Merge tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59
60 #include <asm/sections.h>
61
62 #include "lockdep_internals.h"
63
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83         {
84                 .procname       = "prove_locking",
85                 .data           = &prove_locking,
86                 .maxlen         = sizeof(int),
87                 .mode           = 0644,
88                 .proc_handler   = proc_dointvec,
89         },
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92         {
93                 .procname       = "lock_stat",
94                 .data           = &lock_stat,
95                 .maxlen         = sizeof(int),
96                 .mode           = 0644,
97                 .proc_handler   = proc_dointvec,
98         },
99 #endif /* CONFIG_LOCK_STAT */
100         { }
101 };
102
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105         register_sysctl_init("kernel", kern_lockdep_table);
106         return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113
114 static __always_inline bool lockdep_enabled(void)
115 {
116         if (!debug_locks)
117                 return false;
118
119         if (this_cpu_read(lockdep_recursion))
120                 return false;
121
122         if (current->lockdep_recursion)
123                 return false;
124
125         return true;
126 }
127
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138
139 static inline void lockdep_lock(void)
140 {
141         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142
143         __this_cpu_inc(lockdep_recursion);
144         arch_spin_lock(&__lock);
145         __owner = current;
146 }
147
148 static inline void lockdep_unlock(void)
149 {
150         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151
152         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153                 return;
154
155         __owner = NULL;
156         arch_spin_unlock(&__lock);
157         __this_cpu_dec(lockdep_recursion);
158 }
159
160 static inline bool lockdep_assert_locked(void)
161 {
162         return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164
165 static struct task_struct *lockdep_selftest_task_struct;
166
167
168 static int graph_lock(void)
169 {
170         lockdep_lock();
171         /*
172          * Make sure that if another CPU detected a bug while
173          * walking the graph we dont change it (while the other
174          * CPU is busy printing out stuff with the graph lock
175          * dropped already)
176          */
177         if (!debug_locks) {
178                 lockdep_unlock();
179                 return 0;
180         }
181         return 1;
182 }
183
184 static inline void graph_unlock(void)
185 {
186         lockdep_unlock();
187 }
188
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195         int ret = debug_locks_off();
196
197         lockdep_unlock();
198
199         return ret;
200 }
201
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223         unsigned int class_idx = hlock->class_idx;
224
225         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226         barrier();
227
228         if (!test_bit(class_idx, lock_classes_in_use)) {
229                 /*
230                  * Someone passed in garbage, we give up.
231                  */
232                 DEBUG_LOCKS_WARN_ON(1);
233                 return NULL;
234         }
235
236         /*
237          * At this point, if the passed hlock->class_idx is still garbage,
238          * we just have to live with it
239          */
240         return lock_classes + class_idx;
241 }
242
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245
246 static inline u64 lockstat_clock(void)
247 {
248         return local_clock();
249 }
250
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253         int i;
254
255         for (i = 0; i < LOCKSTAT_POINTS; i++) {
256                 if (points[i] == 0) {
257                         points[i] = ip;
258                         break;
259                 }
260                 if (points[i] == ip)
261                         break;
262         }
263
264         return i;
265 }
266
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269         if (time > lt->max)
270                 lt->max = time;
271
272         if (time < lt->min || !lt->nr)
273                 lt->min = time;
274
275         lt->total += time;
276         lt->nr++;
277 }
278
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281         if (!src->nr)
282                 return;
283
284         if (src->max > dst->max)
285                 dst->max = src->max;
286
287         if (src->min < dst->min || !dst->nr)
288                 dst->min = src->min;
289
290         dst->total += src->total;
291         dst->nr += src->nr;
292 }
293
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296         struct lock_class_stats stats;
297         int cpu, i;
298
299         memset(&stats, 0, sizeof(struct lock_class_stats));
300         for_each_possible_cpu(cpu) {
301                 struct lock_class_stats *pcs =
302                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303
304                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305                         stats.contention_point[i] += pcs->contention_point[i];
306
307                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308                         stats.contending_point[i] += pcs->contending_point[i];
309
310                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312
313                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315
316                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317                         stats.bounces[i] += pcs->bounces[i];
318         }
319
320         return stats;
321 }
322
323 void clear_lock_stats(struct lock_class *class)
324 {
325         int cpu;
326
327         for_each_possible_cpu(cpu) {
328                 struct lock_class_stats *cpu_stats =
329                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330
331                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332         }
333         memset(class->contention_point, 0, sizeof(class->contention_point));
334         memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344         struct lock_class_stats *stats;
345         u64 holdtime;
346
347         if (!lock_stat)
348                 return;
349
350         holdtime = lockstat_clock() - hlock->holdtime_stamp;
351
352         stats = get_lock_stats(hlock_class(hlock));
353         if (hlock->read)
354                 lock_time_inc(&stats->read_holdtime, holdtime);
355         else
356                 lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *      are about to be freed.
378  */
379 struct pending_free {
380         struct list_head zapped;
381         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396         struct rcu_head         rcu_head;
397         int                     index;
398         int                     scheduled;
399         struct pending_free     pf[2];
400 } delayed_free;
401
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
409
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
420
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429
430         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446         u32 k0 = key, k1 = key >> 32;
447
448         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449
450         return k0 | (u64)k1 << 32;
451 }
452
453 void lockdep_init_task(struct task_struct *task)
454 {
455         task->lockdep_depth = 0; /* no locks held yet */
456         task->curr_chain_key = INITIAL_CHAIN_KEY;
457         task->lockdep_recursion = 0;
458 }
459
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462         __this_cpu_inc(lockdep_recursion);
463 }
464
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468                 __this_cpu_write(lockdep_recursion, 0);
469 }
470
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473         lockdep_selftest_task_struct = task;
474 }
475
476 /*
477  * Debugging switches:
478  */
479
480 #define VERBOSE                 0
481 #define VERY_VERBOSE            0
482
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE        1
485 # define SOFTIRQ_VERBOSE        1
486 #else
487 # define HARDIRQ_VERBOSE        0
488 # define SOFTIRQ_VERBOSE        0
489 #endif
490
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498         /* Example */
499         if (class->name_version == 1 &&
500                         !strcmp(class->name, "lockname"))
501                 return 1;
502         if (class->name_version == 1 &&
503                         !strcmp(class->name, "&struct->lockfield"))
504                 return 1;
505 #endif
506         /* Filter everything else. 1 would be to allow everything else */
507         return 0;
508 }
509 #endif
510
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514         return class_filter(class);
515 #endif
516         return 0;
517 }
518
519 static void print_lockdep_off(const char *bug_msg)
520 {
521         printk(KERN_DEBUG "%s\n", bug_msg);
522         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527
528 unsigned long nr_stack_trace_entries;
529
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry: Entry in a stack_trace_hash[] list.
534  * @hash:       jhash() of @entries.
535  * @nr_entries: Number of entries in @entries.
536  * @entries:    Actual stack backtrace.
537  */
538 struct lock_trace {
539         struct hlist_node       hash_entry;
540         u32                     hash;
541         u32                     nr_entries;
542         unsigned long           entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS                                \
545         (sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555                 memcmp(t1->entries, t2->entries,
556                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558
559 static struct lock_trace *save_trace(void)
560 {
561         struct lock_trace *trace, *t2;
562         struct hlist_head *hash_head;
563         u32 hash;
564         int max_entries;
565
566         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568
569         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571                 LOCK_TRACE_SIZE_IN_LONGS;
572
573         if (max_entries <= 0) {
574                 if (!debug_locks_off_graph_unlock())
575                         return NULL;
576
577                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578                 dump_stack();
579
580                 return NULL;
581         }
582         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583
584         hash = jhash(trace->entries, trace->nr_entries *
585                      sizeof(trace->entries[0]), 0);
586         trace->hash = hash;
587         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588         hlist_for_each_entry(t2, hash_head, hash_entry) {
589                 if (traces_identical(trace, t2))
590                         return t2;
591         }
592         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593         hlist_add_head(&trace->hash_entry, hash_head);
594
595         return trace;
596 }
597
598 /* Return the number of stack traces in the stack_trace[] array. */
599 u64 lockdep_stack_trace_count(void)
600 {
601         struct lock_trace *trace;
602         u64 c = 0;
603         int i;
604
605         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607                         c++;
608                 }
609         }
610
611         return c;
612 }
613
614 /* Return the number of stack hash chains that have at least one stack trace. */
615 u64 lockdep_stack_hash_count(void)
616 {
617         u64 c = 0;
618         int i;
619
620         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621                 if (!hlist_empty(&stack_trace_hash[i]))
622                         c++;
623
624         return c;
625 }
626 #endif
627
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644
645 #define __USAGE(__STATE)                                                \
646         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
647         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
648         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656         [LOCK_USED] = "INITIAL USE",
657         [LOCK_USED_READ] = "INITIAL READ USE",
658         /* abused as string storage for verify_lock_unused() */
659         [LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662
663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667
668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670         return 1UL << bit;
671 }
672
673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675         /*
676          * The usage character defaults to '.' (i.e., irqs disabled and not in
677          * irq context), which is the safest usage category.
678          */
679         char c = '.';
680
681         /*
682          * The order of the following usage checks matters, which will
683          * result in the outcome character as follows:
684          *
685          * - '+': irq is enabled and not in irq context
686          * - '-': in irq context and irq is disabled
687          * - '?': in irq context and irq is enabled
688          */
689         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690                 c = '+';
691                 if (class->usage_mask & lock_flag(bit))
692                         c = '?';
693         } else if (class->usage_mask & lock_flag(bit))
694                 c = '-';
695
696         return c;
697 }
698
699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701         int i = 0;
702
703 #define LOCKDEP_STATE(__STATE)                                          \
704         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
705         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708
709         usage[i] = '\0';
710 }
711
712 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
713 {
714         char str[KSYM_NAME_LEN];
715         const char *name;
716
717         name = class->name;
718         if (!name) {
719                 name = __get_key_name(class->key, str);
720                 printk(KERN_CONT "%s", name);
721         } else {
722                 printk(KERN_CONT "%s", name);
723                 if (class->name_version > 1)
724                         printk(KERN_CONT "#%d", class->name_version);
725                 if (class->subclass)
726                         printk(KERN_CONT "/%d", class->subclass);
727                 if (hlock && class->print_fn)
728                         class->print_fn(hlock->instance);
729         }
730 }
731
732 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
733 {
734         char usage[LOCK_USAGE_CHARS];
735
736         get_usage_chars(class, usage);
737
738         printk(KERN_CONT " (");
739         __print_lock_name(hlock, class);
740         printk(KERN_CONT "){%s}-{%d:%d}", usage,
741                         class->wait_type_outer ?: class->wait_type_inner,
742                         class->wait_type_inner);
743 }
744
745 static void print_lockdep_cache(struct lockdep_map *lock)
746 {
747         const char *name;
748         char str[KSYM_NAME_LEN];
749
750         name = lock->name;
751         if (!name)
752                 name = __get_key_name(lock->key->subkeys, str);
753
754         printk(KERN_CONT "%s", name);
755 }
756
757 static void print_lock(struct held_lock *hlock)
758 {
759         /*
760          * We can be called locklessly through debug_show_all_locks() so be
761          * extra careful, the hlock might have been released and cleared.
762          *
763          * If this indeed happens, lets pretend it does not hurt to continue
764          * to print the lock unless the hlock class_idx does not point to a
765          * registered class. The rationale here is: since we don't attempt
766          * to distinguish whether we are in this situation, if it just
767          * happened we can't count on class_idx to tell either.
768          */
769         struct lock_class *lock = hlock_class(hlock);
770
771         if (!lock) {
772                 printk(KERN_CONT "<RELEASED>\n");
773                 return;
774         }
775
776         printk(KERN_CONT "%px", hlock->instance);
777         print_lock_name(hlock, lock);
778         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
779 }
780
781 static void lockdep_print_held_locks(struct task_struct *p)
782 {
783         int i, depth = READ_ONCE(p->lockdep_depth);
784
785         if (!depth)
786                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
787         else
788                 printk("%d lock%s held by %s/%d:\n", depth,
789                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
790         /*
791          * It's not reliable to print a task's held locks if it's not sleeping
792          * and it's not the current task.
793          */
794         if (p != current && task_is_running(p))
795                 return;
796         for (i = 0; i < depth; i++) {
797                 printk(" #%d: ", i);
798                 print_lock(p->held_locks + i);
799         }
800 }
801
802 static void print_kernel_ident(void)
803 {
804         printk("%s %.*s %s\n", init_utsname()->release,
805                 (int)strcspn(init_utsname()->version, " "),
806                 init_utsname()->version,
807                 print_tainted());
808 }
809
810 static int very_verbose(struct lock_class *class)
811 {
812 #if VERY_VERBOSE
813         return class_filter(class);
814 #endif
815         return 0;
816 }
817
818 /*
819  * Is this the address of a static object:
820  */
821 #ifdef __KERNEL__
822 /*
823  * Check if an address is part of freed initmem. After initmem is freed,
824  * memory can be allocated from it, and such allocations would then have
825  * addresses within the range [_stext, _end].
826  */
827 #ifndef arch_is_kernel_initmem_freed
828 static int arch_is_kernel_initmem_freed(unsigned long addr)
829 {
830         if (system_state < SYSTEM_FREEING_INITMEM)
831                 return 0;
832
833         return init_section_contains((void *)addr, 1);
834 }
835 #endif
836
837 static int static_obj(const void *obj)
838 {
839         unsigned long start = (unsigned long) &_stext,
840                       end   = (unsigned long) &_end,
841                       addr  = (unsigned long) obj;
842
843         if (arch_is_kernel_initmem_freed(addr))
844                 return 0;
845
846         /*
847          * static variable?
848          */
849         if ((addr >= start) && (addr < end))
850                 return 1;
851
852         /*
853          * in-kernel percpu var?
854          */
855         if (is_kernel_percpu_address(addr))
856                 return 1;
857
858         /*
859          * module static or percpu var?
860          */
861         return is_module_address(addr) || is_module_percpu_address(addr);
862 }
863 #endif
864
865 /*
866  * To make lock name printouts unique, we calculate a unique
867  * class->name_version generation counter. The caller must hold the graph
868  * lock.
869  */
870 static int count_matching_names(struct lock_class *new_class)
871 {
872         struct lock_class *class;
873         int count = 0;
874
875         if (!new_class->name)
876                 return 0;
877
878         list_for_each_entry(class, &all_lock_classes, lock_entry) {
879                 if (new_class->key - new_class->subclass == class->key)
880                         return class->name_version;
881                 if (class->name && !strcmp(class->name, new_class->name))
882                         count = max(count, class->name_version);
883         }
884
885         return count + 1;
886 }
887
888 /* used from NMI context -- must be lockless */
889 static noinstr struct lock_class *
890 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
891 {
892         struct lockdep_subclass_key *key;
893         struct hlist_head *hash_head;
894         struct lock_class *class;
895
896         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
897                 instrumentation_begin();
898                 debug_locks_off();
899                 printk(KERN_ERR
900                         "BUG: looking up invalid subclass: %u\n", subclass);
901                 printk(KERN_ERR
902                         "turning off the locking correctness validator.\n");
903                 dump_stack();
904                 instrumentation_end();
905                 return NULL;
906         }
907
908         /*
909          * If it is not initialised then it has never been locked,
910          * so it won't be present in the hash table.
911          */
912         if (unlikely(!lock->key))
913                 return NULL;
914
915         /*
916          * NOTE: the class-key must be unique. For dynamic locks, a static
917          * lock_class_key variable is passed in through the mutex_init()
918          * (or spin_lock_init()) call - which acts as the key. For static
919          * locks we use the lock object itself as the key.
920          */
921         BUILD_BUG_ON(sizeof(struct lock_class_key) >
922                         sizeof(struct lockdep_map));
923
924         key = lock->key->subkeys + subclass;
925
926         hash_head = classhashentry(key);
927
928         /*
929          * We do an RCU walk of the hash, see lockdep_free_key_range().
930          */
931         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
932                 return NULL;
933
934         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
935                 if (class->key == key) {
936                         /*
937                          * Huh! same key, different name? Did someone trample
938                          * on some memory? We're most confused.
939                          */
940                         WARN_ONCE(class->name != lock->name &&
941                                   lock->key != &__lockdep_no_validate__,
942                                   "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
943                                   lock->name, lock->key, class->name);
944                         return class;
945                 }
946         }
947
948         return NULL;
949 }
950
951 /*
952  * Static locks do not have their class-keys yet - for them the key is
953  * the lock object itself. If the lock is in the per cpu area, the
954  * canonical address of the lock (per cpu offset removed) is used.
955  */
956 static bool assign_lock_key(struct lockdep_map *lock)
957 {
958         unsigned long can_addr, addr = (unsigned long)lock;
959
960 #ifdef __KERNEL__
961         /*
962          * lockdep_free_key_range() assumes that struct lock_class_key
963          * objects do not overlap. Since we use the address of lock
964          * objects as class key for static objects, check whether the
965          * size of lock_class_key objects does not exceed the size of
966          * the smallest lock object.
967          */
968         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
969 #endif
970
971         if (__is_kernel_percpu_address(addr, &can_addr))
972                 lock->key = (void *)can_addr;
973         else if (__is_module_percpu_address(addr, &can_addr))
974                 lock->key = (void *)can_addr;
975         else if (static_obj(lock))
976                 lock->key = (void *)lock;
977         else {
978                 /* Debug-check: all keys must be persistent! */
979                 debug_locks_off();
980                 pr_err("INFO: trying to register non-static key.\n");
981                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
982                 pr_err("you didn't initialize this object before use?\n");
983                 pr_err("turning off the locking correctness validator.\n");
984                 dump_stack();
985                 return false;
986         }
987
988         return true;
989 }
990
991 #ifdef CONFIG_DEBUG_LOCKDEP
992
993 /* Check whether element @e occurs in list @h */
994 static bool in_list(struct list_head *e, struct list_head *h)
995 {
996         struct list_head *f;
997
998         list_for_each(f, h) {
999                 if (e == f)
1000                         return true;
1001         }
1002
1003         return false;
1004 }
1005
1006 /*
1007  * Check whether entry @e occurs in any of the locks_after or locks_before
1008  * lists.
1009  */
1010 static bool in_any_class_list(struct list_head *e)
1011 {
1012         struct lock_class *class;
1013         int i;
1014
1015         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1016                 class = &lock_classes[i];
1017                 if (in_list(e, &class->locks_after) ||
1018                     in_list(e, &class->locks_before))
1019                         return true;
1020         }
1021         return false;
1022 }
1023
1024 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1025 {
1026         struct lock_list *e;
1027
1028         list_for_each_entry(e, h, entry) {
1029                 if (e->links_to != c) {
1030                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1031                                c->name ? : "(?)",
1032                                (unsigned long)(e - list_entries),
1033                                e->links_to && e->links_to->name ?
1034                                e->links_to->name : "(?)",
1035                                e->class && e->class->name ? e->class->name :
1036                                "(?)");
1037                         return false;
1038                 }
1039         }
1040         return true;
1041 }
1042
1043 #ifdef CONFIG_PROVE_LOCKING
1044 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1045 #endif
1046
1047 static bool check_lock_chain_key(struct lock_chain *chain)
1048 {
1049 #ifdef CONFIG_PROVE_LOCKING
1050         u64 chain_key = INITIAL_CHAIN_KEY;
1051         int i;
1052
1053         for (i = chain->base; i < chain->base + chain->depth; i++)
1054                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1055         /*
1056          * The 'unsigned long long' casts avoid that a compiler warning
1057          * is reported when building tools/lib/lockdep.
1058          */
1059         if (chain->chain_key != chain_key) {
1060                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1061                        (unsigned long long)(chain - lock_chains),
1062                        (unsigned long long)chain->chain_key,
1063                        (unsigned long long)chain_key);
1064                 return false;
1065         }
1066 #endif
1067         return true;
1068 }
1069
1070 static bool in_any_zapped_class_list(struct lock_class *class)
1071 {
1072         struct pending_free *pf;
1073         int i;
1074
1075         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1076                 if (in_list(&class->lock_entry, &pf->zapped))
1077                         return true;
1078         }
1079
1080         return false;
1081 }
1082
1083 static bool __check_data_structures(void)
1084 {
1085         struct lock_class *class;
1086         struct lock_chain *chain;
1087         struct hlist_head *head;
1088         struct lock_list *e;
1089         int i;
1090
1091         /* Check whether all classes occur in a lock list. */
1092         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1093                 class = &lock_classes[i];
1094                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1095                     !in_list(&class->lock_entry, &free_lock_classes) &&
1096                     !in_any_zapped_class_list(class)) {
1097                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1098                                class, class->name ? : "(?)");
1099                         return false;
1100                 }
1101         }
1102
1103         /* Check whether all classes have valid lock lists. */
1104         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1105                 class = &lock_classes[i];
1106                 if (!class_lock_list_valid(class, &class->locks_before))
1107                         return false;
1108                 if (!class_lock_list_valid(class, &class->locks_after))
1109                         return false;
1110         }
1111
1112         /* Check the chain_key of all lock chains. */
1113         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1114                 head = chainhash_table + i;
1115                 hlist_for_each_entry_rcu(chain, head, entry) {
1116                         if (!check_lock_chain_key(chain))
1117                                 return false;
1118                 }
1119         }
1120
1121         /*
1122          * Check whether all list entries that are in use occur in a class
1123          * lock list.
1124          */
1125         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1126                 e = list_entries + i;
1127                 if (!in_any_class_list(&e->entry)) {
1128                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1129                                (unsigned int)(e - list_entries),
1130                                e->class->name ? : "(?)",
1131                                e->links_to->name ? : "(?)");
1132                         return false;
1133                 }
1134         }
1135
1136         /*
1137          * Check whether all list entries that are not in use do not occur in
1138          * a class lock list.
1139          */
1140         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1141                 e = list_entries + i;
1142                 if (in_any_class_list(&e->entry)) {
1143                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1144                                (unsigned int)(e - list_entries),
1145                                e->class && e->class->name ? e->class->name :
1146                                "(?)",
1147                                e->links_to && e->links_to->name ?
1148                                e->links_to->name : "(?)");
1149                         return false;
1150                 }
1151         }
1152
1153         return true;
1154 }
1155
1156 int check_consistency = 0;
1157 module_param(check_consistency, int, 0644);
1158
1159 static void check_data_structures(void)
1160 {
1161         static bool once = false;
1162
1163         if (check_consistency && !once) {
1164                 if (!__check_data_structures()) {
1165                         once = true;
1166                         WARN_ON(once);
1167                 }
1168         }
1169 }
1170
1171 #else /* CONFIG_DEBUG_LOCKDEP */
1172
1173 static inline void check_data_structures(void) { }
1174
1175 #endif /* CONFIG_DEBUG_LOCKDEP */
1176
1177 static void init_chain_block_buckets(void);
1178
1179 /*
1180  * Initialize the lock_classes[] array elements, the free_lock_classes list
1181  * and also the delayed_free structure.
1182  */
1183 static void init_data_structures_once(void)
1184 {
1185         static bool __read_mostly ds_initialized, rcu_head_initialized;
1186         int i;
1187
1188         if (likely(rcu_head_initialized))
1189                 return;
1190
1191         if (system_state >= SYSTEM_SCHEDULING) {
1192                 init_rcu_head(&delayed_free.rcu_head);
1193                 rcu_head_initialized = true;
1194         }
1195
1196         if (ds_initialized)
1197                 return;
1198
1199         ds_initialized = true;
1200
1201         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1202         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1203
1204         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1205                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1206                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1207                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1208         }
1209         init_chain_block_buckets();
1210 }
1211
1212 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1213 {
1214         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1215
1216         return lock_keys_hash + hash;
1217 }
1218
1219 /* Register a dynamically allocated key. */
1220 void lockdep_register_key(struct lock_class_key *key)
1221 {
1222         struct hlist_head *hash_head;
1223         struct lock_class_key *k;
1224         unsigned long flags;
1225
1226         if (WARN_ON_ONCE(static_obj(key)))
1227                 return;
1228         hash_head = keyhashentry(key);
1229
1230         raw_local_irq_save(flags);
1231         if (!graph_lock())
1232                 goto restore_irqs;
1233         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1234                 if (WARN_ON_ONCE(k == key))
1235                         goto out_unlock;
1236         }
1237         hlist_add_head_rcu(&key->hash_entry, hash_head);
1238 out_unlock:
1239         graph_unlock();
1240 restore_irqs:
1241         raw_local_irq_restore(flags);
1242 }
1243 EXPORT_SYMBOL_GPL(lockdep_register_key);
1244
1245 /* Check whether a key has been registered as a dynamic key. */
1246 static bool is_dynamic_key(const struct lock_class_key *key)
1247 {
1248         struct hlist_head *hash_head;
1249         struct lock_class_key *k;
1250         bool found = false;
1251
1252         if (WARN_ON_ONCE(static_obj(key)))
1253                 return false;
1254
1255         /*
1256          * If lock debugging is disabled lock_keys_hash[] may contain
1257          * pointers to memory that has already been freed. Avoid triggering
1258          * a use-after-free in that case by returning early.
1259          */
1260         if (!debug_locks)
1261                 return true;
1262
1263         hash_head = keyhashentry(key);
1264
1265         rcu_read_lock();
1266         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1267                 if (k == key) {
1268                         found = true;
1269                         break;
1270                 }
1271         }
1272         rcu_read_unlock();
1273
1274         return found;
1275 }
1276
1277 /*
1278  * Register a lock's class in the hash-table, if the class is not present
1279  * yet. Otherwise we look it up. We cache the result in the lock object
1280  * itself, so actual lookup of the hash should be once per lock object.
1281  */
1282 static struct lock_class *
1283 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1284 {
1285         struct lockdep_subclass_key *key;
1286         struct hlist_head *hash_head;
1287         struct lock_class *class;
1288         int idx;
1289
1290         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1291
1292         class = look_up_lock_class(lock, subclass);
1293         if (likely(class))
1294                 goto out_set_class_cache;
1295
1296         if (!lock->key) {
1297                 if (!assign_lock_key(lock))
1298                         return NULL;
1299         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1300                 return NULL;
1301         }
1302
1303         key = lock->key->subkeys + subclass;
1304         hash_head = classhashentry(key);
1305
1306         if (!graph_lock()) {
1307                 return NULL;
1308         }
1309         /*
1310          * We have to do the hash-walk again, to avoid races
1311          * with another CPU:
1312          */
1313         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1314                 if (class->key == key)
1315                         goto out_unlock_set;
1316         }
1317
1318         init_data_structures_once();
1319
1320         /* Allocate a new lock class and add it to the hash. */
1321         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1322                                          lock_entry);
1323         if (!class) {
1324                 if (!debug_locks_off_graph_unlock()) {
1325                         return NULL;
1326                 }
1327
1328                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1329                 dump_stack();
1330                 return NULL;
1331         }
1332         nr_lock_classes++;
1333         __set_bit(class - lock_classes, lock_classes_in_use);
1334         debug_atomic_inc(nr_unused_locks);
1335         class->key = key;
1336         class->name = lock->name;
1337         class->subclass = subclass;
1338         WARN_ON_ONCE(!list_empty(&class->locks_before));
1339         WARN_ON_ONCE(!list_empty(&class->locks_after));
1340         class->name_version = count_matching_names(class);
1341         class->wait_type_inner = lock->wait_type_inner;
1342         class->wait_type_outer = lock->wait_type_outer;
1343         class->lock_type = lock->lock_type;
1344         /*
1345          * We use RCU's safe list-add method to make
1346          * parallel walking of the hash-list safe:
1347          */
1348         hlist_add_head_rcu(&class->hash_entry, hash_head);
1349         /*
1350          * Remove the class from the free list and add it to the global list
1351          * of classes.
1352          */
1353         list_move_tail(&class->lock_entry, &all_lock_classes);
1354         idx = class - lock_classes;
1355         if (idx > max_lock_class_idx)
1356                 max_lock_class_idx = idx;
1357
1358         if (verbose(class)) {
1359                 graph_unlock();
1360
1361                 printk("\nnew class %px: %s", class->key, class->name);
1362                 if (class->name_version > 1)
1363                         printk(KERN_CONT "#%d", class->name_version);
1364                 printk(KERN_CONT "\n");
1365                 dump_stack();
1366
1367                 if (!graph_lock()) {
1368                         return NULL;
1369                 }
1370         }
1371 out_unlock_set:
1372         graph_unlock();
1373
1374 out_set_class_cache:
1375         if (!subclass || force)
1376                 lock->class_cache[0] = class;
1377         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1378                 lock->class_cache[subclass] = class;
1379
1380         /*
1381          * Hash collision, did we smoke some? We found a class with a matching
1382          * hash but the subclass -- which is hashed in -- didn't match.
1383          */
1384         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1385                 return NULL;
1386
1387         return class;
1388 }
1389
1390 #ifdef CONFIG_PROVE_LOCKING
1391 /*
1392  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1393  * with NULL on failure)
1394  */
1395 static struct lock_list *alloc_list_entry(void)
1396 {
1397         int idx = find_first_zero_bit(list_entries_in_use,
1398                                       ARRAY_SIZE(list_entries));
1399
1400         if (idx >= ARRAY_SIZE(list_entries)) {
1401                 if (!debug_locks_off_graph_unlock())
1402                         return NULL;
1403
1404                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1405                 dump_stack();
1406                 return NULL;
1407         }
1408         nr_list_entries++;
1409         __set_bit(idx, list_entries_in_use);
1410         return list_entries + idx;
1411 }
1412
1413 /*
1414  * Add a new dependency to the head of the list:
1415  */
1416 static int add_lock_to_list(struct lock_class *this,
1417                             struct lock_class *links_to, struct list_head *head,
1418                             u16 distance, u8 dep,
1419                             const struct lock_trace *trace)
1420 {
1421         struct lock_list *entry;
1422         /*
1423          * Lock not present yet - get a new dependency struct and
1424          * add it to the list:
1425          */
1426         entry = alloc_list_entry();
1427         if (!entry)
1428                 return 0;
1429
1430         entry->class = this;
1431         entry->links_to = links_to;
1432         entry->dep = dep;
1433         entry->distance = distance;
1434         entry->trace = trace;
1435         /*
1436          * Both allocation and removal are done under the graph lock; but
1437          * iteration is under RCU-sched; see look_up_lock_class() and
1438          * lockdep_free_key_range().
1439          */
1440         list_add_tail_rcu(&entry->entry, head);
1441
1442         return 1;
1443 }
1444
1445 /*
1446  * For good efficiency of modular, we use power of 2
1447  */
1448 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1449 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1450
1451 /*
1452  * The circular_queue and helpers are used to implement graph
1453  * breadth-first search (BFS) algorithm, by which we can determine
1454  * whether there is a path from a lock to another. In deadlock checks,
1455  * a path from the next lock to be acquired to a previous held lock
1456  * indicates that adding the <prev> -> <next> lock dependency will
1457  * produce a circle in the graph. Breadth-first search instead of
1458  * depth-first search is used in order to find the shortest (circular)
1459  * path.
1460  */
1461 struct circular_queue {
1462         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1463         unsigned int  front, rear;
1464 };
1465
1466 static struct circular_queue lock_cq;
1467
1468 unsigned int max_bfs_queue_depth;
1469
1470 static unsigned int lockdep_dependency_gen_id;
1471
1472 static inline void __cq_init(struct circular_queue *cq)
1473 {
1474         cq->front = cq->rear = 0;
1475         lockdep_dependency_gen_id++;
1476 }
1477
1478 static inline int __cq_empty(struct circular_queue *cq)
1479 {
1480         return (cq->front == cq->rear);
1481 }
1482
1483 static inline int __cq_full(struct circular_queue *cq)
1484 {
1485         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1486 }
1487
1488 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1489 {
1490         if (__cq_full(cq))
1491                 return -1;
1492
1493         cq->element[cq->rear] = elem;
1494         cq->rear = (cq->rear + 1) & CQ_MASK;
1495         return 0;
1496 }
1497
1498 /*
1499  * Dequeue an element from the circular_queue, return a lock_list if
1500  * the queue is not empty, or NULL if otherwise.
1501  */
1502 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1503 {
1504         struct lock_list * lock;
1505
1506         if (__cq_empty(cq))
1507                 return NULL;
1508
1509         lock = cq->element[cq->front];
1510         cq->front = (cq->front + 1) & CQ_MASK;
1511
1512         return lock;
1513 }
1514
1515 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1516 {
1517         return (cq->rear - cq->front) & CQ_MASK;
1518 }
1519
1520 static inline void mark_lock_accessed(struct lock_list *lock)
1521 {
1522         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1523 }
1524
1525 static inline void visit_lock_entry(struct lock_list *lock,
1526                                     struct lock_list *parent)
1527 {
1528         lock->parent = parent;
1529 }
1530
1531 static inline unsigned long lock_accessed(struct lock_list *lock)
1532 {
1533         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1534 }
1535
1536 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1537 {
1538         return child->parent;
1539 }
1540
1541 static inline int get_lock_depth(struct lock_list *child)
1542 {
1543         int depth = 0;
1544         struct lock_list *parent;
1545
1546         while ((parent = get_lock_parent(child))) {
1547                 child = parent;
1548                 depth++;
1549         }
1550         return depth;
1551 }
1552
1553 /*
1554  * Return the forward or backward dependency list.
1555  *
1556  * @lock:   the lock_list to get its class's dependency list
1557  * @offset: the offset to struct lock_class to determine whether it is
1558  *          locks_after or locks_before
1559  */
1560 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1561 {
1562         void *lock_class = lock->class;
1563
1564         return lock_class + offset;
1565 }
1566 /*
1567  * Return values of a bfs search:
1568  *
1569  * BFS_E* indicates an error
1570  * BFS_R* indicates a result (match or not)
1571  *
1572  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1573  *
1574  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1575  *
1576  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1577  *             *@target_entry.
1578  *
1579  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1580  *               _unchanged_.
1581  */
1582 enum bfs_result {
1583         BFS_EINVALIDNODE = -2,
1584         BFS_EQUEUEFULL = -1,
1585         BFS_RMATCH = 0,
1586         BFS_RNOMATCH = 1,
1587 };
1588
1589 /*
1590  * bfs_result < 0 means error
1591  */
1592 static inline bool bfs_error(enum bfs_result res)
1593 {
1594         return res < 0;
1595 }
1596
1597 /*
1598  * DEP_*_BIT in lock_list::dep
1599  *
1600  * For dependency @prev -> @next:
1601  *
1602  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1603  *       (->read == 2)
1604  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1605  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1606  *   EN: @prev is exclusive locker and @next is non-recursive locker
1607  *
1608  * Note that we define the value of DEP_*_BITs so that:
1609  *   bit0 is prev->read == 0
1610  *   bit1 is next->read != 2
1611  */
1612 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1613 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1614 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1615 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1616
1617 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1618 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1619 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1620 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1621
1622 static inline unsigned int
1623 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1624 {
1625         return (prev->read == 0) + ((next->read != 2) << 1);
1626 }
1627
1628 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1629 {
1630         return 1U << __calc_dep_bit(prev, next);
1631 }
1632
1633 /*
1634  * calculate the dep_bit for backwards edges. We care about whether @prev is
1635  * shared and whether @next is recursive.
1636  */
1637 static inline unsigned int
1638 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1639 {
1640         return (next->read != 2) + ((prev->read == 0) << 1);
1641 }
1642
1643 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1644 {
1645         return 1U << __calc_dep_bitb(prev, next);
1646 }
1647
1648 /*
1649  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1650  * search.
1651  */
1652 static inline void __bfs_init_root(struct lock_list *lock,
1653                                    struct lock_class *class)
1654 {
1655         lock->class = class;
1656         lock->parent = NULL;
1657         lock->only_xr = 0;
1658 }
1659
1660 /*
1661  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1662  * root for a BFS search.
1663  *
1664  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1665  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1666  * and -(S*)->.
1667  */
1668 static inline void bfs_init_root(struct lock_list *lock,
1669                                  struct held_lock *hlock)
1670 {
1671         __bfs_init_root(lock, hlock_class(hlock));
1672         lock->only_xr = (hlock->read == 2);
1673 }
1674
1675 /*
1676  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1677  *
1678  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1679  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1680  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1681  */
1682 static inline void bfs_init_rootb(struct lock_list *lock,
1683                                   struct held_lock *hlock)
1684 {
1685         __bfs_init_root(lock, hlock_class(hlock));
1686         lock->only_xr = (hlock->read != 0);
1687 }
1688
1689 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1690 {
1691         if (!lock || !lock->parent)
1692                 return NULL;
1693
1694         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1695                                      &lock->entry, struct lock_list, entry);
1696 }
1697
1698 /*
1699  * Breadth-First Search to find a strong path in the dependency graph.
1700  *
1701  * @source_entry: the source of the path we are searching for.
1702  * @data: data used for the second parameter of @match function
1703  * @match: match function for the search
1704  * @target_entry: pointer to the target of a matched path
1705  * @offset: the offset to struct lock_class to determine whether it is
1706  *          locks_after or locks_before
1707  *
1708  * We may have multiple edges (considering different kinds of dependencies,
1709  * e.g. ER and SN) between two nodes in the dependency graph. But
1710  * only the strong dependency path in the graph is relevant to deadlocks. A
1711  * strong dependency path is a dependency path that doesn't have two adjacent
1712  * dependencies as -(*R)-> -(S*)->, please see:
1713  *
1714  *         Documentation/locking/lockdep-design.rst
1715  *
1716  * for more explanation of the definition of strong dependency paths
1717  *
1718  * In __bfs(), we only traverse in the strong dependency path:
1719  *
1720  *     In lock_list::only_xr, we record whether the previous dependency only
1721  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1722  *     filter out any -(S*)-> in the current dependency and after that, the
1723  *     ->only_xr is set according to whether we only have -(*R)-> left.
1724  */
1725 static enum bfs_result __bfs(struct lock_list *source_entry,
1726                              void *data,
1727                              bool (*match)(struct lock_list *entry, void *data),
1728                              bool (*skip)(struct lock_list *entry, void *data),
1729                              struct lock_list **target_entry,
1730                              int offset)
1731 {
1732         struct circular_queue *cq = &lock_cq;
1733         struct lock_list *lock = NULL;
1734         struct lock_list *entry;
1735         struct list_head *head;
1736         unsigned int cq_depth;
1737         bool first;
1738
1739         lockdep_assert_locked();
1740
1741         __cq_init(cq);
1742         __cq_enqueue(cq, source_entry);
1743
1744         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1745                 if (!lock->class)
1746                         return BFS_EINVALIDNODE;
1747
1748                 /*
1749                  * Step 1: check whether we already finish on this one.
1750                  *
1751                  * If we have visited all the dependencies from this @lock to
1752                  * others (iow, if we have visited all lock_list entries in
1753                  * @lock->class->locks_{after,before}) we skip, otherwise go
1754                  * and visit all the dependencies in the list and mark this
1755                  * list accessed.
1756                  */
1757                 if (lock_accessed(lock))
1758                         continue;
1759                 else
1760                         mark_lock_accessed(lock);
1761
1762                 /*
1763                  * Step 2: check whether prev dependency and this form a strong
1764                  *         dependency path.
1765                  */
1766                 if (lock->parent) { /* Parent exists, check prev dependency */
1767                         u8 dep = lock->dep;
1768                         bool prev_only_xr = lock->parent->only_xr;
1769
1770                         /*
1771                          * Mask out all -(S*)-> if we only have *R in previous
1772                          * step, because -(*R)-> -(S*)-> don't make up a strong
1773                          * dependency.
1774                          */
1775                         if (prev_only_xr)
1776                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1777
1778                         /* If nothing left, we skip */
1779                         if (!dep)
1780                                 continue;
1781
1782                         /* If there are only -(*R)-> left, set that for the next step */
1783                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1784                 }
1785
1786                 /*
1787                  * Step 3: we haven't visited this and there is a strong
1788                  *         dependency path to this, so check with @match.
1789                  *         If @skip is provide and returns true, we skip this
1790                  *         lock (and any path this lock is in).
1791                  */
1792                 if (skip && skip(lock, data))
1793                         continue;
1794
1795                 if (match(lock, data)) {
1796                         *target_entry = lock;
1797                         return BFS_RMATCH;
1798                 }
1799
1800                 /*
1801                  * Step 4: if not match, expand the path by adding the
1802                  *         forward or backwards dependencies in the search
1803                  *
1804                  */
1805                 first = true;
1806                 head = get_dep_list(lock, offset);
1807                 list_for_each_entry_rcu(entry, head, entry) {
1808                         visit_lock_entry(entry, lock);
1809
1810                         /*
1811                          * Note we only enqueue the first of the list into the
1812                          * queue, because we can always find a sibling
1813                          * dependency from one (see __bfs_next()), as a result
1814                          * the space of queue is saved.
1815                          */
1816                         if (!first)
1817                                 continue;
1818
1819                         first = false;
1820
1821                         if (__cq_enqueue(cq, entry))
1822                                 return BFS_EQUEUEFULL;
1823
1824                         cq_depth = __cq_get_elem_count(cq);
1825                         if (max_bfs_queue_depth < cq_depth)
1826                                 max_bfs_queue_depth = cq_depth;
1827                 }
1828         }
1829
1830         return BFS_RNOMATCH;
1831 }
1832
1833 static inline enum bfs_result
1834 __bfs_forwards(struct lock_list *src_entry,
1835                void *data,
1836                bool (*match)(struct lock_list *entry, void *data),
1837                bool (*skip)(struct lock_list *entry, void *data),
1838                struct lock_list **target_entry)
1839 {
1840         return __bfs(src_entry, data, match, skip, target_entry,
1841                      offsetof(struct lock_class, locks_after));
1842
1843 }
1844
1845 static inline enum bfs_result
1846 __bfs_backwards(struct lock_list *src_entry,
1847                 void *data,
1848                 bool (*match)(struct lock_list *entry, void *data),
1849                bool (*skip)(struct lock_list *entry, void *data),
1850                 struct lock_list **target_entry)
1851 {
1852         return __bfs(src_entry, data, match, skip, target_entry,
1853                      offsetof(struct lock_class, locks_before));
1854
1855 }
1856
1857 static void print_lock_trace(const struct lock_trace *trace,
1858                              unsigned int spaces)
1859 {
1860         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1861 }
1862
1863 /*
1864  * Print a dependency chain entry (this is only done when a deadlock
1865  * has been detected):
1866  */
1867 static noinline void
1868 print_circular_bug_entry(struct lock_list *target, int depth)
1869 {
1870         if (debug_locks_silent)
1871                 return;
1872         printk("\n-> #%u", depth);
1873         print_lock_name(NULL, target->class);
1874         printk(KERN_CONT ":\n");
1875         print_lock_trace(target->trace, 6);
1876 }
1877
1878 static void
1879 print_circular_lock_scenario(struct held_lock *src,
1880                              struct held_lock *tgt,
1881                              struct lock_list *prt)
1882 {
1883         struct lock_class *source = hlock_class(src);
1884         struct lock_class *target = hlock_class(tgt);
1885         struct lock_class *parent = prt->class;
1886         int src_read = src->read;
1887         int tgt_read = tgt->read;
1888
1889         /*
1890          * A direct locking problem where unsafe_class lock is taken
1891          * directly by safe_class lock, then all we need to show
1892          * is the deadlock scenario, as it is obvious that the
1893          * unsafe lock is taken under the safe lock.
1894          *
1895          * But if there is a chain instead, where the safe lock takes
1896          * an intermediate lock (middle_class) where this lock is
1897          * not the same as the safe lock, then the lock chain is
1898          * used to describe the problem. Otherwise we would need
1899          * to show a different CPU case for each link in the chain
1900          * from the safe_class lock to the unsafe_class lock.
1901          */
1902         if (parent != source) {
1903                 printk("Chain exists of:\n  ");
1904                 __print_lock_name(src, source);
1905                 printk(KERN_CONT " --> ");
1906                 __print_lock_name(NULL, parent);
1907                 printk(KERN_CONT " --> ");
1908                 __print_lock_name(tgt, target);
1909                 printk(KERN_CONT "\n\n");
1910         }
1911
1912         printk(" Possible unsafe locking scenario:\n\n");
1913         printk("       CPU0                    CPU1\n");
1914         printk("       ----                    ----\n");
1915         if (tgt_read != 0)
1916                 printk("  rlock(");
1917         else
1918                 printk("  lock(");
1919         __print_lock_name(tgt, target);
1920         printk(KERN_CONT ");\n");
1921         printk("                               lock(");
1922         __print_lock_name(NULL, parent);
1923         printk(KERN_CONT ");\n");
1924         printk("                               lock(");
1925         __print_lock_name(tgt, target);
1926         printk(KERN_CONT ");\n");
1927         if (src_read != 0)
1928                 printk("  rlock(");
1929         else if (src->sync)
1930                 printk("  sync(");
1931         else
1932                 printk("  lock(");
1933         __print_lock_name(src, source);
1934         printk(KERN_CONT ");\n");
1935         printk("\n *** DEADLOCK ***\n\n");
1936 }
1937
1938 /*
1939  * When a circular dependency is detected, print the
1940  * header first:
1941  */
1942 static noinline void
1943 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1944                         struct held_lock *check_src,
1945                         struct held_lock *check_tgt)
1946 {
1947         struct task_struct *curr = current;
1948
1949         if (debug_locks_silent)
1950                 return;
1951
1952         pr_warn("\n");
1953         pr_warn("======================================================\n");
1954         pr_warn("WARNING: possible circular locking dependency detected\n");
1955         print_kernel_ident();
1956         pr_warn("------------------------------------------------------\n");
1957         pr_warn("%s/%d is trying to acquire lock:\n",
1958                 curr->comm, task_pid_nr(curr));
1959         print_lock(check_src);
1960
1961         pr_warn("\nbut task is already holding lock:\n");
1962
1963         print_lock(check_tgt);
1964         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1965         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1966
1967         print_circular_bug_entry(entry, depth);
1968 }
1969
1970 /*
1971  * We are about to add A -> B into the dependency graph, and in __bfs() a
1972  * strong dependency path A -> .. -> B is found: hlock_class equals
1973  * entry->class.
1974  *
1975  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1976  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1977  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1978  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1979  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1980  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1981  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1982  *
1983  * We need to make sure both the start and the end of A -> .. -> B is not
1984  * weaker than A -> B. For the start part, please see the comment in
1985  * check_redundant(). For the end part, we need:
1986  *
1987  * Either
1988  *
1989  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1990  *
1991  * or
1992  *
1993  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1994  *
1995  */
1996 static inline bool hlock_equal(struct lock_list *entry, void *data)
1997 {
1998         struct held_lock *hlock = (struct held_lock *)data;
1999
2000         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2001                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2002                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2003 }
2004
2005 /*
2006  * We are about to add B -> A into the dependency graph, and in __bfs() a
2007  * strong dependency path A -> .. -> B is found: hlock_class equals
2008  * entry->class.
2009  *
2010  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2011  * dependency cycle, that means:
2012  *
2013  * Either
2014  *
2015  *     a) B -> A is -(E*)->
2016  *
2017  * or
2018  *
2019  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2020  *
2021  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2022  */
2023 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2024 {
2025         struct held_lock *hlock = (struct held_lock *)data;
2026
2027         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2028                (hlock->read == 0 || /* B -> A is -(E*)-> */
2029                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2030 }
2031
2032 static noinline void print_circular_bug(struct lock_list *this,
2033                                 struct lock_list *target,
2034                                 struct held_lock *check_src,
2035                                 struct held_lock *check_tgt)
2036 {
2037         struct task_struct *curr = current;
2038         struct lock_list *parent;
2039         struct lock_list *first_parent;
2040         int depth;
2041
2042         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2043                 return;
2044
2045         this->trace = save_trace();
2046         if (!this->trace)
2047                 return;
2048
2049         depth = get_lock_depth(target);
2050
2051         print_circular_bug_header(target, depth, check_src, check_tgt);
2052
2053         parent = get_lock_parent(target);
2054         first_parent = parent;
2055
2056         while (parent) {
2057                 print_circular_bug_entry(parent, --depth);
2058                 parent = get_lock_parent(parent);
2059         }
2060
2061         printk("\nother info that might help us debug this:\n\n");
2062         print_circular_lock_scenario(check_src, check_tgt,
2063                                      first_parent);
2064
2065         lockdep_print_held_locks(curr);
2066
2067         printk("\nstack backtrace:\n");
2068         dump_stack();
2069 }
2070
2071 static noinline void print_bfs_bug(int ret)
2072 {
2073         if (!debug_locks_off_graph_unlock())
2074                 return;
2075
2076         /*
2077          * Breadth-first-search failed, graph got corrupted?
2078          */
2079         WARN(1, "lockdep bfs error:%d\n", ret);
2080 }
2081
2082 static bool noop_count(struct lock_list *entry, void *data)
2083 {
2084         (*(unsigned long *)data)++;
2085         return false;
2086 }
2087
2088 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2089 {
2090         unsigned long  count = 0;
2091         struct lock_list *target_entry;
2092
2093         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2094
2095         return count;
2096 }
2097 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2098 {
2099         unsigned long ret, flags;
2100         struct lock_list this;
2101
2102         __bfs_init_root(&this, class);
2103
2104         raw_local_irq_save(flags);
2105         lockdep_lock();
2106         ret = __lockdep_count_forward_deps(&this);
2107         lockdep_unlock();
2108         raw_local_irq_restore(flags);
2109
2110         return ret;
2111 }
2112
2113 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2114 {
2115         unsigned long  count = 0;
2116         struct lock_list *target_entry;
2117
2118         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2119
2120         return count;
2121 }
2122
2123 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2124 {
2125         unsigned long ret, flags;
2126         struct lock_list this;
2127
2128         __bfs_init_root(&this, class);
2129
2130         raw_local_irq_save(flags);
2131         lockdep_lock();
2132         ret = __lockdep_count_backward_deps(&this);
2133         lockdep_unlock();
2134         raw_local_irq_restore(flags);
2135
2136         return ret;
2137 }
2138
2139 /*
2140  * Check that the dependency graph starting at <src> can lead to
2141  * <target> or not.
2142  */
2143 static noinline enum bfs_result
2144 check_path(struct held_lock *target, struct lock_list *src_entry,
2145            bool (*match)(struct lock_list *entry, void *data),
2146            bool (*skip)(struct lock_list *entry, void *data),
2147            struct lock_list **target_entry)
2148 {
2149         enum bfs_result ret;
2150
2151         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2152
2153         if (unlikely(bfs_error(ret)))
2154                 print_bfs_bug(ret);
2155
2156         return ret;
2157 }
2158
2159 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2160
2161 /*
2162  * Prove that the dependency graph starting at <src> can not
2163  * lead to <target>. If it can, there is a circle when adding
2164  * <target> -> <src> dependency.
2165  *
2166  * Print an error and return BFS_RMATCH if it does.
2167  */
2168 static noinline enum bfs_result
2169 check_noncircular(struct held_lock *src, struct held_lock *target,
2170                   struct lock_trace **const trace)
2171 {
2172         enum bfs_result ret;
2173         struct lock_list *target_entry;
2174         struct lock_list src_entry;
2175
2176         bfs_init_root(&src_entry, src);
2177
2178         debug_atomic_inc(nr_cyclic_checks);
2179
2180         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2181
2182         if (unlikely(ret == BFS_RMATCH)) {
2183                 if (!*trace) {
2184                         /*
2185                          * If save_trace fails here, the printing might
2186                          * trigger a WARN but because of the !nr_entries it
2187                          * should not do bad things.
2188                          */
2189                         *trace = save_trace();
2190                 }
2191
2192                 if (src->class_idx == target->class_idx)
2193                         print_deadlock_bug(current, src, target);
2194                 else
2195                         print_circular_bug(&src_entry, target_entry, src, target);
2196         }
2197
2198         return ret;
2199 }
2200
2201 #ifdef CONFIG_TRACE_IRQFLAGS
2202
2203 /*
2204  * Forwards and backwards subgraph searching, for the purposes of
2205  * proving that two subgraphs can be connected by a new dependency
2206  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2207  *
2208  * A irq safe->unsafe deadlock happens with the following conditions:
2209  *
2210  * 1) We have a strong dependency path A -> ... -> B
2211  *
2212  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2213  *    irq can create a new dependency B -> A (consider the case that a holder
2214  *    of B gets interrupted by an irq whose handler will try to acquire A).
2215  *
2216  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2217  *    strong circle:
2218  *
2219  *      For the usage bits of B:
2220  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2221  *           ENABLED_IRQ usage suffices.
2222  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2223  *           ENABLED_IRQ_*_READ usage suffices.
2224  *
2225  *      For the usage bits of A:
2226  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2227  *           USED_IN_IRQ usage suffices.
2228  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2229  *           USED_IN_IRQ_*_READ usage suffices.
2230  */
2231
2232 /*
2233  * There is a strong dependency path in the dependency graph: A -> B, and now
2234  * we need to decide which usage bit of A should be accumulated to detect
2235  * safe->unsafe bugs.
2236  *
2237  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2238  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2239  *
2240  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2241  * path, any usage of A should be considered. Otherwise, we should only
2242  * consider _READ usage.
2243  */
2244 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2245 {
2246         if (!entry->only_xr)
2247                 *(unsigned long *)mask |= entry->class->usage_mask;
2248         else /* Mask out _READ usage bits */
2249                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2250
2251         return false;
2252 }
2253
2254 /*
2255  * There is a strong dependency path in the dependency graph: A -> B, and now
2256  * we need to decide which usage bit of B conflicts with the usage bits of A,
2257  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2258  *
2259  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2260  * path, any usage of B should be considered. Otherwise, we should only
2261  * consider _READ usage.
2262  */
2263 static inline bool usage_match(struct lock_list *entry, void *mask)
2264 {
2265         if (!entry->only_xr)
2266                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2267         else /* Mask out _READ usage bits */
2268                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2269 }
2270
2271 static inline bool usage_skip(struct lock_list *entry, void *mask)
2272 {
2273         if (entry->class->lock_type == LD_LOCK_NORMAL)
2274                 return false;
2275
2276         /*
2277          * Skip local_lock() for irq inversion detection.
2278          *
2279          * For !RT, local_lock() is not a real lock, so it won't carry any
2280          * dependency.
2281          *
2282          * For RT, an irq inversion happens when we have lock A and B, and on
2283          * some CPU we can have:
2284          *
2285          *      lock(A);
2286          *      <interrupted>
2287          *        lock(B);
2288          *
2289          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2290          *
2291          * Now we prove local_lock() cannot exist in that dependency. First we
2292          * have the observation for any lock chain L1 -> ... -> Ln, for any
2293          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2294          * wait context check will complain. And since B is not a sleep lock,
2295          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2296          * local_lock() is 3, which is greater than 2, therefore there is no
2297          * way the local_lock() exists in the dependency B -> ... -> A.
2298          *
2299          * As a result, we will skip local_lock(), when we search for irq
2300          * inversion bugs.
2301          */
2302         if (entry->class->lock_type == LD_LOCK_PERCPU &&
2303             DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2304                 return false;
2305
2306         /*
2307          * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2308          * a lock and only used to override the wait_type.
2309          */
2310
2311         return true;
2312 }
2313
2314 /*
2315  * Find a node in the forwards-direction dependency sub-graph starting
2316  * at @root->class that matches @bit.
2317  *
2318  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2319  * into *@target_entry.
2320  */
2321 static enum bfs_result
2322 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2323                         struct lock_list **target_entry)
2324 {
2325         enum bfs_result result;
2326
2327         debug_atomic_inc(nr_find_usage_forwards_checks);
2328
2329         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2330
2331         return result;
2332 }
2333
2334 /*
2335  * Find a node in the backwards-direction dependency sub-graph starting
2336  * at @root->class that matches @bit.
2337  */
2338 static enum bfs_result
2339 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2340                         struct lock_list **target_entry)
2341 {
2342         enum bfs_result result;
2343
2344         debug_atomic_inc(nr_find_usage_backwards_checks);
2345
2346         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2347
2348         return result;
2349 }
2350
2351 static void print_lock_class_header(struct lock_class *class, int depth)
2352 {
2353         int bit;
2354
2355         printk("%*s->", depth, "");
2356         print_lock_name(NULL, class);
2357 #ifdef CONFIG_DEBUG_LOCKDEP
2358         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2359 #endif
2360         printk(KERN_CONT " {\n");
2361
2362         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2363                 if (class->usage_mask & (1 << bit)) {
2364                         int len = depth;
2365
2366                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2367                         len += printk(KERN_CONT " at:\n");
2368                         print_lock_trace(class->usage_traces[bit], len);
2369                 }
2370         }
2371         printk("%*s }\n", depth, "");
2372
2373         printk("%*s ... key      at: [<%px>] %pS\n",
2374                 depth, "", class->key, class->key);
2375 }
2376
2377 /*
2378  * Dependency path printing:
2379  *
2380  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2381  * printing out each lock in the dependency path will help on understanding how
2382  * the deadlock could happen. Here are some details about dependency path
2383  * printing:
2384  *
2385  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2386  *      for a lock dependency A -> B, there are two lock_lists:
2387  *
2388  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2389  *              ->links_to is A. In this case, we can say the lock_list is
2390  *              "A -> B" (forwards case).
2391  *
2392  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2393  *              and ->links_to is B. In this case, we can say the lock_list is
2394  *              "B <- A" (bacwards case).
2395  *
2396  *      The ->trace of both a) and b) point to the call trace where B was
2397  *      acquired with A held.
2398  *
2399  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2400  *      represent a certain lock dependency, it only provides an initial entry
2401  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2402  *      ->class is A, as a result BFS will search all dependencies starting with
2403  *      A, e.g. A -> B or A -> C.
2404  *
2405  *      The notation of a forwards helper lock_list is like "-> A", which means
2406  *      we should search the forwards dependencies starting with "A", e.g A -> B
2407  *      or A -> C.
2408  *
2409  *      The notation of a bacwards helper lock_list is like "<- B", which means
2410  *      we should search the backwards dependencies ending with "B", e.g.
2411  *      B <- A or B <- C.
2412  */
2413
2414 /*
2415  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2416  *
2417  * We have a lock dependency path as follow:
2418  *
2419  *    @root                                                                 @leaf
2420  *      |                                                                     |
2421  *      V                                                                     V
2422  *                ->parent                                   ->parent
2423  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2424  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2425  *
2426  * , so it's natural that we start from @leaf and print every ->class and
2427  * ->trace until we reach the @root.
2428  */
2429 static void __used
2430 print_shortest_lock_dependencies(struct lock_list *leaf,
2431                                  struct lock_list *root)
2432 {
2433         struct lock_list *entry = leaf;
2434         int depth;
2435
2436         /*compute depth from generated tree by BFS*/
2437         depth = get_lock_depth(leaf);
2438
2439         do {
2440                 print_lock_class_header(entry->class, depth);
2441                 printk("%*s ... acquired at:\n", depth, "");
2442                 print_lock_trace(entry->trace, 2);
2443                 printk("\n");
2444
2445                 if (depth == 0 && (entry != root)) {
2446                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2447                         break;
2448                 }
2449
2450                 entry = get_lock_parent(entry);
2451                 depth--;
2452         } while (entry && (depth >= 0));
2453 }
2454
2455 /*
2456  * printk the shortest lock dependencies from @leaf to @root.
2457  *
2458  * We have a lock dependency path (from a backwards search) as follow:
2459  *
2460  *    @leaf                                                                 @root
2461  *      |                                                                     |
2462  *      V                                                                     V
2463  *                ->parent                                   ->parent
2464  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2465  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2466  *
2467  * , so when we iterate from @leaf to @root, we actually print the lock
2468  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2469  *
2470  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2471  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2472  * trace of L1 in the dependency path, which is alright, because most of the
2473  * time we can figure out where L1 is held from the call trace of L2.
2474  */
2475 static void __used
2476 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2477                                            struct lock_list *root)
2478 {
2479         struct lock_list *entry = leaf;
2480         const struct lock_trace *trace = NULL;
2481         int depth;
2482
2483         /*compute depth from generated tree by BFS*/
2484         depth = get_lock_depth(leaf);
2485
2486         do {
2487                 print_lock_class_header(entry->class, depth);
2488                 if (trace) {
2489                         printk("%*s ... acquired at:\n", depth, "");
2490                         print_lock_trace(trace, 2);
2491                         printk("\n");
2492                 }
2493
2494                 /*
2495                  * Record the pointer to the trace for the next lock_list
2496                  * entry, see the comments for the function.
2497                  */
2498                 trace = entry->trace;
2499
2500                 if (depth == 0 && (entry != root)) {
2501                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2502                         break;
2503                 }
2504
2505                 entry = get_lock_parent(entry);
2506                 depth--;
2507         } while (entry && (depth >= 0));
2508 }
2509
2510 static void
2511 print_irq_lock_scenario(struct lock_list *safe_entry,
2512                         struct lock_list *unsafe_entry,
2513                         struct lock_class *prev_class,
2514                         struct lock_class *next_class)
2515 {
2516         struct lock_class *safe_class = safe_entry->class;
2517         struct lock_class *unsafe_class = unsafe_entry->class;
2518         struct lock_class *middle_class = prev_class;
2519
2520         if (middle_class == safe_class)
2521                 middle_class = next_class;
2522
2523         /*
2524          * A direct locking problem where unsafe_class lock is taken
2525          * directly by safe_class lock, then all we need to show
2526          * is the deadlock scenario, as it is obvious that the
2527          * unsafe lock is taken under the safe lock.
2528          *
2529          * But if there is a chain instead, where the safe lock takes
2530          * an intermediate lock (middle_class) where this lock is
2531          * not the same as the safe lock, then the lock chain is
2532          * used to describe the problem. Otherwise we would need
2533          * to show a different CPU case for each link in the chain
2534          * from the safe_class lock to the unsafe_class lock.
2535          */
2536         if (middle_class != unsafe_class) {
2537                 printk("Chain exists of:\n  ");
2538                 __print_lock_name(NULL, safe_class);
2539                 printk(KERN_CONT " --> ");
2540                 __print_lock_name(NULL, middle_class);
2541                 printk(KERN_CONT " --> ");
2542                 __print_lock_name(NULL, unsafe_class);
2543                 printk(KERN_CONT "\n\n");
2544         }
2545
2546         printk(" Possible interrupt unsafe locking scenario:\n\n");
2547         printk("       CPU0                    CPU1\n");
2548         printk("       ----                    ----\n");
2549         printk("  lock(");
2550         __print_lock_name(NULL, unsafe_class);
2551         printk(KERN_CONT ");\n");
2552         printk("                               local_irq_disable();\n");
2553         printk("                               lock(");
2554         __print_lock_name(NULL, safe_class);
2555         printk(KERN_CONT ");\n");
2556         printk("                               lock(");
2557         __print_lock_name(NULL, middle_class);
2558         printk(KERN_CONT ");\n");
2559         printk("  <Interrupt>\n");
2560         printk("    lock(");
2561         __print_lock_name(NULL, safe_class);
2562         printk(KERN_CONT ");\n");
2563         printk("\n *** DEADLOCK ***\n\n");
2564 }
2565
2566 static void
2567 print_bad_irq_dependency(struct task_struct *curr,
2568                          struct lock_list *prev_root,
2569                          struct lock_list *next_root,
2570                          struct lock_list *backwards_entry,
2571                          struct lock_list *forwards_entry,
2572                          struct held_lock *prev,
2573                          struct held_lock *next,
2574                          enum lock_usage_bit bit1,
2575                          enum lock_usage_bit bit2,
2576                          const char *irqclass)
2577 {
2578         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2579                 return;
2580
2581         pr_warn("\n");
2582         pr_warn("=====================================================\n");
2583         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2584                 irqclass, irqclass);
2585         print_kernel_ident();
2586         pr_warn("-----------------------------------------------------\n");
2587         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2588                 curr->comm, task_pid_nr(curr),
2589                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2590                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2591                 lockdep_hardirqs_enabled(),
2592                 curr->softirqs_enabled);
2593         print_lock(next);
2594
2595         pr_warn("\nand this task is already holding:\n");
2596         print_lock(prev);
2597         pr_warn("which would create a new lock dependency:\n");
2598         print_lock_name(prev, hlock_class(prev));
2599         pr_cont(" ->");
2600         print_lock_name(next, hlock_class(next));
2601         pr_cont("\n");
2602
2603         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2604                 irqclass);
2605         print_lock_name(NULL, backwards_entry->class);
2606         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2607
2608         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2609
2610         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2611         print_lock_name(NULL, forwards_entry->class);
2612         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2613         pr_warn("...");
2614
2615         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2616
2617         pr_warn("\nother info that might help us debug this:\n\n");
2618         print_irq_lock_scenario(backwards_entry, forwards_entry,
2619                                 hlock_class(prev), hlock_class(next));
2620
2621         lockdep_print_held_locks(curr);
2622
2623         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2624         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2625
2626         pr_warn("\nthe dependencies between the lock to be acquired");
2627         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2628         next_root->trace = save_trace();
2629         if (!next_root->trace)
2630                 return;
2631         print_shortest_lock_dependencies(forwards_entry, next_root);
2632
2633         pr_warn("\nstack backtrace:\n");
2634         dump_stack();
2635 }
2636
2637 static const char *state_names[] = {
2638 #define LOCKDEP_STATE(__STATE) \
2639         __stringify(__STATE),
2640 #include "lockdep_states.h"
2641 #undef LOCKDEP_STATE
2642 };
2643
2644 static const char *state_rnames[] = {
2645 #define LOCKDEP_STATE(__STATE) \
2646         __stringify(__STATE)"-READ",
2647 #include "lockdep_states.h"
2648 #undef LOCKDEP_STATE
2649 };
2650
2651 static inline const char *state_name(enum lock_usage_bit bit)
2652 {
2653         if (bit & LOCK_USAGE_READ_MASK)
2654                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2655         else
2656                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2657 }
2658
2659 /*
2660  * The bit number is encoded like:
2661  *
2662  *  bit0: 0 exclusive, 1 read lock
2663  *  bit1: 0 used in irq, 1 irq enabled
2664  *  bit2-n: state
2665  */
2666 static int exclusive_bit(int new_bit)
2667 {
2668         int state = new_bit & LOCK_USAGE_STATE_MASK;
2669         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2670
2671         /*
2672          * keep state, bit flip the direction and strip read.
2673          */
2674         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2675 }
2676
2677 /*
2678  * Observe that when given a bitmask where each bitnr is encoded as above, a
2679  * right shift of the mask transforms the individual bitnrs as -1 and
2680  * conversely, a left shift transforms into +1 for the individual bitnrs.
2681  *
2682  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2683  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2684  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2685  *
2686  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2687  *
2688  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2689  * all bits set) and recompose with bitnr1 flipped.
2690  */
2691 static unsigned long invert_dir_mask(unsigned long mask)
2692 {
2693         unsigned long excl = 0;
2694
2695         /* Invert dir */
2696         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2697         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2698
2699         return excl;
2700 }
2701
2702 /*
2703  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2704  * usage may cause deadlock too, for example:
2705  *
2706  * P1                           P2
2707  * <irq disabled>
2708  * write_lock(l1);              <irq enabled>
2709  *                              read_lock(l2);
2710  * write_lock(l2);
2711  *                              <in irq>
2712  *                              read_lock(l1);
2713  *
2714  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2715  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2716  * deadlock.
2717  *
2718  * In fact, all of the following cases may cause deadlocks:
2719  *
2720  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2721  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2722  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2723  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2724  *
2725  * As a result, to calculate the "exclusive mask", first we invert the
2726  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2727  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2728  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2729  */
2730 static unsigned long exclusive_mask(unsigned long mask)
2731 {
2732         unsigned long excl = invert_dir_mask(mask);
2733
2734         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2735         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2736
2737         return excl;
2738 }
2739
2740 /*
2741  * Retrieve the _possible_ original mask to which @mask is
2742  * exclusive. Ie: this is the opposite of exclusive_mask().
2743  * Note that 2 possible original bits can match an exclusive
2744  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2745  * cleared. So both are returned for each exclusive bit.
2746  */
2747 static unsigned long original_mask(unsigned long mask)
2748 {
2749         unsigned long excl = invert_dir_mask(mask);
2750
2751         /* Include read in existing usages */
2752         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2753         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2754
2755         return excl;
2756 }
2757
2758 /*
2759  * Find the first pair of bit match between an original
2760  * usage mask and an exclusive usage mask.
2761  */
2762 static int find_exclusive_match(unsigned long mask,
2763                                 unsigned long excl_mask,
2764                                 enum lock_usage_bit *bitp,
2765                                 enum lock_usage_bit *excl_bitp)
2766 {
2767         int bit, excl, excl_read;
2768
2769         for_each_set_bit(bit, &mask, LOCK_USED) {
2770                 /*
2771                  * exclusive_bit() strips the read bit, however,
2772                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2773                  * to search excl | LOCK_USAGE_READ_MASK as well.
2774                  */
2775                 excl = exclusive_bit(bit);
2776                 excl_read = excl | LOCK_USAGE_READ_MASK;
2777                 if (excl_mask & lock_flag(excl)) {
2778                         *bitp = bit;
2779                         *excl_bitp = excl;
2780                         return 0;
2781                 } else if (excl_mask & lock_flag(excl_read)) {
2782                         *bitp = bit;
2783                         *excl_bitp = excl_read;
2784                         return 0;
2785                 }
2786         }
2787         return -1;
2788 }
2789
2790 /*
2791  * Prove that the new dependency does not connect a hardirq-safe(-read)
2792  * lock with a hardirq-unsafe lock - to achieve this we search
2793  * the backwards-subgraph starting at <prev>, and the
2794  * forwards-subgraph starting at <next>:
2795  */
2796 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2797                            struct held_lock *next)
2798 {
2799         unsigned long usage_mask = 0, forward_mask, backward_mask;
2800         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2801         struct lock_list *target_entry1;
2802         struct lock_list *target_entry;
2803         struct lock_list this, that;
2804         enum bfs_result ret;
2805
2806         /*
2807          * Step 1: gather all hard/soft IRQs usages backward in an
2808          * accumulated usage mask.
2809          */
2810         bfs_init_rootb(&this, prev);
2811
2812         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2813         if (bfs_error(ret)) {
2814                 print_bfs_bug(ret);
2815                 return 0;
2816         }
2817
2818         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2819         if (!usage_mask)
2820                 return 1;
2821
2822         /*
2823          * Step 2: find exclusive uses forward that match the previous
2824          * backward accumulated mask.
2825          */
2826         forward_mask = exclusive_mask(usage_mask);
2827
2828         bfs_init_root(&that, next);
2829
2830         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2831         if (bfs_error(ret)) {
2832                 print_bfs_bug(ret);
2833                 return 0;
2834         }
2835         if (ret == BFS_RNOMATCH)
2836                 return 1;
2837
2838         /*
2839          * Step 3: we found a bad match! Now retrieve a lock from the backward
2840          * list whose usage mask matches the exclusive usage mask from the
2841          * lock found on the forward list.
2842          *
2843          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2844          * the follow case:
2845          *
2846          * When trying to add A -> B to the graph, we find that there is a
2847          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2848          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2849          * invert bits of M's usage_mask, we will find another lock N that is
2850          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2851          * cause a inversion deadlock.
2852          */
2853         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2854
2855         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2856         if (bfs_error(ret)) {
2857                 print_bfs_bug(ret);
2858                 return 0;
2859         }
2860         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2861                 return 1;
2862
2863         /*
2864          * Step 4: narrow down to a pair of incompatible usage bits
2865          * and report it.
2866          */
2867         ret = find_exclusive_match(target_entry->class->usage_mask,
2868                                    target_entry1->class->usage_mask,
2869                                    &backward_bit, &forward_bit);
2870         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2871                 return 1;
2872
2873         print_bad_irq_dependency(curr, &this, &that,
2874                                  target_entry, target_entry1,
2875                                  prev, next,
2876                                  backward_bit, forward_bit,
2877                                  state_name(backward_bit));
2878
2879         return 0;
2880 }
2881
2882 #else
2883
2884 static inline int check_irq_usage(struct task_struct *curr,
2885                                   struct held_lock *prev, struct held_lock *next)
2886 {
2887         return 1;
2888 }
2889
2890 static inline bool usage_skip(struct lock_list *entry, void *mask)
2891 {
2892         return false;
2893 }
2894
2895 #endif /* CONFIG_TRACE_IRQFLAGS */
2896
2897 #ifdef CONFIG_LOCKDEP_SMALL
2898 /*
2899  * Check that the dependency graph starting at <src> can lead to
2900  * <target> or not. If it can, <src> -> <target> dependency is already
2901  * in the graph.
2902  *
2903  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2904  * any error appears in the bfs search.
2905  */
2906 static noinline enum bfs_result
2907 check_redundant(struct held_lock *src, struct held_lock *target)
2908 {
2909         enum bfs_result ret;
2910         struct lock_list *target_entry;
2911         struct lock_list src_entry;
2912
2913         bfs_init_root(&src_entry, src);
2914         /*
2915          * Special setup for check_redundant().
2916          *
2917          * To report redundant, we need to find a strong dependency path that
2918          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2919          * we need to let __bfs() only search for a path starting at a -(E*)->,
2920          * we achieve this by setting the initial node's ->only_xr to true in
2921          * that case. And if <prev> is S, we set initial ->only_xr to false
2922          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2923          */
2924         src_entry.only_xr = src->read == 0;
2925
2926         debug_atomic_inc(nr_redundant_checks);
2927
2928         /*
2929          * Note: we skip local_lock() for redundant check, because as the
2930          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2931          * the same.
2932          */
2933         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2934
2935         if (ret == BFS_RMATCH)
2936                 debug_atomic_inc(nr_redundant);
2937
2938         return ret;
2939 }
2940
2941 #else
2942
2943 static inline enum bfs_result
2944 check_redundant(struct held_lock *src, struct held_lock *target)
2945 {
2946         return BFS_RNOMATCH;
2947 }
2948
2949 #endif
2950
2951 static void inc_chains(int irq_context)
2952 {
2953         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2954                 nr_hardirq_chains++;
2955         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2956                 nr_softirq_chains++;
2957         else
2958                 nr_process_chains++;
2959 }
2960
2961 static void dec_chains(int irq_context)
2962 {
2963         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2964                 nr_hardirq_chains--;
2965         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2966                 nr_softirq_chains--;
2967         else
2968                 nr_process_chains--;
2969 }
2970
2971 static void
2972 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2973 {
2974         struct lock_class *next = hlock_class(nxt);
2975         struct lock_class *prev = hlock_class(prv);
2976
2977         printk(" Possible unsafe locking scenario:\n\n");
2978         printk("       CPU0\n");
2979         printk("       ----\n");
2980         printk("  lock(");
2981         __print_lock_name(prv, prev);
2982         printk(KERN_CONT ");\n");
2983         printk("  lock(");
2984         __print_lock_name(nxt, next);
2985         printk(KERN_CONT ");\n");
2986         printk("\n *** DEADLOCK ***\n\n");
2987         printk(" May be due to missing lock nesting notation\n\n");
2988 }
2989
2990 static void
2991 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2992                    struct held_lock *next)
2993 {
2994         struct lock_class *class = hlock_class(prev);
2995
2996         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2997                 return;
2998
2999         pr_warn("\n");
3000         pr_warn("============================================\n");
3001         pr_warn("WARNING: possible recursive locking detected\n");
3002         print_kernel_ident();
3003         pr_warn("--------------------------------------------\n");
3004         pr_warn("%s/%d is trying to acquire lock:\n",
3005                 curr->comm, task_pid_nr(curr));
3006         print_lock(next);
3007         pr_warn("\nbut task is already holding lock:\n");
3008         print_lock(prev);
3009
3010         if (class->cmp_fn) {
3011                 pr_warn("and the lock comparison function returns %i:\n",
3012                         class->cmp_fn(prev->instance, next->instance));
3013         }
3014
3015         pr_warn("\nother info that might help us debug this:\n");
3016         print_deadlock_scenario(next, prev);
3017         lockdep_print_held_locks(curr);
3018
3019         pr_warn("\nstack backtrace:\n");
3020         dump_stack();
3021 }
3022
3023 /*
3024  * Check whether we are holding such a class already.
3025  *
3026  * (Note that this has to be done separately, because the graph cannot
3027  * detect such classes of deadlocks.)
3028  *
3029  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3030  * lock class is held but nest_lock is also held, i.e. we rely on the
3031  * nest_lock to avoid the deadlock.
3032  */
3033 static int
3034 check_deadlock(struct task_struct *curr, struct held_lock *next)
3035 {
3036         struct lock_class *class;
3037         struct held_lock *prev;
3038         struct held_lock *nest = NULL;
3039         int i;
3040
3041         for (i = 0; i < curr->lockdep_depth; i++) {
3042                 prev = curr->held_locks + i;
3043
3044                 if (prev->instance == next->nest_lock)
3045                         nest = prev;
3046
3047                 if (hlock_class(prev) != hlock_class(next))
3048                         continue;
3049
3050                 /*
3051                  * Allow read-after-read recursion of the same
3052                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
3053                  */
3054                 if ((next->read == 2) && prev->read)
3055                         continue;
3056
3057                 class = hlock_class(prev);
3058
3059                 if (class->cmp_fn &&
3060                     class->cmp_fn(prev->instance, next->instance) < 0)
3061                         continue;
3062
3063                 /*
3064                  * We're holding the nest_lock, which serializes this lock's
3065                  * nesting behaviour.
3066                  */
3067                 if (nest)
3068                         return 2;
3069
3070                 print_deadlock_bug(curr, prev, next);
3071                 return 0;
3072         }
3073         return 1;
3074 }
3075
3076 /*
3077  * There was a chain-cache miss, and we are about to add a new dependency
3078  * to a previous lock. We validate the following rules:
3079  *
3080  *  - would the adding of the <prev> -> <next> dependency create a
3081  *    circular dependency in the graph? [== circular deadlock]
3082  *
3083  *  - does the new prev->next dependency connect any hardirq-safe lock
3084  *    (in the full backwards-subgraph starting at <prev>) with any
3085  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3086  *    <next>)? [== illegal lock inversion with hardirq contexts]
3087  *
3088  *  - does the new prev->next dependency connect any softirq-safe lock
3089  *    (in the full backwards-subgraph starting at <prev>) with any
3090  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3091  *    <next>)? [== illegal lock inversion with softirq contexts]
3092  *
3093  * any of these scenarios could lead to a deadlock.
3094  *
3095  * Then if all the validations pass, we add the forwards and backwards
3096  * dependency.
3097  */
3098 static int
3099 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3100                struct held_lock *next, u16 distance,
3101                struct lock_trace **const trace)
3102 {
3103         struct lock_list *entry;
3104         enum bfs_result ret;
3105
3106         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3107                 /*
3108                  * The warning statements below may trigger a use-after-free
3109                  * of the class name. It is better to trigger a use-after free
3110                  * and to have the class name most of the time instead of not
3111                  * having the class name available.
3112                  */
3113                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3114                           "Detected use-after-free of lock class %px/%s\n",
3115                           hlock_class(prev),
3116                           hlock_class(prev)->name);
3117                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3118                           "Detected use-after-free of lock class %px/%s\n",
3119                           hlock_class(next),
3120                           hlock_class(next)->name);
3121                 return 2;
3122         }
3123
3124         if (prev->class_idx == next->class_idx) {
3125                 struct lock_class *class = hlock_class(prev);
3126
3127                 if (class->cmp_fn &&
3128                     class->cmp_fn(prev->instance, next->instance) < 0)
3129                         return 2;
3130         }
3131
3132         /*
3133          * Prove that the new <prev> -> <next> dependency would not
3134          * create a circular dependency in the graph. (We do this by
3135          * a breadth-first search into the graph starting at <next>,
3136          * and check whether we can reach <prev>.)
3137          *
3138          * The search is limited by the size of the circular queue (i.e.,
3139          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3140          * in the graph whose neighbours are to be checked.
3141          */
3142         ret = check_noncircular(next, prev, trace);
3143         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3144                 return 0;
3145
3146         if (!check_irq_usage(curr, prev, next))
3147                 return 0;
3148
3149         /*
3150          * Is the <prev> -> <next> dependency already present?
3151          *
3152          * (this may occur even though this is a new chain: consider
3153          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3154          *  chains - the second one will be new, but L1 already has
3155          *  L2 added to its dependency list, due to the first chain.)
3156          */
3157         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3158                 if (entry->class == hlock_class(next)) {
3159                         if (distance == 1)
3160                                 entry->distance = 1;
3161                         entry->dep |= calc_dep(prev, next);
3162
3163                         /*
3164                          * Also, update the reverse dependency in @next's
3165                          * ->locks_before list.
3166                          *
3167                          *  Here we reuse @entry as the cursor, which is fine
3168                          *  because we won't go to the next iteration of the
3169                          *  outer loop:
3170                          *
3171                          *  For normal cases, we return in the inner loop.
3172                          *
3173                          *  If we fail to return, we have inconsistency, i.e.
3174                          *  <prev>::locks_after contains <next> while
3175                          *  <next>::locks_before doesn't contain <prev>. In
3176                          *  that case, we return after the inner and indicate
3177                          *  something is wrong.
3178                          */
3179                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3180                                 if (entry->class == hlock_class(prev)) {
3181                                         if (distance == 1)
3182                                                 entry->distance = 1;
3183                                         entry->dep |= calc_depb(prev, next);
3184                                         return 1;
3185                                 }
3186                         }
3187
3188                         /* <prev> is not found in <next>::locks_before */
3189                         return 0;
3190                 }
3191         }
3192
3193         /*
3194          * Is the <prev> -> <next> link redundant?
3195          */
3196         ret = check_redundant(prev, next);
3197         if (bfs_error(ret))
3198                 return 0;
3199         else if (ret == BFS_RMATCH)
3200                 return 2;
3201
3202         if (!*trace) {
3203                 *trace = save_trace();
3204                 if (!*trace)
3205                         return 0;
3206         }
3207
3208         /*
3209          * Ok, all validations passed, add the new lock
3210          * to the previous lock's dependency list:
3211          */
3212         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3213                                &hlock_class(prev)->locks_after, distance,
3214                                calc_dep(prev, next), *trace);
3215
3216         if (!ret)
3217                 return 0;
3218
3219         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3220                                &hlock_class(next)->locks_before, distance,
3221                                calc_depb(prev, next), *trace);
3222         if (!ret)
3223                 return 0;
3224
3225         return 2;
3226 }
3227
3228 /*
3229  * Add the dependency to all directly-previous locks that are 'relevant'.
3230  * The ones that are relevant are (in increasing distance from curr):
3231  * all consecutive trylock entries and the final non-trylock entry - or
3232  * the end of this context's lock-chain - whichever comes first.
3233  */
3234 static int
3235 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3236 {
3237         struct lock_trace *trace = NULL;
3238         int depth = curr->lockdep_depth;
3239         struct held_lock *hlock;
3240
3241         /*
3242          * Debugging checks.
3243          *
3244          * Depth must not be zero for a non-head lock:
3245          */
3246         if (!depth)
3247                 goto out_bug;
3248         /*
3249          * At least two relevant locks must exist for this
3250          * to be a head:
3251          */
3252         if (curr->held_locks[depth].irq_context !=
3253                         curr->held_locks[depth-1].irq_context)
3254                 goto out_bug;
3255
3256         for (;;) {
3257                 u16 distance = curr->lockdep_depth - depth + 1;
3258                 hlock = curr->held_locks + depth - 1;
3259
3260                 if (hlock->check) {
3261                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3262                         if (!ret)
3263                                 return 0;
3264
3265                         /*
3266                          * Stop after the first non-trylock entry,
3267                          * as non-trylock entries have added their
3268                          * own direct dependencies already, so this
3269                          * lock is connected to them indirectly:
3270                          */
3271                         if (!hlock->trylock)
3272                                 break;
3273                 }
3274
3275                 depth--;
3276                 /*
3277                  * End of lock-stack?
3278                  */
3279                 if (!depth)
3280                         break;
3281                 /*
3282                  * Stop the search if we cross into another context:
3283                  */
3284                 if (curr->held_locks[depth].irq_context !=
3285                                 curr->held_locks[depth-1].irq_context)
3286                         break;
3287         }
3288         return 1;
3289 out_bug:
3290         if (!debug_locks_off_graph_unlock())
3291                 return 0;
3292
3293         /*
3294          * Clearly we all shouldn't be here, but since we made it we
3295          * can reliable say we messed up our state. See the above two
3296          * gotos for reasons why we could possibly end up here.
3297          */
3298         WARN_ON(1);
3299
3300         return 0;
3301 }
3302
3303 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3304 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3305 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3306 unsigned long nr_zapped_lock_chains;
3307 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3308 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3309 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3310
3311 /*
3312  * The first 2 chain_hlocks entries in the chain block in the bucket
3313  * list contains the following meta data:
3314  *
3315  *   entry[0]:
3316  *     Bit    15 - always set to 1 (it is not a class index)
3317  *     Bits 0-14 - upper 15 bits of the next block index
3318  *   entry[1]    - lower 16 bits of next block index
3319  *
3320  * A next block index of all 1 bits means it is the end of the list.
3321  *
3322  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3323  * the chain block size:
3324  *
3325  *   entry[2] - upper 16 bits of the chain block size
3326  *   entry[3] - lower 16 bits of the chain block size
3327  */
3328 #define MAX_CHAIN_BUCKETS       16
3329 #define CHAIN_BLK_FLAG          (1U << 15)
3330 #define CHAIN_BLK_LIST_END      0xFFFFU
3331
3332 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3333
3334 static inline int size_to_bucket(int size)
3335 {
3336         if (size > MAX_CHAIN_BUCKETS)
3337                 return 0;
3338
3339         return size - 1;
3340 }
3341
3342 /*
3343  * Iterate all the chain blocks in a bucket.
3344  */
3345 #define for_each_chain_block(bucket, prev, curr)                \
3346         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3347              (curr) >= 0;                                       \
3348              (prev) = (curr), (curr) = chain_block_next(curr))
3349
3350 /*
3351  * next block or -1
3352  */
3353 static inline int chain_block_next(int offset)
3354 {
3355         int next = chain_hlocks[offset];
3356
3357         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3358
3359         if (next == CHAIN_BLK_LIST_END)
3360                 return -1;
3361
3362         next &= ~CHAIN_BLK_FLAG;
3363         next <<= 16;
3364         next |= chain_hlocks[offset + 1];
3365
3366         return next;
3367 }
3368
3369 /*
3370  * bucket-0 only
3371  */
3372 static inline int chain_block_size(int offset)
3373 {
3374         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3375 }
3376
3377 static inline void init_chain_block(int offset, int next, int bucket, int size)
3378 {
3379         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3380         chain_hlocks[offset + 1] = (u16)next;
3381
3382         if (size && !bucket) {
3383                 chain_hlocks[offset + 2] = size >> 16;
3384                 chain_hlocks[offset + 3] = (u16)size;
3385         }
3386 }
3387
3388 static inline void add_chain_block(int offset, int size)
3389 {
3390         int bucket = size_to_bucket(size);
3391         int next = chain_block_buckets[bucket];
3392         int prev, curr;
3393
3394         if (unlikely(size < 2)) {
3395                 /*
3396                  * We can't store single entries on the freelist. Leak them.
3397                  *
3398                  * One possible way out would be to uniquely mark them, other
3399                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3400                  * the block before it is re-added.
3401                  */
3402                 if (size)
3403                         nr_lost_chain_hlocks++;
3404                 return;
3405         }
3406
3407         nr_free_chain_hlocks += size;
3408         if (!bucket) {
3409                 nr_large_chain_blocks++;
3410
3411                 /*
3412                  * Variable sized, sort large to small.
3413                  */
3414                 for_each_chain_block(0, prev, curr) {
3415                         if (size >= chain_block_size(curr))
3416                                 break;
3417                 }
3418                 init_chain_block(offset, curr, 0, size);
3419                 if (prev < 0)
3420                         chain_block_buckets[0] = offset;
3421                 else
3422                         init_chain_block(prev, offset, 0, 0);
3423                 return;
3424         }
3425         /*
3426          * Fixed size, add to head.
3427          */
3428         init_chain_block(offset, next, bucket, size);
3429         chain_block_buckets[bucket] = offset;
3430 }
3431
3432 /*
3433  * Only the first block in the list can be deleted.
3434  *
3435  * For the variable size bucket[0], the first block (the largest one) is
3436  * returned, broken up and put back into the pool. So if a chain block of
3437  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3438  * queued up after the primordial chain block and never be used until the
3439  * hlock entries in the primordial chain block is almost used up. That
3440  * causes fragmentation and reduce allocation efficiency. That can be
3441  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3442  */
3443 static inline void del_chain_block(int bucket, int size, int next)
3444 {
3445         nr_free_chain_hlocks -= size;
3446         chain_block_buckets[bucket] = next;
3447
3448         if (!bucket)
3449                 nr_large_chain_blocks--;
3450 }
3451
3452 static void init_chain_block_buckets(void)
3453 {
3454         int i;
3455
3456         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3457                 chain_block_buckets[i] = -1;
3458
3459         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3460 }
3461
3462 /*
3463  * Return offset of a chain block of the right size or -1 if not found.
3464  *
3465  * Fairly simple worst-fit allocator with the addition of a number of size
3466  * specific free lists.
3467  */
3468 static int alloc_chain_hlocks(int req)
3469 {
3470         int bucket, curr, size;
3471
3472         /*
3473          * We rely on the MSB to act as an escape bit to denote freelist
3474          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3475          */
3476         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3477
3478         init_data_structures_once();
3479
3480         if (nr_free_chain_hlocks < req)
3481                 return -1;
3482
3483         /*
3484          * We require a minimum of 2 (u16) entries to encode a freelist
3485          * 'pointer'.
3486          */
3487         req = max(req, 2);
3488         bucket = size_to_bucket(req);
3489         curr = chain_block_buckets[bucket];
3490
3491         if (bucket) {
3492                 if (curr >= 0) {
3493                         del_chain_block(bucket, req, chain_block_next(curr));
3494                         return curr;
3495                 }
3496                 /* Try bucket 0 */
3497                 curr = chain_block_buckets[0];
3498         }
3499
3500         /*
3501          * The variable sized freelist is sorted by size; the first entry is
3502          * the largest. Use it if it fits.
3503          */
3504         if (curr >= 0) {
3505                 size = chain_block_size(curr);
3506                 if (likely(size >= req)) {
3507                         del_chain_block(0, size, chain_block_next(curr));
3508                         add_chain_block(curr + req, size - req);
3509                         return curr;
3510                 }
3511         }
3512
3513         /*
3514          * Last resort, split a block in a larger sized bucket.
3515          */
3516         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3517                 bucket = size_to_bucket(size);
3518                 curr = chain_block_buckets[bucket];
3519                 if (curr < 0)
3520                         continue;
3521
3522                 del_chain_block(bucket, size, chain_block_next(curr));
3523                 add_chain_block(curr + req, size - req);
3524                 return curr;
3525         }
3526
3527         return -1;
3528 }
3529
3530 static inline void free_chain_hlocks(int base, int size)
3531 {
3532         add_chain_block(base, max(size, 2));
3533 }
3534
3535 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3536 {
3537         u16 chain_hlock = chain_hlocks[chain->base + i];
3538         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3539
3540         return lock_classes + class_idx;
3541 }
3542
3543 /*
3544  * Returns the index of the first held_lock of the current chain
3545  */
3546 static inline int get_first_held_lock(struct task_struct *curr,
3547                                         struct held_lock *hlock)
3548 {
3549         int i;
3550         struct held_lock *hlock_curr;
3551
3552         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3553                 hlock_curr = curr->held_locks + i;
3554                 if (hlock_curr->irq_context != hlock->irq_context)
3555                         break;
3556
3557         }
3558
3559         return ++i;
3560 }
3561
3562 #ifdef CONFIG_DEBUG_LOCKDEP
3563 /*
3564  * Returns the next chain_key iteration
3565  */
3566 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3567 {
3568         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3569
3570         printk(" hlock_id:%d -> chain_key:%016Lx",
3571                 (unsigned int)hlock_id,
3572                 (unsigned long long)new_chain_key);
3573         return new_chain_key;
3574 }
3575
3576 static void
3577 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3578 {
3579         struct held_lock *hlock;
3580         u64 chain_key = INITIAL_CHAIN_KEY;
3581         int depth = curr->lockdep_depth;
3582         int i = get_first_held_lock(curr, hlock_next);
3583
3584         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3585                 hlock_next->irq_context);
3586         for (; i < depth; i++) {
3587                 hlock = curr->held_locks + i;
3588                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3589
3590                 print_lock(hlock);
3591         }
3592
3593         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3594         print_lock(hlock_next);
3595 }
3596
3597 static void print_chain_keys_chain(struct lock_chain *chain)
3598 {
3599         int i;
3600         u64 chain_key = INITIAL_CHAIN_KEY;
3601         u16 hlock_id;
3602
3603         printk("depth: %u\n", chain->depth);
3604         for (i = 0; i < chain->depth; i++) {
3605                 hlock_id = chain_hlocks[chain->base + i];
3606                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3607
3608                 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3609                 printk("\n");
3610         }
3611 }
3612
3613 static void print_collision(struct task_struct *curr,
3614                         struct held_lock *hlock_next,
3615                         struct lock_chain *chain)
3616 {
3617         pr_warn("\n");
3618         pr_warn("============================\n");
3619         pr_warn("WARNING: chain_key collision\n");
3620         print_kernel_ident();
3621         pr_warn("----------------------------\n");
3622         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3623         pr_warn("Hash chain already cached but the contents don't match!\n");
3624
3625         pr_warn("Held locks:");
3626         print_chain_keys_held_locks(curr, hlock_next);
3627
3628         pr_warn("Locks in cached chain:");
3629         print_chain_keys_chain(chain);
3630
3631         pr_warn("\nstack backtrace:\n");
3632         dump_stack();
3633 }
3634 #endif
3635
3636 /*
3637  * Checks whether the chain and the current held locks are consistent
3638  * in depth and also in content. If they are not it most likely means
3639  * that there was a collision during the calculation of the chain_key.
3640  * Returns: 0 not passed, 1 passed
3641  */
3642 static int check_no_collision(struct task_struct *curr,
3643                         struct held_lock *hlock,
3644                         struct lock_chain *chain)
3645 {
3646 #ifdef CONFIG_DEBUG_LOCKDEP
3647         int i, j, id;
3648
3649         i = get_first_held_lock(curr, hlock);
3650
3651         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3652                 print_collision(curr, hlock, chain);
3653                 return 0;
3654         }
3655
3656         for (j = 0; j < chain->depth - 1; j++, i++) {
3657                 id = hlock_id(&curr->held_locks[i]);
3658
3659                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3660                         print_collision(curr, hlock, chain);
3661                         return 0;
3662                 }
3663         }
3664 #endif
3665         return 1;
3666 }
3667
3668 /*
3669  * Given an index that is >= -1, return the index of the next lock chain.
3670  * Return -2 if there is no next lock chain.
3671  */
3672 long lockdep_next_lockchain(long i)
3673 {
3674         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3675         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3676 }
3677
3678 unsigned long lock_chain_count(void)
3679 {
3680         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3681 }
3682
3683 /* Must be called with the graph lock held. */
3684 static struct lock_chain *alloc_lock_chain(void)
3685 {
3686         int idx = find_first_zero_bit(lock_chains_in_use,
3687                                       ARRAY_SIZE(lock_chains));
3688
3689         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3690                 return NULL;
3691         __set_bit(idx, lock_chains_in_use);
3692         return lock_chains + idx;
3693 }
3694
3695 /*
3696  * Adds a dependency chain into chain hashtable. And must be called with
3697  * graph_lock held.
3698  *
3699  * Return 0 if fail, and graph_lock is released.
3700  * Return 1 if succeed, with graph_lock held.
3701  */
3702 static inline int add_chain_cache(struct task_struct *curr,
3703                                   struct held_lock *hlock,
3704                                   u64 chain_key)
3705 {
3706         struct hlist_head *hash_head = chainhashentry(chain_key);
3707         struct lock_chain *chain;
3708         int i, j;
3709
3710         /*
3711          * The caller must hold the graph lock, ensure we've got IRQs
3712          * disabled to make this an IRQ-safe lock.. for recursion reasons
3713          * lockdep won't complain about its own locking errors.
3714          */
3715         if (lockdep_assert_locked())
3716                 return 0;
3717
3718         chain = alloc_lock_chain();
3719         if (!chain) {
3720                 if (!debug_locks_off_graph_unlock())
3721                         return 0;
3722
3723                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3724                 dump_stack();
3725                 return 0;
3726         }
3727         chain->chain_key = chain_key;
3728         chain->irq_context = hlock->irq_context;
3729         i = get_first_held_lock(curr, hlock);
3730         chain->depth = curr->lockdep_depth + 1 - i;
3731
3732         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3733         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3734         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3735
3736         j = alloc_chain_hlocks(chain->depth);
3737         if (j < 0) {
3738                 if (!debug_locks_off_graph_unlock())
3739                         return 0;
3740
3741                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3742                 dump_stack();
3743                 return 0;
3744         }
3745
3746         chain->base = j;
3747         for (j = 0; j < chain->depth - 1; j++, i++) {
3748                 int lock_id = hlock_id(curr->held_locks + i);
3749
3750                 chain_hlocks[chain->base + j] = lock_id;
3751         }
3752         chain_hlocks[chain->base + j] = hlock_id(hlock);
3753         hlist_add_head_rcu(&chain->entry, hash_head);
3754         debug_atomic_inc(chain_lookup_misses);
3755         inc_chains(chain->irq_context);
3756
3757         return 1;
3758 }
3759
3760 /*
3761  * Look up a dependency chain. Must be called with either the graph lock or
3762  * the RCU read lock held.
3763  */
3764 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3765 {
3766         struct hlist_head *hash_head = chainhashentry(chain_key);
3767         struct lock_chain *chain;
3768
3769         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3770                 if (READ_ONCE(chain->chain_key) == chain_key) {
3771                         debug_atomic_inc(chain_lookup_hits);
3772                         return chain;
3773                 }
3774         }
3775         return NULL;
3776 }
3777
3778 /*
3779  * If the key is not present yet in dependency chain cache then
3780  * add it and return 1 - in this case the new dependency chain is
3781  * validated. If the key is already hashed, return 0.
3782  * (On return with 1 graph_lock is held.)
3783  */
3784 static inline int lookup_chain_cache_add(struct task_struct *curr,
3785                                          struct held_lock *hlock,
3786                                          u64 chain_key)
3787 {
3788         struct lock_class *class = hlock_class(hlock);
3789         struct lock_chain *chain = lookup_chain_cache(chain_key);
3790
3791         if (chain) {
3792 cache_hit:
3793                 if (!check_no_collision(curr, hlock, chain))
3794                         return 0;
3795
3796                 if (very_verbose(class)) {
3797                         printk("\nhash chain already cached, key: "
3798                                         "%016Lx tail class: [%px] %s\n",
3799                                         (unsigned long long)chain_key,
3800                                         class->key, class->name);
3801                 }
3802
3803                 return 0;
3804         }
3805
3806         if (very_verbose(class)) {
3807                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3808                         (unsigned long long)chain_key, class->key, class->name);
3809         }
3810
3811         if (!graph_lock())
3812                 return 0;
3813
3814         /*
3815          * We have to walk the chain again locked - to avoid duplicates:
3816          */
3817         chain = lookup_chain_cache(chain_key);
3818         if (chain) {
3819                 graph_unlock();
3820                 goto cache_hit;
3821         }
3822
3823         if (!add_chain_cache(curr, hlock, chain_key))
3824                 return 0;
3825
3826         return 1;
3827 }
3828
3829 static int validate_chain(struct task_struct *curr,
3830                           struct held_lock *hlock,
3831                           int chain_head, u64 chain_key)
3832 {
3833         /*
3834          * Trylock needs to maintain the stack of held locks, but it
3835          * does not add new dependencies, because trylock can be done
3836          * in any order.
3837          *
3838          * We look up the chain_key and do the O(N^2) check and update of
3839          * the dependencies only if this is a new dependency chain.
3840          * (If lookup_chain_cache_add() return with 1 it acquires
3841          * graph_lock for us)
3842          */
3843         if (!hlock->trylock && hlock->check &&
3844             lookup_chain_cache_add(curr, hlock, chain_key)) {
3845                 /*
3846                  * Check whether last held lock:
3847                  *
3848                  * - is irq-safe, if this lock is irq-unsafe
3849                  * - is softirq-safe, if this lock is hardirq-unsafe
3850                  *
3851                  * And check whether the new lock's dependency graph
3852                  * could lead back to the previous lock:
3853                  *
3854                  * - within the current held-lock stack
3855                  * - across our accumulated lock dependency records
3856                  *
3857                  * any of these scenarios could lead to a deadlock.
3858                  */
3859                 /*
3860                  * The simple case: does the current hold the same lock
3861                  * already?
3862                  */
3863                 int ret = check_deadlock(curr, hlock);
3864
3865                 if (!ret)
3866                         return 0;
3867                 /*
3868                  * Add dependency only if this lock is not the head
3869                  * of the chain, and if the new lock introduces no more
3870                  * lock dependency (because we already hold a lock with the
3871                  * same lock class) nor deadlock (because the nest_lock
3872                  * serializes nesting locks), see the comments for
3873                  * check_deadlock().
3874                  */
3875                 if (!chain_head && ret != 2) {
3876                         if (!check_prevs_add(curr, hlock))
3877                                 return 0;
3878                 }
3879
3880                 graph_unlock();
3881         } else {
3882                 /* after lookup_chain_cache_add(): */
3883                 if (unlikely(!debug_locks))
3884                         return 0;
3885         }
3886
3887         return 1;
3888 }
3889 #else
3890 static inline int validate_chain(struct task_struct *curr,
3891                                  struct held_lock *hlock,
3892                                  int chain_head, u64 chain_key)
3893 {
3894         return 1;
3895 }
3896
3897 static void init_chain_block_buckets(void)      { }
3898 #endif /* CONFIG_PROVE_LOCKING */
3899
3900 /*
3901  * We are building curr_chain_key incrementally, so double-check
3902  * it from scratch, to make sure that it's done correctly:
3903  */
3904 static void check_chain_key(struct task_struct *curr)
3905 {
3906 #ifdef CONFIG_DEBUG_LOCKDEP
3907         struct held_lock *hlock, *prev_hlock = NULL;
3908         unsigned int i;
3909         u64 chain_key = INITIAL_CHAIN_KEY;
3910
3911         for (i = 0; i < curr->lockdep_depth; i++) {
3912                 hlock = curr->held_locks + i;
3913                 if (chain_key != hlock->prev_chain_key) {
3914                         debug_locks_off();
3915                         /*
3916                          * We got mighty confused, our chain keys don't match
3917                          * with what we expect, someone trample on our task state?
3918                          */
3919                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3920                                 curr->lockdep_depth, i,
3921                                 (unsigned long long)chain_key,
3922                                 (unsigned long long)hlock->prev_chain_key);
3923                         return;
3924                 }
3925
3926                 /*
3927                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3928                  * it registered lock class index?
3929                  */
3930                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3931                         return;
3932
3933                 if (prev_hlock && (prev_hlock->irq_context !=
3934                                                         hlock->irq_context))
3935                         chain_key = INITIAL_CHAIN_KEY;
3936                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3937                 prev_hlock = hlock;
3938         }
3939         if (chain_key != curr->curr_chain_key) {
3940                 debug_locks_off();
3941                 /*
3942                  * More smoking hash instead of calculating it, damn see these
3943                  * numbers float.. I bet that a pink elephant stepped on my memory.
3944                  */
3945                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3946                         curr->lockdep_depth, i,
3947                         (unsigned long long)chain_key,
3948                         (unsigned long long)curr->curr_chain_key);
3949         }
3950 #endif
3951 }
3952
3953 #ifdef CONFIG_PROVE_LOCKING
3954 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3955                      enum lock_usage_bit new_bit);
3956
3957 static void print_usage_bug_scenario(struct held_lock *lock)
3958 {
3959         struct lock_class *class = hlock_class(lock);
3960
3961         printk(" Possible unsafe locking scenario:\n\n");
3962         printk("       CPU0\n");
3963         printk("       ----\n");
3964         printk("  lock(");
3965         __print_lock_name(lock, class);
3966         printk(KERN_CONT ");\n");
3967         printk("  <Interrupt>\n");
3968         printk("    lock(");
3969         __print_lock_name(lock, class);
3970         printk(KERN_CONT ");\n");
3971         printk("\n *** DEADLOCK ***\n\n");
3972 }
3973
3974 static void
3975 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3976                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3977 {
3978         if (!debug_locks_off() || debug_locks_silent)
3979                 return;
3980
3981         pr_warn("\n");
3982         pr_warn("================================\n");
3983         pr_warn("WARNING: inconsistent lock state\n");
3984         print_kernel_ident();
3985         pr_warn("--------------------------------\n");
3986
3987         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3988                 usage_str[prev_bit], usage_str[new_bit]);
3989
3990         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3991                 curr->comm, task_pid_nr(curr),
3992                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3993                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3994                 lockdep_hardirqs_enabled(),
3995                 lockdep_softirqs_enabled(curr));
3996         print_lock(this);
3997
3998         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3999         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4000
4001         print_irqtrace_events(curr);
4002         pr_warn("\nother info that might help us debug this:\n");
4003         print_usage_bug_scenario(this);
4004
4005         lockdep_print_held_locks(curr);
4006
4007         pr_warn("\nstack backtrace:\n");
4008         dump_stack();
4009 }
4010
4011 /*
4012  * Print out an error if an invalid bit is set:
4013  */
4014 static inline int
4015 valid_state(struct task_struct *curr, struct held_lock *this,
4016             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4017 {
4018         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4019                 graph_unlock();
4020                 print_usage_bug(curr, this, bad_bit, new_bit);
4021                 return 0;
4022         }
4023         return 1;
4024 }
4025
4026
4027 /*
4028  * print irq inversion bug:
4029  */
4030 static void
4031 print_irq_inversion_bug(struct task_struct *curr,
4032                         struct lock_list *root, struct lock_list *other,
4033                         struct held_lock *this, int forwards,
4034                         const char *irqclass)
4035 {
4036         struct lock_list *entry = other;
4037         struct lock_list *middle = NULL;
4038         int depth;
4039
4040         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4041                 return;
4042
4043         pr_warn("\n");
4044         pr_warn("========================================================\n");
4045         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4046         print_kernel_ident();
4047         pr_warn("--------------------------------------------------------\n");
4048         pr_warn("%s/%d just changed the state of lock:\n",
4049                 curr->comm, task_pid_nr(curr));
4050         print_lock(this);
4051         if (forwards)
4052                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4053         else
4054                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4055         print_lock_name(NULL, other->class);
4056         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4057
4058         pr_warn("\nother info that might help us debug this:\n");
4059
4060         /* Find a middle lock (if one exists) */
4061         depth = get_lock_depth(other);
4062         do {
4063                 if (depth == 0 && (entry != root)) {
4064                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4065                         break;
4066                 }
4067                 middle = entry;
4068                 entry = get_lock_parent(entry);
4069                 depth--;
4070         } while (entry && entry != root && (depth >= 0));
4071         if (forwards)
4072                 print_irq_lock_scenario(root, other,
4073                         middle ? middle->class : root->class, other->class);
4074         else
4075                 print_irq_lock_scenario(other, root,
4076                         middle ? middle->class : other->class, root->class);
4077
4078         lockdep_print_held_locks(curr);
4079
4080         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4081         root->trace = save_trace();
4082         if (!root->trace)
4083                 return;
4084         print_shortest_lock_dependencies(other, root);
4085
4086         pr_warn("\nstack backtrace:\n");
4087         dump_stack();
4088 }
4089
4090 /*
4091  * Prove that in the forwards-direction subgraph starting at <this>
4092  * there is no lock matching <mask>:
4093  */
4094 static int
4095 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4096                      enum lock_usage_bit bit)
4097 {
4098         enum bfs_result ret;
4099         struct lock_list root;
4100         struct lock_list *target_entry;
4101         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4102         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4103
4104         bfs_init_root(&root, this);
4105         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4106         if (bfs_error(ret)) {
4107                 print_bfs_bug(ret);
4108                 return 0;
4109         }
4110         if (ret == BFS_RNOMATCH)
4111                 return 1;
4112
4113         /* Check whether write or read usage is the match */
4114         if (target_entry->class->usage_mask & lock_flag(bit)) {
4115                 print_irq_inversion_bug(curr, &root, target_entry,
4116                                         this, 1, state_name(bit));
4117         } else {
4118                 print_irq_inversion_bug(curr, &root, target_entry,
4119                                         this, 1, state_name(read_bit));
4120         }
4121
4122         return 0;
4123 }
4124
4125 /*
4126  * Prove that in the backwards-direction subgraph starting at <this>
4127  * there is no lock matching <mask>:
4128  */
4129 static int
4130 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4131                       enum lock_usage_bit bit)
4132 {
4133         enum bfs_result ret;
4134         struct lock_list root;
4135         struct lock_list *target_entry;
4136         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4137         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4138
4139         bfs_init_rootb(&root, this);
4140         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4141         if (bfs_error(ret)) {
4142                 print_bfs_bug(ret);
4143                 return 0;
4144         }
4145         if (ret == BFS_RNOMATCH)
4146                 return 1;
4147
4148         /* Check whether write or read usage is the match */
4149         if (target_entry->class->usage_mask & lock_flag(bit)) {
4150                 print_irq_inversion_bug(curr, &root, target_entry,
4151                                         this, 0, state_name(bit));
4152         } else {
4153                 print_irq_inversion_bug(curr, &root, target_entry,
4154                                         this, 0, state_name(read_bit));
4155         }
4156
4157         return 0;
4158 }
4159
4160 void print_irqtrace_events(struct task_struct *curr)
4161 {
4162         const struct irqtrace_events *trace = &curr->irqtrace;
4163
4164         printk("irq event stamp: %u\n", trace->irq_events);
4165         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4166                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4167                 (void *)trace->hardirq_enable_ip);
4168         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4169                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4170                 (void *)trace->hardirq_disable_ip);
4171         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4172                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4173                 (void *)trace->softirq_enable_ip);
4174         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4175                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4176                 (void *)trace->softirq_disable_ip);
4177 }
4178
4179 static int HARDIRQ_verbose(struct lock_class *class)
4180 {
4181 #if HARDIRQ_VERBOSE
4182         return class_filter(class);
4183 #endif
4184         return 0;
4185 }
4186
4187 static int SOFTIRQ_verbose(struct lock_class *class)
4188 {
4189 #if SOFTIRQ_VERBOSE
4190         return class_filter(class);
4191 #endif
4192         return 0;
4193 }
4194
4195 static int (*state_verbose_f[])(struct lock_class *class) = {
4196 #define LOCKDEP_STATE(__STATE) \
4197         __STATE##_verbose,
4198 #include "lockdep_states.h"
4199 #undef LOCKDEP_STATE
4200 };
4201
4202 static inline int state_verbose(enum lock_usage_bit bit,
4203                                 struct lock_class *class)
4204 {
4205         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4206 }
4207
4208 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4209                              enum lock_usage_bit bit, const char *name);
4210
4211 static int
4212 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4213                 enum lock_usage_bit new_bit)
4214 {
4215         int excl_bit = exclusive_bit(new_bit);
4216         int read = new_bit & LOCK_USAGE_READ_MASK;
4217         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4218
4219         /*
4220          * Validate that this particular lock does not have conflicting
4221          * usage states.
4222          */
4223         if (!valid_state(curr, this, new_bit, excl_bit))
4224                 return 0;
4225
4226         /*
4227          * Check for read in write conflicts
4228          */
4229         if (!read && !valid_state(curr, this, new_bit,
4230                                   excl_bit + LOCK_USAGE_READ_MASK))
4231                 return 0;
4232
4233
4234         /*
4235          * Validate that the lock dependencies don't have conflicting usage
4236          * states.
4237          */
4238         if (dir) {
4239                 /*
4240                  * mark ENABLED has to look backwards -- to ensure no dependee
4241                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4242                  */
4243                 if (!check_usage_backwards(curr, this, excl_bit))
4244                         return 0;
4245         } else {
4246                 /*
4247                  * mark USED_IN has to look forwards -- to ensure no dependency
4248                  * has ENABLED state, which would allow recursion deadlocks.
4249                  */
4250                 if (!check_usage_forwards(curr, this, excl_bit))
4251                         return 0;
4252         }
4253
4254         if (state_verbose(new_bit, hlock_class(this)))
4255                 return 2;
4256
4257         return 1;
4258 }
4259
4260 /*
4261  * Mark all held locks with a usage bit:
4262  */
4263 static int
4264 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4265 {
4266         struct held_lock *hlock;
4267         int i;
4268
4269         for (i = 0; i < curr->lockdep_depth; i++) {
4270                 enum lock_usage_bit hlock_bit = base_bit;
4271                 hlock = curr->held_locks + i;
4272
4273                 if (hlock->read)
4274                         hlock_bit += LOCK_USAGE_READ_MASK;
4275
4276                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4277
4278                 if (!hlock->check)
4279                         continue;
4280
4281                 if (!mark_lock(curr, hlock, hlock_bit))
4282                         return 0;
4283         }
4284
4285         return 1;
4286 }
4287
4288 /*
4289  * Hardirqs will be enabled:
4290  */
4291 static void __trace_hardirqs_on_caller(void)
4292 {
4293         struct task_struct *curr = current;
4294
4295         /*
4296          * We are going to turn hardirqs on, so set the
4297          * usage bit for all held locks:
4298          */
4299         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4300                 return;
4301         /*
4302          * If we have softirqs enabled, then set the usage
4303          * bit for all held locks. (disabled hardirqs prevented
4304          * this bit from being set before)
4305          */
4306         if (curr->softirqs_enabled)
4307                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4308 }
4309
4310 /**
4311  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4312  *
4313  * Invoked before a possible transition to RCU idle from exit to user or
4314  * guest mode. This ensures that all RCU operations are done before RCU
4315  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4316  * invoked to set the final state.
4317  */
4318 void lockdep_hardirqs_on_prepare(void)
4319 {
4320         if (unlikely(!debug_locks))
4321                 return;
4322
4323         /*
4324          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4325          */
4326         if (unlikely(in_nmi()))
4327                 return;
4328
4329         if (unlikely(this_cpu_read(lockdep_recursion)))
4330                 return;
4331
4332         if (unlikely(lockdep_hardirqs_enabled())) {
4333                 /*
4334                  * Neither irq nor preemption are disabled here
4335                  * so this is racy by nature but losing one hit
4336                  * in a stat is not a big deal.
4337                  */
4338                 __debug_atomic_inc(redundant_hardirqs_on);
4339                 return;
4340         }
4341
4342         /*
4343          * We're enabling irqs and according to our state above irqs weren't
4344          * already enabled, yet we find the hardware thinks they are in fact
4345          * enabled.. someone messed up their IRQ state tracing.
4346          */
4347         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4348                 return;
4349
4350         /*
4351          * See the fine text that goes along with this variable definition.
4352          */
4353         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4354                 return;
4355
4356         /*
4357          * Can't allow enabling interrupts while in an interrupt handler,
4358          * that's general bad form and such. Recursion, limited stack etc..
4359          */
4360         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4361                 return;
4362
4363         current->hardirq_chain_key = current->curr_chain_key;
4364
4365         lockdep_recursion_inc();
4366         __trace_hardirqs_on_caller();
4367         lockdep_recursion_finish();
4368 }
4369 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4370
4371 void noinstr lockdep_hardirqs_on(unsigned long ip)
4372 {
4373         struct irqtrace_events *trace = &current->irqtrace;
4374
4375         if (unlikely(!debug_locks))
4376                 return;
4377
4378         /*
4379          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4380          * tracking state and hardware state are out of sync.
4381          *
4382          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4383          * and not rely on hardware state like normal interrupts.
4384          */
4385         if (unlikely(in_nmi())) {
4386                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4387                         return;
4388
4389                 /*
4390                  * Skip:
4391                  *  - recursion check, because NMI can hit lockdep;
4392                  *  - hardware state check, because above;
4393                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4394                  */
4395                 goto skip_checks;
4396         }
4397
4398         if (unlikely(this_cpu_read(lockdep_recursion)))
4399                 return;
4400
4401         if (lockdep_hardirqs_enabled()) {
4402                 /*
4403                  * Neither irq nor preemption are disabled here
4404                  * so this is racy by nature but losing one hit
4405                  * in a stat is not a big deal.
4406                  */
4407                 __debug_atomic_inc(redundant_hardirqs_on);
4408                 return;
4409         }
4410
4411         /*
4412          * We're enabling irqs and according to our state above irqs weren't
4413          * already enabled, yet we find the hardware thinks they are in fact
4414          * enabled.. someone messed up their IRQ state tracing.
4415          */
4416         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4417                 return;
4418
4419         /*
4420          * Ensure the lock stack remained unchanged between
4421          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4422          */
4423         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4424                             current->curr_chain_key);
4425
4426 skip_checks:
4427         /* we'll do an OFF -> ON transition: */
4428         __this_cpu_write(hardirqs_enabled, 1);
4429         trace->hardirq_enable_ip = ip;
4430         trace->hardirq_enable_event = ++trace->irq_events;
4431         debug_atomic_inc(hardirqs_on_events);
4432 }
4433 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4434
4435 /*
4436  * Hardirqs were disabled:
4437  */
4438 void noinstr lockdep_hardirqs_off(unsigned long ip)
4439 {
4440         if (unlikely(!debug_locks))
4441                 return;
4442
4443         /*
4444          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4445          * they will restore the software state. This ensures the software
4446          * state is consistent inside NMIs as well.
4447          */
4448         if (in_nmi()) {
4449                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4450                         return;
4451         } else if (__this_cpu_read(lockdep_recursion))
4452                 return;
4453
4454         /*
4455          * So we're supposed to get called after you mask local IRQs, but for
4456          * some reason the hardware doesn't quite think you did a proper job.
4457          */
4458         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4459                 return;
4460
4461         if (lockdep_hardirqs_enabled()) {
4462                 struct irqtrace_events *trace = &current->irqtrace;
4463
4464                 /*
4465                  * We have done an ON -> OFF transition:
4466                  */
4467                 __this_cpu_write(hardirqs_enabled, 0);
4468                 trace->hardirq_disable_ip = ip;
4469                 trace->hardirq_disable_event = ++trace->irq_events;
4470                 debug_atomic_inc(hardirqs_off_events);
4471         } else {
4472                 debug_atomic_inc(redundant_hardirqs_off);
4473         }
4474 }
4475 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4476
4477 /*
4478  * Softirqs will be enabled:
4479  */
4480 void lockdep_softirqs_on(unsigned long ip)
4481 {
4482         struct irqtrace_events *trace = &current->irqtrace;
4483
4484         if (unlikely(!lockdep_enabled()))
4485                 return;
4486
4487         /*
4488          * We fancy IRQs being disabled here, see softirq.c, avoids
4489          * funny state and nesting things.
4490          */
4491         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4492                 return;
4493
4494         if (current->softirqs_enabled) {
4495                 debug_atomic_inc(redundant_softirqs_on);
4496                 return;
4497         }
4498
4499         lockdep_recursion_inc();
4500         /*
4501          * We'll do an OFF -> ON transition:
4502          */
4503         current->softirqs_enabled = 1;
4504         trace->softirq_enable_ip = ip;
4505         trace->softirq_enable_event = ++trace->irq_events;
4506         debug_atomic_inc(softirqs_on_events);
4507         /*
4508          * We are going to turn softirqs on, so set the
4509          * usage bit for all held locks, if hardirqs are
4510          * enabled too:
4511          */
4512         if (lockdep_hardirqs_enabled())
4513                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4514         lockdep_recursion_finish();
4515 }
4516
4517 /*
4518  * Softirqs were disabled:
4519  */
4520 void lockdep_softirqs_off(unsigned long ip)
4521 {
4522         if (unlikely(!lockdep_enabled()))
4523                 return;
4524
4525         /*
4526          * We fancy IRQs being disabled here, see softirq.c
4527          */
4528         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4529                 return;
4530
4531         if (current->softirqs_enabled) {
4532                 struct irqtrace_events *trace = &current->irqtrace;
4533
4534                 /*
4535                  * We have done an ON -> OFF transition:
4536                  */
4537                 current->softirqs_enabled = 0;
4538                 trace->softirq_disable_ip = ip;
4539                 trace->softirq_disable_event = ++trace->irq_events;
4540                 debug_atomic_inc(softirqs_off_events);
4541                 /*
4542                  * Whoops, we wanted softirqs off, so why aren't they?
4543                  */
4544                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4545         } else
4546                 debug_atomic_inc(redundant_softirqs_off);
4547 }
4548
4549 static int
4550 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4551 {
4552         if (!check)
4553                 goto lock_used;
4554
4555         /*
4556          * If non-trylock use in a hardirq or softirq context, then
4557          * mark the lock as used in these contexts:
4558          */
4559         if (!hlock->trylock) {
4560                 if (hlock->read) {
4561                         if (lockdep_hardirq_context())
4562                                 if (!mark_lock(curr, hlock,
4563                                                 LOCK_USED_IN_HARDIRQ_READ))
4564                                         return 0;
4565                         if (curr->softirq_context)
4566                                 if (!mark_lock(curr, hlock,
4567                                                 LOCK_USED_IN_SOFTIRQ_READ))
4568                                         return 0;
4569                 } else {
4570                         if (lockdep_hardirq_context())
4571                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4572                                         return 0;
4573                         if (curr->softirq_context)
4574                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4575                                         return 0;
4576                 }
4577         }
4578
4579         /*
4580          * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4581          * creates no critical section and no extra dependency can be introduced
4582          * by interrupts
4583          */
4584         if (!hlock->hardirqs_off && !hlock->sync) {
4585                 if (hlock->read) {
4586                         if (!mark_lock(curr, hlock,
4587                                         LOCK_ENABLED_HARDIRQ_READ))
4588                                 return 0;
4589                         if (curr->softirqs_enabled)
4590                                 if (!mark_lock(curr, hlock,
4591                                                 LOCK_ENABLED_SOFTIRQ_READ))
4592                                         return 0;
4593                 } else {
4594                         if (!mark_lock(curr, hlock,
4595                                         LOCK_ENABLED_HARDIRQ))
4596                                 return 0;
4597                         if (curr->softirqs_enabled)
4598                                 if (!mark_lock(curr, hlock,
4599                                                 LOCK_ENABLED_SOFTIRQ))
4600                                         return 0;
4601                 }
4602         }
4603
4604 lock_used:
4605         /* mark it as used: */
4606         if (!mark_lock(curr, hlock, LOCK_USED))
4607                 return 0;
4608
4609         return 1;
4610 }
4611
4612 static inline unsigned int task_irq_context(struct task_struct *task)
4613 {
4614         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4615                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4616 }
4617
4618 static int separate_irq_context(struct task_struct *curr,
4619                 struct held_lock *hlock)
4620 {
4621         unsigned int depth = curr->lockdep_depth;
4622
4623         /*
4624          * Keep track of points where we cross into an interrupt context:
4625          */
4626         if (depth) {
4627                 struct held_lock *prev_hlock;
4628
4629                 prev_hlock = curr->held_locks + depth-1;
4630                 /*
4631                  * If we cross into another context, reset the
4632                  * hash key (this also prevents the checking and the
4633                  * adding of the dependency to 'prev'):
4634                  */
4635                 if (prev_hlock->irq_context != hlock->irq_context)
4636                         return 1;
4637         }
4638         return 0;
4639 }
4640
4641 /*
4642  * Mark a lock with a usage bit, and validate the state transition:
4643  */
4644 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4645                              enum lock_usage_bit new_bit)
4646 {
4647         unsigned int new_mask, ret = 1;
4648
4649         if (new_bit >= LOCK_USAGE_STATES) {
4650                 DEBUG_LOCKS_WARN_ON(1);
4651                 return 0;
4652         }
4653
4654         if (new_bit == LOCK_USED && this->read)
4655                 new_bit = LOCK_USED_READ;
4656
4657         new_mask = 1 << new_bit;
4658
4659         /*
4660          * If already set then do not dirty the cacheline,
4661          * nor do any checks:
4662          */
4663         if (likely(hlock_class(this)->usage_mask & new_mask))
4664                 return 1;
4665
4666         if (!graph_lock())
4667                 return 0;
4668         /*
4669          * Make sure we didn't race:
4670          */
4671         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4672                 goto unlock;
4673
4674         if (!hlock_class(this)->usage_mask)
4675                 debug_atomic_dec(nr_unused_locks);
4676
4677         hlock_class(this)->usage_mask |= new_mask;
4678
4679         if (new_bit < LOCK_TRACE_STATES) {
4680                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4681                         return 0;
4682         }
4683
4684         if (new_bit < LOCK_USED) {
4685                 ret = mark_lock_irq(curr, this, new_bit);
4686                 if (!ret)
4687                         return 0;
4688         }
4689
4690 unlock:
4691         graph_unlock();
4692
4693         /*
4694          * We must printk outside of the graph_lock:
4695          */
4696         if (ret == 2) {
4697                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4698                 print_lock(this);
4699                 print_irqtrace_events(curr);
4700                 dump_stack();
4701         }
4702
4703         return ret;
4704 }
4705
4706 static inline short task_wait_context(struct task_struct *curr)
4707 {
4708         /*
4709          * Set appropriate wait type for the context; for IRQs we have to take
4710          * into account force_irqthread as that is implied by PREEMPT_RT.
4711          */
4712         if (lockdep_hardirq_context()) {
4713                 /*
4714                  * Check if force_irqthreads will run us threaded.
4715                  */
4716                 if (curr->hardirq_threaded || curr->irq_config)
4717                         return LD_WAIT_CONFIG;
4718
4719                 return LD_WAIT_SPIN;
4720         } else if (curr->softirq_context) {
4721                 /*
4722                  * Softirqs are always threaded.
4723                  */
4724                 return LD_WAIT_CONFIG;
4725         }
4726
4727         return LD_WAIT_MAX;
4728 }
4729
4730 static int
4731 print_lock_invalid_wait_context(struct task_struct *curr,
4732                                 struct held_lock *hlock)
4733 {
4734         short curr_inner;
4735
4736         if (!debug_locks_off())
4737                 return 0;
4738         if (debug_locks_silent)
4739                 return 0;
4740
4741         pr_warn("\n");
4742         pr_warn("=============================\n");
4743         pr_warn("[ BUG: Invalid wait context ]\n");
4744         print_kernel_ident();
4745         pr_warn("-----------------------------\n");
4746
4747         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4748         print_lock(hlock);
4749
4750         pr_warn("other info that might help us debug this:\n");
4751
4752         curr_inner = task_wait_context(curr);
4753         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4754
4755         lockdep_print_held_locks(curr);
4756
4757         pr_warn("stack backtrace:\n");
4758         dump_stack();
4759
4760         return 0;
4761 }
4762
4763 /*
4764  * Verify the wait_type context.
4765  *
4766  * This check validates we take locks in the right wait-type order; that is it
4767  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4768  * acquire spinlocks inside raw_spinlocks and the sort.
4769  *
4770  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4771  * can be taken from (pretty much) any context but also has constraints.
4772  * However when taken in a stricter environment the RCU lock does not loosen
4773  * the constraints.
4774  *
4775  * Therefore we must look for the strictest environment in the lock stack and
4776  * compare that to the lock we're trying to acquire.
4777  */
4778 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4779 {
4780         u8 next_inner = hlock_class(next)->wait_type_inner;
4781         u8 next_outer = hlock_class(next)->wait_type_outer;
4782         u8 curr_inner;
4783         int depth;
4784
4785         if (!next_inner || next->trylock)
4786                 return 0;
4787
4788         if (!next_outer)
4789                 next_outer = next_inner;
4790
4791         /*
4792          * Find start of current irq_context..
4793          */
4794         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4795                 struct held_lock *prev = curr->held_locks + depth;
4796                 if (prev->irq_context != next->irq_context)
4797                         break;
4798         }
4799         depth++;
4800
4801         curr_inner = task_wait_context(curr);
4802
4803         for (; depth < curr->lockdep_depth; depth++) {
4804                 struct held_lock *prev = curr->held_locks + depth;
4805                 struct lock_class *class = hlock_class(prev);
4806                 u8 prev_inner = class->wait_type_inner;
4807
4808                 if (prev_inner) {
4809                         /*
4810                          * We can have a bigger inner than a previous one
4811                          * when outer is smaller than inner, as with RCU.
4812                          *
4813                          * Also due to trylocks.
4814                          */
4815                         curr_inner = min(curr_inner, prev_inner);
4816
4817                         /*
4818                          * Allow override for annotations -- this is typically
4819                          * only valid/needed for code that only exists when
4820                          * CONFIG_PREEMPT_RT=n.
4821                          */
4822                         if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4823                                 curr_inner = prev_inner;
4824                 }
4825         }
4826
4827         if (next_outer > curr_inner)
4828                 return print_lock_invalid_wait_context(curr, next);
4829
4830         return 0;
4831 }
4832
4833 #else /* CONFIG_PROVE_LOCKING */
4834
4835 static inline int
4836 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4837 {
4838         return 1;
4839 }
4840
4841 static inline unsigned int task_irq_context(struct task_struct *task)
4842 {
4843         return 0;
4844 }
4845
4846 static inline int separate_irq_context(struct task_struct *curr,
4847                 struct held_lock *hlock)
4848 {
4849         return 0;
4850 }
4851
4852 static inline int check_wait_context(struct task_struct *curr,
4853                                      struct held_lock *next)
4854 {
4855         return 0;
4856 }
4857
4858 #endif /* CONFIG_PROVE_LOCKING */
4859
4860 /*
4861  * Initialize a lock instance's lock-class mapping info:
4862  */
4863 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4864                             struct lock_class_key *key, int subclass,
4865                             u8 inner, u8 outer, u8 lock_type)
4866 {
4867         int i;
4868
4869         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4870                 lock->class_cache[i] = NULL;
4871
4872 #ifdef CONFIG_LOCK_STAT
4873         lock->cpu = raw_smp_processor_id();
4874 #endif
4875
4876         /*
4877          * Can't be having no nameless bastards around this place!
4878          */
4879         if (DEBUG_LOCKS_WARN_ON(!name)) {
4880                 lock->name = "NULL";
4881                 return;
4882         }
4883
4884         lock->name = name;
4885
4886         lock->wait_type_outer = outer;
4887         lock->wait_type_inner = inner;
4888         lock->lock_type = lock_type;
4889
4890         /*
4891          * No key, no joy, we need to hash something.
4892          */
4893         if (DEBUG_LOCKS_WARN_ON(!key))
4894                 return;
4895         /*
4896          * Sanity check, the lock-class key must either have been allocated
4897          * statically or must have been registered as a dynamic key.
4898          */
4899         if (!static_obj(key) && !is_dynamic_key(key)) {
4900                 if (debug_locks)
4901                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4902                 DEBUG_LOCKS_WARN_ON(1);
4903                 return;
4904         }
4905         lock->key = key;
4906
4907         if (unlikely(!debug_locks))
4908                 return;
4909
4910         if (subclass) {
4911                 unsigned long flags;
4912
4913                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4914                         return;
4915
4916                 raw_local_irq_save(flags);
4917                 lockdep_recursion_inc();
4918                 register_lock_class(lock, subclass, 1);
4919                 lockdep_recursion_finish();
4920                 raw_local_irq_restore(flags);
4921         }
4922 }
4923 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4924
4925 struct lock_class_key __lockdep_no_validate__;
4926 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4927
4928 #ifdef CONFIG_PROVE_LOCKING
4929 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4930                              lock_print_fn print_fn)
4931 {
4932         struct lock_class *class = lock->class_cache[0];
4933         unsigned long flags;
4934
4935         raw_local_irq_save(flags);
4936         lockdep_recursion_inc();
4937
4938         if (!class)
4939                 class = register_lock_class(lock, 0, 0);
4940
4941         if (class) {
4942                 WARN_ON(class->cmp_fn   && class->cmp_fn != cmp_fn);
4943                 WARN_ON(class->print_fn && class->print_fn != print_fn);
4944
4945                 class->cmp_fn   = cmp_fn;
4946                 class->print_fn = print_fn;
4947         }
4948
4949         lockdep_recursion_finish();
4950         raw_local_irq_restore(flags);
4951 }
4952 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4953 #endif
4954
4955 static void
4956 print_lock_nested_lock_not_held(struct task_struct *curr,
4957                                 struct held_lock *hlock)
4958 {
4959         if (!debug_locks_off())
4960                 return;
4961         if (debug_locks_silent)
4962                 return;
4963
4964         pr_warn("\n");
4965         pr_warn("==================================\n");
4966         pr_warn("WARNING: Nested lock was not taken\n");
4967         print_kernel_ident();
4968         pr_warn("----------------------------------\n");
4969
4970         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4971         print_lock(hlock);
4972
4973         pr_warn("\nbut this task is not holding:\n");
4974         pr_warn("%s\n", hlock->nest_lock->name);
4975
4976         pr_warn("\nstack backtrace:\n");
4977         dump_stack();
4978
4979         pr_warn("\nother info that might help us debug this:\n");
4980         lockdep_print_held_locks(curr);
4981
4982         pr_warn("\nstack backtrace:\n");
4983         dump_stack();
4984 }
4985
4986 static int __lock_is_held(const struct lockdep_map *lock, int read);
4987
4988 /*
4989  * This gets called for every mutex_lock*()/spin_lock*() operation.
4990  * We maintain the dependency maps and validate the locking attempt:
4991  *
4992  * The callers must make sure that IRQs are disabled before calling it,
4993  * otherwise we could get an interrupt which would want to take locks,
4994  * which would end up in lockdep again.
4995  */
4996 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4997                           int trylock, int read, int check, int hardirqs_off,
4998                           struct lockdep_map *nest_lock, unsigned long ip,
4999                           int references, int pin_count, int sync)
5000 {
5001         struct task_struct *curr = current;
5002         struct lock_class *class = NULL;
5003         struct held_lock *hlock;
5004         unsigned int depth;
5005         int chain_head = 0;
5006         int class_idx;
5007         u64 chain_key;
5008
5009         if (unlikely(!debug_locks))
5010                 return 0;
5011
5012         if (!prove_locking || lock->key == &__lockdep_no_validate__)
5013                 check = 0;
5014
5015         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5016                 class = lock->class_cache[subclass];
5017         /*
5018          * Not cached?
5019          */
5020         if (unlikely(!class)) {
5021                 class = register_lock_class(lock, subclass, 0);
5022                 if (!class)
5023                         return 0;
5024         }
5025
5026         debug_class_ops_inc(class);
5027
5028         if (very_verbose(class)) {
5029                 printk("\nacquire class [%px] %s", class->key, class->name);
5030                 if (class->name_version > 1)
5031                         printk(KERN_CONT "#%d", class->name_version);
5032                 printk(KERN_CONT "\n");
5033                 dump_stack();
5034         }
5035
5036         /*
5037          * Add the lock to the list of currently held locks.
5038          * (we dont increase the depth just yet, up until the
5039          * dependency checks are done)
5040          */
5041         depth = curr->lockdep_depth;
5042         /*
5043          * Ran out of static storage for our per-task lock stack again have we?
5044          */
5045         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5046                 return 0;
5047
5048         class_idx = class - lock_classes;
5049
5050         if (depth && !sync) {
5051                 /* we're holding locks and the new held lock is not a sync */
5052                 hlock = curr->held_locks + depth - 1;
5053                 if (hlock->class_idx == class_idx && nest_lock) {
5054                         if (!references)
5055                                 references++;
5056
5057                         if (!hlock->references)
5058                                 hlock->references++;
5059
5060                         hlock->references += references;
5061
5062                         /* Overflow */
5063                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5064                                 return 0;
5065
5066                         return 2;
5067                 }
5068         }
5069
5070         hlock = curr->held_locks + depth;
5071         /*
5072          * Plain impossible, we just registered it and checked it weren't no
5073          * NULL like.. I bet this mushroom I ate was good!
5074          */
5075         if (DEBUG_LOCKS_WARN_ON(!class))
5076                 return 0;
5077         hlock->class_idx = class_idx;
5078         hlock->acquire_ip = ip;
5079         hlock->instance = lock;
5080         hlock->nest_lock = nest_lock;
5081         hlock->irq_context = task_irq_context(curr);
5082         hlock->trylock = trylock;
5083         hlock->read = read;
5084         hlock->check = check;
5085         hlock->sync = !!sync;
5086         hlock->hardirqs_off = !!hardirqs_off;
5087         hlock->references = references;
5088 #ifdef CONFIG_LOCK_STAT
5089         hlock->waittime_stamp = 0;
5090         hlock->holdtime_stamp = lockstat_clock();
5091 #endif
5092         hlock->pin_count = pin_count;
5093
5094         if (check_wait_context(curr, hlock))
5095                 return 0;
5096
5097         /* Initialize the lock usage bit */
5098         if (!mark_usage(curr, hlock, check))
5099                 return 0;
5100
5101         /*
5102          * Calculate the chain hash: it's the combined hash of all the
5103          * lock keys along the dependency chain. We save the hash value
5104          * at every step so that we can get the current hash easily
5105          * after unlock. The chain hash is then used to cache dependency
5106          * results.
5107          *
5108          * The 'key ID' is what is the most compact key value to drive
5109          * the hash, not class->key.
5110          */
5111         /*
5112          * Whoops, we did it again.. class_idx is invalid.
5113          */
5114         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5115                 return 0;
5116
5117         chain_key = curr->curr_chain_key;
5118         if (!depth) {
5119                 /*
5120                  * How can we have a chain hash when we ain't got no keys?!
5121                  */
5122                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5123                         return 0;
5124                 chain_head = 1;
5125         }
5126
5127         hlock->prev_chain_key = chain_key;
5128         if (separate_irq_context(curr, hlock)) {
5129                 chain_key = INITIAL_CHAIN_KEY;
5130                 chain_head = 1;
5131         }
5132         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5133
5134         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5135                 print_lock_nested_lock_not_held(curr, hlock);
5136                 return 0;
5137         }
5138
5139         if (!debug_locks_silent) {
5140                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5141                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5142         }
5143
5144         if (!validate_chain(curr, hlock, chain_head, chain_key))
5145                 return 0;
5146
5147         /* For lock_sync(), we are done here since no actual critical section */
5148         if (hlock->sync)
5149                 return 1;
5150
5151         curr->curr_chain_key = chain_key;
5152         curr->lockdep_depth++;
5153         check_chain_key(curr);
5154 #ifdef CONFIG_DEBUG_LOCKDEP
5155         if (unlikely(!debug_locks))
5156                 return 0;
5157 #endif
5158         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5159                 debug_locks_off();
5160                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5161                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5162                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5163
5164                 lockdep_print_held_locks(current);
5165                 debug_show_all_locks();
5166                 dump_stack();
5167
5168                 return 0;
5169         }
5170
5171         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5172                 max_lockdep_depth = curr->lockdep_depth;
5173
5174         return 1;
5175 }
5176
5177 static void print_unlock_imbalance_bug(struct task_struct *curr,
5178                                        struct lockdep_map *lock,
5179                                        unsigned long ip)
5180 {
5181         if (!debug_locks_off())
5182                 return;
5183         if (debug_locks_silent)
5184                 return;
5185
5186         pr_warn("\n");
5187         pr_warn("=====================================\n");
5188         pr_warn("WARNING: bad unlock balance detected!\n");
5189         print_kernel_ident();
5190         pr_warn("-------------------------------------\n");
5191         pr_warn("%s/%d is trying to release lock (",
5192                 curr->comm, task_pid_nr(curr));
5193         print_lockdep_cache(lock);
5194         pr_cont(") at:\n");
5195         print_ip_sym(KERN_WARNING, ip);
5196         pr_warn("but there are no more locks to release!\n");
5197         pr_warn("\nother info that might help us debug this:\n");
5198         lockdep_print_held_locks(curr);
5199
5200         pr_warn("\nstack backtrace:\n");
5201         dump_stack();
5202 }
5203
5204 static noinstr int match_held_lock(const struct held_lock *hlock,
5205                                    const struct lockdep_map *lock)
5206 {
5207         if (hlock->instance == lock)
5208                 return 1;
5209
5210         if (hlock->references) {
5211                 const struct lock_class *class = lock->class_cache[0];
5212
5213                 if (!class)
5214                         class = look_up_lock_class(lock, 0);
5215
5216                 /*
5217                  * If look_up_lock_class() failed to find a class, we're trying
5218                  * to test if we hold a lock that has never yet been acquired.
5219                  * Clearly if the lock hasn't been acquired _ever_, we're not
5220                  * holding it either, so report failure.
5221                  */
5222                 if (!class)
5223                         return 0;
5224
5225                 /*
5226                  * References, but not a lock we're actually ref-counting?
5227                  * State got messed up, follow the sites that change ->references
5228                  * and try to make sense of it.
5229                  */
5230                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5231                         return 0;
5232
5233                 if (hlock->class_idx == class - lock_classes)
5234                         return 1;
5235         }
5236
5237         return 0;
5238 }
5239
5240 /* @depth must not be zero */
5241 static struct held_lock *find_held_lock(struct task_struct *curr,
5242                                         struct lockdep_map *lock,
5243                                         unsigned int depth, int *idx)
5244 {
5245         struct held_lock *ret, *hlock, *prev_hlock;
5246         int i;
5247
5248         i = depth - 1;
5249         hlock = curr->held_locks + i;
5250         ret = hlock;
5251         if (match_held_lock(hlock, lock))
5252                 goto out;
5253
5254         ret = NULL;
5255         for (i--, prev_hlock = hlock--;
5256              i >= 0;
5257              i--, prev_hlock = hlock--) {
5258                 /*
5259                  * We must not cross into another context:
5260                  */
5261                 if (prev_hlock->irq_context != hlock->irq_context) {
5262                         ret = NULL;
5263                         break;
5264                 }
5265                 if (match_held_lock(hlock, lock)) {
5266                         ret = hlock;
5267                         break;
5268                 }
5269         }
5270
5271 out:
5272         *idx = i;
5273         return ret;
5274 }
5275
5276 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5277                                 int idx, unsigned int *merged)
5278 {
5279         struct held_lock *hlock;
5280         int first_idx = idx;
5281
5282         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5283                 return 0;
5284
5285         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5286                 switch (__lock_acquire(hlock->instance,
5287                                     hlock_class(hlock)->subclass,
5288                                     hlock->trylock,
5289                                     hlock->read, hlock->check,
5290                                     hlock->hardirqs_off,
5291                                     hlock->nest_lock, hlock->acquire_ip,
5292                                     hlock->references, hlock->pin_count, 0)) {
5293                 case 0:
5294                         return 1;
5295                 case 1:
5296                         break;
5297                 case 2:
5298                         *merged += (idx == first_idx);
5299                         break;
5300                 default:
5301                         WARN_ON(1);
5302                         return 0;
5303                 }
5304         }
5305         return 0;
5306 }
5307
5308 static int
5309 __lock_set_class(struct lockdep_map *lock, const char *name,
5310                  struct lock_class_key *key, unsigned int subclass,
5311                  unsigned long ip)
5312 {
5313         struct task_struct *curr = current;
5314         unsigned int depth, merged = 0;
5315         struct held_lock *hlock;
5316         struct lock_class *class;
5317         int i;
5318
5319         if (unlikely(!debug_locks))
5320                 return 0;
5321
5322         depth = curr->lockdep_depth;
5323         /*
5324          * This function is about (re)setting the class of a held lock,
5325          * yet we're not actually holding any locks. Naughty user!
5326          */
5327         if (DEBUG_LOCKS_WARN_ON(!depth))
5328                 return 0;
5329
5330         hlock = find_held_lock(curr, lock, depth, &i);
5331         if (!hlock) {
5332                 print_unlock_imbalance_bug(curr, lock, ip);
5333                 return 0;
5334         }
5335
5336         lockdep_init_map_type(lock, name, key, 0,
5337                               lock->wait_type_inner,
5338                               lock->wait_type_outer,
5339                               lock->lock_type);
5340         class = register_lock_class(lock, subclass, 0);
5341         hlock->class_idx = class - lock_classes;
5342
5343         curr->lockdep_depth = i;
5344         curr->curr_chain_key = hlock->prev_chain_key;
5345
5346         if (reacquire_held_locks(curr, depth, i, &merged))
5347                 return 0;
5348
5349         /*
5350          * I took it apart and put it back together again, except now I have
5351          * these 'spare' parts.. where shall I put them.
5352          */
5353         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5354                 return 0;
5355         return 1;
5356 }
5357
5358 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5359 {
5360         struct task_struct *curr = current;
5361         unsigned int depth, merged = 0;
5362         struct held_lock *hlock;
5363         int i;
5364
5365         if (unlikely(!debug_locks))
5366                 return 0;
5367
5368         depth = curr->lockdep_depth;
5369         /*
5370          * This function is about (re)setting the class of a held lock,
5371          * yet we're not actually holding any locks. Naughty user!
5372          */
5373         if (DEBUG_LOCKS_WARN_ON(!depth))
5374                 return 0;
5375
5376         hlock = find_held_lock(curr, lock, depth, &i);
5377         if (!hlock) {
5378                 print_unlock_imbalance_bug(curr, lock, ip);
5379                 return 0;
5380         }
5381
5382         curr->lockdep_depth = i;
5383         curr->curr_chain_key = hlock->prev_chain_key;
5384
5385         WARN(hlock->read, "downgrading a read lock");
5386         hlock->read = 1;
5387         hlock->acquire_ip = ip;
5388
5389         if (reacquire_held_locks(curr, depth, i, &merged))
5390                 return 0;
5391
5392         /* Merging can't happen with unchanged classes.. */
5393         if (DEBUG_LOCKS_WARN_ON(merged))
5394                 return 0;
5395
5396         /*
5397          * I took it apart and put it back together again, except now I have
5398          * these 'spare' parts.. where shall I put them.
5399          */
5400         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5401                 return 0;
5402
5403         return 1;
5404 }
5405
5406 /*
5407  * Remove the lock from the list of currently held locks - this gets
5408  * called on mutex_unlock()/spin_unlock*() (or on a failed
5409  * mutex_lock_interruptible()).
5410  */
5411 static int
5412 __lock_release(struct lockdep_map *lock, unsigned long ip)
5413 {
5414         struct task_struct *curr = current;
5415         unsigned int depth, merged = 1;
5416         struct held_lock *hlock;
5417         int i;
5418
5419         if (unlikely(!debug_locks))
5420                 return 0;
5421
5422         depth = curr->lockdep_depth;
5423         /*
5424          * So we're all set to release this lock.. wait what lock? We don't
5425          * own any locks, you've been drinking again?
5426          */
5427         if (depth <= 0) {
5428                 print_unlock_imbalance_bug(curr, lock, ip);
5429                 return 0;
5430         }
5431
5432         /*
5433          * Check whether the lock exists in the current stack
5434          * of held locks:
5435          */
5436         hlock = find_held_lock(curr, lock, depth, &i);
5437         if (!hlock) {
5438                 print_unlock_imbalance_bug(curr, lock, ip);
5439                 return 0;
5440         }
5441
5442         if (hlock->instance == lock)
5443                 lock_release_holdtime(hlock);
5444
5445         WARN(hlock->pin_count, "releasing a pinned lock\n");
5446
5447         if (hlock->references) {
5448                 hlock->references--;
5449                 if (hlock->references) {
5450                         /*
5451                          * We had, and after removing one, still have
5452                          * references, the current lock stack is still
5453                          * valid. We're done!
5454                          */
5455                         return 1;
5456                 }
5457         }
5458
5459         /*
5460          * We have the right lock to unlock, 'hlock' points to it.
5461          * Now we remove it from the stack, and add back the other
5462          * entries (if any), recalculating the hash along the way:
5463          */
5464
5465         curr->lockdep_depth = i;
5466         curr->curr_chain_key = hlock->prev_chain_key;
5467
5468         /*
5469          * The most likely case is when the unlock is on the innermost
5470          * lock. In this case, we are done!
5471          */
5472         if (i == depth-1)
5473                 return 1;
5474
5475         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5476                 return 0;
5477
5478         /*
5479          * We had N bottles of beer on the wall, we drank one, but now
5480          * there's not N-1 bottles of beer left on the wall...
5481          * Pouring two of the bottles together is acceptable.
5482          */
5483         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5484
5485         /*
5486          * Since reacquire_held_locks() would have called check_chain_key()
5487          * indirectly via __lock_acquire(), we don't need to do it again
5488          * on return.
5489          */
5490         return 0;
5491 }
5492
5493 static __always_inline
5494 int __lock_is_held(const struct lockdep_map *lock, int read)
5495 {
5496         struct task_struct *curr = current;
5497         int i;
5498
5499         for (i = 0; i < curr->lockdep_depth; i++) {
5500                 struct held_lock *hlock = curr->held_locks + i;
5501
5502                 if (match_held_lock(hlock, lock)) {
5503                         if (read == -1 || !!hlock->read == read)
5504                                 return LOCK_STATE_HELD;
5505
5506                         return LOCK_STATE_NOT_HELD;
5507                 }
5508         }
5509
5510         return LOCK_STATE_NOT_HELD;
5511 }
5512
5513 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5514 {
5515         struct pin_cookie cookie = NIL_COOKIE;
5516         struct task_struct *curr = current;
5517         int i;
5518
5519         if (unlikely(!debug_locks))
5520                 return cookie;
5521
5522         for (i = 0; i < curr->lockdep_depth; i++) {
5523                 struct held_lock *hlock = curr->held_locks + i;
5524
5525                 if (match_held_lock(hlock, lock)) {
5526                         /*
5527                          * Grab 16bits of randomness; this is sufficient to not
5528                          * be guessable and still allows some pin nesting in
5529                          * our u32 pin_count.
5530                          */
5531                         cookie.val = 1 + (sched_clock() & 0xffff);
5532                         hlock->pin_count += cookie.val;
5533                         return cookie;
5534                 }
5535         }
5536
5537         WARN(1, "pinning an unheld lock\n");
5538         return cookie;
5539 }
5540
5541 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5542 {
5543         struct task_struct *curr = current;
5544         int i;
5545
5546         if (unlikely(!debug_locks))
5547                 return;
5548
5549         for (i = 0; i < curr->lockdep_depth; i++) {
5550                 struct held_lock *hlock = curr->held_locks + i;
5551
5552                 if (match_held_lock(hlock, lock)) {
5553                         hlock->pin_count += cookie.val;
5554                         return;
5555                 }
5556         }
5557
5558         WARN(1, "pinning an unheld lock\n");
5559 }
5560
5561 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5562 {
5563         struct task_struct *curr = current;
5564         int i;
5565
5566         if (unlikely(!debug_locks))
5567                 return;
5568
5569         for (i = 0; i < curr->lockdep_depth; i++) {
5570                 struct held_lock *hlock = curr->held_locks + i;
5571
5572                 if (match_held_lock(hlock, lock)) {
5573                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5574                                 return;
5575
5576                         hlock->pin_count -= cookie.val;
5577
5578                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5579                                 hlock->pin_count = 0;
5580
5581                         return;
5582                 }
5583         }
5584
5585         WARN(1, "unpinning an unheld lock\n");
5586 }
5587
5588 /*
5589  * Check whether we follow the irq-flags state precisely:
5590  */
5591 static noinstr void check_flags(unsigned long flags)
5592 {
5593 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5594         if (!debug_locks)
5595                 return;
5596
5597         /* Get the warning out..  */
5598         instrumentation_begin();
5599
5600         if (irqs_disabled_flags(flags)) {
5601                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5602                         printk("possible reason: unannotated irqs-off.\n");
5603                 }
5604         } else {
5605                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5606                         printk("possible reason: unannotated irqs-on.\n");
5607                 }
5608         }
5609
5610 #ifndef CONFIG_PREEMPT_RT
5611         /*
5612          * We dont accurately track softirq state in e.g.
5613          * hardirq contexts (such as on 4KSTACKS), so only
5614          * check if not in hardirq contexts:
5615          */
5616         if (!hardirq_count()) {
5617                 if (softirq_count()) {
5618                         /* like the above, but with softirqs */
5619                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5620                 } else {
5621                         /* lick the above, does it taste good? */
5622                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5623                 }
5624         }
5625 #endif
5626
5627         if (!debug_locks)
5628                 print_irqtrace_events(current);
5629
5630         instrumentation_end();
5631 #endif
5632 }
5633
5634 void lock_set_class(struct lockdep_map *lock, const char *name,
5635                     struct lock_class_key *key, unsigned int subclass,
5636                     unsigned long ip)
5637 {
5638         unsigned long flags;
5639
5640         if (unlikely(!lockdep_enabled()))
5641                 return;
5642
5643         raw_local_irq_save(flags);
5644         lockdep_recursion_inc();
5645         check_flags(flags);
5646         if (__lock_set_class(lock, name, key, subclass, ip))
5647                 check_chain_key(current);
5648         lockdep_recursion_finish();
5649         raw_local_irq_restore(flags);
5650 }
5651 EXPORT_SYMBOL_GPL(lock_set_class);
5652
5653 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5654 {
5655         unsigned long flags;
5656
5657         if (unlikely(!lockdep_enabled()))
5658                 return;
5659
5660         raw_local_irq_save(flags);
5661         lockdep_recursion_inc();
5662         check_flags(flags);
5663         if (__lock_downgrade(lock, ip))
5664                 check_chain_key(current);
5665         lockdep_recursion_finish();
5666         raw_local_irq_restore(flags);
5667 }
5668 EXPORT_SYMBOL_GPL(lock_downgrade);
5669
5670 /* NMI context !!! */
5671 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5672 {
5673 #ifdef CONFIG_PROVE_LOCKING
5674         struct lock_class *class = look_up_lock_class(lock, subclass);
5675         unsigned long mask = LOCKF_USED;
5676
5677         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5678         if (!class)
5679                 return;
5680
5681         /*
5682          * READ locks only conflict with USED, such that if we only ever use
5683          * READ locks, there is no deadlock possible -- RCU.
5684          */
5685         if (!hlock->read)
5686                 mask |= LOCKF_USED_READ;
5687
5688         if (!(class->usage_mask & mask))
5689                 return;
5690
5691         hlock->class_idx = class - lock_classes;
5692
5693         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5694 #endif
5695 }
5696
5697 static bool lockdep_nmi(void)
5698 {
5699         if (raw_cpu_read(lockdep_recursion))
5700                 return false;
5701
5702         if (!in_nmi())
5703                 return false;
5704
5705         return true;
5706 }
5707
5708 /*
5709  * read_lock() is recursive if:
5710  * 1. We force lockdep think this way in selftests or
5711  * 2. The implementation is not queued read/write lock or
5712  * 3. The locker is at an in_interrupt() context.
5713  */
5714 bool read_lock_is_recursive(void)
5715 {
5716         return force_read_lock_recursive ||
5717                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5718                in_interrupt();
5719 }
5720 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5721
5722 /*
5723  * We are not always called with irqs disabled - do that here,
5724  * and also avoid lockdep recursion:
5725  */
5726 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5727                           int trylock, int read, int check,
5728                           struct lockdep_map *nest_lock, unsigned long ip)
5729 {
5730         unsigned long flags;
5731
5732         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5733
5734         if (!debug_locks)
5735                 return;
5736
5737         if (unlikely(!lockdep_enabled())) {
5738                 /* XXX allow trylock from NMI ?!? */
5739                 if (lockdep_nmi() && !trylock) {
5740                         struct held_lock hlock;
5741
5742                         hlock.acquire_ip = ip;
5743                         hlock.instance = lock;
5744                         hlock.nest_lock = nest_lock;
5745                         hlock.irq_context = 2; // XXX
5746                         hlock.trylock = trylock;
5747                         hlock.read = read;
5748                         hlock.check = check;
5749                         hlock.hardirqs_off = true;
5750                         hlock.references = 0;
5751
5752                         verify_lock_unused(lock, &hlock, subclass);
5753                 }
5754                 return;
5755         }
5756
5757         raw_local_irq_save(flags);
5758         check_flags(flags);
5759
5760         lockdep_recursion_inc();
5761         __lock_acquire(lock, subclass, trylock, read, check,
5762                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5763         lockdep_recursion_finish();
5764         raw_local_irq_restore(flags);
5765 }
5766 EXPORT_SYMBOL_GPL(lock_acquire);
5767
5768 void lock_release(struct lockdep_map *lock, unsigned long ip)
5769 {
5770         unsigned long flags;
5771
5772         trace_lock_release(lock, ip);
5773
5774         if (unlikely(!lockdep_enabled()))
5775                 return;
5776
5777         raw_local_irq_save(flags);
5778         check_flags(flags);
5779
5780         lockdep_recursion_inc();
5781         if (__lock_release(lock, ip))
5782                 check_chain_key(current);
5783         lockdep_recursion_finish();
5784         raw_local_irq_restore(flags);
5785 }
5786 EXPORT_SYMBOL_GPL(lock_release);
5787
5788 /*
5789  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5790  *
5791  * No actual critical section is created by the APIs annotated with this: these
5792  * APIs are used to wait for one or multiple critical sections (on other CPUs
5793  * or threads), and it means that calling these APIs inside these critical
5794  * sections is potential deadlock.
5795  */
5796 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5797                int check, struct lockdep_map *nest_lock, unsigned long ip)
5798 {
5799         unsigned long flags;
5800
5801         if (unlikely(!lockdep_enabled()))
5802                 return;
5803
5804         raw_local_irq_save(flags);
5805         check_flags(flags);
5806
5807         lockdep_recursion_inc();
5808         __lock_acquire(lock, subclass, 0, read, check,
5809                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5810         check_chain_key(current);
5811         lockdep_recursion_finish();
5812         raw_local_irq_restore(flags);
5813 }
5814 EXPORT_SYMBOL_GPL(lock_sync);
5815
5816 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5817 {
5818         unsigned long flags;
5819         int ret = LOCK_STATE_NOT_HELD;
5820
5821         /*
5822          * Avoid false negative lockdep_assert_held() and
5823          * lockdep_assert_not_held().
5824          */
5825         if (unlikely(!lockdep_enabled()))
5826                 return LOCK_STATE_UNKNOWN;
5827
5828         raw_local_irq_save(flags);
5829         check_flags(flags);
5830
5831         lockdep_recursion_inc();
5832         ret = __lock_is_held(lock, read);
5833         lockdep_recursion_finish();
5834         raw_local_irq_restore(flags);
5835
5836         return ret;
5837 }
5838 EXPORT_SYMBOL_GPL(lock_is_held_type);
5839 NOKPROBE_SYMBOL(lock_is_held_type);
5840
5841 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5842 {
5843         struct pin_cookie cookie = NIL_COOKIE;
5844         unsigned long flags;
5845
5846         if (unlikely(!lockdep_enabled()))
5847                 return cookie;
5848
5849         raw_local_irq_save(flags);
5850         check_flags(flags);
5851
5852         lockdep_recursion_inc();
5853         cookie = __lock_pin_lock(lock);
5854         lockdep_recursion_finish();
5855         raw_local_irq_restore(flags);
5856
5857         return cookie;
5858 }
5859 EXPORT_SYMBOL_GPL(lock_pin_lock);
5860
5861 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5862 {
5863         unsigned long flags;
5864
5865         if (unlikely(!lockdep_enabled()))
5866                 return;
5867
5868         raw_local_irq_save(flags);
5869         check_flags(flags);
5870
5871         lockdep_recursion_inc();
5872         __lock_repin_lock(lock, cookie);
5873         lockdep_recursion_finish();
5874         raw_local_irq_restore(flags);
5875 }
5876 EXPORT_SYMBOL_GPL(lock_repin_lock);
5877
5878 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5879 {
5880         unsigned long flags;
5881
5882         if (unlikely(!lockdep_enabled()))
5883                 return;
5884
5885         raw_local_irq_save(flags);
5886         check_flags(flags);
5887
5888         lockdep_recursion_inc();
5889         __lock_unpin_lock(lock, cookie);
5890         lockdep_recursion_finish();
5891         raw_local_irq_restore(flags);
5892 }
5893 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5894
5895 #ifdef CONFIG_LOCK_STAT
5896 static void print_lock_contention_bug(struct task_struct *curr,
5897                                       struct lockdep_map *lock,
5898                                       unsigned long ip)
5899 {
5900         if (!debug_locks_off())
5901                 return;
5902         if (debug_locks_silent)
5903                 return;
5904
5905         pr_warn("\n");
5906         pr_warn("=================================\n");
5907         pr_warn("WARNING: bad contention detected!\n");
5908         print_kernel_ident();
5909         pr_warn("---------------------------------\n");
5910         pr_warn("%s/%d is trying to contend lock (",
5911                 curr->comm, task_pid_nr(curr));
5912         print_lockdep_cache(lock);
5913         pr_cont(") at:\n");
5914         print_ip_sym(KERN_WARNING, ip);
5915         pr_warn("but there are no locks held!\n");
5916         pr_warn("\nother info that might help us debug this:\n");
5917         lockdep_print_held_locks(curr);
5918
5919         pr_warn("\nstack backtrace:\n");
5920         dump_stack();
5921 }
5922
5923 static void
5924 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5925 {
5926         struct task_struct *curr = current;
5927         struct held_lock *hlock;
5928         struct lock_class_stats *stats;
5929         unsigned int depth;
5930         int i, contention_point, contending_point;
5931
5932         depth = curr->lockdep_depth;
5933         /*
5934          * Whee, we contended on this lock, except it seems we're not
5935          * actually trying to acquire anything much at all..
5936          */
5937         if (DEBUG_LOCKS_WARN_ON(!depth))
5938                 return;
5939
5940         hlock = find_held_lock(curr, lock, depth, &i);
5941         if (!hlock) {
5942                 print_lock_contention_bug(curr, lock, ip);
5943                 return;
5944         }
5945
5946         if (hlock->instance != lock)
5947                 return;
5948
5949         hlock->waittime_stamp = lockstat_clock();
5950
5951         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5952         contending_point = lock_point(hlock_class(hlock)->contending_point,
5953                                       lock->ip);
5954
5955         stats = get_lock_stats(hlock_class(hlock));
5956         if (contention_point < LOCKSTAT_POINTS)
5957                 stats->contention_point[contention_point]++;
5958         if (contending_point < LOCKSTAT_POINTS)
5959                 stats->contending_point[contending_point]++;
5960         if (lock->cpu != smp_processor_id())
5961                 stats->bounces[bounce_contended + !!hlock->read]++;
5962 }
5963
5964 static void
5965 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5966 {
5967         struct task_struct *curr = current;
5968         struct held_lock *hlock;
5969         struct lock_class_stats *stats;
5970         unsigned int depth;
5971         u64 now, waittime = 0;
5972         int i, cpu;
5973
5974         depth = curr->lockdep_depth;
5975         /*
5976          * Yay, we acquired ownership of this lock we didn't try to
5977          * acquire, how the heck did that happen?
5978          */
5979         if (DEBUG_LOCKS_WARN_ON(!depth))
5980                 return;
5981
5982         hlock = find_held_lock(curr, lock, depth, &i);
5983         if (!hlock) {
5984                 print_lock_contention_bug(curr, lock, _RET_IP_);
5985                 return;
5986         }
5987
5988         if (hlock->instance != lock)
5989                 return;
5990
5991         cpu = smp_processor_id();
5992         if (hlock->waittime_stamp) {
5993                 now = lockstat_clock();
5994                 waittime = now - hlock->waittime_stamp;
5995                 hlock->holdtime_stamp = now;
5996         }
5997
5998         stats = get_lock_stats(hlock_class(hlock));
5999         if (waittime) {
6000                 if (hlock->read)
6001                         lock_time_inc(&stats->read_waittime, waittime);
6002                 else
6003                         lock_time_inc(&stats->write_waittime, waittime);
6004         }
6005         if (lock->cpu != cpu)
6006                 stats->bounces[bounce_acquired + !!hlock->read]++;
6007
6008         lock->cpu = cpu;
6009         lock->ip = ip;
6010 }
6011
6012 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6013 {
6014         unsigned long flags;
6015
6016         trace_lock_contended(lock, ip);
6017
6018         if (unlikely(!lock_stat || !lockdep_enabled()))
6019                 return;
6020
6021         raw_local_irq_save(flags);
6022         check_flags(flags);
6023         lockdep_recursion_inc();
6024         __lock_contended(lock, ip);
6025         lockdep_recursion_finish();
6026         raw_local_irq_restore(flags);
6027 }
6028 EXPORT_SYMBOL_GPL(lock_contended);
6029
6030 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6031 {
6032         unsigned long flags;
6033
6034         trace_lock_acquired(lock, ip);
6035
6036         if (unlikely(!lock_stat || !lockdep_enabled()))
6037                 return;
6038
6039         raw_local_irq_save(flags);
6040         check_flags(flags);
6041         lockdep_recursion_inc();
6042         __lock_acquired(lock, ip);
6043         lockdep_recursion_finish();
6044         raw_local_irq_restore(flags);
6045 }
6046 EXPORT_SYMBOL_GPL(lock_acquired);
6047 #endif
6048
6049 /*
6050  * Used by the testsuite, sanitize the validator state
6051  * after a simulated failure:
6052  */
6053
6054 void lockdep_reset(void)
6055 {
6056         unsigned long flags;
6057         int i;
6058
6059         raw_local_irq_save(flags);
6060         lockdep_init_task(current);
6061         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6062         nr_hardirq_chains = 0;
6063         nr_softirq_chains = 0;
6064         nr_process_chains = 0;
6065         debug_locks = 1;
6066         for (i = 0; i < CHAINHASH_SIZE; i++)
6067                 INIT_HLIST_HEAD(chainhash_table + i);
6068         raw_local_irq_restore(flags);
6069 }
6070
6071 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6072 static void remove_class_from_lock_chain(struct pending_free *pf,
6073                                          struct lock_chain *chain,
6074                                          struct lock_class *class)
6075 {
6076 #ifdef CONFIG_PROVE_LOCKING
6077         int i;
6078
6079         for (i = chain->base; i < chain->base + chain->depth; i++) {
6080                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6081                         continue;
6082                 /*
6083                  * Each lock class occurs at most once in a lock chain so once
6084                  * we found a match we can break out of this loop.
6085                  */
6086                 goto free_lock_chain;
6087         }
6088         /* Since the chain has not been modified, return. */
6089         return;
6090
6091 free_lock_chain:
6092         free_chain_hlocks(chain->base, chain->depth);
6093         /* Overwrite the chain key for concurrent RCU readers. */
6094         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6095         dec_chains(chain->irq_context);
6096
6097         /*
6098          * Note: calling hlist_del_rcu() from inside a
6099          * hlist_for_each_entry_rcu() loop is safe.
6100          */
6101         hlist_del_rcu(&chain->entry);
6102         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6103         nr_zapped_lock_chains++;
6104 #endif
6105 }
6106
6107 /* Must be called with the graph lock held. */
6108 static void remove_class_from_lock_chains(struct pending_free *pf,
6109                                           struct lock_class *class)
6110 {
6111         struct lock_chain *chain;
6112         struct hlist_head *head;
6113         int i;
6114
6115         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6116                 head = chainhash_table + i;
6117                 hlist_for_each_entry_rcu(chain, head, entry) {
6118                         remove_class_from_lock_chain(pf, chain, class);
6119                 }
6120         }
6121 }
6122
6123 /*
6124  * Remove all references to a lock class. The caller must hold the graph lock.
6125  */
6126 static void zap_class(struct pending_free *pf, struct lock_class *class)
6127 {
6128         struct lock_list *entry;
6129         int i;
6130
6131         WARN_ON_ONCE(!class->key);
6132
6133         /*
6134          * Remove all dependencies this lock is
6135          * involved in:
6136          */
6137         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6138                 entry = list_entries + i;
6139                 if (entry->class != class && entry->links_to != class)
6140                         continue;
6141                 __clear_bit(i, list_entries_in_use);
6142                 nr_list_entries--;
6143                 list_del_rcu(&entry->entry);
6144         }
6145         if (list_empty(&class->locks_after) &&
6146             list_empty(&class->locks_before)) {
6147                 list_move_tail(&class->lock_entry, &pf->zapped);
6148                 hlist_del_rcu(&class->hash_entry);
6149                 WRITE_ONCE(class->key, NULL);
6150                 WRITE_ONCE(class->name, NULL);
6151                 nr_lock_classes--;
6152                 __clear_bit(class - lock_classes, lock_classes_in_use);
6153                 if (class - lock_classes == max_lock_class_idx)
6154                         max_lock_class_idx--;
6155         } else {
6156                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6157                           class->name);
6158         }
6159
6160         remove_class_from_lock_chains(pf, class);
6161         nr_zapped_classes++;
6162 }
6163
6164 static void reinit_class(struct lock_class *class)
6165 {
6166         WARN_ON_ONCE(!class->lock_entry.next);
6167         WARN_ON_ONCE(!list_empty(&class->locks_after));
6168         WARN_ON_ONCE(!list_empty(&class->locks_before));
6169         memset_startat(class, 0, key);
6170         WARN_ON_ONCE(!class->lock_entry.next);
6171         WARN_ON_ONCE(!list_empty(&class->locks_after));
6172         WARN_ON_ONCE(!list_empty(&class->locks_before));
6173 }
6174
6175 static inline int within(const void *addr, void *start, unsigned long size)
6176 {
6177         return addr >= start && addr < start + size;
6178 }
6179
6180 static bool inside_selftest(void)
6181 {
6182         return current == lockdep_selftest_task_struct;
6183 }
6184
6185 /* The caller must hold the graph lock. */
6186 static struct pending_free *get_pending_free(void)
6187 {
6188         return delayed_free.pf + delayed_free.index;
6189 }
6190
6191 static void free_zapped_rcu(struct rcu_head *cb);
6192
6193 /*
6194  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6195  * the graph lock held.
6196  */
6197 static void call_rcu_zapped(struct pending_free *pf)
6198 {
6199         WARN_ON_ONCE(inside_selftest());
6200
6201         if (list_empty(&pf->zapped))
6202                 return;
6203
6204         if (delayed_free.scheduled)
6205                 return;
6206
6207         delayed_free.scheduled = true;
6208
6209         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6210         delayed_free.index ^= 1;
6211
6212         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6213 }
6214
6215 /* The caller must hold the graph lock. May be called from RCU context. */
6216 static void __free_zapped_classes(struct pending_free *pf)
6217 {
6218         struct lock_class *class;
6219
6220         check_data_structures();
6221
6222         list_for_each_entry(class, &pf->zapped, lock_entry)
6223                 reinit_class(class);
6224
6225         list_splice_init(&pf->zapped, &free_lock_classes);
6226
6227 #ifdef CONFIG_PROVE_LOCKING
6228         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6229                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6230         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6231 #endif
6232 }
6233
6234 static void free_zapped_rcu(struct rcu_head *ch)
6235 {
6236         struct pending_free *pf;
6237         unsigned long flags;
6238
6239         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6240                 return;
6241
6242         raw_local_irq_save(flags);
6243         lockdep_lock();
6244
6245         /* closed head */
6246         pf = delayed_free.pf + (delayed_free.index ^ 1);
6247         __free_zapped_classes(pf);
6248         delayed_free.scheduled = false;
6249
6250         /*
6251          * If there's anything on the open list, close and start a new callback.
6252          */
6253         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6254
6255         lockdep_unlock();
6256         raw_local_irq_restore(flags);
6257 }
6258
6259 /*
6260  * Remove all lock classes from the class hash table and from the
6261  * all_lock_classes list whose key or name is in the address range [start,
6262  * start + size). Move these lock classes to the zapped_classes list. Must
6263  * be called with the graph lock held.
6264  */
6265 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6266                                      unsigned long size)
6267 {
6268         struct lock_class *class;
6269         struct hlist_head *head;
6270         int i;
6271
6272         /* Unhash all classes that were created by a module. */
6273         for (i = 0; i < CLASSHASH_SIZE; i++) {
6274                 head = classhash_table + i;
6275                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6276                         if (!within(class->key, start, size) &&
6277                             !within(class->name, start, size))
6278                                 continue;
6279                         zap_class(pf, class);
6280                 }
6281         }
6282 }
6283
6284 /*
6285  * Used in module.c to remove lock classes from memory that is going to be
6286  * freed; and possibly re-used by other modules.
6287  *
6288  * We will have had one synchronize_rcu() before getting here, so we're
6289  * guaranteed nobody will look up these exact classes -- they're properly dead
6290  * but still allocated.
6291  */
6292 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6293 {
6294         struct pending_free *pf;
6295         unsigned long flags;
6296
6297         init_data_structures_once();
6298
6299         raw_local_irq_save(flags);
6300         lockdep_lock();
6301         pf = get_pending_free();
6302         __lockdep_free_key_range(pf, start, size);
6303         call_rcu_zapped(pf);
6304         lockdep_unlock();
6305         raw_local_irq_restore(flags);
6306
6307         /*
6308          * Wait for any possible iterators from look_up_lock_class() to pass
6309          * before continuing to free the memory they refer to.
6310          */
6311         synchronize_rcu();
6312 }
6313
6314 /*
6315  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6316  * Ignores debug_locks. Must only be used by the lockdep selftests.
6317  */
6318 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6319 {
6320         struct pending_free *pf = delayed_free.pf;
6321         unsigned long flags;
6322
6323         init_data_structures_once();
6324
6325         raw_local_irq_save(flags);
6326         lockdep_lock();
6327         __lockdep_free_key_range(pf, start, size);
6328         __free_zapped_classes(pf);
6329         lockdep_unlock();
6330         raw_local_irq_restore(flags);
6331 }
6332
6333 void lockdep_free_key_range(void *start, unsigned long size)
6334 {
6335         init_data_structures_once();
6336
6337         if (inside_selftest())
6338                 lockdep_free_key_range_imm(start, size);
6339         else
6340                 lockdep_free_key_range_reg(start, size);
6341 }
6342
6343 /*
6344  * Check whether any element of the @lock->class_cache[] array refers to a
6345  * registered lock class. The caller must hold either the graph lock or the
6346  * RCU read lock.
6347  */
6348 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6349 {
6350         struct lock_class *class;
6351         struct hlist_head *head;
6352         int i, j;
6353
6354         for (i = 0; i < CLASSHASH_SIZE; i++) {
6355                 head = classhash_table + i;
6356                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6357                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6358                                 if (lock->class_cache[j] == class)
6359                                         return true;
6360                 }
6361         }
6362         return false;
6363 }
6364
6365 /* The caller must hold the graph lock. Does not sleep. */
6366 static void __lockdep_reset_lock(struct pending_free *pf,
6367                                  struct lockdep_map *lock)
6368 {
6369         struct lock_class *class;
6370         int j;
6371
6372         /*
6373          * Remove all classes this lock might have:
6374          */
6375         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6376                 /*
6377                  * If the class exists we look it up and zap it:
6378                  */
6379                 class = look_up_lock_class(lock, j);
6380                 if (class)
6381                         zap_class(pf, class);
6382         }
6383         /*
6384          * Debug check: in the end all mapped classes should
6385          * be gone.
6386          */
6387         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6388                 debug_locks_off();
6389 }
6390
6391 /*
6392  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6393  * released data structures from RCU context.
6394  */
6395 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6396 {
6397         struct pending_free *pf;
6398         unsigned long flags;
6399         int locked;
6400
6401         raw_local_irq_save(flags);
6402         locked = graph_lock();
6403         if (!locked)
6404                 goto out_irq;
6405
6406         pf = get_pending_free();
6407         __lockdep_reset_lock(pf, lock);
6408         call_rcu_zapped(pf);
6409
6410         graph_unlock();
6411 out_irq:
6412         raw_local_irq_restore(flags);
6413 }
6414
6415 /*
6416  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6417  * lockdep selftests.
6418  */
6419 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6420 {
6421         struct pending_free *pf = delayed_free.pf;
6422         unsigned long flags;
6423
6424         raw_local_irq_save(flags);
6425         lockdep_lock();
6426         __lockdep_reset_lock(pf, lock);
6427         __free_zapped_classes(pf);
6428         lockdep_unlock();
6429         raw_local_irq_restore(flags);
6430 }
6431
6432 void lockdep_reset_lock(struct lockdep_map *lock)
6433 {
6434         init_data_structures_once();
6435
6436         if (inside_selftest())
6437                 lockdep_reset_lock_imm(lock);
6438         else
6439                 lockdep_reset_lock_reg(lock);
6440 }
6441
6442 /*
6443  * Unregister a dynamically allocated key.
6444  *
6445  * Unlike lockdep_register_key(), a search is always done to find a matching
6446  * key irrespective of debug_locks to avoid potential invalid access to freed
6447  * memory in lock_class entry.
6448  */
6449 void lockdep_unregister_key(struct lock_class_key *key)
6450 {
6451         struct hlist_head *hash_head = keyhashentry(key);
6452         struct lock_class_key *k;
6453         struct pending_free *pf;
6454         unsigned long flags;
6455         bool found = false;
6456
6457         might_sleep();
6458
6459         if (WARN_ON_ONCE(static_obj(key)))
6460                 return;
6461
6462         raw_local_irq_save(flags);
6463         lockdep_lock();
6464
6465         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6466                 if (k == key) {
6467                         hlist_del_rcu(&k->hash_entry);
6468                         found = true;
6469                         break;
6470                 }
6471         }
6472         WARN_ON_ONCE(!found && debug_locks);
6473         if (found) {
6474                 pf = get_pending_free();
6475                 __lockdep_free_key_range(pf, key, 1);
6476                 call_rcu_zapped(pf);
6477         }
6478         lockdep_unlock();
6479         raw_local_irq_restore(flags);
6480
6481         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6482         synchronize_rcu();
6483 }
6484 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6485
6486 void __init lockdep_init(void)
6487 {
6488         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6489
6490         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6491         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6492         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6493         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6494         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6495         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6496         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6497
6498         printk(" memory used by lock dependency info: %zu kB\n",
6499                (sizeof(lock_classes) +
6500                 sizeof(lock_classes_in_use) +
6501                 sizeof(classhash_table) +
6502                 sizeof(list_entries) +
6503                 sizeof(list_entries_in_use) +
6504                 sizeof(chainhash_table) +
6505                 sizeof(delayed_free)
6506 #ifdef CONFIG_PROVE_LOCKING
6507                 + sizeof(lock_cq)
6508                 + sizeof(lock_chains)
6509                 + sizeof(lock_chains_in_use)
6510                 + sizeof(chain_hlocks)
6511 #endif
6512                 ) / 1024
6513                 );
6514
6515 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6516         printk(" memory used for stack traces: %zu kB\n",
6517                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6518                );
6519 #endif
6520
6521         printk(" per task-struct memory footprint: %zu bytes\n",
6522                sizeof(((struct task_struct *)NULL)->held_locks));
6523 }
6524
6525 static void
6526 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6527                      const void *mem_to, struct held_lock *hlock)
6528 {
6529         if (!debug_locks_off())
6530                 return;
6531         if (debug_locks_silent)
6532                 return;
6533
6534         pr_warn("\n");
6535         pr_warn("=========================\n");
6536         pr_warn("WARNING: held lock freed!\n");
6537         print_kernel_ident();
6538         pr_warn("-------------------------\n");
6539         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6540                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6541         print_lock(hlock);
6542         lockdep_print_held_locks(curr);
6543
6544         pr_warn("\nstack backtrace:\n");
6545         dump_stack();
6546 }
6547
6548 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6549                                 const void* lock_from, unsigned long lock_len)
6550 {
6551         return lock_from + lock_len <= mem_from ||
6552                 mem_from + mem_len <= lock_from;
6553 }
6554
6555 /*
6556  * Called when kernel memory is freed (or unmapped), or if a lock
6557  * is destroyed or reinitialized - this code checks whether there is
6558  * any held lock in the memory range of <from> to <to>:
6559  */
6560 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6561 {
6562         struct task_struct *curr = current;
6563         struct held_lock *hlock;
6564         unsigned long flags;
6565         int i;
6566
6567         if (unlikely(!debug_locks))
6568                 return;
6569
6570         raw_local_irq_save(flags);
6571         for (i = 0; i < curr->lockdep_depth; i++) {
6572                 hlock = curr->held_locks + i;
6573
6574                 if (not_in_range(mem_from, mem_len, hlock->instance,
6575                                         sizeof(*hlock->instance)))
6576                         continue;
6577
6578                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6579                 break;
6580         }
6581         raw_local_irq_restore(flags);
6582 }
6583 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6584
6585 static void print_held_locks_bug(void)
6586 {
6587         if (!debug_locks_off())
6588                 return;
6589         if (debug_locks_silent)
6590                 return;
6591
6592         pr_warn("\n");
6593         pr_warn("====================================\n");
6594         pr_warn("WARNING: %s/%d still has locks held!\n",
6595                current->comm, task_pid_nr(current));
6596         print_kernel_ident();
6597         pr_warn("------------------------------------\n");
6598         lockdep_print_held_locks(current);
6599         pr_warn("\nstack backtrace:\n");
6600         dump_stack();
6601 }
6602
6603 void debug_check_no_locks_held(void)
6604 {
6605         if (unlikely(current->lockdep_depth > 0))
6606                 print_held_locks_bug();
6607 }
6608 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6609
6610 #ifdef __KERNEL__
6611 void debug_show_all_locks(void)
6612 {
6613         struct task_struct *g, *p;
6614
6615         if (unlikely(!debug_locks)) {
6616                 pr_warn("INFO: lockdep is turned off.\n");
6617                 return;
6618         }
6619         pr_warn("\nShowing all locks held in the system:\n");
6620
6621         rcu_read_lock();
6622         for_each_process_thread(g, p) {
6623                 if (!p->lockdep_depth)
6624                         continue;
6625                 lockdep_print_held_locks(p);
6626                 touch_nmi_watchdog();
6627                 touch_all_softlockup_watchdogs();
6628         }
6629         rcu_read_unlock();
6630
6631         pr_warn("\n");
6632         pr_warn("=============================================\n\n");
6633 }
6634 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6635 #endif
6636
6637 /*
6638  * Careful: only use this function if you are sure that
6639  * the task cannot run in parallel!
6640  */
6641 void debug_show_held_locks(struct task_struct *task)
6642 {
6643         if (unlikely(!debug_locks)) {
6644                 printk("INFO: lockdep is turned off.\n");
6645                 return;
6646         }
6647         lockdep_print_held_locks(task);
6648 }
6649 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6650
6651 asmlinkage __visible void lockdep_sys_exit(void)
6652 {
6653         struct task_struct *curr = current;
6654
6655         if (unlikely(curr->lockdep_depth)) {
6656                 if (!debug_locks_off())
6657                         return;
6658                 pr_warn("\n");
6659                 pr_warn("================================================\n");
6660                 pr_warn("WARNING: lock held when returning to user space!\n");
6661                 print_kernel_ident();
6662                 pr_warn("------------------------------------------------\n");
6663                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6664                                 curr->comm, curr->pid);
6665                 lockdep_print_held_locks(curr);
6666         }
6667
6668         /*
6669          * The lock history for each syscall should be independent. So wipe the
6670          * slate clean on return to userspace.
6671          */
6672         lockdep_invariant_state(false);
6673 }
6674
6675 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6676 {
6677         struct task_struct *curr = current;
6678         int dl = READ_ONCE(debug_locks);
6679         bool rcu = warn_rcu_enter();
6680
6681         /* Note: the following can be executed concurrently, so be careful. */
6682         pr_warn("\n");
6683         pr_warn("=============================\n");
6684         pr_warn("WARNING: suspicious RCU usage\n");
6685         print_kernel_ident();
6686         pr_warn("-----------------------------\n");
6687         pr_warn("%s:%d %s!\n", file, line, s);
6688         pr_warn("\nother info that might help us debug this:\n\n");
6689         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6690                !rcu_lockdep_current_cpu_online()
6691                         ? "RCU used illegally from offline CPU!\n"
6692                         : "",
6693                rcu_scheduler_active, dl,
6694                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6695
6696         /*
6697          * If a CPU is in the RCU-free window in idle (ie: in the section
6698          * between ct_idle_enter() and ct_idle_exit(), then RCU
6699          * considers that CPU to be in an "extended quiescent state",
6700          * which means that RCU will be completely ignoring that CPU.
6701          * Therefore, rcu_read_lock() and friends have absolutely no
6702          * effect on a CPU running in that state. In other words, even if
6703          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6704          * delete data structures out from under it.  RCU really has no
6705          * choice here: we need to keep an RCU-free window in idle where
6706          * the CPU may possibly enter into low power mode. This way we can
6707          * notice an extended quiescent state to other CPUs that started a grace
6708          * period. Otherwise we would delay any grace period as long as we run
6709          * in the idle task.
6710          *
6711          * So complain bitterly if someone does call rcu_read_lock(),
6712          * rcu_read_lock_bh() and so on from extended quiescent states.
6713          */
6714         if (!rcu_is_watching())
6715                 pr_warn("RCU used illegally from extended quiescent state!\n");
6716
6717         lockdep_print_held_locks(curr);
6718         pr_warn("\nstack backtrace:\n");
6719         dump_stack();
6720         warn_rcu_exit(rcu);
6721 }
6722 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);