WARN but because of the !nr_entries it
2179                          * should not do bad things.
2180                          */
2181                         *trace = save_trace();
2182                 }
2183
2184                 if (src->class_idx == target->class_idx)
2185                         print_deadlock_bug(current, src, target);
2186                 else
2187                         print_circular_bug(&src_entry, target_entry, src, target);
2188         }
2189
2190         return ret;
2191 }
2192
2193 #ifdef CONFIG_TRACE_IRQFLAGS
2194
2195 /*
2196  * Forwards and backwards subgraph searching, for the purposes of
2197  * proving that two subgraphs can be connected by a new dependency
2198  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2199  *
2200  * A irq safe->unsafe deadlock happens with the following conditions:
2201  *
2202  * 1) We have a strong dependency path A -> ... -> B
2203  *
2204  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2205  *    irq can create a new dependency B -> A (consider the case that a holder
2206  *    of B gets interrupted by an irq whose handler will try to acquire A).
2207  *
2208  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2209  *    strong circle:
2210  *
2211  *      For the usage bits of B:
2212  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2213  *           ENABLED_IRQ usage suffices.
2214  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2215  *           ENABLED_IRQ_*_READ usage suffices.
2216  *
2217  *      For the usage bits of A:
2218  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2219  *           USED_IN_IRQ usage suffices.
2220  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2221  *           USED_IN_IRQ_*_READ usage suffices.
2222  */
2223
2224 /*
2225  * There is a strong dependency path in the dependency graph: A -> B, and now
2226  * we need to decide which usage bit of A should be accumulated to detect
2227  * safe->unsafe bugs.
2228  *
2229  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2230  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2231  *
2232  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2233  * path, any usage of A should be considered. Otherwise, we should only
2234  * consider _READ usage.
2235  */
2236 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2237 {
2238         if (!entry->only_xr)
2239                 *(unsigned long *)mask |= entry->class->usage_mask;
2240         else /* Mask out _READ usage bits */
2241                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2242
2243         return false;
2244 }
2245
2246 /*
2247  * There is a strong dependency path in the dependency graph: A -> B, and now
2248  * we need to decide which usage bit of B conflicts with the usage bits of A,
2249  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2250  *
2251  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2252  * path, any usage of B should be considered. Otherwise, we should only
2253  * consider _READ usage.
2254  */
2255 static inline bool usage_match(struct lock_list *entry, void *mask)
2256 {
2257         if (!entry->only_xr)
2258                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2259         else /* Mask out _READ usage bits */
2260                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2261 }
2262
2263 static inline bool usage_skip(struct lock_list *entry, void *mask)
2264 {
2265         if (entry->class->lock_type == LD_LOCK_NORMAL)
2266                 return false;
2267
2268         /*
2269          * Skip local_lock() for irq inversion detection.
2270          *
2271          * For !RT, local_lock() is not a real lock, so it won't carry any
2272          * dependency.
2273          *
2274          * For RT, an irq inversion happens when we have lock A and B, and on
2275          * some CPU we can have:
2276          *
2277          *      lock(A);
2278          *      <interrupted>
2279          *        lock(B);
2280          *
2281          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2282          *
2283          * Now we prove local_lock() cannot exist in that dependency. First we
2284          * have the observation for any lock chain L1 -> ... -> Ln, for any
2285          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2286          * wait context check will complain. And since B is not a sleep lock,
2287          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2288          * local_lock() is 3, which is greater than 2, therefore there is no
2289          * way the local_lock() exists in the dependency B -> ... -> A.
2290          *
2291          * As a result, we will skip local_lock(), when we search for irq
2292          * inversion bugs.
2293          */
2294         if (entry->class->lock_type == LD_LOCK_PERCPU &&
2295             DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2296                 return false;
2297
2298         /*
2299          * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2300          * a lock and only used to override the wait_type.
2301          */
2302
2303         return true;
2304 }
2305
2306 /*
2307  * Find a node in the forwards-direction dependency sub-graph starting
2308  * at @root->class that matches @bit.
2309  *
2310  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2311  * into *@target_entry.
2312  */
2313 static enum bfs_result
2314 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2315                         struct lock_list **target_entry)
2316 {
2317         enum bfs_result result;
2318
2319         debug_atomic_inc(nr_find_usage_forwards_checks);
2320
2321         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2322
2323         return result;
2324 }
2325
2326 /*
2327  * Find a node in the backwards-direction dependency sub-graph starting
2328  * at @root->class that matches @bit.
2329  */
2330 static enum bfs_result
2331 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2332                         struct lock_list **target_entry)
2333 {
2334         enum bfs_result result;
2335
2336         debug_atomic_inc(nr_find_usage_backwards_checks);
2337
2338         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2339
2340         return result;
2341 }
2342
2343 static void print_lock_class_header(struct lock_class *class, int depth)
2344 {
2345         int bit;
2346
2347         printk("%*s->", depth, "");
2348         print_lock_name(NULL, class);
2349 #ifdef CONFIG_DEBUG_LOCKDEP
2350         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2351 #endif
2352         printk(KERN_CONT " {\n");
2353
2354         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2355                 if (class->usage_mask & (1 << bit)) {
2356                         int len = depth;
2357
2358                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2359                         len += printk(KERN_CONT " at:\n");
2360                         print_lock_trace(class->usage_traces[bit], len);
2361                 }
2362         }
2363         printk("%*s }\n", depth, "");
2364
2365         printk("%*s ... key      at: [<%px>] %pS\n",
2366                 depth, "", class->key, class->key);
2367 }
2368
2369 /*
2370  * Dependency path printing:
2371  *
2372  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2373  * printing out each lock in the dependency path will help on understanding how
2374  * the deadlock could happen. Here are some details about dependency path
2375  * printing:
2376  *
2377  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2378  *      for a lock dependency A -> B, there are two lock_lists:
2379  *
2380  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2381  *              ->links_to is A. In this case, we can say the lock_list is
2382  *              "A -> B" (forwards case).
2383  *
2384  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2385  *              and ->links_to is B. In this case, we can say the lock_list is
2386  *              "B <- A" (bacwards case).
2387  *
2388  *      The ->trace of both a) and b) point to the call trace where B was
2389  *      acquired with A held.
2390  *
2391  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2392  *      represent a certain lock dependency, it only provides an initial entry
2393  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2394  *      ->class is A, as a result BFS will search all dependencies starting with
2395  *      A, e.g. A -> B or A -> C.
2396  *
2397  *      The notation of a forwards helper lock_list is like "-> A", which means
2398  *      we should search the forwards dependencies starting with "A", e.g A -> B
2399  *      or A -> C.
2400  *
2401  *      The notation of a bacwards helper lock_list is like "<- B", which means
2402  *      we should search the backwards dependencies ending with "B", e.g.
2403  *      B <- A or B <- C.
2404  */
2405
2406 /*
2407  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2408  *
2409  * We have a lock dependency path as follow:
2410  *
2411  *    @root                                                                 @leaf
2412  *      |                                                                     |
2413  *      V                                                                     V
2414  *                ->parent                                   ->parent
2415  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2416  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2417  *
2418  * , so it's natural that we start from @leaf and print every ->class and
2419  * ->trace until we reach the @root.
2420  */
2421 static void __used
2422 print_shortest_lock_dependencies(struct lock_list *leaf,
2423                                  struct lock_list *root)
2424 {
2425         struct lock_list *entry = leaf;
2426         int depth;
2427
2428         /*compute depth from generated tree by BFS*/
2429         depth = get_lock_depth(leaf);
2430
2431         do {
2432                 print_lock_class_header(entry->class, depth);
2433                 printk("%*s ... acquired at:\n", depth, "");
2434                 print_lock_trace(entry->trace, 2);
2435                 printk("\n");
2436
2437                 if (depth == 0 && (entry != root)) {
2438                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2439                         break;
2440                 }
2441
2442                 entry = get_lock_parent(entry);
2443                 depth--;
2444         } while (entry && (depth >= 0));
2445 }
2446
2447 /*
2448  * printk the shortest lock dependencies from @leaf to @root.
2449  *
2450  * We have a lock dependency path (from a backwards search) as follow:
2451  *
2452  *    @leaf                                                                 @root
2453  *      |                                                                     |
2454  *      V                                                                     V
2455  *                ->parent                                   ->parent
2456  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2457  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2458  *
2459  * , so when we iterate from @leaf to @root, we actually print the lock
2460  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2461  *
2462  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2463  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2464  * trace of L1 in the dependency path, which is alright, because most of the
2465  * time we can figure out where L1 is held from the call trace of L2.
2466  */
2467 static void __used
2468 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2469                                            struct lock_list *root)
2470 {
2471         struct lock_list *entry = leaf;
2472         const struct lock_trace *trace = NULL;
2473         int depth;
2474
2475         /*compute depth from generated tree by BFS*/
2476         depth = get_lock_depth(leaf);
2477
2478         do {
2479                 print_lock_class_header(entry->class, depth);
2480                 if (trace) {
2481                         printk("%*s ... acquired at:\n", depth, "");
2482                         print_lock_trace(trace, 2);
2483                         printk("\n");
2484                 }
2485
2486                 /*
2487                  * Record the pointer to the trace for the next lock_list
2488                  * entry, see the comments for the function.
2489                  */
2490                 trace = entry->trace;
2491
2492                 if (depth == 0 && (entry != root)) {
2493                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2494                         break;
2495                 }
2496
2497                 entry = get_lock_parent(entry);
2498                 depth--;
2499         } while (entry && (depth >= 0));
2500 }
2501
2502 static void
2503 print_irq_lock_scenario(struct lock_list *safe_entry,
2504                         struct lock_list *unsafe_entry,
2505                         struct lock_class *prev_class,
2506                         struct lock_class *next_class)
2507 {
2508         struct lock_class *safe_class = safe_entry->class;
2509         struct lock_class *unsafe_class = unsafe_entry->class;
2510         struct lock_class *middle_class = prev_class;
2511
2512         if (middle_class == safe_class)
2513                 middle_class = next_class;
2514
2515         /*
2516          * A direct locking problem where unsafe_class lock is taken
2517          * directly by safe_class lock, then all we need to show
2518          * is the deadlock scenario, as it is obvious that the
2519          * unsafe lock is taken under the safe lock.
2520          *
2521          * But if there is a chain instead, where the safe lock takes
2522          * an intermediate lock (middle_class) where this lock is
2523          * not the same as the safe lock, then the lock chain is
2524          * used to describe the problem. Otherwise we would need
2525          * to show a different CPU case for each link in the chain
2526          * from the safe_class lock to the unsafe_class lock.
2527          */
2528         if (middle_class != unsafe_class) {
2529                 printk("Chain exists of:\n  ");
2530                 __print_lock_name(NULL, safe_class);
2531                 printk(KERN_CONT " --> ");
2532                 __print_lock_name(NULL, middle_class);
2533                 printk(KERN_CONT " --> ");
2534                 __print_lock_name(NULL, unsafe_class);
2535                 printk(KERN_CONT "\n\n");
2536         }
2537
2538         printk(" Possible interrupt unsafe locking scenario:\n\n");
2539         printk("       CPU0                    CPU1\n");
2540         printk("       ----                    ----\n");
2541         printk("  lock(");
2542         __print_lock_name(NULL, unsafe_class);
2543         printk(KERN_CONT ");\n");
2544         printk("                               local_irq_disable();\n");
2545         printk("                               lock(");
2546         __print_lock_name(NULL, safe_class);
2547         printk(KERN_CONT ");\n");
2548         printk("                               lock(");
2549         __print_lock_name(NULL, middle_class);
2550         printk(KERN_CONT ");\n");
2551         printk("  <Interrupt>\n");
2552         printk("    lock(");
2553         __print_lock_name(NULL, safe_class);
2554         printk(KERN_CONT ");\n");
2555         printk("\n *** DEADLOCK ***\n\n");
2556 }
2557
2558 static void
2559 print_bad_irq_dependency(struct task_struct *curr,
2560                          struct lock_list *prev_root,
2561                          struct lock_list *next_root,
2562                          struct lock_list *backwards_entry,
2563                          struct lock_list *forwards_entry,
2564                          struct held_lock *prev,
2565                          struct held_lock *next,
2566                          enum lock_usage_bit bit1,
2567                          enum lock_usage_bit bit2,
2568                          const char *irqclass)
2569 {
2570         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2571                 return;
2572
2573         pr_warn("\n");
2574         pr_warn("=====================================================\n");
2575         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2576                 irqclass, irqclass);
2577         print_kernel_ident();
2578         pr_warn("-----------------------------------------------------\n");
2579         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2580                 curr->comm, task_pid_nr(curr),
2581                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2582                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2583                 lockdep_hardirqs_enabled(),
2584                 curr->softirqs_enabled);
2585         print_lock(next);
2586
2587         pr_warn("\nand this task is already holding:\n");
2588         print_lock(prev);
2589         pr_warn("which would create a new lock dependency:\n");
2590         print_lock_name(prev, hlock_class(prev));
2591         pr_cont(" ->");
2592         print_lock_name(next, hlock_class(next));
2593         pr_cont("\n");
2594
2595         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2596                 irqclass);
2597         print_lock_name(NULL, backwards_entry->class);
2598         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2599
2600         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2601
2602         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2603         print_lock_name(NULL, forwards_entry->class);
2604         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2605         pr_warn("...");
2606
2607         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2608
2609         pr_warn("\nother info that might help us debug this:\n\n");
2610         print_irq_lock_scenario(backwards_entry, forwards_entry,
2611                                 hlock_class(prev), hlock_class(next));
2612
2613         lockdep_print_held_locks(curr);
2614
2615         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2616         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2617
2618         pr_warn("\nthe dependencies between the lock to be acquired");
2619         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2620         next_root->trace = save_trace();
2621         if (!next_root->trace)
2622                 return;
2623         print_shortest_lock_dependencies(forwards_entry, next_root);
2624
2625         pr_warn("\nstack backtrace:\n");
2626         dump_stack();
2627 }
2628
2629 static const char *state_names[] = {
2630 #define LOCKDEP_STATE(__STATE) \
2631         __stringify(__STATE),
2632 #include "lockdep_states.h"
2633 #undef LOCKDEP_STATE
2634 };
2635
2636 static const char *state_rnames[] = {
2637 #define LOCKDEP_STATE(__STATE) \
2638         __stringify(__STATE)"-READ",
2639 #include "lockdep_states.h"
2640 #undef LOCKDEP_STATE
2641 };
2642
2643 static inline const char *state_name(enum lock_usage_bit bit)
2644 {
2645         if (bit & LOCK_USAGE_READ_MASK)
2646                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2647         else
2648                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2649 }
2650
2651 /*
2652  * The bit number is encoded like:
2653  *
2654  *  bit0: 0 exclusive, 1 read lock
2655  *  bit1: 0 used in irq, 1 irq enabled
2656  *  bit2-n: state
2657  */
2658 static int exclusive_bit(int new_bit)
2659 {
2660         int state = new_bit & LOCK_USAGE_STATE_MASK;
2661         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2662
2663         /*
2664          * keep state, bit flip the direction and strip read.
2665          */
2666         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2667 }
2668
2669 /*
2670  * Observe that when given a bitmask where each bitnr is encoded as above, a
2671  * right shift of the mask transforms the individual bitnrs as -1 and
2672  * conversely, a left shift transforms into +1 for the individual bitnrs.
2673  *
2674  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2675  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2676  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2677  *
2678  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2679  *
2680  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2681  * all bits set) and recompose with bitnr1 flipped.
2682  */
2683 static unsigned long invert_dir_mask(unsigned long mask)
2684 {
2685         unsigned long excl = 0;
2686
2687         /* Invert dir */
2688         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2689         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2690
2691         return excl;
2692 }
2693
2694 /*
2695  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2696  * usage may cause deadlock too, for example:
2697  *
2698  * P1                           P2
2699  * <irq disabled>
2700  * write_lock(l1);              <irq enabled>
2701  *                              read_lock(l2);
2702  * write_lock(l2);
2703  *                              <in irq>
2704  *                              read_lock(l1);
2705  *
2706  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2707  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2708  * deadlock.
2709  *
2710  * In fact, all of the following cases may cause deadlocks:
2711  *
2712  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2713  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2714  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2715  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2716  *
2717  * As a result, to calculate the "exclusive mask", first we invert the
2718  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2719  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2720  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2721  */
2722 static unsigned long exclusive_mask(unsigned long mask)
2723 {
2724         unsigned long excl = invert_dir_mask(mask);
2725
2726         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2727         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2728
2729         return excl;
2730 }
2731
2732 /*
2733  * Retrieve the _possible_ original mask to which @mask is
2734  * exclusive. Ie: this is the opposite of exclusive_mask().
2735  * Note that 2 possible original bits can match an exclusive
2736  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2737  * cleared. So both are returned for each exclusive bit.
2738  */
2739 static unsigned long original_mask(unsigned long mask)
2740 {
2741         unsigned long excl = invert_dir_mask(mask);
2742
2743         /* Include read in existing usages */
2744         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2745         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2746
2747         return excl;
2748 }
2749
2750 /*
2751  * Find the first pair of bit match between an original
2752  * usage mask and an exclusive usage mask.
2753  */
2754 static int find_exclusive_match(unsigned long mask,
2755                                 unsigned long excl_mask,
2756                                 enum lock_usage_bit *bitp,
2757                                 enum lock_usage_bit *excl_bitp)
2758 {
2759         int bit, excl, excl_read;
2760
2761         for_each_set_bit(bit, &mask, LOCK_USED) {
2762                 /*
2763                  * exclusive_bit() strips the read bit, however,
2764                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2765                  * to search excl | LOCK_USAGE_READ_MASK as well.
2766                  */
2767                 excl = exclusive_bit(bit);
2768                 excl_read = excl | LOCK_USAGE_READ_MASK;
2769                 if (excl_mask & lock_flag(excl)) {
2770                         *bitp = bit;
2771                         *excl_bitp = excl;
2772                         return 0;
2773                 } else if (excl_mask & lock_flag(excl_read)) {
2774                         *bitp = bit;
2775                         *excl_bitp = excl_read;
2776                         return 0;
2777                 }
2778         }
2779         return -1;
2780 }
2781
2782 /*
2783  * Prove that the new dependency does not connect a hardirq-safe(-read)
2784  * lock with a hardirq-unsafe lock - to achieve this we search
2785  * the backwards-subgraph starting at <prev>, and the
2786  * forwards-subgraph starting at <next>:
2787  */
2788 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2789                            struct held_lock *next)
2790 {
2791         unsigned long usage_mask = 0, forward_mask, backward_mask;
2792         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2793         struct lock_list *target_entry1;
2794         struct lock_list *target_entry;
2795         struct lock_list this, that;
2796         enum bfs_result ret;
2797
2798         /*
2799          * Step 1: gather all hard/soft IRQs usages backward in an
2800          * accumulated usage mask.
2801          */
2802         bfs_init_rootb(&this, prev);
2803
2804         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2805         if (bfs_error(ret)) {
2806                 print_bfs_bug(ret);
2807                 return 0;
2808         }
2809
2810         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2811         if (!usage_mask)
2812                 return 1;
2813
2814         /*
2815          * Step 2: find exclusive uses forward that match the previous
2816          * backward accumulated mask.
2817          */
2818         forward_mask = exclusive_mask(usage_mask);
2819
2820         bfs_init_root(&that, next);
2821
2822         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2823         if (bfs_error(ret)) {
2824                 print_bfs_bug(ret);
2825                 return 0;
2826         }
2827         if (ret == BFS_RNOMATCH)
2828                 return 1;
2829
2830         /*
2831          * Step 3: we found a bad match! Now retrieve a lock from the backward
2832          * list whose usage mask matches the exclusive usage mask from the
2833          * lock found on the forward list.
2834          *
2835          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2836          * the follow case:
2837          *
2838          * When trying to add A -> B to the graph, we find that there is a
2839          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2840          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2841          * invert bits of M's usage_mask, we will find another lock N that is
2842          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2843          * cause a inversion deadlock.
2844          */
2845         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2846
2847         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2848         if (bfs_error(ret)) {
2849                 print_bfs_bug(ret);
2850                 return 0;
2851         }
2852         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2853                 return 1;
2854
2855         /*
2856          * Step 4: narrow down to a pair of incompatible usage bits
2857          * and report it.
2858          */
2859         ret = find_exclusive_match(target_entry->class->usage_mask,
2860                                    target_entry1->class->usage_mask,
2861                                    &backward_bit, &forward_bit);
2862         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2863                 return 1;
2864
2865         print_bad_irq_dependency(curr, &this, &that,
2866                                  target_entry, target_entry1,
2867                                  prev, next,
2868                                  backward_bit, forward_bit,
2869                                  state_name(backward_bit));
2870
2871         return 0;
2872 }
2873
2874 #else
2875
2876 static inline int check_irq_usage(struct task_struct *curr,
2877                                   struct held_lock *prev, struct held_lock *next)
2878 {
2879         return 1;
2880 }
2881
2882 static inline bool usage_skip(struct lock_list *entry, void *mask)
2883 {
2884         return false;
2885 }
2886
2887 #endif /* CONFIG_TRACE_IRQFLAGS */
2888
2889 #ifdef CONFIG_LOCKDEP_SMALL
2890 /*
2891  * Check that the dependency graph starting at <src> can lead to
2892  * <target> or not. If it can, <src> -> <target> dependency is already
2893  * in the graph.
2894  *
2895  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2896  * any error appears in the bfs search.
2897  */
2898 static noinline enum bfs_result
2899 check_redundant(struct held_lock *src, struct held_lock *target)
2900 {
2901         enum bfs_result ret;
2902         struct lock_list *target_entry;
2903         struct lock_list src_entry;
2904
2905         bfs_init_root(&src_entry, src);
2906         /*
2907          * Special setup for check_redundant().
2908          *
2909          * To report redundant, we need to find a strong dependency path that
2910          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2911          * we need to let __bfs() only search for a path starting at a -(E*)->,
2912          * we achieve this by setting the initial node's ->only_xr to true in
2913          * that case. And if <prev> is S, we set initial ->only_xr to false
2914          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2915          */
2916         src_entry.only_xr = src->read == 0;
2917
2918         debug_atomic_inc(nr_redundant_checks);
2919
2920         /*
2921          * Note: we skip local_lock() for redundant check, because as the
2922          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2923          * the same.
2924          */
2925         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2926
2927         if (ret == BFS_RMATCH)
2928                 debug_atomic_inc(nr_redundant);
2929
2930         return ret;
2931 }
2932
2933 #else
2934
2935 static inline enum bfs_result
2936 check_redundant(struct held_lock *src, struct held_lock *target)
2937 {
2938         return BFS_RNOMATCH;
2939 }
2940
2941 #endif
2942
2943 static void inc_chains(int irq_context)
2944 {
2945         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2946                 nr_hardirq_chains++;
2947         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2948                 nr_softirq_chains++;
2949         else
2950                 nr_process_chains++;
2951 }
2952
2953 static void dec_chains(int irq_context)
2954 {
2955         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2956                 nr_hardirq_chains--;
2957         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2958                 nr_softirq_chains--;
2959         else
2960                 nr_process_chains--;
2961 }
2962
2963 static void
2964 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2965 {
2966         struct lock_class *next = hlock_class(nxt);
2967         struct lock_class *prev = hlock_class(prv);
2968
2969         printk(" Possible unsafe locking scenario:\n\n");
2970         printk("       CPU0\n");
2971         printk("       ----\n");
2972         printk("  lock(");
2973         __print_lock_name(prv, prev);
2974         printk(KERN_CONT ");\n");
2975         printk("  lock(");
2976         __print_lock_name(nxt, next);
2977         printk(KERN_CONT ");\n");
2978         printk("\n *** DEADLOCK ***\n\n");
2979         printk(" May be due to missing lock nesting notation\n\n");
2980 }
2981
2982 static void
2983 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2984                    struct held_lock *next)
2985 {
2986         struct lock_class *class = hlock_class(prev);
2987
2988         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2989                 return;
2990
2991         pr_warn("\n");
2992         pr_warn("============================================\n");
2993         pr_warn("WARNING: possible recursive locking detected\n");
2994         print_kernel_ident();
2995         pr_warn("--------------------------------------------\n");
2996         pr_warn("%s/%d is trying to acquire lock:\n",
2997                 curr->comm, task_pid_nr(curr));
2998         print_lock(next);
2999         pr_warn("\nbut task is already holding lock:\n");
3000         print_lock(prev);
3001
3002         if (class->cmp_fn) {
3003                 pr_warn("and the lock comparison function returns %i:\n",
3004                         class->cmp_fn(prev->instance, next->instance));
3005         }
3006
3007         pr_warn("\nother info that might help us debug this:\n");
3008         print_deadlock_scenario(next, prev);
3009         lockdep_print_held_locks(curr);
3010
3011         pr_warn("\nstack backtrace:\n");
3012         dump_stack();
3013 }
3014
3015 /*
3016  * Check whether we are holding such a class already.
3017  *
3018  * (Note that this has to be done separately, because the graph cannot
3019  * detect such classes of deadlocks.)
3020  *
3021  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3022  * lock class is held but nest_lock is also held, i.e. we rely on the
3023  * nest_lock to avoid the deadlock.
3024  */
3025 static int
3026 check_deadlock(struct task_struct *curr, struct held_lock *next)
3027 {
3028         struct lock_class *class;
3029         struct held_lock *prev;
3030         struct held_lock *nest = NULL;
3031         int i;
3032
3033         for (i = 0; i < curr->lockdep_depth; i++) {
3034                 prev = curr->held_locks + i;
3035
3036                 if (prev->instance == next->nest_lock)
3037                         nest = prev;
3038
3039                 if (hlock_class(prev) != hlock_class(next))
3040                         continue;
3041
3042                 /*
3043                  * Allow read-after-read recursion of the same
3044                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
3045                  */
3046                 if ((next->read == 2) && prev->read)
3047                         continue;
3048
3049                 class = hlock_class(prev);
3050
3051                 if (class->cmp_fn &&
3052                     class->cmp_fn(prev->instance, next->instance) < 0)
3053                         continue;
3054
3055                 /*
3056                  * We're holding the nest_lock, which serializes this lock's
3057                  * nesting behaviour.
3058                  */
3059                 if (nest)
3060                         return 2;
3061
3062                 print_deadlock_bug(curr, prev, next);
3063                 return 0;
3064         }
3065         return 1;
3066 }
3067
3068 /*
3069  * There was a chain-cache miss, and we are about to add a new dependency
3070  * to a previous lock. We validate the following rules:
3071  *
3072  *  - would the adding of the <prev> -> <next> dependency create a
3073  *    circular dependency in the graph? [== circular deadlock]
3074  *
3075  *  - does the new prev->next dependency connect any hardirq-safe lock
3076  *    (in the full backwards-subgraph starting at <prev>) with any
3077  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3078  *    <next>)? [== illegal lock inversion with hardirq contexts]
3079  *
3080  *  - does the new prev->next dependency connect any softirq-safe lock
3081  *    (in the full backwards-subgraph starting at <prev>) with any
3082  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3083  *    <next>)? [== illegal lock inversion with softirq contexts]
3084  *
3085  * any of these scenarios could lead to a deadlock.
3086  *
3087  * Then if all the validations pass, we add the forwards and backwards
3088  * dependency.
3089  */
3090 static int
3091 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3092                struct held_lock *next, u16 distance,
3093                struct lock_trace **const trace)
3094 {
3095         struct lock_list *entry;
3096         enum bfs_result ret;
3097
3098         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3099                 /*
3100                  * The warning statements below may trigger a use-after-free
3101                  * of the class name. It is better to trigger a use-after free
3102                  * and to have the class name most of the time instead of not
3103                  * having the class name available.
3104                  */
3105                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3106                           "Detected use-after-free of lock class %px/%s\n",
3107                           hlock_class(prev),
3108                           hlock_class(prev)->name);
3109                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3110                           "Detected use-after-free of lock class %px/%s\n",
3111                           hlock_class(next),
3112                           hlock_class(next)->name);
3113                 return 2;
3114         }
3115
3116         if (prev->class_idx == next->class_idx) {
3117                 struct lock_class *class = hlock_class(prev);
3118
3119                 if (class->cmp_fn &&
3120                     class->cmp_fn(prev->instance, next->instance) < 0)
3121                         return 2;
3122         }
3123
3124         /*
3125          * Prove that the new <prev> -> <next> dependency would not
3126          * create a circular dependency in the graph. (We do this by
3127          * a breadth-first search into the graph starting at <next>,
3128          * and check whether we can reach <prev>.)
3129          *
3130          * The search is limited by the size of the circular queue (i.e.,
3131          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3132          * in the graph whose neighbours are to be checked.
3133          */
3134         ret = check_noncircular(next, prev, trace);
3135         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3136                 return 0;
3137
3138         if (!check_irq_usage(curr, prev, next))
3139                 return 0;
3140
3141         /*
3142          * Is the <prev> -> <next> dependency already present?
3143          *
3144          * (this may occur even though this is a new chain: consider
3145          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3146          *  chains - the second one will be new, but L1 already has
3147          *  L2 added to its dependency list, due to the first chain.)
3148          */
3149         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3150                 if (entry->class == hlock_class(next)) {
3151                         if (distance == 1)
3152                                 entry->distance = 1;
3153                         entry->dep |= calc_dep(prev, next);
3154
3155                         /*
3156                          * Also, update the reverse dependency in @next's
3157                          * ->locks_before list.
3158                          *
3159                          *  Here we reuse @entry as the cursor, which is fine
3160                          *  because we won't go to the next iteration of the
3161                          *  outer loop:
3162                          *
3163                          *  For normal cases, we return in the inner loop.
3164                          *
3165                          *  If we fail to return, we have inconsistency, i.e.
3166                          *  <prev>::locks_after contains <next> while
3167                          *  <next>::locks_before doesn't contain <prev>. In
3168                          *  that case, we return after the inner and indicate
3169                          *  something is wrong.
3170                          */
3171                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3172                                 if (entry->class == hlock_class(prev)) {
3173                                         if (distance == 1)
3174                                                 entry->distance = 1;
3175                                         entry->dep |= calc_depb(prev, next);
3176                                         return 1;
3177                                 }
3178                         }
3179
3180                         /* <prev> is not found in <next>::locks_before */
3181                         return 0;
3182                 }
3183         }
3184
3185         /*
3186          * Is the <prev> -> <next> link redundant?
3187          */
3188         ret = check_redundant(prev, next);
3189         if (bfs_error(ret))
3190                 return 0;
3191         else if (ret == BFS_RMATCH)
3192                 return 2;
3193
3194         if (!*trace) {
3195                 *trace = save_trace();
3196                 if (!*trace)
3197                         return 0;
3198         }
3199
3200         /*
3201          * Ok, all validations passed, add the new lock
3202          * to the previous lock's dependency list:
3203          */
3204         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3205                                &hlock_class(prev)->locks_after, distance,
3206                                calc_dep(prev, next), *trace);
3207
3208         if (!ret)
3209                 return 0;
3210
3211         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3212                                &hlock_class(next)->locks_before, distance,
3213                                calc_depb(prev, next), *trace);
3214         if (!ret)
3215                 return 0;
3216
3217         return 2;
3218 }
3219
3220 /*
3221  * Add the dependency to all directly-previous locks that are 'relevant'.
3222  * The ones that are relevant are (in increasing distance from curr):
3223  * all consecutive trylock entries and the final non-trylock entry - or
3224  * the end of this context's lock-chain - whichever comes first.
3225  */
3226 static int
3227 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3228 {
3229         struct lock_trace *trace = NULL;
3230         int depth = curr->lockdep_depth;
3231         struct held_lock *hlock;
3232
3233         /*
3234          * Debugging checks.
3235          *
3236          * Depth must not be zero for a non-head lock:
3237          */
3238         if (!depth)
3239                 goto out_bug;
3240         /*
3241          * At least two relevant locks must exist for this
3242          * to be a head:
3243          */
3244         if (curr->held_locks[depth].irq_context !=
3245                         curr->held_locks[depth-1].irq_context)
3246                 goto out_bug;
3247
3248         for (;;) {
3249                 u16 distance = curr->lockdep_depth - depth + 1;
3250                 hlock = curr->held_locks + depth - 1;
3251
3252                 if (hlock->check) {
3253                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3254                         if (!ret)
3255                                 return 0;
3256
3257                         /*
3258                          * Stop after the first non-trylock entry,
3259                          * as non-trylock entries have added their
3260                          * own direct dependencies already, so this
3261                          * lock is connected to them indirectly:
3262                          */
3263                         if (!hlock->trylock)
3264                                 break;
3265                 }
3266
3267                 depth--;
3268                 /*
3269                  * End of lock-stack?
3270                  */
3271                 if (!depth)
3272                         break;
3273                 /*
3274                  * Stop the search if we cross into another context:
3275                  */
3276                 if (curr->held_locks[depth].irq_context !=
3277                                 curr->held_locks[depth-1].irq_context)
3278                         break;
3279         }
3280         return 1;
3281 out_bug:
3282         if (!debug_locks_off_graph_unlock())
3283                 return 0;
3284
3285         /*
3286          * Clearly we all shouldn't be here, but since we made it we
3287          * can reliable say we messed up our state. See the above two
3288          * gotos for reasons why we could possibly end up here.
3289          */
3290         WARN_ON(1);
3291
3292         return 0;
3293 }
3294
3295 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3296 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3297 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3298 unsigned long nr_zapped_lock_chains;
3299 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3300 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3301 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3302
3303 /*
3304  * The first 2 chain_hlocks entries in the chain block in the bucket
3305  * list contains the following meta data:
3306  *
3307  *   entry[0]:
3308  *     Bit    15 - always set to 1 (it is not a class index)
3309  *     Bits 0-14 - upper 15 bits of the next block index
3310  *   entry[1]    - lower 16 bits of next block index
3311  *
3312  * A next block index of all 1 bits means it is the end of the list.
3313  *
3314  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3315  * the chain block size:
3316  *
3317  *   entry[2] - upper 16 bits of the chain block size
3318  *   entry[3] - lower 16 bits of the chain block size
3319  */
3320 #define MAX_CHAIN_BUCKETS       16
3321 #define CHAIN_BLK_FLAG          (1U << 15)
3322 #define CHAIN_BLK_LIST_END      0xFFFFU
3323
3324 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3325
3326 static inline int size_to_bucket(int size)
3327 {
3328         if (size > MAX_CHAIN_BUCKETS)
3329                 return 0;
3330
3331         return size - 1;
3332 }
3333
3334 /*
3335  * Iterate all the chain blocks in a bucket.
3336  */
3337 #define for_each_chain_block(bucket, prev, curr)                \
3338         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3339              (curr) >= 0;                                       \
3340              (prev) = (curr), (curr) = chain_block_next(curr))
3341
3342 /*
3343  * next block or -1
3344  */
3345 static inline int chain_block_next(int offset)
3346 {
3347         int next = chain_hlocks[offset];
3348
3349         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3350
3351         if (next == CHAIN_BLK_LIST_END)
3352                 return -1;
3353
3354         next &= ~CHAIN_BLK_FLAG;
3355         next <<= 16;
3356         next |= chain_hlocks[offset + 1];
3357
3358         return next;
3359 }
3360
3361 /*
3362  * bucket-0 only
3363  */
3364 static inline int chain_block_size(int offset)
3365 {
3366         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3367 }
3368
3369 static inline void init_chain_block(int offset, int next, int bucket, int size)
3370 {
3371         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3372         chain_hlocks[offset + 1] = (u16)next;
3373
3374         if (size && !bucket) {
3375                 chain_hlocks[offset + 2] = size >> 16;
3376                 chain_hlocks[offset + 3] = (u16)size;
3377         }
3378 }
3379
3380 static inline void add_chain_block(int offset, int size)
3381 {
3382         int bucket = size_to_bucket(size);
3383         int next = chain_block_buckets[bucket];
3384         int prev, curr;
3385
3386         if (unlikely(size < 2)) {
3387                 /*
3388                  * We can't store single entries on the freelist. Leak them.
3389                  *
3390                  * One possible way out would be to uniquely mark them, other
3391                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3392                  * the block before it is re-added.
3393                  */
3394                 if (size)
3395                         nr_lost_chain_hlocks++;
3396                 return;
3397         }
3398
3399         nr_free_chain_hlocks += size;
3400         if (!bucket) {
3401                 nr_large_chain_blocks++;
3402
3403                 /*
3404                  * Variable sized, sort large to small.
3405                  */
3406                 for_each_chain_block(0, prev, curr) {
3407                         if (size >= chain_block_size(curr))
3408                                 break;
3409                 }
3410                 init_chain_block(offset, curr, 0, size);
3411                 if (prev < 0)
3412                         chain_block_buckets[0] = offset;
3413                 else
3414                         init_chain_block(prev, offset, 0, 0);
3415                 return;
3416         }
3417         /*
3418          * Fixed size, add to head.
3419          */
3420         init_chain_block(offset, next, bucket, size);
3421         chain_block_buckets[bucket] = offset;
3422 }
3423
3424 /*
3425  * Only the first block in the list can be deleted.
3426  *
3427  * For the variable size bucket[0], the first block (the largest one) is
3428  * returned, broken up and put back into the pool. So if a chain block of
3429  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3430  * queued up after the primordial chain block and never be used until the
3431  * hlock entries in the primordial chain block is almost used up. That
3432  * causes fragmentation and reduce allocation efficiency. That can be
3433  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3434  */
3435 static inline void del_chain_block(int bucket, int size, int next)
3436 {
3437         nr_free_chain_hlocks -= size;
3438         chain_block_buckets[bucket] = next;
3439
3440         if (!bucket)
3441                 nr_large_chain_blocks--;
3442 }
3443
3444 static void init_chain_block_buckets(void)
3445 {
3446         int i;
3447
3448         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3449                 chain_block_buckets[i] = -1;
3450
3451         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3452 }
3453
3454 /*
3455  * Return offset of a chain block of the right size or -1 if not found.
3456  *
3457  * Fairly simple worst-fit allocator with the addition of a number of size
3458  * specific free lists.
3459  */
3460 static int alloc_chain_hlocks(int req)
3461 {
3462         int bucket, curr, size;
3463
3464         /*
3465          * We rely on the MSB to act as an escape bit to denote freelist
3466          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3467          */
3468         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3469
3470         init_data_structures_once();
3471
3472         if (nr_free_chain_hlocks < req)
3473                 return -1;
3474
3475         /*
3476          * We require a minimum of 2 (u16) entries to encode a freelist
3477          * 'pointer'.
3478          */
3479         req = max(req, 2);
3480         bucket = size_to_bucket(req);
3481         curr = chain_block_buckets[bucket];
3482
3483         if (bucket) {
3484                 if (curr >= 0) {
3485                         del_chain_block(bucket, req, chain_block_next(curr));
3486                         return curr;
3487                 }
3488                 /* Try bucket 0 */
3489                 curr = chain_block_buckets[0];
3490         }
3491
3492         /*
3493          * The variable sized freelist is sorted by size; the first entry is
3494          * the largest. Use it if it fits.
3495          */
3496         if (curr >= 0) {
3497                 size = chain_block_size(curr);
3498                 if (likely(size >= req)) {
3499                         del_chain_block(0, size, chain_block_next(curr));
3500                         if (size > req)
3501                                 add_chain_block(curr + req, size - req);
3502                         return curr;
3503                 }
3504         }
3505
3506         /*
3507          * Last resort, split a block in a larger sized bucket.
3508          */
3509         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3510                 bucket = size_to_bucket(size);
3511                 curr = chain_block_buckets[bucket];
3512                 if (curr < 0)
3513                         continue;
3514
3515                 del_chain_block(bucket, size, chain_block_next(curr));
3516                 add_chain_block(curr + req, size - req);
3517                 return curr;
3518         }
3519
3520         return -1;
3521 }
3522
3523 static inline void free_chain_hlocks(int base, int size)
3524 {
3525         add_chain_block(base, max(size, 2));
3526 }
3527
3528 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3529 {
3530         u16 chain_hlock = chain_hlocks[chain->base + i];
3531         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3532
3533         return lock_classes + class_idx;
3534 }
3535
3536 /*
3537  * Returns the index of the first held_lock of the current chain
3538  */
3539 static inline int get_first_held_lock(struct task_struct *curr,
3540                                         struct held_lock *hlock)
3541 {
3542         int i;
3543         struct held_lock *hlock_curr;
3544
3545         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3546                 hlock_curr = curr->held_locks + i;
3547                 if (hlock_curr->irq_context != hlock->irq_context)
3548                         break;
3549
3550         }
3551
3552         return ++i;
3553 }
3554
3555 #ifdef CONFIG_DEBUG_LOCKDEP
3556 /*
3557  * Returns the next chain_key iteration
3558  */
3559 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3560 {
3561         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3562
3563         printk(" hlock_id:%d -> chain_key:%016Lx",
3564                 (unsigned int)hlock_id,
3565                 (unsigned long long)new_chain_key);
3566         return new_chain_key;
3567 }
3568
3569 static void
3570 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3571 {
3572         struct held_lock *hlock;
3573         u64 chain_key = INITIAL_CHAIN_KEY;
3574         int depth = curr->lockdep_depth;
3575         int i = get_first_held_lock(curr, hlock_next);
3576
3577         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3578                 hlock_next->irq_context);
3579         for (; i < depth; i++) {
3580                 hlock = curr->held_locks + i;
3581                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3582
3583                 print_lock(hlock);
3584         }
3585
3586         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3587         print_lock(hlock_next);
3588 }
3589
3590 static void print_chain_keys_chain(struct lock_chain *chain)
3591 {
3592         int i;
3593         u64 chain_key = INITIAL_CHAIN_KEY;
3594         u16 hlock_id;
3595
3596         printk("depth: %u\n", chain->depth);
3597         for (i = 0; i < chain->depth; i++) {
3598                 hlock_id = chain_hlocks[chain->base + i];
3599                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3600
3601                 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3602                 printk("\n");
3603         }
3604 }
3605
3606 static void print_collision(struct task_struct *curr,
3607                         struct held_lock *hlock_next,
3608                         struct lock_chain *chain)
3609 {
3610         pr_warn("\n");
3611         pr_warn("============================\n");
3612         pr_warn("WARNING: chain_key collision\n");
3613         print_kernel_ident();
3614         pr_warn("----------------------------\n");
3615         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3616         pr_warn("Hash chain already cached but the contents don't match!\n");
3617
3618         pr_warn("Held locks:");
3619         print_chain_keys_held_locks(curr, hlock_next);
3620
3621         pr_warn("Locks in cached chain:");
3622         print_chain_keys_chain(chain);
3623
3624         pr_warn("\nstack backtrace:\n");
3625         dump_stack();
3626 }
3627 #endif
3628
3629 /*
3630  * Checks whether the chain and the current held locks are consistent
3631  * in depth and also in content. If they are not it most likely means
3632  * that there was a collision during the calculation of the chain_key.
3633  * Returns: 0 not passed, 1 passed
3634  */
3635 static int check_no_collision(struct task_struct *curr,
3636                         struct held_lock *hlock,
3637                         struct lock_chain *chain)
3638 {
3639 #ifdef CONFIG_DEBUG_LOCKDEP
3640         int i, j, id;
3641
3642         i = get_first_held_lock(curr, hlock);
3643
3644         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3645                 print_collision(curr, hlock, chain);
3646                 return 0;
3647         }
3648
3649         for (j = 0; j < chain->depth - 1; j++, i++) {
3650                 id = hlock_id(&curr->held_locks[i]);
3651
3652                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3653                         print_collision(curr, hlock, chain);
3654                         return 0;
3655                 }
3656         }
3657 #endif
3658         return 1;
3659 }
3660
3661 /*
3662  * Given an index that is >= -1, return the index of the next lock chain.
3663  * Return -2 if there is no next lock chain.
3664  */
3665 long lockdep_next_lockchain(long i)
3666 {
3667         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3668         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3669 }
3670
3671 unsigned long lock_chain_count(void)
3672 {
3673         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3674 }
3675
3676 /* Must be called with the graph lock held. */
3677 static struct lock_chain *alloc_lock_chain(void)
3678 {
3679         int idx = find_first_zero_bit(lock_chains_in_use,
3680                                       ARRAY_SIZE(lock_chains));
3681
3682         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3683                 return NULL;
3684         __set_bit(idx, lock_chains_in_use);
3685         return lock_chains + idx;
3686 }
3687
3688 /*
3689  * Adds a dependency chain into chain hashtable. And must be called with
3690  * graph_lock held.
3691  *
3692  * Return 0 if fail, and graph_lock is released.
3693  * Return 1 if succeed, with graph_lock held.
3694  */
3695 static inline int add_chain_cache(struct task_struct *curr,
3696                                   struct held_lock *hlock,
3697                                   u64 chain_key)
3698 {
3699         struct hlist_head *hash_head = chainhashentry(chain_key);
3700         struct lock_chain *chain;
3701         int i, j;
3702
3703         /*
3704          * The caller must hold the graph lock, ensure we've got IRQs
3705          * disabled to make this an IRQ-safe lock.. for recursion reasons
3706          * lockdep won't complain about its own locking errors.
3707          */
3708         if (lockdep_assert_locked())
3709                 return 0;
3710
3711         chain = alloc_lock_chain();
3712         if (!chain) {
3713                 if (!debug_locks_off_graph_unlock())
3714                         return 0;
3715
3716                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3717                 dump_stack();
3718                 return 0;
3719         }
3720         chain->chain_key = chain_key;
3721         chain->irq_context = hlock->irq_context;
3722         i = get_first_held_lock(curr, hlock);
3723         chain->depth = curr->lockdep_depth + 1 - i;
3724
3725         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3726         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3727         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3728
3729         j = alloc_chain_hlocks(chain->depth);
3730         if (j < 0) {
3731                 if (!debug_locks_off_graph_unlock())
3732                         return 0;
3733
3734                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3735                 dump_stack();
3736                 return 0;
3737         }
3738
3739         chain->base = j;
3740         for (j = 0; j < chain->depth - 1; j++, i++) {
3741                 int lock_id = hlock_id(curr->held_locks + i);
3742
3743                 chain_hlocks[chain->base + j] = lock_id;
3744         }
3745         chain_hlocks[chain->base + j] = hlock_id(hlock);
3746         hlist_add_head_rcu(&chain->entry, hash_head);
3747         debug_atomic_inc(chain_lookup_misses);
3748         inc_chains(chain->irq_context);
3749
3750         return 1;
3751 }
3752
3753 /*
3754  * Look up a dependency chain. Must be called with either the graph lock or
3755  * the RCU read lock held.
3756  */
3757 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3758 {
3759         struct hlist_head *hash_head = chainhashentry(chain_key);
3760         struct lock_chain *chain;
3761
3762         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3763                 if (READ_ONCE(chain->chain_key) == chain_key) {
3764                         debug_atomic_inc(chain_lookup_hits);
3765                         return chain;
3766                 }
3767         }
3768         return NULL;
3769 }
3770
3771 /*
3772  * If the key is not present yet in dependency chain cache then
3773  * add it and return 1 - in this case the new dependency chain is
3774  * validated. If the key is already hashed, return 0.
3775  * (On return with 1 graph_lock is held.)
3776  */
3777 static inline int lookup_chain_cache_add(struct task_struct *curr,
3778                                          struct held_lock *hlock,
3779                                          u64 chain_key)
3780 {
3781         struct lock_class *class = hlock_class(hlock);
3782         struct lock_chain *chain = lookup_chain_cache(chain_key);
3783
3784         if (chain) {
3785 cache_hit:
3786                 if (!check_no_collision(curr, hlock, chain))
3787                         return 0;
3788
3789                 if (very_verbose(class)) {
3790                         printk("\nhash chain already cached, key: "
3791                                         "%016Lx tail class: [%px] %s\n",
3792                                         (unsigned long long)chain_key,
3793                                         class->key, class->name);
3794                 }
3795
3796                 return 0;
3797         }
3798
3799         if (very_verbose(class)) {
3800                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3801                         (unsigned long long)chain_key, class->key, class->name);
3802         }
3803
3804         if (!graph_lock())
3805                 return 0;
3806
3807         /*
3808          * We have to walk the chain again locked - to avoid duplicates:
3809          */
3810         chain = lookup_chain_cache(chain_key);
3811         if (chain) {
3812                 graph_unlock();
3813                 goto cache_hit;
3814         }
3815
3816         if (!add_chain_cache(curr, hlock, chain_key))
3817                 return 0;
3818
3819         return 1;
3820 }
3821
3822 static int validate_chain(struct task_struct *curr,
3823                           struct held_lock *hlock,
3824                           int chain_head, u64 chain_key)
3825 {
3826         /*
3827          * Trylock needs to maintain the stack of held locks, but it
3828          * does not add new dependencies, because trylock can be done
3829          * in any order.
3830          *
3831          * We look up the chain_key and do the O(N^2) check and update of
3832          * the dependencies only if this is a new dependency chain.
3833          * (If lookup_chain_cache_add() return with 1 it acquires
3834          * graph_lock for us)
3835          */
3836         if (!hlock->trylock && hlock->check &&
3837             lookup_chain_cache_add(curr, hlock, chain_key)) {
3838                 /*
3839                  * Check whether last held lock:
3840                  *
3841                  * - is irq-safe, if this lock is irq-unsafe
3842                  * - is softirq-safe, if this lock is hardirq-unsafe
3843                  *
3844                  * And check whether the new lock's dependency graph
3845                  * could lead back to the previous lock:
3846                  *
3847                  * - within the current held-lock stack
3848                  * - across our accumulated lock dependency records
3849                  *
3850                  * any of these scenarios could lead to a deadlock.
3851                  */
3852                 /*
3853                  * The simple case: does the current hold the same lock
3854                  * already?
3855                  */
3856                 int ret = check_deadlock(curr, hlock);
3857
3858                 if (!ret)
3859                         return 0;
3860                 /*
3861                  * Add dependency only if this lock is not the head
3862                  * of the chain, and if the new lock introduces no more
3863                  * lock dependency (because we already hold a lock with the
3864                  * same lock class) nor deadlock (because the nest_lock
3865                  * serializes nesting locks), see the comments for
3866                  * check_deadlock().
3867                  */
3868                 if (!chain_head && ret != 2) {
3869                         if (!check_prevs_add(curr, hlock))
3870                                 return 0;
3871                 }
3872
3873                 graph_unlock();
3874         } else {
3875                 /* after lookup_chain_cache_add(): */
3876                 if (unlikely(!debug_locks))
3877                         return 0;
3878         }
3879
3880         return 1;
3881 }
3882 #else
3883 static inline int validate_chain(struct task_struct *curr,
3884                                  struct held_lock *hlock,
3885                                  int chain_head, u64 chain_key)
3886 {
3887         return 1;
3888 }
3889
3890 static void init_chain_block_buckets(void)      { }
3891 #endif /* CONFIG_PROVE_LOCKING */
3892
3893 /*
3894  * We are building curr_chain_key incrementally, so double-check
3895  * it from scratch, to make sure that it's done correctly:
3896  */
3897 static void check_chain_key(struct task_struct *curr)
3898 {
3899 #ifdef CONFIG_DEBUG_LOCKDEP
3900         struct held_lock *hlock, *prev_hlock = NULL;
3901         unsigned int i;
3902         u64 chain_key = INITIAL_CHAIN_KEY;
3903
3904         for (i = 0; i < curr->lockdep_depth; i++) {
3905                 hlock = curr->held_locks + i;
3906                 if (chain_key != hlock->prev_chain_key) {
3907                         debug_locks_off();
3908                         /*
3909                          * We got mighty confused, our chain keys don't match
3910                          * with what we expect, someone trample on our task state?
3911                          */
3912                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3913                                 curr->lockdep_depth, i,
3914                                 (unsigned long long)chain_key,
3915                                 (unsigned long long)hlock->prev_chain_key);
3916                         return;
3917                 }
3918
3919                 /*
3920                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3921                  * it registered lock class index?
3922                  */
3923                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3924                         return;
3925
3926                 if (prev_hlock && (prev_hlock->irq_context !=
3927                                                         hlock->irq_context))
3928                         chain_key = INITIAL_CHAIN_KEY;
3929                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3930                 prev_hlock = hlock;
3931         }
3932         if (chain_key != curr->curr_chain_key) {
3933                 debug_locks_off();
3934                 /*
3935                  * More smoking hash instead of calculating it, damn see these
3936                  * numbers float.. I bet that a pink elephant stepped on my memory.
3937                  */
3938                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3939                         curr->lockdep_depth, i,
3940                         (unsigned long long)chain_key,
3941                         (unsigned long long)curr->curr_chain_key);
3942         }
3943 #endif
3944 }
3945
3946 #ifdef CONFIG_PROVE_LOCKING
3947 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3948                      enum lock_usage_bit new_bit);
3949
3950 static void print_usage_bug_scenario(struct held_lock *lock)
3951 {
3952         struct lock_class *class = hlock_class(lock);
3953
3954         printk(" Possible unsafe locking scenario:\n\n");
3955         printk("       CPU0\n");
3956         printk("       ----\n");
3957         printk("  lock(");
3958         __print_lock_name(lock, class);
3959         printk(KERN_CONT ");\n");
3960         printk("  <Interrupt>\n");
3961         printk("    lock(");
3962         __print_lock_name(lock, class);
3963         printk(KERN_CONT ");\n");
3964         printk("\n *** DEADLOCK ***\n\n");
3965 }
3966
3967 static void
3968 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3969                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3970 {
3971         if (!debug_locks_off() || debug_locks_silent)
3972                 return;
3973
3974         pr_warn("\n");
3975         pr_warn("================================\n");
3976         pr_warn("WARNING: inconsistent lock state\n");
3977         print_kernel_ident();
3978         pr_warn("--------------------------------\n");
3979
3980         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3981                 usage_str[prev_bit], usage_str[new_bit]);
3982
3983         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3984                 curr->comm, task_pid_nr(curr),
3985                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3986                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3987                 lockdep_hardirqs_enabled(),
3988                 lockdep_softirqs_enabled(curr));
3989         print_lock(this);
3990
3991         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3992         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3993
3994         print_irqtrace_events(curr);
3995         pr_warn("\nother info that might help us debug this:\n");
3996         print_usage_bug_scenario(this);
3997
3998         lockdep_print_held_locks(curr);
3999
4000         pr_warn("\nstack backtrace:\n");
4001         dump_stack();
4002 }
4003
4004 /*
4005  * Print out an error if an invalid bit is set:
4006  */
4007 static inline int
4008 valid_state(struct task_struct *curr, struct held_lock *this,
4009             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4010 {
4011         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4012                 graph_unlock();
4013                 print_usage_bug(curr, this, bad_bit, new_bit);
4014                 return 0;
4015         }
4016         return 1;
4017 }
4018
4019
4020 /*
4021  * print irq inversion bug:
4022  */
4023 static void
4024 print_irq_inversion_bug(struct task_struct *curr,
4025                         struct lock_list *root, struct lock_list *other,
4026                         struct held_lock *this, int forwards,
4027                         const char *irqclass)
4028 {
4029         struct lock_list *entry = other;
4030         struct lock_list *middle = NULL;
4031         int depth;
4032
4033         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4034                 return;
4035
4036         pr_warn("\n");
4037         pr_warn("========================================================\n");
4038         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4039         print_kernel_ident();
4040         pr_warn("--------------------------------------------------------\n");
4041         pr_warn("%s/%d just changed the state of lock:\n",
4042                 curr->comm, task_pid_nr(curr));
4043         print_lock(this);
4044         if (forwards)
4045                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4046         else
4047                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4048         print_lock_name(NULL, other->class);
4049         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4050
4051         pr_warn("\nother info that might help us debug this:\n");
4052
4053         /* Find a middle lock (if one exists) */
4054         depth = get_lock_depth(other);
4055         do {
4056                 if (depth == 0 && (entry != root)) {
4057                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4058                         break;
4059                 }
4060                 middle = entry;
4061                 entry = get_lock_parent(entry);
4062                 depth--;
4063         } while (entry && entry != root && (depth >= 0));
4064         if (forwards)
4065                 print_irq_lock_scenario(root, other,
4066                         middle ? middle->class : root->class, other->class);
4067         else
4068                 print_irq_lock_scenario(other, root,
4069                         middle ? middle->class : other->class, root->class);
4070
4071         lockdep_print_held_locks(curr);
4072
4073         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4074         root->trace = save_trace();
4075         if (!root->trace)
4076                 return;
4077         print_shortest_lock_dependencies(other, root);
4078
4079         pr_warn("\nstack backtrace:\n");
4080         dump_stack();
4081 }
4082
4083 /*
4084  * Prove that in the forwards-direction subgraph starting at <this>
4085  * there is no lock matching <mask>:
4086  */
4087 static int
4088 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4089                      enum lock_usage_bit bit)
4090 {
4091         enum bfs_result ret;
4092         struct lock_list root;
4093         struct lock_list *target_entry;
4094         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4095         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4096
4097         bfs_init_root(&root, this);
4098         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4099         if (bfs_error(ret)) {
4100                 print_bfs_bug(ret);
4101                 return 0;
4102         }
4103         if (ret == BFS_RNOMATCH)
4104                 return 1;
4105
4106         /* Check whether write or read usage is the match */
4107         if (target_entry->class->usage_mask & lock_flag(bit)) {
4108                 print_irq_inversion_bug(curr, &root, target_entry,
4109                                         this, 1, state_name(bit));
4110         } else {
4111                 print_irq_inversion_bug(curr, &root, target_entry,
4112                                         this, 1, state_name(read_bit));
4113         }
4114
4115         return 0;
4116 }
4117
4118 /*
4119  * Prove that in the backwards-direction subgraph starting at <this>
4120  * there is no lock matching <mask>:
4121  */
4122 static int
4123 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4124                       enum lock_usage_bit bit)
4125 {
4126         enum bfs_result ret;
4127         struct lock_list root;
4128         struct lock_list *target_entry;
4129         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4130         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4131
4132         bfs_init_rootb(&root, this);
4133         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4134         if (bfs_error(ret)) {
4135                 print_bfs_bug(ret);
4136                 return 0;
4137         }
4138         if (ret == BFS_RNOMATCH)
4139                 return 1;
4140
4141         /* Check whether write or read usage is the match */
4142         if (target_entry->class->usage_mask & lock_flag(bit)) {
4143                 print_irq_inversion_bug(curr, &root, target_entry,
4144                                         this, 0, state_name(bit));
4145         } else {
4146                 print_irq_inversion_bug(curr, &root, target_entry,
4147                                         this, 0, state_name(read_bit));
4148         }
4149
4150         return 0;
4151 }
4152
4153 void print_irqtrace_events(struct task_struct *curr)
4154 {
4155         const struct irqtrace_events *trace = &curr->irqtrace;
4156
4157         printk("irq event stamp: %u\n", trace->irq_events);
4158         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4159                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4160                 (void *)trace->hardirq_enable_ip);
4161         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4162                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4163                 (void *)trace->hardirq_disable_ip);
4164         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4165                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4166                 (void *)trace->softirq_enable_ip);
4167         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4168                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4169                 (void *)trace->softirq_disable_ip);
4170 }
4171
4172 static int HARDIRQ_verbose(struct lock_class *class)
4173 {
4174 #if HARDIRQ_VERBOSE
4175         return class_filter(class);
4176 #endif
4177         return 0;
4178 }
4179
4180 static int SOFTIRQ_verbose(struct lock_class *class)
4181 {
4182 #if SOFTIRQ_VERBOSE
4183         return class_filter(class);
4184 #endif
4185         return 0;
4186 }
4187
4188 static int (*state_verbose_f[])(struct lock_class *class) = {
4189 #define LOCKDEP_STATE(__STATE) \
4190         __STATE##_verbose,
4191 #include "lockdep_states.h"
4192 #undef LOCKDEP_STATE
4193 };
4194
4195 static inline int state_verbose(enum lock_usage_bit bit,
4196                                 struct lock_class *class)
4197 {
4198         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4199 }
4200
4201 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4202                              enum lock_usage_bit bit, const char *name);
4203
4204 static int
4205 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4206                 enum lock_usage_bit new_bit)
4207 {
4208         int excl_bit = exclusive_bit(new_bit);
4209         int read = new_bit & LOCK_USAGE_READ_MASK;
4210         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4211
4212         /*
4213          * Validate that this particular lock does not have conflicting
4214          * usage states.
4215          */
4216         if (!valid_state(curr, this, new_bit, excl_bit))
4217                 return 0;
4218
4219         /*
4220          * Check for read in write conflicts
4221          */
4222         if (!read && !valid_state(curr, this, new_bit,
4223                                   excl_bit + LOCK_USAGE_READ_MASK))
4224                 return 0;
4225
4226
4227         /*
4228          * Validate that the lock dependencies don't have conflicting usage
4229          * states.
4230          */
4231         if (dir) {
4232                 /*
4233                  * mark ENABLED has to look backwards -- to ensure no dependee
4234                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4235                  */
4236                 if (!check_usage_backwards(curr, this, excl_bit))
4237                         return 0;
4238         } else {
4239                 /*
4240                  * mark USED_IN has to look forwards -- to ensure no dependency
4241                  * has ENABLED state, which would allow recursion deadlocks.
4242                  */
4243                 if (!check_usage_forwards(curr, this, excl_bit))
4244                         return 0;
4245         }
4246
4247         if (state_verbose(new_bit, hlock_class(this)))
4248                 return 2;
4249
4250         return 1;
4251 }
4252
4253 /*
4254  * Mark all held locks with a usage bit:
4255  */
4256 static int
4257 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4258 {
4259         struct held_lock *hlock;
4260         int i;
4261
4262         for (i = 0; i < curr->lockdep_depth; i++) {
4263                 enum lock_usage_bit hlock_bit = base_bit;
4264                 hlock = curr->held_locks + i;
4265
4266                 if (hlock->read)
4267                         hlock_bit += LOCK_USAGE_READ_MASK;
4268
4269                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4270
4271                 if (!hlock->check)
4272                         continue;
4273
4274                 if (!mark_lock(curr, hlock, hlock_bit))
4275                         return 0;
4276         }
4277
4278         return 1;
4279 }
4280
4281 /*
4282  * Hardirqs will be enabled:
4283  */
4284 static void __trace_hardirqs_on_caller(void)
4285 {
4286         struct task_struct *curr = current;
4287
4288         /*
4289          * We are going to turn hardirqs on, so set the
4290          * usage bit for all held locks:
4291          */
4292         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4293                 return;
4294         /*
4295          * If we have softirqs enabled, then set the usage
4296          * bit for all held locks. (disabled hardirqs prevented
4297          * this bit from being set before)
4298          */
4299         if (curr->softirqs_enabled)
4300                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4301 }
4302
4303 /**
4304  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4305  *
4306  * Invoked before a possible transition to RCU idle from exit to user or
4307  * guest mode. This ensures that all RCU operations are done before RCU
4308  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4309  * invoked to set the final state.
4310  */
4311 void lockdep_hardirqs_on_prepare(void)
4312 {
4313         if (unlikely(!debug_locks))
4314                 return;
4315
4316         /*
4317          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4318          */
4319         if (unlikely(in_nmi()))
4320                 return;
4321
4322         if (unlikely(this_cpu_read(lockdep_recursion)))
4323                 return;
4324
4325         if (unlikely(lockdep_hardirqs_enabled())) {
4326                 /*
4327                  * Neither irq nor preemption are disabled here
4328                  * so this is racy by nature but losing one hit
4329                  * in a stat is not a big deal.
4330                  */
4331                 __debug_atomic_inc(redundant_hardirqs_on);
4332                 return;
4333         }
4334
4335         /*
4336          * We're enabling irqs and according to our state above irqs weren't
4337          * already enabled, yet we find the hardware thinks they are in fact
4338          * enabled.. someone messed up their IRQ state tracing.
4339          */
4340         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4341                 return;
4342
4343         /*
4344          * See the fine text that goes along with this variable definition.
4345          */
4346         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4347                 return;
4348
4349         /*
4350          * Can't allow enabling interrupts while in an interrupt handler,
4351          * that's general bad form and such. Recursion, limited stack etc..
4352          */
4353         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4354                 return;
4355
4356         current->hardirq_chain_key = current->curr_chain_key;
4357
4358         lockdep_recursion_inc();
4359         __trace_hardirqs_on_caller();
4360         lockdep_recursion_finish();
4361 }
4362 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4363
4364 void noinstr lockdep_hardirqs_on(unsigned long ip)
4365 {
4366         struct irqtrace_events *trace = &current->irqtrace;
4367
4368         if (unlikely(!debug_locks))
4369                 return;
4370
4371         /*
4372          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4373          * tracking state and hardware state are out of sync.
4374          *
4375          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4376          * and not rely on hardware state like normal interrupts.
4377          */
4378         if (unlikely(in_nmi())) {
4379                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4380                         return;
4381
4382                 /*
4383                  * Skip:
4384                  *  - recursion check, because NMI can hit lockdep;
4385                  *  - hardware state check, because above;
4386                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4387                  */
4388                 goto skip_checks;
4389         }
4390
4391         if (unlikely(this_cpu_read(lockdep_recursion)))
4392                 return;
4393
4394         if (lockdep_hardirqs_enabled()) {
4395                 /*
4396                  * Neither irq nor preemption are disabled here
4397                  * so this is racy by nature but losing one hit
4398                  * in a stat is not a big deal.
4399                  */
4400                 __debug_atomic_inc(redundant_hardirqs_on);
4401                 return;
4402         }
4403
4404         /*
4405          * We're enabling irqs and according to our state above irqs weren't
4406          * already enabled, yet we find the hardware thinks they are in fact
4407          * enabled.. someone messed up their IRQ state tracing.
4408          */
4409         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4410                 return;
4411
4412         /*
4413          * Ensure the lock stack remained unchanged between
4414          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4415          */
4416         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4417                             current->curr_chain_key);
4418
4419 skip_checks:
4420         /* we'll do an OFF -> ON transition: */
4421         __this_cpu_write(hardirqs_enabled, 1);
4422         trace->hardirq_enable_ip = ip;
4423         trace->hardirq_enable_event = ++trace->irq_events;
4424         debug_atomic_inc(hardirqs_on_events);
4425 }
4426 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4427
4428 /*
4429  * Hardirqs were disabled:
4430  */
4431 void noinstr lockdep_hardirqs_off(unsigned long ip)
4432 {
4433         if (unlikely(!debug_locks))
4434                 return;
4435
4436         /*
4437          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4438          * they will restore the software state. This ensures the software
4439          * state is consistent inside NMIs as well.
4440          */
4441         if (in_nmi()) {
4442                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4443                         return;
4444         } else if (__this_cpu_read(lockdep_recursion))
4445                 return;
4446
4447         /*
4448          * So we're supposed to get called after you mask local IRQs, but for
4449          * some reason the hardware doesn't quite think you did a proper job.
4450          */
4451         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4452                 return;
4453
4454         if (lockdep_hardirqs_enabled()) {
4455                 struct irqtrace_events *trace = &current->irqtrace;
4456
4457                 /*
4458                  * We have done an ON -> OFF transition:
4459                  */
4460                 __this_cpu_write(hardirqs_enabled, 0);
4461                 trace->hardirq_disable_ip = ip;
4462                 trace->hardirq_disable_event = ++trace->irq_events;
4463                 debug_atomic_inc(hardirqs_off_events);
4464         } else {
4465                 debug_atomic_inc(redundant_hardirqs_off);
4466         }
4467 }
4468 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4469
4470 /*
4471  * Softirqs will be enabled:
4472  */
4473 void lockdep_softirqs_on(unsigned long ip)
4474 {
4475         struct irqtrace_events *trace = &current->irqtrace;
4476
4477         if (unlikely(!lockdep_enabled()))
4478                 return;
4479
4480         /*
4481          * We fancy IRQs being disabled here, see softirq.c, avoids
4482          * funny state and nesting things.
4483          */
4484         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4485                 return;
4486
4487         if (current->softirqs_enabled) {
4488                 debug_atomic_inc(redundant_softirqs_on);
4489                 return;
4490         }
4491
4492         lockdep_recursion_inc();
4493         /*
4494          * We'll do an OFF -> ON transition:
4495          */
4496         current->softirqs_enabled = 1;
4497         trace->softirq_enable_ip = ip;
4498         trace->softirq_enable_event = ++trace->irq_events;
4499         debug_atomic_inc(softirqs_on_events);
4500         /*
4501          * We are going to turn softirqs on, so set the
4502          * usage bit for all held locks, if hardirqs are
4503          * enabled too:
4504          */
4505         if (lockdep_hardirqs_enabled())
4506                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4507         lockdep_recursion_finish();
4508 }
4509
4510 /*
4511  * Softirqs were disabled:
4512  */
4513 void lockdep_softirqs_off(unsigned long ip)
4514 {
4515         if (unlikely(!lockdep_enabled()))
4516                 return;
4517
4518         /*
4519          * We fancy IRQs being disabled here, see softirq.c
4520          */
4521         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4522                 return;
4523
4524         if (current->softirqs_enabled) {
4525                 struct irqtrace_events *trace = &current->irqtrace;
4526
4527                 /*
4528                  * We have done an ON -> OFF transition:
4529                  */
4530                 current->softirqs_enabled = 0;
4531                 trace->softirq_disable_ip = ip;
4532                 trace->softirq_disable_event = ++trace->irq_events;
4533                 debug_atomic_inc(softirqs_off_events);
4534                 /*
4535                  * Whoops, we wanted softirqs off, so why aren't they?
4536                  */
4537                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4538         } else
4539                 debug_atomic_inc(redundant_softirqs_off);
4540 }
4541
4542 static int
4543 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4544 {
4545         if (!check)
4546                 goto lock_used;
4547
4548         /*
4549          * If non-trylock use in a hardirq or softirq context, then
4550          * mark the lock as used in these contexts:
4551          */
4552         if (!hlock->trylock) {
4553                 if (hlock->read) {
4554                         if (lockdep_hardirq_context())
4555                                 if (!mark_lock(curr, hlock,
4556                                                 LOCK_USED_IN_HARDIRQ_READ))
4557                                         return 0;
4558                         if (curr->softirq_context)
4559                                 if (!mark_lock(curr, hlock,
4560                                                 LOCK_USED_IN_SOFTIRQ_READ))
4561                                         return 0;
4562                 } else {
4563                         if (lockdep_hardirq_context())
4564                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4565                                         return 0;
4566                         if (curr->softirq_context)
4567                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4568                                         return 0;
4569                 }
4570         }
4571
4572         /*
4573          * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4574          * creates no critical section and no extra dependency can be introduced
4575          * by interrupts
4576          */
4577         if (!hlock->hardirqs_off && !hlock->sync) {
4578                 if (hlock->read) {
4579                         if (!mark_lock(curr, hlock,
4580                                         LOCK_ENABLED_HARDIRQ_READ))
4581                                 return 0;
4582                         if (curr->softirqs_enabled)
4583                                 if (!mark_lock(curr, hlock,
4584                                                 LOCK_ENABLED_SOFTIRQ_READ))
4585                                         return 0;
4586                 } else {
4587                         if (!mark_lock(curr, hlock,
4588                                         LOCK_ENABLED_HARDIRQ))
4589                                 return 0;
4590                         if (curr->softirqs_enabled)
4591                                 if (!mark_lock(curr, hlock,
4592                                                 LOCK_ENABLED_SOFTIRQ))
4593                                         return 0;
4594                 }
4595         }
4596
4597 lock_used:
4598         /* mark it as used: */
4599         if (!mark_lock(curr, hlock, LOCK_USED))
4600                 return 0;
4601
4602         return 1;
4603 }
4604
4605 static inline unsigned int task_irq_context(struct task_struct *task)
4606 {
4607         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4608                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4609 }
4610
4611 static int separate_irq_context(struct task_struct *curr,
4612                 struct held_lock *hlock)
4613 {
4614         unsigned int depth = curr->lockdep_depth;
4615
4616         /*
4617          * Keep track of points where we cross into an interrupt context:
4618          */
4619         if (depth) {
4620                 struct held_lock *prev_hlock;
4621
4622                 prev_hlock = curr->held_locks + depth-1;
4623                 /*
4624                  * If we cross into another context, reset the
4625                  * hash key (this also prevents the checking and the
4626                  * adding of the dependency to 'prev'):
4627                  */
4628                 if (prev_hlock->irq_context != hlock->irq_context)
4629                         return 1;
4630         }
4631         return 0;
4632 }
4633
4634 /*
4635  * Mark a lock with a usage bit, and validate the state transition:
4636  */
4637 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4638                              enum lock_usage_bit new_bit)
4639 {
4640         unsigned int new_mask, ret = 1;
4641
4642         if (new_bit >= LOCK_USAGE_STATES) {
4643                 DEBUG_LOCKS_WARN_ON(1);
4644                 return 0;
4645         }
4646
4647         if (new_bit == LOCK_USED && this->read)
4648                 new_bit = LOCK_USED_READ;
4649
4650         new_mask = 1 << new_bit;
4651
4652         /*
4653          * If already set then do not dirty the cacheline,
4654          * nor do any checks:
4655          */
4656         if (likely(hlock_class(this)->usage_mask & new_mask))
4657                 return 1;
4658
4659         if (!graph_lock())
4660                 return 0;
4661         /*
4662          * Make sure we didn't race:
4663          */
4664         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4665                 goto unlock;
4666
4667         if (!hlock_class(this)->usage_mask)
4668                 debug_atomic_dec(nr_unused_locks);
4669
4670         hlock_class(this)->usage_mask |= new_mask;
4671
4672         if (new_bit < LOCK_TRACE_STATES) {
4673                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4674                         return 0;
4675         }
4676
4677         if (new_bit < LOCK_USED) {
4678                 ret = mark_lock_irq(curr, this, new_bit);
4679                 if (!ret)
4680                         return 0;
4681         }
4682
4683 unlock:
4684         graph_unlock();
4685
4686         /*
4687          * We must printk outside of the graph_lock:
4688          */
4689         if (ret == 2) {
4690                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4691                 print_lock(this);
4692                 print_irqtrace_events(curr);
4693                 dump_stack();
4694         }
4695
4696         return ret;
4697 }
4698
4699 static inline short task_wait_context(struct task_struct *curr)
4700 {
4701         /*
4702          * Set appropriate wait type for the context; for IRQs we have to take
4703          * into account force_irqthread as that is implied by PREEMPT_RT.
4704          */
4705         if (lockdep_hardirq_context()) {
4706                 /*
4707                  * Check if force_irqthreads will run us threaded.
4708                  */
4709                 if (curr->hardirq_threaded || curr->irq_config)
4710                         return LD_WAIT_CONFIG;
4711
4712                 return LD_WAIT_SPIN;
4713         } else if (curr->softirq_context) {
4714                 /*
4715                  * Softirqs are always threaded.
4716                  */
4717                 return LD_WAIT_CONFIG;
4718         }
4719
4720         return LD_WAIT_MAX;
4721 }
4722
4723 static int
4724 print_lock_invalid_wait_context(struct task_struct *curr,
4725                                 struct held_lock *hlock)
4726 {
4727         short curr_inner;
4728
4729         if (!debug_locks_off())
4730                 return 0;
4731         if (debug_locks_silent)
4732                 return 0;
4733
4734         pr_warn("\n");
4735         pr_warn("=============================\n");
4736         pr_warn("[ BUG: Invalid wait context ]\n");
4737         print_kernel_ident();
4738         pr_warn("-----------------------------\n");
4739
4740         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4741         print_lock(hlock);
4742
4743         pr_warn("other info that might help us debug this:\n");
4744
4745         curr_inner = task_wait_context(curr);
4746         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4747
4748         lockdep_print_held_locks(curr);
4749
4750         pr_warn("stack backtrace:\n");
4751         dump_stack();
4752
4753         return 0;
4754 }
4755
4756 /*
4757  * Verify the wait_type context.
4758  *
4759  * This check validates we take locks in the right wait-type order; that is it
4760  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4761  * acquire spinlocks inside raw_spinlocks and the sort.
4762  *
4763  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4764  * can be taken from (pretty much) any context but also has constraints.
4765  * However when taken in a stricter environment the RCU lock does not loosen
4766  * the constraints.
4767  *
4768  * Therefore we must look for the strictest environment in the lock stack and
4769  * compare that to the lock we're trying to acquire.
4770  */
4771 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4772 {
4773         u8 next_inner = hlock_class(next)->wait_type_inner;
4774         u8 next_outer = hlock_class(next)->wait_type_outer;
4775         u8 curr_inner;
4776         int depth;
4777
4778         if (!next_inner || next->trylock)
4779                 return 0;
4780
4781         if (!next_outer)
4782                 next_outer = next_inner;
4783
4784         /*
4785          * Find start of current irq_context..
4786          */
4787         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4788                 struct held_lock *prev = curr->held_locks + depth;
4789                 if (prev->irq_context != next->irq_context)
4790                         break;
4791         }
4792         depth++;
4793
4794         curr_inner = task_wait_context(curr);
4795
4796         for (; depth < curr->lockdep_depth; depth++) {
4797                 struct held_lock *prev = curr->held_locks + depth;
4798                 struct lock_class *class = hlock_class(prev);
4799                 u8 prev_inner = class->wait_type_inner;
4800
4801                 if (prev_inner) {
4802                         /*
4803                          * We can have a bigger inner than a previous one
4804                          * when outer is smaller than inner, as with RCU.
4805                          *
4806                          * Also due to trylocks.
4807                          */
4808                         curr_inner = min(curr_inner, prev_inner);
4809
4810                         /*
4811                          * Allow override for annotations -- this is typically
4812                          * only valid/needed for code that only exists when
4813                          * CONFIG_PREEMPT_RT=n.
4814                          */
4815                         if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4816                                 curr_inner = prev_inner;
4817                 }
4818         }
4819
4820         if (next_outer > curr_inner)
4821                 return print_lock_invalid_wait_context(curr, next);
4822
4823         return 0;
4824 }
4825
4826 #else /* CONFIG_PROVE_LOCKING */
4827
4828 static inline int
4829 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4830 {
4831         return 1;
4832 }
4833
4834 static inline unsigned int task_irq_context(struct task_struct *task)
4835 {
4836         return 0;
4837 }
4838
4839 static inline int separate_irq_context(struct task_struct *curr,
4840                 struct held_lock *hlock)
4841 {
4842         return 0;
4843 }
4844
4845 static inline int check_wait_context(struct task_struct *curr,
4846                                      struct held_lock *next)
4847 {
4848         return 0;
4849 }
4850
4851 #endif /* CONFIG_PROVE_LOCKING */
4852
4853 /*
4854  * Initialize a lock instance's lock-class mapping info:
4855  */
4856 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4857                             struct lock_class_key *key, int subclass,
4858                             u8 inner, u8 outer, u8 lock_type)
4859 {
4860         int i;
4861
4862         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4863                 lock->class_cache[i] = NULL;
4864
4865 #ifdef CONFIG_LOCK_STAT
4866         lock->cpu = raw_smp_processor_id();
4867 #endif
4868
4869         /*
4870          * Can't be having no nameless bastards around this place!
4871          */
4872         if (DEBUG_LOCKS_WARN_ON(!name)) {
4873                 lock->name = "NULL";
4874                 return;
4875         }
4876
4877         lock->name = name;
4878
4879         lock->wait_type_outer = outer;
4880         lock->wait_type_inner = inner;
4881         lock->lock_type = lock_type;
4882
4883         /*
4884          * No key, no joy, we need to hash something.
4885          */
4886         if (DEBUG_LOCKS_WARN_ON(!key))
4887                 return;
4888         /*
4889          * Sanity check, the lock-class key must either have been allocated
4890          * statically or must have been registered as a dynamic key.
4891          */
4892         if (!static_obj(key) && !is_dynamic_key(key)) {
4893                 if (debug_locks)
4894                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4895                 DEBUG_LOCKS_WARN_ON(1);
4896                 return;
4897         }
4898         lock->key = key;
4899
4900         if (unlikely(!debug_locks))
4901                 return;
4902
4903         if (subclass) {
4904                 unsigned long flags;
4905
4906                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4907                         return;
4908
4909                 raw_local_irq_save(flags);
4910                 lockdep_recursion_inc();
4911                 register_lock_class(lock, subclass, 1);
4912                 lockdep_recursion_finish();
4913                 raw_local_irq_restore(flags);
4914         }
4915 }
4916 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4917
4918 struct lock_class_key __lockdep_no_validate__;
4919 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4920
4921 #ifdef CONFIG_PROVE_LOCKING
4922 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4923                              lock_print_fn print_fn)
4924 {
4925         struct lock_class *class = lock->class_cache[0];
4926         unsigned long flags;
4927
4928         raw_local_irq_save(flags);
4929         lockdep_recursion_inc();
4930
4931         if (!class)
4932                 class = register_lock_class(lock, 0, 0);
4933
4934         if (class) {
4935                 WARN_ON(class->cmp_fn   && class->cmp_fn != cmp_fn);
4936                 WARN_ON(class->print_fn && class->print_fn != print_fn);
4937
4938                 class->cmp_fn   = cmp_fn;
4939                 class->print_fn = print_fn;
4940         }
4941
4942         lockdep_recursion_finish();
4943         raw_local_irq_restore(flags);
4944 }
4945 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4946 #endif
4947
4948 static void
4949 print_lock_nested_lock_not_held(struct task_struct *curr,
4950                                 struct held_lock *hlock)
4951 {
4952         if (!debug_locks_off())
4953                 return;
4954         if (debug_locks_silent)
4955                 return;
4956
4957         pr_warn("\n");
4958         pr_warn("==================================\n");
4959         pr_warn("WARNING: Nested lock was not taken\n");
4960         print_kernel_ident();
4961         pr_warn("----------------------------------\n");
4962
4963         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4964         print_lock(hlock);
4965
4966         pr_warn("\nbut this task is not holding:\n");
4967         pr_warn("%s\n", hlock->nest_lock->name);
4968
4969         pr_warn("\nstack backtrace:\n");
4970         dump_stack();
4971
4972         pr_warn("\nother info that might help us debug this:\n");
4973         lockdep_print_held_locks(curr);
4974
4975         pr_warn("\nstack backtrace:\n");
4976         dump_stack();
4977 }
4978
4979 static int __lock_is_held(const struct lockdep_map *lock, int read);
4980
4981 /*
4982  * This gets called for every mutex_lock*()/spin_lock*() operation.
4983  * We maintain the dependency maps and validate the locking attempt:
4984  *
4985  * The callers must make sure that IRQs are disabled before calling it,
4986  * otherwise we could get an interrupt which would want to take locks,
4987  * which would end up in lockdep again.
4988  */
4989 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4990                           int trylock, int read, int check, int hardirqs_off,
4991                           struct lockdep_map *nest_lock, unsigned long ip,
4992                           int references, int pin_count, int sync)
4993 {
4994         struct task_struct *curr = current;
4995         struct lock_class *class = NULL;
4996         struct held_lock *hlock;
4997         unsigned int depth;
4998         int chain_head = 0;
4999         int class_idx;
5000         u64 chain_key;
5001
5002         if (unlikely(!debug_locks))
5003                 return 0;
5004
5005         if (!prove_locking || lock->key == &__lockdep_no_validate__)
5006                 check = 0;
5007
5008         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5009                 class = lock->class_cache[subclass];
5010         /*
5011          * Not cached?
5012          */
5013         if (unlikely(!class)) {
5014                 class = register_lock_class(lock, subclass, 0);
5015                 if (!class)
5016                         return 0;
5017         }
5018
5019         debug_class_ops_inc(class);
5020
5021         if (very_verbose(class)) {
5022                 printk("\nacquire class [%px] %s", class->key, class->name);
5023                 if (class->name_version > 1)
5024                         printk(KERN_CONT "#%d", class->name_version);
5025                 printk(KERN_CONT "\n");
5026                 dump_stack();
5027         }
5028
5029         /*
5030          * Add the lock to the list of currently held locks.
5031          * (we dont increase the depth just yet, up until the
5032          * dependency checks are done)
5033          */
5034         depth = curr->lockdep_depth;
5035         /*
5036          * Ran out of static storage for our per-task lock stack again have we?
5037          */
5038         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5039                 return 0;
5040
5041         class_idx = class - lock_classes;
5042
5043         if (depth && !sync) {
5044                 /* we're holding locks and the new held lock is not a sync */
5045                 hlock = curr->held_locks + depth - 1;
5046                 if (hlock->class_idx == class_idx && nest_lock) {
5047                         if (!references)
5048                                 references++;
5049
5050                         if (!hlock->references)
5051                                 hlock->references++;
5052
5053                         hlock->references += references;
5054
5055                         /* Overflow */
5056                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5057                                 return 0;
5058
5059                         return 2;
5060                 }
5061         }
5062
5063         hlock = curr->held_locks + depth;
5064         /*
5065          * Plain impossible, we just registered it and checked it weren't no
5066          * NULL like.. I bet this mushroom I ate was good!
5067          */
5068         if (DEBUG_LOCKS_WARN_ON(!class))
5069                 return 0;
5070         hlock->class_idx = class_idx;
5071         hlock->acquire_ip = ip;
5072         hlock->instance = lock;
5073         hlock->nest_lock = nest_lock;
5074         hlock->irq_context = task_irq_context(curr);
5075         hlock->trylock = trylock;
5076         hlock->read = read;
5077         hlock->check = check;
5078         hlock->sync = !!sync;
5079         hlock->hardirqs_off = !!hardirqs_off;
5080         hlock->references = references;
5081 #ifdef CONFIG_LOCK_STAT
5082         hlock->waittime_stamp = 0;
5083         hlock->holdtime_stamp = lockstat_clock();
5084 #endif
5085         hlock->pin_count = pin_count;
5086
5087         if (check_wait_context(curr, hlock))
5088                 return 0;
5089
5090         /* Initialize the lock usage bit */
5091         if (!mark_usage(curr, hlock, check))
5092                 return 0;
5093
5094         /*
5095          * Calculate the chain hash: it's the combined hash of all the
5096          * lock keys along the dependency chain. We save the hash value
5097          * at every step so that we can get the current hash easily
5098          * after unlock. The chain hash is then used to cache dependency
5099          * results.
5100          *
5101          * The 'key ID' is what is the most compact key value to drive
5102          * the hash, not class->key.
5103          */
5104         /*
5105          * Whoops, we did it again.. class_idx is invalid.
5106          */
5107         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5108                 return 0;
5109
5110         chain_key = curr->curr_chain_key;
5111         if (!depth) {
5112                 /*
5113                  * How can we have a chain hash when we ain't got no keys?!
5114                  */
5115                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5116                         return 0;
5117                 chain_head = 1;
5118         }
5119
5120         hlock->prev_chain_key = chain_key;
5121         if (separate_irq_context(curr, hlock)) {
5122                 chain_key = INITIAL_CHAIN_KEY;
5123                 chain_head = 1;
5124         }
5125         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5126
5127         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5128                 print_lock_nested_lock_not_held(curr, hlock);
5129                 return 0;
5130         }
5131
5132         if (!debug_locks_silent) {
5133                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5134                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5135         }
5136
5137         if (!validate_chain(curr, hlock, chain_head, chain_key))
5138                 return 0;
5139
5140         /* For lock_sync(), we are done here since no actual critical section */
5141         if (hlock->sync)
5142                 return 1;
5143
5144         curr->curr_chain_key = chain_key;
5145         curr->lockdep_depth++;
5146         check_chain_key(curr);
5147 #ifdef CONFIG_DEBUG_LOCKDEP
5148         if (unlikely(!debug_locks))
5149                 return 0;
5150 #endif
5151         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5152                 debug_locks_off();
5153                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5154                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5155                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5156
5157                 lockdep_print_held_locks(current);
5158                 debug_show_all_locks();
5159                 dump_stack();
5160
5161                 return 0;
5162         }
5163
5164         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5165                 max_lockdep_depth = curr->lockdep_depth;
5166
5167         return 1;
5168 }
5169
5170 static void print_unlock_imbalance_bug(struct task_struct *curr,
5171                                        struct lockdep_map *lock,
5172                                        unsigned long ip)
5173 {
5174         if (!debug_locks_off())
5175                 return;
5176         if (debug_locks_silent)
5177                 return;
5178
5179         pr_warn("\n");
5180         pr_warn("=====================================\n");
5181         pr_warn("WARNING: bad unlock balance detected!\n");
5182         print_kernel_ident();
5183         pr_warn("-------------------------------------\n");
5184         pr_warn("%s/%d is trying to release lock (",
5185                 curr->comm, task_pid_nr(curr));
5186         print_lockdep_cache(lock);
5187         pr_cont(") at:\n");
5188         print_ip_sym(KERN_WARNING, ip);
5189         pr_warn("but there are no more locks to release!\n");
5190         pr_warn("\nother info that might help us debug this:\n");
5191         lockdep_print_held_locks(curr);
5192
5193         pr_warn("\nstack backtrace:\n");
5194         dump_stack();
5195 }
5196
5197 static noinstr int match_held_lock(const struct held_lock *hlock,
5198                                    const struct lockdep_map *lock)
5199 {
5200         if (hlock->instance == lock)
5201                 return 1;
5202
5203         if (hlock->references) {
5204                 const struct lock_class *class = lock->class_cache[0];
5205
5206                 if (!class)
5207                         class = look_up_lock_class(lock, 0);
5208
5209                 /*
5210                  * If look_up_lock_class() failed to find a class, we're trying
5211                  * to test if we hold a lock that has never yet been acquired.
5212                  * Clearly if the lock hasn't been acquired _ever_, we're not
5213                  * holding it either, so report failure.
5214                  */
5215                 if (!class)
5216                         return 0;
5217
5218                 /*
5219                  * References, but not a lock we're actually ref-counting?
5220                  * State got messed up, follow the sites that change ->references
5221                  * and try to make sense of it.
5222                  */
5223                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5224                         return 0;
5225
5226                 if (hlock->class_idx == class - lock_classes)
5227                         return 1;
5228         }
5229
5230         return 0;
5231 }
5232
5233 /* @depth must not be zero */
5234 static struct held_lock *find_held_lock(struct task_struct *curr,
5235                                         struct lockdep_map *lock,
5236                                         unsigned int depth, int *idx)
5237 {
5238         struct held_lock *ret, *hlock, *prev_hlock;
5239         int i;
5240
5241         i = depth - 1;
5242         hlock = curr->held_locks + i;
5243         ret = hlock;
5244         if (match_held_lock(hlock, lock))
5245                 goto out;
5246
5247         ret = NULL;
5248         for (i--, prev_hlock = hlock--;
5249              i >= 0;
5250              i--, prev_hlock = hlock--) {
5251                 /*
5252                  * We must not cross into another context:
5253                  */
5254                 if (prev_hlock->irq_context != hlock->irq_context) {
5255                         ret = NULL;
5256                         break;
5257                 }
5258                 if (match_held_lock(hlock, lock)) {
5259                         ret = hlock;
5260                         break;
5261                 }
5262         }
5263
5264 out:
5265         *idx = i;
5266         return ret;
5267 }
5268
5269 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5270                                 int idx, unsigned int *merged)
5271 {
5272         struct held_lock *hlock;
5273         int first_idx = idx;
5274
5275         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5276                 return 0;
5277
5278         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5279                 switch (__lock_acquire(hlock->instance,
5280                                     hlock_class(hlock)->subclass,
5281                                     hlock->trylock,
5282                                     hlock->read, hlock->check,
5283                                     hlock->hardirqs_off,
5284                                     hlock->nest_lock, hlock->acquire_ip,
5285                                     hlock->references, hlock->pin_count, 0)) {
5286                 case 0:
5287                         return 1;
5288                 case 1:
5289                         break;
5290                 case 2:
5291                         *merged += (idx == first_idx);
5292                         break;
5293                 default:
5294                         WARN_ON(1);
5295                         return 0;
5296                 }
5297         }
5298         return 0;
5299 }
5300
5301 static int
5302 __lock_set_class(struct lockdep_map *lock, const char *name,
5303                  struct lock_class_key *key, unsigned int subclass,
5304                  unsigned long ip)
5305 {
5306         struct task_struct *curr = current;
5307         unsigned int depth, merged = 0;
5308         struct held_lock *hlock;
5309         struct lock_class *class;
5310         int i;
5311
5312         if (unlikely(!debug_locks))
5313                 return 0;
5314
5315         depth = curr->lockdep_depth;
5316         /*
5317          * This function is about (re)setting the class of a held lock,
5318          * yet we're not actually holding any locks. Naughty user!
5319          */
5320         if (DEBUG_LOCKS_WARN_ON(!depth))
5321                 return 0;
5322
5323         hlock = find_held_lock(curr, lock, depth, &i);
5324         if (!hlock) {
5325                 print_unlock_imbalance_bug(curr, lock, ip);
5326                 return 0;
5327         }
5328
5329         lockdep_init_map_type(lock, name, key, 0,
5330                               lock->wait_type_inner,
5331                               lock->wait_type_outer,
5332                               lock->lock_type);
5333         class = register_lock_class(lock, subclass, 0);
5334         hlock->class_idx = class - lock_classes;
5335
5336         curr->lockdep_depth = i;
5337         curr->curr_chain_key = hlock->prev_chain_key;
5338
5339         if (reacquire_held_locks(curr, depth, i, &merged))
5340                 return 0;
5341
5342         /*
5343          * I took it apart and put it back together again, except now I have
5344          * these 'spare' parts.. where shall I put them.
5345          */
5346         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5347                 return 0;
5348         return 1;
5349 }
5350
5351 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5352 {
5353         struct task_struct *curr = current;
5354         unsigned int depth, merged = 0;
5355         struct held_lock *hlock;
5356         int i;
5357
5358         if (unlikely(!debug_locks))
5359                 return 0;
5360
5361         depth = curr->lockdep_depth;
5362         /*
5363          * This function is about (re)setting the class of a held lock,
5364          * yet we're not actually holding any locks. Naughty user!
5365          */
5366         if (DEBUG_LOCKS_WARN_ON(!depth))
5367                 return 0;
5368
5369         hlock = find_held_lock(curr, lock, depth, &i);
5370         if (!hlock) {
5371                 print_unlock_imbalance_bug(curr, lock, ip);
5372                 return 0;
5373         }
5374
5375         curr->lockdep_depth = i;
5376         curr->curr_chain_key = hlock->prev_chain_key;
5377
5378         WARN(hlock->read, "downgrading a read lock");
5379         hlock->read = 1;
5380         hlock->acquire_ip = ip;
5381
5382         if (reacquire_held_locks(curr, depth, i, &merged))
5383                 return 0;
5384
5385         /* Merging can't happen with unchanged classes.. */
5386         if (DEBUG_LOCKS_WARN_ON(merged))
5387                 return 0;
5388
5389         /*
5390          * I took it apart and put it back together again, except now I have
5391          * these 'spare' parts.. where shall I put them.
5392          */
5393         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5394                 return 0;
5395
5396         return 1;
5397 }
5398
5399 /*
5400  * Remove the lock from the list of currently held locks - this gets
5401  * called on mutex_unlock()/spin_unlock*() (or on a failed
5402  * mutex_lock_interruptible()).
5403  */
5404 static int
5405 __lock_release(struct lockdep_map *lock, unsigned long ip)
5406 {
5407         struct task_struct *curr = current;
5408         unsigned int depth, merged = 1;
5409         struct held_lock *hlock;
5410         int i;
5411
5412         if (unlikely(!debug_locks))
5413                 return 0;
5414
5415         depth = curr->lockdep_depth;
5416         /*
5417          * So we're all set to release this lock.. wait what lock? We don't
5418          * own any locks, you've been drinking again?
5419          */
5420         if (depth <= 0) {
5421                 print_unlock_imbalance_bug(curr, lock, ip);
5422                 return 0;
5423         }
5424
5425         /*
5426          * Check whether the lock exists in the current stack
5427          * of held locks:
5428          */
5429         hlock = find_held_lock(curr, lock, depth, &i);
5430         if (!hlock) {
5431                 print_unlock_imbalance_bug(curr, lock, ip);
5432                 return 0;
5433         }
5434
5435         if (hlock->instance == lock)
5436                 lock_release_holdtime(hlock);
5437
5438         WARN(hlock->pin_count, "releasing a pinned lock\n");
5439
5440         if (hlock->references) {
5441                 hlock->references--;
5442                 if (hlock->references) {
5443                         /*
5444                          * We had, and after removing one, still have
5445                          * references, the current lock stack is still
5446                          * valid. We're done!
5447                          */
5448                         return 1;
5449                 }
5450         }
5451
5452         /*
5453          * We have the right lock to unlock, 'hlock' points to it.
5454          * Now we remove it from the stack, and add back the other
5455          * entries (if any), recalculating the hash along the way:
5456          */
5457
5458         curr->lockdep_depth = i;
5459         curr->curr_chain_key = hlock->prev_chain_key;
5460
5461         /*
5462          * The most likely case is when the unlock is on the innermost
5463          * lock. In this case, we are done!
5464          */
5465         if (i == depth-1)
5466                 return 1;
5467
5468         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5469                 return 0;
5470
5471         /*
5472          * We had N bottles of beer on the wall, we drank one, but now
5473          * there's not N-1 bottles of beer left on the wall...
5474          * Pouring two of the bottles together is acceptable.
5475          */
5476         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5477
5478         /*
5479          * Since reacquire_held_locks() would have called check_chain_key()
5480          * indirectly via __lock_acquire(), we don't need to do it again
5481          * on return.
5482          */
5483         return 0;
5484 }
5485
5486 static __always_inline
5487 int __lock_is_held(const struct lockdep_map *lock, int read)
5488 {
5489         struct task_struct *curr = current;
5490         int i;
5491
5492         for (i = 0; i < curr->lockdep_depth; i++) {
5493                 struct held_lock *hlock = curr->held_locks + i;
5494
5495                 if (match_held_lock(hlock, lock)) {
5496                         if (read == -1 || !!hlock->read == read)
5497                                 return LOCK_STATE_HELD;
5498
5499                         return LOCK_STATE_NOT_HELD;
5500                 }
5501         }
5502
5503         return LOCK_STATE_NOT_HELD;
5504 }
5505
5506 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5507 {
5508         struct pin_cookie cookie = NIL_COOKIE;
5509         struct task_struct *curr = current;
5510         int i;
5511
5512         if (unlikely(!debug_locks))
5513                 return cookie;
5514
5515         for (i = 0; i < curr->lockdep_depth; i++) {
5516                 struct held_lock *hlock = curr->held_locks + i;
5517
5518                 if (match_held_lock(hlock, lock)) {
5519                         /*
5520                          * Grab 16bits of randomness; this is sufficient to not
5521                          * be guessable and still allows some pin nesting in
5522                          * our u32 pin_count.
5523                          */
5524                         cookie.val = 1 + (sched_clock() & 0xffff);
5525                         hlock->pin_count += cookie.val;
5526                         return cookie;
5527                 }
5528         }
5529
5530         WARN(1, "pinning an unheld lock\n");
5531         return cookie;
5532 }
5533
5534 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5535 {
5536         struct task_struct *curr = current;
5537         int i;
5538
5539         if (unlikely(!debug_locks))
5540                 return;
5541
5542         for (i = 0; i < curr->lockdep_depth; i++) {
5543                 struct held_lock *hlock = curr->held_locks + i;
5544
5545                 if (match_held_lock(hlock, lock)) {
5546                         hlock->pin_count += cookie.val;
5547                         return;
5548                 }
5549         }
5550
5551         WARN(1, "pinning an unheld lock\n");
5552 }
5553
5554 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5555 {
5556         struct task_struct *curr = current;
5557         int i;
5558
5559         if (unlikely(!debug_locks))
5560                 return;
5561
5562         for (i = 0; i < curr->lockdep_depth; i++) {
5563                 struct held_lock *hlock = curr->held_locks + i;
5564
5565                 if (match_held_lock(hlock, lock)) {
5566                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5567                                 return;
5568
5569                         hlock->pin_count -= cookie.val;
5570
5571                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5572                                 hlock->pin_count = 0;
5573
5574                         return;
5575                 }
5576         }
5577
5578         WARN(1, "unpinning an unheld lock\n");
5579 }
5580
5581 /*
5582  * Check whether we follow the irq-flags state precisely:
5583  */
5584 static noinstr void check_flags(unsigned long flags)
5585 {
5586 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5587         if (!debug_locks)
5588                 return;
5589
5590         /* Get the warning out..  */
5591         instrumentation_begin();
5592
5593         if (irqs_disabled_flags(flags)) {
5594                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5595                         printk("possible reason: unannotated irqs-off.\n");
5596                 }
5597         } else {
5598                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5599                         printk("possible reason: unannotated irqs-on.\n");
5600                 }
5601         }
5602
5603 #ifndef CONFIG_PREEMPT_RT
5604         /*
5605          * We dont accurately track softirq state in e.g.
5606          * hardirq contexts (such as on 4KSTACKS), so only
5607          * check if not in hardirq contexts:
5608          */
5609         if (!hardirq_count()) {
5610                 if (softirq_count()) {
5611                         /* like the above, but with softirqs */
5612                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5613                 } else {
5614                         /* lick the above, does it taste good? */
5615                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5616                 }
5617         }
5618 #endif
5619
5620         if (!debug_locks)
5621                 print_irqtrace_events(current);
5622
5623         instrumentation_end();
5624 #endif
5625 }
5626
5627 void lock_set_class(struct lockdep_map *lock, const char *name,
5628                     struct lock_class_key *key, unsigned int subclass,
5629                     unsigned long ip)
5630 {
5631         unsigned long flags;
5632
5633         if (unlikely(!lockdep_enabled()))
5634                 return;
5635
5636         raw_local_irq_save(flags);
5637         lockdep_recursion_inc();
5638         check_flags(flags);
5639         if (__lock_set_class(lock, name, key, subclass, ip))
5640                 check_chain_key(current);
5641         lockdep_recursion_finish();
5642         raw_local_irq_restore(flags);
5643 }
5644 EXPORT_SYMBOL_GPL(lock_set_class);
5645
5646 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5647 {
5648         unsigned long flags;
5649
5650         if (unlikely(!lockdep_enabled()))
5651                 return;
5652
5653         raw_local_irq_save(flags);
5654         lockdep_recursion_inc();
5655         check_flags(flags);
5656         if (__lock_downgrade(lock, ip))
5657                 check_chain_key(current);
5658         lockdep_recursion_finish();
5659         raw_local_irq_restore(flags);
5660 }
5661 EXPORT_SYMBOL_GPL(lock_downgrade);
5662
5663 /* NMI context !!! */
5664 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5665 {
5666 #ifdef CONFIG_PROVE_LOCKING
5667         struct lock_class *class = look_up_lock_class(lock, subclass);
5668         unsigned long mask = LOCKF_USED;
5669
5670         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5671         if (!class)
5672                 return;
5673
5674         /*
5675          * READ locks only conflict with USED, such that if we only ever use
5676          * READ locks, there is no deadlock possible -- RCU.
5677          */
5678         if (!hlock->read)
5679                 mask |= LOCKF_USED_READ;
5680
5681         if (!(class->usage_mask & mask))
5682                 return;
5683
5684         hlock->class_idx = class - lock_classes;
5685
5686         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5687 #endif
5688 }
5689
5690 static bool lockdep_nmi(void)
5691 {
5692         if (raw_cpu_read(lockdep_recursion))
5693                 return false;
5694
5695         if (!in_nmi())
5696                 return false;
5697
5698         return true;
5699 }
5700
5701 /*
5702  * read_lock() is recursive if:
5703  * 1. We force lockdep think this way in selftests or
5704  * 2. The implementation is not queued read/write lock or
5705  * 3. The locker is at an in_interrupt() context.
5706  */
5707 bool read_lock_is_recursive(void)
5708 {
5709         return force_read_lock_recursive ||
5710                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5711                in_interrupt();
5712 }
5713 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5714
5715 /*
5716  * We are not always called with irqs disabled - do that here,
5717  * and also avoid lockdep recursion:
5718  */
5719 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5720                           int trylock, int read, int check,
5721                           struct lockdep_map *nest_lock, unsigned long ip)
5722 {
5723         unsigned long flags;
5724
5725         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5726
5727         if (!debug_locks)
5728                 return;
5729
5730         if (unlikely(!lockdep_enabled())) {
5731                 /* XXX allow trylock from NMI ?!? */
5732                 if (lockdep_nmi() && !trylock) {
5733                         struct held_lock hlock;
5734
5735                         hlock.acquire_ip = ip;
5736                         hlock.instance = lock;
5737                         hlock.nest_lock = nest_lock;
5738                         hlock.irq_context = 2; // XXX
5739                         hlock.trylock = trylock;
5740                         hlock.read = read;
5741                         hlock.check = check;
5742                         hlock.hardirqs_off = true;
5743                         hlock.references = 0;
5744
5745                         verify_lock_unused(lock, &hlock, subclass);
5746                 }
5747                 return;
5748         }
5749
5750         raw_local_irq_save(flags);
5751         check_flags(flags);
5752
5753         lockdep_recursion_inc();
5754         __lock_acquire(lock, subclass, trylock, read, check,
5755                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5756         lockdep_recursion_finish();
5757         raw_local_irq_restore(flags);
5758 }
5759 EXPORT_SYMBOL_GPL(lock_acquire);
5760
5761 void lock_release(struct lockdep_map *lock, unsigned long ip)
5762 {
5763         unsigned long flags;
5764
5765         trace_lock_release(lock, ip);
5766
5767         if (unlikely(!lockdep_enabled()))
5768                 return;
5769
5770         raw_local_irq_save(flags);
5771         check_flags(flags);
5772
5773         lockdep_recursion_inc();
5774         if (__lock_release(lock, ip))
5775                 check_chain_key(current);
5776         lockdep_recursion_finish();
5777         raw_local_irq_restore(flags);
5778 }
5779 EXPORT_SYMBOL_GPL(lock_release);
5780
5781 /*
5782  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5783  *
5784  * No actual critical section is created by the APIs annotated with this: these
5785  * APIs are used to wait for one or multiple critical sections (on other CPUs
5786  * or threads), and it means that calling these APIs inside these critical
5787  * sections is potential deadlock.
5788  */
5789 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5790                int check, struct lockdep_map *nest_lock, unsigned long ip)
5791 {
5792         unsigned long flags;
5793
5794         if (unlikely(!lockdep_enabled()))
5795                 return;
5796
5797         raw_local_irq_save(flags);
5798         check_flags(flags);
5799
5800         lockdep_recursion_inc();
5801         __lock_acquire(lock, subclass, 0, read, check,
5802                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5803         check_chain_key(current);
5804         lockdep_recursion_finish();
5805         raw_local_irq_restore(flags);
5806 }
5807 EXPORT_SYMBOL_GPL(lock_sync);
5808
5809 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5810 {
5811         unsigned long flags;
5812         int ret = LOCK_STATE_NOT_HELD;
5813
5814         /*
5815          * Avoid false negative lockdep_assert_held() and
5816          * lockdep_assert_not_held().
5817          */
5818         if (unlikely(!lockdep_enabled()))
5819                 return LOCK_STATE_UNKNOWN;
5820
5821         raw_local_irq_save(flags);
5822         check_flags(flags);
5823
5824         lockdep_recursion_inc();
5825         ret = __lock_is_held(lock, read);
5826         lockdep_recursion_finish();
5827         raw_local_irq_restore(flags);
5828
5829         return ret;
5830 }
5831 EXPORT_SYMBOL_GPL(lock_is_held_type);
5832 NOKPROBE_SYMBOL(lock_is_held_type);
5833
5834 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5835 {
5836         struct pin_cookie cookie = NIL_COOKIE;
5837         unsigned long flags;
5838
5839         if (unlikely(!lockdep_enabled()))
5840                 return cookie;
5841
5842         raw_local_irq_save(flags);
5843         check_flags(flags);
5844
5845         lockdep_recursion_inc();
5846         cookie = __lock_pin_lock(lock);
5847         lockdep_recursion_finish();
5848         raw_local_irq_restore(flags);
5849
5850         return cookie;
5851 }
5852 EXPORT_SYMBOL_GPL(lock_pin_lock);
5853
5854 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5855 {
5856         unsigned long flags;
5857
5858         if (unlikely(!lockdep_enabled()))
5859                 return;
5860
5861         raw_local_irq_save(flags);
5862         check_flags(flags);
5863
5864         lockdep_recursion_inc();
5865         __lock_repin_lock(lock, cookie);
5866         lockdep_recursion_finish();
5867         raw_local_irq_restore(flags);
5868 }
5869 EXPORT_SYMBOL_GPL(lock_repin_lock);
5870
5871 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5872 {
5873         unsigned long flags;
5874
5875         if (unlikely(!lockdep_enabled()))
5876                 return;
5877
5878         raw_local_irq_save(flags);
5879         check_flags(flags);
5880
5881         lockdep_recursion_inc();
5882         __lock_unpin_lock(lock, cookie);
5883         lockdep_recursion_finish();
5884         raw_local_irq_restore(flags);
5885 }
5886 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5887
5888 #ifdef CONFIG_LOCK_STAT
5889 static void print_lock_contention_bug(struct task_struct *curr,
5890                                       struct lockdep_map *lock,
5891                                       unsigned long ip)
5892 {
5893         if (!debug_locks_off())
5894                 return;
5895         if (debug_locks_silent)
5896                 return;
5897
5898         pr_warn("\n");
5899         pr_warn("=================================\n");
5900         pr_warn("WARNING: bad contention detected!\n");
5901         print_kernel_ident();
5902         pr_warn("---------------------------------\n");
5903         pr_warn("%s/%d is trying to contend lock (",
5904                 curr->comm, task_pid_nr(curr));
5905         print_lockdep_cache(lock);
5906         pr_cont(") at:\n");
5907         print_ip_sym(KERN_WARNING, ip);
5908         pr_warn("but there are no locks held!\n");
5909         pr_warn("\nother info that might help us debug this:\n");
5910         lockdep_print_held_locks(curr);
5911
5912         pr_warn("\nstack backtrace:\n");
5913         dump_stack();
5914 }
5915
5916 static void
5917 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5918 {
5919         struct task_struct *curr = current;
5920         struct held_lock *hlock;
5921         struct lock_class_stats *stats;
5922         unsigned int depth;
5923         int i, contention_point, contending_point;
5924
5925         depth = curr->lockdep_depth;
5926         /*
5927          * Whee, we contended on this lock, except it seems we're not
5928          * actually trying to acquire anything much at all..
5929          */
5930         if (DEBUG_LOCKS_WARN_ON(!depth))
5931                 return;
5932
5933         hlock = find_held_lock(curr, lock, depth, &i);
5934         if (!hlock) {
5935                 print_lock_contention_bug(curr, lock, ip);
5936                 return;
5937         }
5938
5939         if (hlock->instance != lock)
5940                 return;
5941
5942         hlock->waittime_stamp = lockstat_clock();
5943
5944         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5945         contending_point = lock_point(hlock_class(hlock)->contending_point,
5946                                       lock->ip);
5947
5948         stats = get_lock_stats(hlock_class(hlock));
5949         if (contention_point < LOCKSTAT_POINTS)
5950                 stats->contention_point[contention_point]++;
5951         if (contending_point < LOCKSTAT_POINTS)
5952                 stats->contending_point[contending_point]++;
5953         if (lock->cpu != smp_processor_id())
5954                 stats->bounces[bounce_contended + !!hlock->read]++;
5955 }
5956
5957 static void
5958 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5959 {
5960         struct task_struct *curr = current;
5961         struct held_lock *hlock;
5962         struct lock_class_stats *stats;
5963         unsigned int depth;
5964         u64 now, waittime = 0;
5965         int i, cpu;
5966
5967         depth = curr->lockdep_depth;
5968         /*
5969          * Yay, we acquired ownership of this lock we didn't try to
5970          * acquire, how the heck did that happen?
5971          */
5972         if (DEBUG_LOCKS_WARN_ON(!depth))
5973                 return;
5974
5975         hlock = find_held_lock(curr, lock, depth, &i);
5976         if (!hlock) {
5977                 print_lock_contention_bug(curr, lock, _RET_IP_);
5978                 return;
5979         }
5980
5981         if (hlock->instance != lock)
5982                 return;
5983
5984         cpu = smp_processor_id();
5985         if (hlock->waittime_stamp) {
5986                 now = lockstat_clock();
5987                 waittime = now - hlock->waittime_stamp;
5988                 hlock->holdtime_stamp = now;
5989         }
5990
5991         stats = get_lock_stats(hlock_class(hlock));
5992         if (waittime) {
5993                 if (hlock->read)
5994                         lock_time_inc(&stats->read_waittime, waittime);
5995                 else
5996                         lock_time_inc(&stats->write_waittime, waittime);
5997         }
5998         if (lock->cpu != cpu)
5999                 stats->bounces[bounce_acquired + !!hlock->read]++;
6000
6001         lock->cpu = cpu;
6002         lock->ip = ip;
6003 }
6004
6005 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6006 {
6007         unsigned long flags;
6008
6009         trace_lock_contended(lock, ip);
6010
6011         if (unlikely(!lock_stat || !lockdep_enabled()))
6012                 return;
6013
6014         raw_local_irq_save(flags);
6015         check_flags(flags);
6016         lockdep_recursion_inc();
6017         __lock_contended(lock, ip);
6018         lockdep_recursion_finish();
6019         raw_local_irq_restore(flags);
6020 }
6021 EXPORT_SYMBOL_GPL(lock_contended);
6022
6023 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6024 {
6025         unsigned long flags;
6026
6027         trace_lock_acquired(lock, ip);
6028
6029         if (unlikely(!lock_stat || !lockdep_enabled()))
6030                 return;
6031
6032         raw_local_irq_save(flags);
6033         check_flags(flags);
6034         lockdep_recursion_inc();
6035         __lock_acquired(lock, ip);
6036         lockdep_recursion_finish();
6037         raw_local_irq_restore(flags);
6038 }
6039 EXPORT_SYMBOL_GPL(lock_acquired);
6040 #endif
6041
6042 /*
6043  * Used by the testsuite, sanitize the validator state
6044  * after a simulated failure:
6045  */
6046
6047 void lockdep_reset(void)
6048 {
6049         unsigned long flags;
6050         int i;
6051
6052         raw_local_irq_save(flags);
6053         lockdep_init_task(current);
6054         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6055         nr_hardirq_chains = 0;
6056         nr_softirq_chains = 0;
6057         nr_process_chains = 0;
6058         debug_locks = 1;
6059         for (i = 0; i < CHAINHASH_SIZE; i++)
6060                 INIT_HLIST_HEAD(chainhash_table + i);
6061         raw_local_irq_restore(flags);
6062 }
6063
6064 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6065 static void remove_class_from_lock_chain(struct pending_free *pf,
6066                                          struct lock_chain *chain,
6067                                          struct lock_class *class)
6068 {
6069 #ifdef CONFIG_PROVE_LOCKING
6070         int i;
6071
6072         for (i = chain->base; i < chain->base + chain->depth; i++) {
6073                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6074                         continue;
6075                 /*
6076                  * Each lock class occurs at most once in a lock chain so once
6077                  * we found a match we can break out of this loop.
6078                  */
6079                 goto free_lock_chain;
6080         }
6081         /* Since the chain has not been modified, return. */
6082         return;
6083
6084 free_lock_chain:
6085         free_chain_hlocks(chain->base, chain->depth);
6086         /* Overwrite the chain key for concurrent RCU readers. */
6087         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6088         dec_chains(chain->irq_context);
6089
6090         /*
6091          * Note: calling hlist_del_rcu() from inside a
6092          * hlist_for_each_entry_rcu() loop is safe.
6093          */
6094         hlist_del_rcu(&chain->entry);
6095         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6096         nr_zapped_lock_chains++;
6097 #endif
6098 }
6099
6100 /* Must be called with the graph lock held. */
6101 static void remove_class_from_lock_chains(struct pending_free *pf,
6102                                           struct lock_class *class)
6103 {
6104         struct lock_chain *chain;
6105         struct hlist_head *head;
6106         int i;
6107
6108         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6109                 head = chainhash_table + i;
6110                 hlist_for_each_entry_rcu(chain, head, entry) {
6111                         remove_class_from_lock_chain(pf, chain, class);
6112                 }
6113         }
6114 }
6115
6116 /*
6117  * Remove all references to a lock class. The caller must hold the graph lock.
6118  */
6119 static void zap_class(struct pending_free *pf, struct lock_class *class)
6120 {
6121         struct lock_list *entry;
6122         int i;
6123
6124         WARN_ON_ONCE(!class->key);
6125
6126         /*
6127          * Remove all dependencies this lock is
6128          * involved in:
6129          */
6130         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6131                 entry = list_entries + i;
6132                 if (entry->class != class && entry->links_to != class)
6133                         continue;
6134                 __clear_bit(i, list_entries_in_use);
6135                 nr_list_entries--;
6136                 list_del_rcu(&entry->entry);
6137         }
6138         if (list_empty(&class->locks_after) &&
6139             list_empty(&class->locks_before)) {
6140                 list_move_tail(&class->lock_entry, &pf->zapped);
6141                 hlist_del_rcu(&class->hash_entry);
6142                 WRITE_ONCE(class->key, NULL);
6143                 WRITE_ONCE(class->name, NULL);
6144                 nr_lock_classes--;
6145                 __clear_bit(class - lock_classes, lock_classes_in_use);
6146                 if (class - lock_classes == max_lock_class_idx)
6147                         max_lock_class_idx--;
6148         } else {
6149                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6150                           class->name);
6151         }
6152
6153         remove_class_from_lock_chains(pf, class);
6154         nr_zapped_classes++;
6155 }
6156
6157 static void reinit_class(struct lock_class *class)
6158 {
6159         WARN_ON_ONCE(!class->lock_entry.next);
6160         WARN_ON_ONCE(!list_empty(&class->locks_after));
6161         WARN_ON_ONCE(!list_empty(&class->locks_before));
6162         memset_startat(class, 0, key);
6163         WARN_ON_ONCE(!class->lock_entry.next);
6164         WARN_ON_ONCE(!list_empty(&class->locks_after));
6165         WARN_ON_ONCE(!list_empty(&class->locks_before));
6166 }
6167
6168 static inline int within(const void *addr, void *start, unsigned long size)
6169 {
6170         return addr >= start && addr < start + size;
6171 }
6172
6173 static bool inside_selftest(void)
6174 {
6175         return current == lockdep_selftest_task_struct;
6176 }
6177
6178 /* The caller must hold the graph lock. */
6179 static struct pending_free *get_pending_free(void)
6180 {
6181         return delayed_free.pf + delayed_free.index;
6182 }
6183
6184 static void free_zapped_rcu(struct rcu_head *cb);
6185
6186 /*
6187  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6188  * the graph lock held.
6189  */
6190 static void call_rcu_zapped(struct pending_free *pf)
6191 {
6192         WARN_ON_ONCE(inside_selftest());
6193
6194         if (list_empty(&pf->zapped))
6195                 return;
6196
6197         if (delayed_free.scheduled)
6198                 return;
6199
6200         delayed_free.scheduled = true;
6201
6202         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6203         delayed_free.index ^= 1;
6204
6205         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6206 }
6207
6208 /* The caller must hold the graph lock. May be called from RCU context. */
6209 static void __free_zapped_classes(struct pending_free *pf)
6210 {
6211         struct lock_class *class;
6212
6213         check_data_structures();
6214
6215         list_for_each_entry(class, &pf->zapped, lock_entry)
6216                 reinit_class(class);
6217
6218         list_splice_init(&pf->zapped, &free_lock_classes);
6219
6220 #ifdef CONFIG_PROVE_LOCKING
6221         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6222                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6223         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6224 #endif
6225 }
6226
6227 static void free_zapped_rcu(struct rcu_head *ch)
6228 {
6229         struct pending_free *pf;
6230         unsigned long flags;
6231
6232         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6233                 return;
6234
6235         raw_local_irq_save(flags);
6236         lockdep_lock();
6237
6238         /* closed head */
6239         pf = delayed_free.pf + (delayed_free.index ^ 1);
6240         __free_zapped_classes(pf);
6241         delayed_free.scheduled = false;
6242
6243         /*
6244          * If there's anything on the open list, close and start a new callback.
6245          */
6246         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6247
6248         lockdep_unlock();
6249         raw_local_irq_restore(flags);
6250 }
6251
6252 /*
6253  * Remove all lock classes from the class hash table and from the
6254  * all_lock_classes list whose key or name is in the address range [start,
6255  * start + size). Move these lock classes to the zapped_classes list. Must
6256  * be called with the graph lock held.
6257  */
6258 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6259                                      unsigned long size)
6260 {
6261         struct lock_class *class;
6262         struct hlist_head *head;
6263         int i;
6264
6265         /* Unhash all classes that were created by a module. */
6266         for (i = 0; i < CLASSHASH_SIZE; i++) {
6267                 head = classhash_table + i;
6268                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6269                         if (!within(class->key, start, size) &&
6270                             !within(class->name, start, size))
6271                                 continue;
6272                         zap_class(pf, class);
6273                 }
6274         }
6275 }
6276
6277 /*
6278  * Used in module.c to remove lock classes from memory that is going to be
6279  * freed; and possibly re-used by other modules.
6280  *
6281  * We will have had one synchronize_rcu() before getting here, so we're
6282  * guaranteed nobody will look up these exact classes -- they're properly dead
6283  * but still allocated.
6284  */
6285 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6286 {
6287         struct pending_free *pf;
6288         unsigned long flags;
6289
6290         init_data_structures_once();
6291
6292         raw_local_irq_save(flags);
6293         lockdep_lock();
6294         pf = get_pending_free();
6295         __lockdep_free_key_range(pf, start, size);
6296         call_rcu_zapped(pf);
6297         lockdep_unlock();
6298         raw_local_irq_restore(flags);
6299
6300         /*
6301          * Wait for any possible iterators from look_up_lock_class() to pass
6302          * before continuing to free the memory they refer to.
6303          */
6304         synchronize_rcu();
6305 }
6306
6307 /*
6308  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6309  * Ignores debug_locks. Must only be used by the lockdep selftests.
6310  */
6311 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6312 {
6313         struct pending_free *pf = delayed_free.pf;
6314         unsigned long flags;
6315
6316         init_data_structures_once();
6317
6318         raw_local_irq_save(flags);
6319         lockdep_lock();
6320         __lockdep_free_key_range(pf, start, size);
6321         __free_zapped_classes(pf);
6322         lockdep_unlock();
6323         raw_local_irq_restore(flags);
6324 }
6325
6326 void lockdep_free_key_range(void *start, unsigned long size)
6327 {
6328         init_data_structures_once();
6329
6330         if (inside_selftest())
6331                 lockdep_free_key_range_imm(start, size);
6332         else
6333                 lockdep_free_key_range_reg(start, size);
6334 }
6335
6336 /*
6337  * Check whether any element of the @lock->class_cache[] array refers to a
6338  * registered lock class. The caller must hold either the graph lock or the
6339  * RCU read lock.
6340  */
6341 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6342 {
6343         struct lock_class *class;
6344         struct hlist_head *head;
6345         int i, j;
6346
6347         for (i = 0; i < CLASSHASH_SIZE; i++) {
6348                 head = classhash_table + i;
6349                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6350                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6351                                 if (lock->class_cache[j] == class)
6352                                         return true;
6353                 }
6354         }
6355         return false;
6356 }
6357
6358 /* The caller must hold the graph lock. Does not sleep. */
6359 static void __lockdep_reset_lock(struct pending_free *pf,
6360                                  struct lockdep_map *lock)
6361 {
6362         struct lock_class *class;
6363         int j;
6364
6365         /*
6366          * Remove all classes this lock might have:
6367          */
6368         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6369                 /*
6370                  * If the class exists we look it up and zap it:
6371                  */
6372                 class = look_up_lock_class(lock, j);
6373                 if (class)
6374                         zap_class(pf, class);
6375         }
6376         /*
6377          * Debug check: in the end all mapped classes should
6378          * be gone.
6379          */
6380         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6381                 debug_locks_off();
6382 }
6383
6384 /*
6385  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6386  * released data structures from RCU context.
6387  */
6388 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6389 {
6390         struct pending_free *pf;
6391         unsigned long flags;
6392         int locked;
6393
6394         raw_local_irq_save(flags);
6395         locked = graph_lock();
6396         if (!locked)
6397                 goto out_irq;
6398
6399         pf = get_pending_free();
6400         __lockdep_reset_lock(pf, lock);
6401         call_rcu_zapped(pf);
6402
6403         graph_unlock();
6404 out_irq:
6405         raw_local_irq_restore(flags);
6406 }
6407
6408 /*
6409  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6410  * lockdep selftests.
6411  */
6412 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6413 {
6414         struct pending_free *pf = delayed_free.pf;
6415         unsigned long flags;
6416
6417         raw_local_irq_save(flags);
6418         lockdep_lock();
6419         __lockdep_reset_lock(pf, lock);
6420         __free_zapped_classes(pf);
6421         lockdep_unlock();
6422         raw_local_irq_restore(flags);
6423 }
6424
6425 void lockdep_reset_lock(struct lockdep_map *lock)
6426 {
6427         init_data_structures_once();
6428
6429         if (inside_selftest())
6430                 lockdep_reset_lock_imm(lock);
6431         else
6432                 lockdep_reset_lock_reg(lock);
6433 }
6434
6435 /*
6436  * Unregister a dynamically allocated key.
6437  *
6438  * Unlike lockdep_register_key(), a search is always done to find a matching
6439  * key irrespective of debug_locks to avoid potential invalid access to freed
6440  * memory in lock_class entry.
6441  */
6442 void lockdep_unregister_key(struct lock_class_key *key)
6443 {
6444         struct hlist_head *hash_head = keyhashentry(key);
6445         struct lock_class_key *k;
6446         struct pending_free *pf;
6447         unsigned long flags;
6448         bool found = false;
6449
6450         might_sleep();
6451
6452         if (WARN_ON_ONCE(static_obj(key)))
6453                 return;
6454
6455         raw_local_irq_save(flags);
6456         lockdep_lock();
6457
6458         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6459                 if (k == key) {
6460                         hlist_del_rcu(&k->hash_entry);
6461                         found = true;
6462                         break;
6463                 }
6464         }
6465         WARN_ON_ONCE(!found && debug_locks);
6466         if (found) {
6467                 pf = get_pending_free();
6468                 __lockdep_free_key_range(pf, key, 1);
6469                 call_rcu_zapped(pf);
6470         }
6471         lockdep_unlock();
6472         raw_local_irq_restore(flags);
6473
6474         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6475         synchronize_rcu();
6476 }
6477 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6478
6479 void __init lockdep_init(void)
6480 {
6481         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6482
6483         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6484         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6485         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6486         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6487         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6488         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6489         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6490
6491         printk(" memory used by lock dependency info: %zu kB\n",
6492                (sizeof(lock_classes) +
6493                 sizeof(lock_classes_in_use) +
6494                 sizeof(classhash_table) +
6495                 sizeof(list_entries) +
6496                 sizeof(list_entries_in_use) +
6497                 sizeof(chainhash_table) +
6498                 sizeof(delayed_free)
6499 #ifdef CONFIG_PROVE_LOCKING
6500                 + sizeof(lock_cq)
6501                 + sizeof(lock_chains)
6502                 + sizeof(lock_chains_in_use)
6503                 + sizeof(chain_hlocks)
6504 #endif
6505                 ) / 1024
6506                 );
6507
6508 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6509         printk(" memory used for stack traces: %zu kB\n",
6510                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6511                );
6512 #endif
6513
6514         printk(" per task-struct memory footprint: %zu bytes\n",
6515                sizeof(((struct task_struct *)NULL)->held_locks));
6516 }
6517
6518 static void
6519 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6520                      const void *mem_to, struct held_lock *hlock)
6521 {
6522         if (!debug_locks_off())
6523                 return;
6524         if (debug_locks_silent)
6525                 return;
6526
6527         pr_warn("\n");
6528         pr_warn("=========================\n");
6529         pr_warn("WARNING: held lock freed!\n");
6530         print_kernel_ident();
6531         pr_warn("-------------------------\n");
6532         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6533                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6534         print_lock(hlock);
6535         lockdep_print_held_locks(curr);
6536
6537         pr_warn("\nstack backtrace:\n");
6538         dump_stack();
6539 }
6540
6541 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6542                                 const void* lock_from, unsigned long lock_len)
6543 {
6544         return lock_from + lock_len <= mem_from ||
6545                 mem_from + mem_len <= lock_from;
6546 }
6547
6548 /*
6549  * Called when kernel memory is freed (or unmapped), or if a lock
6550  * is destroyed or reinitialized - this code checks whether there is
6551  * any held lock in the memory range of <from> to <to>:
6552  */
6553 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6554 {
6555         struct task_struct *curr = current;
6556         struct held_lock *hlock;
6557         unsigned long flags;
6558         int i;
6559
6560         if (unlikely(!debug_locks))
6561                 return;
6562
6563         raw_local_irq_save(flags);
6564         for (i = 0; i < curr->lockdep_depth; i++) {
6565                 hlock = curr->held_locks + i;
6566
6567                 if (not_in_range(mem_from, mem_len, hlock->instance,
6568                                         sizeof(*hlock->instance)))
6569                         continue;
6570
6571                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6572                 break;
6573         }
6574         raw_local_irq_restore(flags);
6575 }
6576 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6577
6578 static void print_held_locks_bug(void)
6579 {
6580         if (!debug_locks_off())
6581                 return;
6582         if (debug_locks_silent)
6583                 return;
6584
6585         pr_warn("\n");
6586         pr_warn("====================================\n");
6587         pr_warn("WARNING: %s/%d still has locks held!\n",
6588                current->comm, task_pid_nr(current));
6589         print_kernel_ident();
6590         pr_warn("------------------------------------\n");
6591         lockdep_print_held_locks(current);
6592         pr_warn("\nstack backtrace:\n");
6593         dump_stack();
6594 }
6595
6596 void debug_check_no_locks_held(void)
6597 {
6598         if (unlikely(current->lockdep_depth > 0))
6599                 print_held_locks_bug();
6600 }
6601 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6602
6603 #ifdef __KERNEL__
6604 void debug_show_all_locks(void)
6605 {
6606         struct task_struct *g, *p;
6607
6608         if (unlikely(!debug_locks)) {
6609                 pr_warn("INFO: lockdep is turned off.\n");
6610                 return;
6611         }
6612         pr_warn("\nShowing all locks held in the system:\n");
6613
6614         rcu_read_lock();
6615         for_each_process_thread(g, p) {
6616                 if (!p->lockdep_depth)
6617                         continue;
6618                 lockdep_print_held_locks(p);
6619                 touch_nmi_watchdog();
6620                 touch_all_softlockup_watchdogs();
6621         }
6622         rcu_read_unlock();
6623
6624         pr_warn("\n");
6625         pr_warn("=============================================\n\n");
6626 }
6627 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6628 #endif
6629
6630 /*
6631  * Careful: only use this function if you are sure that
6632  * the task cannot run in parallel!
6633  */
6634 void debug_show_held_locks(struct task_struct *task)
6635 {
6636         if (unlikely(!debug_locks)) {
6637                 printk("INFO: lockdep is turned off.\n");
6638                 return;
6639         }
6640         lockdep_print_held_locks(task);
6641 }
6642 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6643
6644 asmlinkage __visible void lockdep_sys_exit(void)
6645 {
6646         struct task_struct *curr = current;
6647
6648         if (unlikely(curr->lockdep_depth)) {
6649                 if (!debug_locks_off())
6650                         return;
6651                 pr_warn("\n");
6652                 pr_warn("================================================\n");
6653                 pr_warn("WARNING: lock held when returning to user space!\n");
6654                 print_kernel_ident();
6655                 pr_warn("------------------------------------------------\n");
6656                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6657                                 curr->comm, curr->pid);
6658                 lockdep_print_held_locks(curr);
6659         }
6660
6661         /*
6662          * The lock history for each syscall should be independent. So wipe the
6663          * slate clean on return to userspace.
6664          */
6665         lockdep_invariant_state(false);
6666 }
6667
6668 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6669 {
6670         struct task_struct *curr = current;
6671         int dl = READ_ONCE(debug_locks);
6672         bool rcu = warn_rcu_enter();
6673
6674         /* Note: the following can be executed concurrently, so be careful. */
6675         pr_warn("\n");
6676         pr_warn("=============================\n");
6677         pr_warn("WARNING: suspicious RCU usage\n");
6678         print_kernel_ident();
6679         pr_warn("-----------------------------\n");
6680         pr_warn("%s:%d %s!\n", file, line, s);
6681         pr_warn("\nother info that might help us debug this:\n\n");
6682         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6683                !rcu_lockdep_current_cpu_online()
6684                         ? "RCU used illegally from offline CPU!\n"
6685                         : "",
6686                rcu_scheduler_active, dl,
6687                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6688
6689         /*
6690          * If a CPU is in the RCU-free window in idle (ie: in the section
6691          * between ct_idle_enter() and ct_idle_exit(), then RCU
6692          * considers that CPU to be in an "extended quiescent state",
6693          * which means that RCU will be completely ignoring that CPU.
6694          * Therefore, rcu_read_lock() and friends have absolutely no
6695          * effect on a CPU running in that state. In other words, even if
6696          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6697          * delete data structures out from under it.  RCU really has no
6698          * choice here: we need to keep an RCU-free window in idle where
6699          * the CPU may possibly enter into low power mode. This way we can
6700          * notice an extended quiescent state to other CPUs that started a grace
6701          * period. Otherwise we would delay any grace period as long as we run
6702          * in the idle task.
6703          *
6704          * So complain bitterly if someone does call rcu_read_lock(),
6705          * rcu_read_lock_bh() and so on from extended quiescent states.
6706          */
6707         if (!rcu_is_watching())
6708                 pr_warn("RCU used illegally from extended quiescent state!\n");
6709
6710         lockdep_print_held_locks(curr);
6711         pr_warn("\nstack backtrace:\n");
6712         dump_stack();
6713         warn_rcu_exit(rcu);
6714 }
6715 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);