2 * Kernel Probes (KProbes)
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
86 return &(kretprobe_table_locks[hash].lock);
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
94 * For such cases, we now have a blacklist
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
112 struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
120 #define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
124 struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
130 static int slots_per_page(struct kprobe_insn_cache *c)
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
135 enum kprobe_slot_state {
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
155 struct kprobe_insn_page *kip;
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
165 return kip->insns + (i * c->insn_size);
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
188 kip->insns = module_alloc(PAGE_SIZE);
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
198 list_add(&kip->list, &c->pages);
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
205 kprobe_opcode_t *ret = NULL;
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
217 kip->slot_used[idx] = SLOT_CLEAN;
219 if (kip->nused == 0) {
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
238 struct kprobe_insn_page *kip, *next;
240 /* Ensure no-one is interrupted on the garbages */
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
245 if (kip->ngarbage == 0)
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
261 struct kprobe_insn_page *kip;
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
269 kip->slot_used[idx] = SLOT_DIRTY;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
274 collect_one_slot(kip, idx);
278 /* Could not free this slot. */
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
299 kprobe_opcode_t *ret = NULL;
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
320 __this_cpu_write(kprobe_instance, kp);
323 static inline void reset_kprobe_instance(void)
325 __this_cpu_write(kprobe_instance, NULL);
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
334 struct kprobe __kprobes *get_kprobe(void *addr)
336 struct hlist_head *head;
339 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340 hlist_for_each_entry_rcu(p, head, hlist) {
348 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350 /* Return true if the kprobe is an aggregator */
351 static inline int kprobe_aggrprobe(struct kprobe *p)
353 return p->pre_handler == aggr_pre_handler;
356 /* Return true(!0) if the kprobe is unused */
357 static inline int kprobe_unused(struct kprobe *p)
359 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
360 list_empty(&p->list);
364 * Keep all fields in the kprobe consistent
366 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
369 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
372 #ifdef CONFIG_OPTPROBES
373 /* NOTE: change this value only with kprobe_mutex held */
374 static bool kprobes_allow_optimization;
377 * Call all pre_handler on the list, but ignores its return value.
378 * This must be called from arch-dep optimized caller.
380 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 list_for_each_entry_rcu(kp, &p->list, list) {
385 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
386 set_kprobe_instance(kp);
387 kp->pre_handler(kp, regs);
389 reset_kprobe_instance();
393 /* Free optimized instructions and optimized_kprobe */
394 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 struct optimized_kprobe *op;
398 op = container_of(p, struct optimized_kprobe, kp);
399 arch_remove_optimized_kprobe(op);
400 arch_remove_kprobe(p);
404 /* Return true(!0) if the kprobe is ready for optimization. */
405 static inline int kprobe_optready(struct kprobe *p)
407 struct optimized_kprobe *op;
409 if (kprobe_aggrprobe(p)) {
410 op = container_of(p, struct optimized_kprobe, kp);
411 return arch_prepared_optinsn(&op->optinsn);
417 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
418 static inline int kprobe_disarmed(struct kprobe *p)
420 struct optimized_kprobe *op;
422 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
423 if (!kprobe_aggrprobe(p))
424 return kprobe_disabled(p);
426 op = container_of(p, struct optimized_kprobe, kp);
428 return kprobe_disabled(p) && list_empty(&op->list);
431 /* Return true(!0) if the probe is queued on (un)optimizing lists */
432 static int __kprobes kprobe_queued(struct kprobe *p)
434 struct optimized_kprobe *op;
436 if (kprobe_aggrprobe(p)) {
437 op = container_of(p, struct optimized_kprobe, kp);
438 if (!list_empty(&op->list))
445 * Return an optimized kprobe whose optimizing code replaces
446 * instructions including addr (exclude breakpoint).
448 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
451 struct kprobe *p = NULL;
452 struct optimized_kprobe *op;
454 /* Don't check i == 0, since that is a breakpoint case. */
455 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
456 p = get_kprobe((void *)(addr - i));
458 if (p && kprobe_optready(p)) {
459 op = container_of(p, struct optimized_kprobe, kp);
460 if (arch_within_optimized_kprobe(op, addr))
467 /* Optimization staging list, protected by kprobe_mutex */
468 static LIST_HEAD(optimizing_list);
469 static LIST_HEAD(unoptimizing_list);
470 static LIST_HEAD(freeing_list);
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 #define OPTIMIZE_DELAY 5
477 * Optimize (replace a breakpoint with a jump) kprobes listed on
480 static __kprobes void do_optimize_kprobes(void)
482 /* Optimization never be done when disarmed */
483 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
484 list_empty(&optimizing_list))
488 * The optimization/unoptimization refers online_cpus via
489 * stop_machine() and cpu-hotplug modifies online_cpus.
490 * And same time, text_mutex will be held in cpu-hotplug and here.
491 * This combination can cause a deadlock (cpu-hotplug try to lock
492 * text_mutex but stop_machine can not be done because online_cpus
494 * To avoid this deadlock, we need to call get_online_cpus()
495 * for preventing cpu-hotplug outside of text_mutex locking.
498 mutex_lock(&text_mutex);
499 arch_optimize_kprobes(&optimizing_list);
500 mutex_unlock(&text_mutex);
505 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
506 * if need) kprobes listed on unoptimizing_list.
508 static __kprobes void do_unoptimize_kprobes(void)
510 struct optimized_kprobe *op, *tmp;
512 /* Unoptimization must be done anytime */
513 if (list_empty(&unoptimizing_list))
516 /* Ditto to do_optimize_kprobes */
518 mutex_lock(&text_mutex);
519 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
520 /* Loop free_list for disarming */
521 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
522 /* Disarm probes if marked disabled */
523 if (kprobe_disabled(&op->kp))
524 arch_disarm_kprobe(&op->kp);
525 if (kprobe_unused(&op->kp)) {
527 * Remove unused probes from hash list. After waiting
528 * for synchronization, these probes are reclaimed.
529 * (reclaiming is done by do_free_cleaned_kprobes.)
531 hlist_del_rcu(&op->kp.hlist);
533 list_del_init(&op->list);
535 mutex_unlock(&text_mutex);
539 /* Reclaim all kprobes on the free_list */
540 static __kprobes void do_free_cleaned_kprobes(void)
542 struct optimized_kprobe *op, *tmp;
544 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
545 BUG_ON(!kprobe_unused(&op->kp));
546 list_del_init(&op->list);
547 free_aggr_kprobe(&op->kp);
551 /* Start optimizer after OPTIMIZE_DELAY passed */
552 static __kprobes void kick_kprobe_optimizer(void)
554 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557 /* Kprobe jump optimizer */
558 static __kprobes void kprobe_optimizer(struct work_struct *work)
560 mutex_lock(&kprobe_mutex);
561 /* Lock modules while optimizing kprobes */
562 mutex_lock(&module_mutex);
565 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
566 * kprobes before waiting for quiesence period.
568 do_unoptimize_kprobes();
571 * Step 2: Wait for quiesence period to ensure all running interrupts
572 * are done. Because optprobe may modify multiple instructions
573 * there is a chance that Nth instruction is interrupted. In that
574 * case, running interrupt can return to 2nd-Nth byte of jump
575 * instruction. This wait is for avoiding it.
579 /* Step 3: Optimize kprobes after quiesence period */
580 do_optimize_kprobes();
582 /* Step 4: Free cleaned kprobes after quiesence period */
583 do_free_cleaned_kprobes();
585 mutex_unlock(&module_mutex);
586 mutex_unlock(&kprobe_mutex);
588 /* Step 5: Kick optimizer again if needed */
589 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
590 kick_kprobe_optimizer();
593 /* Wait for completing optimization and unoptimization */
594 static __kprobes void wait_for_kprobe_optimizer(void)
596 mutex_lock(&kprobe_mutex);
598 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
599 mutex_unlock(&kprobe_mutex);
601 /* this will also make optimizing_work execute immmediately */
602 flush_delayed_work(&optimizing_work);
603 /* @optimizing_work might not have been queued yet, relax */
606 mutex_lock(&kprobe_mutex);
609 mutex_unlock(&kprobe_mutex);
612 /* Optimize kprobe if p is ready to be optimized */
613 static __kprobes void optimize_kprobe(struct kprobe *p)
615 struct optimized_kprobe *op;
617 /* Check if the kprobe is disabled or not ready for optimization. */
618 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
619 (kprobe_disabled(p) || kprobes_all_disarmed))
622 /* Both of break_handler and post_handler are not supported. */
623 if (p->break_handler || p->post_handler)
626 op = container_of(p, struct optimized_kprobe, kp);
628 /* Check there is no other kprobes at the optimized instructions */
629 if (arch_check_optimized_kprobe(op) < 0)
632 /* Check if it is already optimized. */
633 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637 if (!list_empty(&op->list))
638 /* This is under unoptimizing. Just dequeue the probe */
639 list_del_init(&op->list);
641 list_add(&op->list, &optimizing_list);
642 kick_kprobe_optimizer();
646 /* Short cut to direct unoptimizing */
647 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
650 arch_unoptimize_kprobe(op);
652 if (kprobe_disabled(&op->kp))
653 arch_disarm_kprobe(&op->kp);
656 /* Unoptimize a kprobe if p is optimized */
657 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
659 struct optimized_kprobe *op;
661 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662 return; /* This is not an optprobe nor optimized */
664 op = container_of(p, struct optimized_kprobe, kp);
665 if (!kprobe_optimized(p)) {
666 /* Unoptimized or unoptimizing case */
667 if (force && !list_empty(&op->list)) {
669 * Only if this is unoptimizing kprobe and forced,
670 * forcibly unoptimize it. (No need to unoptimize
671 * unoptimized kprobe again :)
673 list_del_init(&op->list);
674 force_unoptimize_kprobe(op);
679 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 if (!list_empty(&op->list)) {
681 /* Dequeue from the optimization queue */
682 list_del_init(&op->list);
685 /* Optimized kprobe case */
687 /* Forcibly update the code: this is a special case */
688 force_unoptimize_kprobe(op);
690 list_add(&op->list, &unoptimizing_list);
691 kick_kprobe_optimizer();
695 /* Cancel unoptimizing for reusing */
696 static void reuse_unused_kprobe(struct kprobe *ap)
698 struct optimized_kprobe *op;
700 BUG_ON(!kprobe_unused(ap));
702 * Unused kprobe MUST be on the way of delayed unoptimizing (means
703 * there is still a relative jump) and disabled.
705 op = container_of(ap, struct optimized_kprobe, kp);
706 if (unlikely(list_empty(&op->list)))
707 printk(KERN_WARNING "Warning: found a stray unused "
708 "aggrprobe@%p\n", ap->addr);
709 /* Enable the probe again */
710 ap->flags &= ~KPROBE_FLAG_DISABLED;
711 /* Optimize it again (remove from op->list) */
712 BUG_ON(!kprobe_optready(ap));
716 /* Remove optimized instructions */
717 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
719 struct optimized_kprobe *op;
721 op = container_of(p, struct optimized_kprobe, kp);
722 if (!list_empty(&op->list))
723 /* Dequeue from the (un)optimization queue */
724 list_del_init(&op->list);
725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
727 if (kprobe_unused(p)) {
728 /* Enqueue if it is unused */
729 list_add(&op->list, &freeing_list);
731 * Remove unused probes from the hash list. After waiting
732 * for synchronization, this probe is reclaimed.
733 * (reclaiming is done by do_free_cleaned_kprobes().)
735 hlist_del_rcu(&op->kp.hlist);
738 /* Don't touch the code, because it is already freed. */
739 arch_remove_optimized_kprobe(op);
742 /* Try to prepare optimized instructions */
743 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
745 struct optimized_kprobe *op;
747 op = container_of(p, struct optimized_kprobe, kp);
748 arch_prepare_optimized_kprobe(op);
751 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
752 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
754 struct optimized_kprobe *op;
756 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
760 INIT_LIST_HEAD(&op->list);
761 op->kp.addr = p->addr;
762 arch_prepare_optimized_kprobe(op);
767 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
770 * Prepare an optimized_kprobe and optimize it
771 * NOTE: p must be a normal registered kprobe
773 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
776 struct optimized_kprobe *op;
778 /* Impossible to optimize ftrace-based kprobe */
779 if (kprobe_ftrace(p))
782 /* For preparing optimization, jump_label_text_reserved() is called */
784 mutex_lock(&text_mutex);
786 ap = alloc_aggr_kprobe(p);
790 op = container_of(ap, struct optimized_kprobe, kp);
791 if (!arch_prepared_optinsn(&op->optinsn)) {
792 /* If failed to setup optimizing, fallback to kprobe */
793 arch_remove_optimized_kprobe(op);
798 init_aggr_kprobe(ap, p);
799 optimize_kprobe(ap); /* This just kicks optimizer thread */
802 mutex_unlock(&text_mutex);
807 static void __kprobes optimize_all_kprobes(void)
809 struct hlist_head *head;
813 mutex_lock(&kprobe_mutex);
814 /* If optimization is already allowed, just return */
815 if (kprobes_allow_optimization)
818 kprobes_allow_optimization = true;
819 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
820 head = &kprobe_table[i];
821 hlist_for_each_entry_rcu(p, head, hlist)
822 if (!kprobe_disabled(p))
825 printk(KERN_INFO "Kprobes globally optimized\n");
827 mutex_unlock(&kprobe_mutex);
830 static void __kprobes unoptimize_all_kprobes(void)
832 struct hlist_head *head;
836 mutex_lock(&kprobe_mutex);
837 /* If optimization is already prohibited, just return */
838 if (!kprobes_allow_optimization) {
839 mutex_unlock(&kprobe_mutex);
843 kprobes_allow_optimization = false;
844 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
845 head = &kprobe_table[i];
846 hlist_for_each_entry_rcu(p, head, hlist) {
847 if (!kprobe_disabled(p))
848 unoptimize_kprobe(p, false);
851 mutex_unlock(&kprobe_mutex);
853 /* Wait for unoptimizing completion */
854 wait_for_kprobe_optimizer();
855 printk(KERN_INFO "Kprobes globally unoptimized\n");
858 static DEFINE_MUTEX(kprobe_sysctl_mutex);
859 int sysctl_kprobes_optimization;
860 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
861 void __user *buffer, size_t *length,
866 mutex_lock(&kprobe_sysctl_mutex);
867 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
868 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
870 if (sysctl_kprobes_optimization)
871 optimize_all_kprobes();
873 unoptimize_all_kprobes();
874 mutex_unlock(&kprobe_sysctl_mutex);
878 #endif /* CONFIG_SYSCTL */
880 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
881 static void __kprobes __arm_kprobe(struct kprobe *p)
885 /* Check collision with other optimized kprobes */
886 _p = get_optimized_kprobe((unsigned long)p->addr);
888 /* Fallback to unoptimized kprobe */
889 unoptimize_kprobe(_p, true);
892 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
895 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
896 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
900 unoptimize_kprobe(p, false); /* Try to unoptimize */
902 if (!kprobe_queued(p)) {
903 arch_disarm_kprobe(p);
904 /* If another kprobe was blocked, optimize it. */
905 _p = get_optimized_kprobe((unsigned long)p->addr);
906 if (unlikely(_p) && reopt)
909 /* TODO: reoptimize others after unoptimized this probe */
912 #else /* !CONFIG_OPTPROBES */
914 #define optimize_kprobe(p) do {} while (0)
915 #define unoptimize_kprobe(p, f) do {} while (0)
916 #define kill_optimized_kprobe(p) do {} while (0)
917 #define prepare_optimized_kprobe(p) do {} while (0)
918 #define try_to_optimize_kprobe(p) do {} while (0)
919 #define __arm_kprobe(p) arch_arm_kprobe(p)
920 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
921 #define kprobe_disarmed(p) kprobe_disabled(p)
922 #define wait_for_kprobe_optimizer() do {} while (0)
924 /* There should be no unused kprobes can be reused without optimization */
925 static void reuse_unused_kprobe(struct kprobe *ap)
927 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
928 BUG_ON(kprobe_unused(ap));
931 static __kprobes void free_aggr_kprobe(struct kprobe *p)
933 arch_remove_kprobe(p);
937 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
939 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
941 #endif /* CONFIG_OPTPROBES */
943 #ifdef CONFIG_KPROBES_ON_FTRACE
944 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
945 .func = kprobe_ftrace_handler,
946 .flags = FTRACE_OPS_FL_SAVE_REGS,
948 static int kprobe_ftrace_enabled;
950 /* Must ensure p->addr is really on ftrace */
951 static int __kprobes prepare_kprobe(struct kprobe *p)
953 if (!kprobe_ftrace(p))
954 return arch_prepare_kprobe(p);
956 return arch_prepare_kprobe_ftrace(p);
959 /* Caller must lock kprobe_mutex */
960 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
964 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
965 (unsigned long)p->addr, 0, 0);
966 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
967 kprobe_ftrace_enabled++;
968 if (kprobe_ftrace_enabled == 1) {
969 ret = register_ftrace_function(&kprobe_ftrace_ops);
970 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
974 /* Caller must lock kprobe_mutex */
975 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
979 kprobe_ftrace_enabled--;
980 if (kprobe_ftrace_enabled == 0) {
981 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
982 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
984 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
985 (unsigned long)p->addr, 1, 0);
986 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
988 #else /* !CONFIG_KPROBES_ON_FTRACE */
989 #define prepare_kprobe(p) arch_prepare_kprobe(p)
990 #define arm_kprobe_ftrace(p) do {} while (0)
991 #define disarm_kprobe_ftrace(p) do {} while (0)
994 /* Arm a kprobe with text_mutex */
995 static void __kprobes arm_kprobe(struct kprobe *kp)
997 if (unlikely(kprobe_ftrace(kp))) {
998 arm_kprobe_ftrace(kp);
1002 * Here, since __arm_kprobe() doesn't use stop_machine(),
1003 * this doesn't cause deadlock on text_mutex. So, we don't
1004 * need get_online_cpus().
1006 mutex_lock(&text_mutex);
1008 mutex_unlock(&text_mutex);
1011 /* Disarm a kprobe with text_mutex */
1012 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
1014 if (unlikely(kprobe_ftrace(kp))) {
1015 disarm_kprobe_ftrace(kp);
1019 mutex_lock(&text_mutex);
1020 __disarm_kprobe(kp, reopt);
1021 mutex_unlock(&text_mutex);
1025 * Aggregate handlers for multiple kprobes support - these handlers
1026 * take care of invoking the individual kprobe handlers on p->list
1028 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1032 list_for_each_entry_rcu(kp, &p->list, list) {
1033 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1034 set_kprobe_instance(kp);
1035 if (kp->pre_handler(kp, regs))
1038 reset_kprobe_instance();
1043 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1044 unsigned long flags)
1048 list_for_each_entry_rcu(kp, &p->list, list) {
1049 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1050 set_kprobe_instance(kp);
1051 kp->post_handler(kp, regs, flags);
1052 reset_kprobe_instance();
1057 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1060 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1063 * if we faulted "during" the execution of a user specified
1064 * probe handler, invoke just that probe's fault handler
1066 if (cur && cur->fault_handler) {
1067 if (cur->fault_handler(cur, regs, trapnr))
1073 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1075 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1078 if (cur && cur->break_handler) {
1079 if (cur->break_handler(cur, regs))
1082 reset_kprobe_instance();
1086 /* Walks the list and increments nmissed count for multiprobe case */
1087 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1090 if (!kprobe_aggrprobe(p)) {
1093 list_for_each_entry_rcu(kp, &p->list, list)
1099 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1100 struct hlist_head *head)
1102 struct kretprobe *rp = ri->rp;
1104 /* remove rp inst off the rprobe_inst_table */
1105 hlist_del(&ri->hlist);
1106 INIT_HLIST_NODE(&ri->hlist);
1108 raw_spin_lock(&rp->lock);
1109 hlist_add_head(&ri->hlist, &rp->free_instances);
1110 raw_spin_unlock(&rp->lock);
1113 hlist_add_head(&ri->hlist, head);
1116 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1117 struct hlist_head **head, unsigned long *flags)
1118 __acquires(hlist_lock)
1120 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121 raw_spinlock_t *hlist_lock;
1123 *head = &kretprobe_inst_table[hash];
1124 hlist_lock = kretprobe_table_lock_ptr(hash);
1125 raw_spin_lock_irqsave(hlist_lock, *flags);
1128 static void __kprobes kretprobe_table_lock(unsigned long hash,
1129 unsigned long *flags)
1130 __acquires(hlist_lock)
1132 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1133 raw_spin_lock_irqsave(hlist_lock, *flags);
1136 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1137 unsigned long *flags)
1138 __releases(hlist_lock)
1140 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1141 raw_spinlock_t *hlist_lock;
1143 hlist_lock = kretprobe_table_lock_ptr(hash);
1144 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1147 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1148 unsigned long *flags)
1149 __releases(hlist_lock)
1151 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1152 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1156 * This function is called from finish_task_switch when task tk becomes dead,
1157 * so that we can recycle any function-return probe instances associated
1158 * with this task. These left over instances represent probed functions
1159 * that have been called but will never return.
1161 void __kprobes kprobe_flush_task(struct task_struct *tk)
1163 struct kretprobe_instance *ri;
1164 struct hlist_head *head, empty_rp;
1165 struct hlist_node *tmp;
1166 unsigned long hash, flags = 0;
1168 if (unlikely(!kprobes_initialized))
1169 /* Early boot. kretprobe_table_locks not yet initialized. */
1172 INIT_HLIST_HEAD(&empty_rp);
1173 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1174 head = &kretprobe_inst_table[hash];
1175 kretprobe_table_lock(hash, &flags);
1176 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1178 recycle_rp_inst(ri, &empty_rp);
1180 kretprobe_table_unlock(hash, &flags);
1181 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1182 hlist_del(&ri->hlist);
1187 static inline void free_rp_inst(struct kretprobe *rp)
1189 struct kretprobe_instance *ri;
1190 struct hlist_node *next;
1192 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1193 hlist_del(&ri->hlist);
1198 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1200 unsigned long flags, hash;
1201 struct kretprobe_instance *ri;
1202 struct hlist_node *next;
1203 struct hlist_head *head;
1206 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1207 kretprobe_table_lock(hash, &flags);
1208 head = &kretprobe_inst_table[hash];
1209 hlist_for_each_entry_safe(ri, next, head, hlist) {
1213 kretprobe_table_unlock(hash, &flags);
1219 * Add the new probe to ap->list. Fail if this is the
1220 * second jprobe at the address - two jprobes can't coexist
1222 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1224 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1226 if (p->break_handler || p->post_handler)
1227 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1229 if (p->break_handler) {
1230 if (ap->break_handler)
1232 list_add_tail_rcu(&p->list, &ap->list);
1233 ap->break_handler = aggr_break_handler;
1235 list_add_rcu(&p->list, &ap->list);
1236 if (p->post_handler && !ap->post_handler)
1237 ap->post_handler = aggr_post_handler;
1243 * Fill in the required fields of the "manager kprobe". Replace the
1244 * earlier kprobe in the hlist with the manager kprobe
1246 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1248 /* Copy p's insn slot to ap */
1250 flush_insn_slot(ap);
1252 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1253 ap->pre_handler = aggr_pre_handler;
1254 ap->fault_handler = aggr_fault_handler;
1255 /* We don't care the kprobe which has gone. */
1256 if (p->post_handler && !kprobe_gone(p))
1257 ap->post_handler = aggr_post_handler;
1258 if (p->break_handler && !kprobe_gone(p))
1259 ap->break_handler = aggr_break_handler;
1261 INIT_LIST_HEAD(&ap->list);
1262 INIT_HLIST_NODE(&ap->hlist);
1264 list_add_rcu(&p->list, &ap->list);
1265 hlist_replace_rcu(&p->hlist, &ap->hlist);
1269 * This is the second or subsequent kprobe at the address - handle
1272 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1276 struct kprobe *ap = orig_p;
1278 /* For preparing optimization, jump_label_text_reserved() is called */
1281 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1282 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1285 mutex_lock(&text_mutex);
1287 if (!kprobe_aggrprobe(orig_p)) {
1288 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1289 ap = alloc_aggr_kprobe(orig_p);
1294 init_aggr_kprobe(ap, orig_p);
1295 } else if (kprobe_unused(ap))
1296 /* This probe is going to die. Rescue it */
1297 reuse_unused_kprobe(ap);
1299 if (kprobe_gone(ap)) {
1301 * Attempting to insert new probe at the same location that
1302 * had a probe in the module vaddr area which already
1303 * freed. So, the instruction slot has already been
1304 * released. We need a new slot for the new probe.
1306 ret = arch_prepare_kprobe(ap);
1309 * Even if fail to allocate new slot, don't need to
1310 * free aggr_probe. It will be used next time, or
1311 * freed by unregister_kprobe.
1315 /* Prepare optimized instructions if possible. */
1316 prepare_optimized_kprobe(ap);
1319 * Clear gone flag to prevent allocating new slot again, and
1320 * set disabled flag because it is not armed yet.
1322 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1323 | KPROBE_FLAG_DISABLED;
1326 /* Copy ap's insn slot to p */
1328 ret = add_new_kprobe(ap, p);
1331 mutex_unlock(&text_mutex);
1333 jump_label_unlock();
1335 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1336 ap->flags &= ~KPROBE_FLAG_DISABLED;
1337 if (!kprobes_all_disarmed)
1338 /* Arm the breakpoint again. */
1344 static int __kprobes in_kprobes_functions(unsigned long addr)
1346 struct kprobe_blackpoint *kb;
1348 if (addr >= (unsigned long)__kprobes_text_start &&
1349 addr < (unsigned long)__kprobes_text_end)
1352 * If there exists a kprobe_blacklist, verify and
1353 * fail any probe registration in the prohibited area
1355 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1356 if (kb->start_addr) {
1357 if (addr >= kb->start_addr &&
1358 addr < (kb->start_addr + kb->range))
1366 * If we have a symbol_name argument, look it up and add the offset field
1367 * to it. This way, we can specify a relative address to a symbol.
1368 * This returns encoded errors if it fails to look up symbol or invalid
1369 * combination of parameters.
1371 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1373 kprobe_opcode_t *addr = p->addr;
1375 if ((p->symbol_name && p->addr) ||
1376 (!p->symbol_name && !p->addr))
1379 if (p->symbol_name) {
1380 kprobe_lookup_name(p->symbol_name, addr);
1382 return ERR_PTR(-ENOENT);
1385 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1390 return ERR_PTR(-EINVAL);
1393 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1394 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1396 struct kprobe *ap, *list_p;
1398 ap = get_kprobe(p->addr);
1403 list_for_each_entry_rcu(list_p, &ap->list, list)
1405 /* kprobe p is a valid probe */
1413 /* Return error if the kprobe is being re-registered */
1414 static inline int check_kprobe_rereg(struct kprobe *p)
1418 mutex_lock(&kprobe_mutex);
1419 if (__get_valid_kprobe(p))
1421 mutex_unlock(&kprobe_mutex);
1426 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1427 struct module **probed_mod)
1430 unsigned long ftrace_addr;
1433 * If the address is located on a ftrace nop, set the
1434 * breakpoint to the following instruction.
1436 ftrace_addr = ftrace_location((unsigned long)p->addr);
1438 #ifdef CONFIG_KPROBES_ON_FTRACE
1439 /* Given address is not on the instruction boundary */
1440 if ((unsigned long)p->addr != ftrace_addr)
1442 p->flags |= KPROBE_FLAG_FTRACE;
1443 #else /* !CONFIG_KPROBES_ON_FTRACE */
1451 /* Ensure it is not in reserved area nor out of text */
1452 if (!kernel_text_address((unsigned long) p->addr) ||
1453 in_kprobes_functions((unsigned long) p->addr) ||
1454 jump_label_text_reserved(p->addr, p->addr)) {
1459 /* Check if are we probing a module */
1460 *probed_mod = __module_text_address((unsigned long) p->addr);
1463 * We must hold a refcount of the probed module while updating
1464 * its code to prohibit unexpected unloading.
1466 if (unlikely(!try_module_get(*probed_mod))) {
1472 * If the module freed .init.text, we couldn't insert
1475 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1476 (*probed_mod)->state != MODULE_STATE_COMING) {
1477 module_put(*probed_mod);
1484 jump_label_unlock();
1489 int __kprobes register_kprobe(struct kprobe *p)
1492 struct kprobe *old_p;
1493 struct module *probed_mod;
1494 kprobe_opcode_t *addr;
1496 /* Adjust probe address from symbol */
1497 addr = kprobe_addr(p);
1499 return PTR_ERR(addr);
1502 ret = check_kprobe_rereg(p);
1506 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1507 p->flags &= KPROBE_FLAG_DISABLED;
1509 INIT_LIST_HEAD(&p->list);
1511 ret = check_kprobe_address_safe(p, &probed_mod);
1515 mutex_lock(&kprobe_mutex);
1517 old_p = get_kprobe(p->addr);
1519 /* Since this may unoptimize old_p, locking text_mutex. */
1520 ret = register_aggr_kprobe(old_p, p);
1524 mutex_lock(&text_mutex); /* Avoiding text modification */
1525 ret = prepare_kprobe(p);
1526 mutex_unlock(&text_mutex);
1530 INIT_HLIST_NODE(&p->hlist);
1531 hlist_add_head_rcu(&p->hlist,
1532 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1534 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1537 /* Try to optimize kprobe */
1538 try_to_optimize_kprobe(p);
1541 mutex_unlock(&kprobe_mutex);
1544 module_put(probed_mod);
1548 EXPORT_SYMBOL_GPL(register_kprobe);
1550 /* Check if all probes on the aggrprobe are disabled */
1551 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1555 list_for_each_entry_rcu(kp, &ap->list, list)
1556 if (!kprobe_disabled(kp))
1558 * There is an active probe on the list.
1559 * We can't disable this ap.
1566 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1567 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1569 struct kprobe *orig_p;
1571 /* Get an original kprobe for return */
1572 orig_p = __get_valid_kprobe(p);
1573 if (unlikely(orig_p == NULL))
1576 if (!kprobe_disabled(p)) {
1577 /* Disable probe if it is a child probe */
1579 p->flags |= KPROBE_FLAG_DISABLED;
1581 /* Try to disarm and disable this/parent probe */
1582 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1583 disarm_kprobe(orig_p, true);
1584 orig_p->flags |= KPROBE_FLAG_DISABLED;
1592 * Unregister a kprobe without a scheduler synchronization.
1594 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1596 struct kprobe *ap, *list_p;
1598 /* Disable kprobe. This will disarm it if needed. */
1599 ap = __disable_kprobe(p);
1605 * This probe is an independent(and non-optimized) kprobe
1606 * (not an aggrprobe). Remove from the hash list.
1610 /* Following process expects this probe is an aggrprobe */
1611 WARN_ON(!kprobe_aggrprobe(ap));
1613 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1615 * !disarmed could be happen if the probe is under delayed
1620 /* If disabling probe has special handlers, update aggrprobe */
1621 if (p->break_handler && !kprobe_gone(p))
1622 ap->break_handler = NULL;
1623 if (p->post_handler && !kprobe_gone(p)) {
1624 list_for_each_entry_rcu(list_p, &ap->list, list) {
1625 if ((list_p != p) && (list_p->post_handler))
1628 ap->post_handler = NULL;
1632 * Remove from the aggrprobe: this path will do nothing in
1633 * __unregister_kprobe_bottom().
1635 list_del_rcu(&p->list);
1636 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1638 * Try to optimize this probe again, because post
1639 * handler may have been changed.
1641 optimize_kprobe(ap);
1646 BUG_ON(!kprobe_disarmed(ap));
1647 hlist_del_rcu(&ap->hlist);
1651 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1655 if (list_empty(&p->list))
1656 /* This is an independent kprobe */
1657 arch_remove_kprobe(p);
1658 else if (list_is_singular(&p->list)) {
1659 /* This is the last child of an aggrprobe */
1660 ap = list_entry(p->list.next, struct kprobe, list);
1662 free_aggr_kprobe(ap);
1664 /* Otherwise, do nothing. */
1667 int __kprobes register_kprobes(struct kprobe **kps, int num)
1673 for (i = 0; i < num; i++) {
1674 ret = register_kprobe(kps[i]);
1677 unregister_kprobes(kps, i);
1683 EXPORT_SYMBOL_GPL(register_kprobes);
1685 void __kprobes unregister_kprobe(struct kprobe *p)
1687 unregister_kprobes(&p, 1);
1689 EXPORT_SYMBOL_GPL(unregister_kprobe);
1691 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1697 mutex_lock(&kprobe_mutex);
1698 for (i = 0; i < num; i++)
1699 if (__unregister_kprobe_top(kps[i]) < 0)
1700 kps[i]->addr = NULL;
1701 mutex_unlock(&kprobe_mutex);
1703 synchronize_sched();
1704 for (i = 0; i < num; i++)
1706 __unregister_kprobe_bottom(kps[i]);
1708 EXPORT_SYMBOL_GPL(unregister_kprobes);
1710 static struct notifier_block kprobe_exceptions_nb = {
1711 .notifier_call = kprobe_exceptions_notify,
1712 .priority = 0x7fffffff /* we need to be notified first */
1715 unsigned long __weak arch_deref_entry_point(void *entry)
1717 return (unsigned long)entry;
1720 int __kprobes register_jprobes(struct jprobe **jps, int num)
1727 for (i = 0; i < num; i++) {
1728 unsigned long addr, offset;
1730 addr = arch_deref_entry_point(jp->entry);
1732 /* Verify probepoint is a function entry point */
1733 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1735 jp->kp.pre_handler = setjmp_pre_handler;
1736 jp->kp.break_handler = longjmp_break_handler;
1737 ret = register_kprobe(&jp->kp);
1743 unregister_jprobes(jps, i);
1749 EXPORT_SYMBOL_GPL(register_jprobes);
1751 int __kprobes register_jprobe(struct jprobe *jp)
1753 return register_jprobes(&jp, 1);
1755 EXPORT_SYMBOL_GPL(register_jprobe);
1757 void __kprobes unregister_jprobe(struct jprobe *jp)
1759 unregister_jprobes(&jp, 1);
1761 EXPORT_SYMBOL_GPL(unregister_jprobe);
1763 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1769 mutex_lock(&kprobe_mutex);
1770 for (i = 0; i < num; i++)
1771 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1772 jps[i]->kp.addr = NULL;
1773 mutex_unlock(&kprobe_mutex);
1775 synchronize_sched();
1776 for (i = 0; i < num; i++) {
1777 if (jps[i]->kp.addr)
1778 __unregister_kprobe_bottom(&jps[i]->kp);
1781 EXPORT_SYMBOL_GPL(unregister_jprobes);
1783 #ifdef CONFIG_KRETPROBES
1785 * This kprobe pre_handler is registered with every kretprobe. When probe
1786 * hits it will set up the return probe.
1788 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1789 struct pt_regs *regs)
1791 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1792 unsigned long hash, flags = 0;
1793 struct kretprobe_instance *ri;
1795 /*TODO: consider to only swap the RA after the last pre_handler fired */
1796 hash = hash_ptr(current, KPROBE_HASH_BITS);
1797 raw_spin_lock_irqsave(&rp->lock, flags);
1798 if (!hlist_empty(&rp->free_instances)) {
1799 ri = hlist_entry(rp->free_instances.first,
1800 struct kretprobe_instance, hlist);
1801 hlist_del(&ri->hlist);
1802 raw_spin_unlock_irqrestore(&rp->lock, flags);
1807 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1808 raw_spin_lock_irqsave(&rp->lock, flags);
1809 hlist_add_head(&ri->hlist, &rp->free_instances);
1810 raw_spin_unlock_irqrestore(&rp->lock, flags);
1814 arch_prepare_kretprobe(ri, regs);
1816 /* XXX(hch): why is there no hlist_move_head? */
1817 INIT_HLIST_NODE(&ri->hlist);
1818 kretprobe_table_lock(hash, &flags);
1819 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1820 kretprobe_table_unlock(hash, &flags);
1823 raw_spin_unlock_irqrestore(&rp->lock, flags);
1828 int __kprobes register_kretprobe(struct kretprobe *rp)
1831 struct kretprobe_instance *inst;
1835 if (kretprobe_blacklist_size) {
1836 addr = kprobe_addr(&rp->kp);
1838 return PTR_ERR(addr);
1840 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1841 if (kretprobe_blacklist[i].addr == addr)
1846 rp->kp.pre_handler = pre_handler_kretprobe;
1847 rp->kp.post_handler = NULL;
1848 rp->kp.fault_handler = NULL;
1849 rp->kp.break_handler = NULL;
1851 /* Pre-allocate memory for max kretprobe instances */
1852 if (rp->maxactive <= 0) {
1853 #ifdef CONFIG_PREEMPT
1854 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1856 rp->maxactive = num_possible_cpus();
1859 raw_spin_lock_init(&rp->lock);
1860 INIT_HLIST_HEAD(&rp->free_instances);
1861 for (i = 0; i < rp->maxactive; i++) {
1862 inst = kmalloc(sizeof(struct kretprobe_instance) +
1863 rp->data_size, GFP_KERNEL);
1868 INIT_HLIST_NODE(&inst->hlist);
1869 hlist_add_head(&inst->hlist, &rp->free_instances);
1873 /* Establish function entry probe point */
1874 ret = register_kprobe(&rp->kp);
1879 EXPORT_SYMBOL_GPL(register_kretprobe);
1881 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1887 for (i = 0; i < num; i++) {
1888 ret = register_kretprobe(rps[i]);
1891 unregister_kretprobes(rps, i);
1897 EXPORT_SYMBOL_GPL(register_kretprobes);
1899 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1901 unregister_kretprobes(&rp, 1);
1903 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1905 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1911 mutex_lock(&kprobe_mutex);
1912 for (i = 0; i < num; i++)
1913 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1914 rps[i]->kp.addr = NULL;
1915 mutex_unlock(&kprobe_mutex);
1917 synchronize_sched();
1918 for (i = 0; i < num; i++) {
1919 if (rps[i]->kp.addr) {
1920 __unregister_kprobe_bottom(&rps[i]->kp);
1921 cleanup_rp_inst(rps[i]);
1925 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1927 #else /* CONFIG_KRETPROBES */
1928 int __kprobes register_kretprobe(struct kretprobe *rp)
1932 EXPORT_SYMBOL_GPL(register_kretprobe);
1934 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1938 EXPORT_SYMBOL_GPL(register_kretprobes);
1940 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1943 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1945 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1948 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1950 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1951 struct pt_regs *regs)
1956 #endif /* CONFIG_KRETPROBES */
1958 /* Set the kprobe gone and remove its instruction buffer. */
1959 static void __kprobes kill_kprobe(struct kprobe *p)
1963 p->flags |= KPROBE_FLAG_GONE;
1964 if (kprobe_aggrprobe(p)) {
1966 * If this is an aggr_kprobe, we have to list all the
1967 * chained probes and mark them GONE.
1969 list_for_each_entry_rcu(kp, &p->list, list)
1970 kp->flags |= KPROBE_FLAG_GONE;
1971 p->post_handler = NULL;
1972 p->break_handler = NULL;
1973 kill_optimized_kprobe(p);
1976 * Here, we can remove insn_slot safely, because no thread calls
1977 * the original probed function (which will be freed soon) any more.
1979 arch_remove_kprobe(p);
1982 /* Disable one kprobe */
1983 int __kprobes disable_kprobe(struct kprobe *kp)
1987 mutex_lock(&kprobe_mutex);
1989 /* Disable this kprobe */
1990 if (__disable_kprobe(kp) == NULL)
1993 mutex_unlock(&kprobe_mutex);
1996 EXPORT_SYMBOL_GPL(disable_kprobe);
1998 /* Enable one kprobe */
1999 int __kprobes enable_kprobe(struct kprobe *kp)
2004 mutex_lock(&kprobe_mutex);
2006 /* Check whether specified probe is valid. */
2007 p = __get_valid_kprobe(kp);
2008 if (unlikely(p == NULL)) {
2013 if (kprobe_gone(kp)) {
2014 /* This kprobe has gone, we couldn't enable it. */
2020 kp->flags &= ~KPROBE_FLAG_DISABLED;
2022 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2023 p->flags &= ~KPROBE_FLAG_DISABLED;
2027 mutex_unlock(&kprobe_mutex);
2030 EXPORT_SYMBOL_GPL(enable_kprobe);
2032 void __kprobes dump_kprobe(struct kprobe *kp)
2034 printk(KERN_WARNING "Dumping kprobe:\n");
2035 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2036 kp->symbol_name, kp->addr, kp->offset);
2039 /* Module notifier call back, checking kprobes on the module */
2040 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2041 unsigned long val, void *data)
2043 struct module *mod = data;
2044 struct hlist_head *head;
2047 int checkcore = (val == MODULE_STATE_GOING);
2049 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2053 * When MODULE_STATE_GOING was notified, both of module .text and
2054 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2055 * notified, only .init.text section would be freed. We need to
2056 * disable kprobes which have been inserted in the sections.
2058 mutex_lock(&kprobe_mutex);
2059 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2060 head = &kprobe_table[i];
2061 hlist_for_each_entry_rcu(p, head, hlist)
2062 if (within_module_init((unsigned long)p->addr, mod) ||
2064 within_module_core((unsigned long)p->addr, mod))) {
2066 * The vaddr this probe is installed will soon
2067 * be vfreed buy not synced to disk. Hence,
2068 * disarming the breakpoint isn't needed.
2073 mutex_unlock(&kprobe_mutex);
2077 static struct notifier_block kprobe_module_nb = {
2078 .notifier_call = kprobes_module_callback,
2082 static int __init init_kprobes(void)
2085 unsigned long offset = 0, size = 0;
2086 char *modname, namebuf[128];
2087 const char *symbol_name;
2089 struct kprobe_blackpoint *kb;
2091 /* FIXME allocate the probe table, currently defined statically */
2092 /* initialize all list heads */
2093 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2094 INIT_HLIST_HEAD(&kprobe_table[i]);
2095 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2096 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2100 * Lookup and populate the kprobe_blacklist.
2102 * Unlike the kretprobe blacklist, we'll need to determine
2103 * the range of addresses that belong to the said functions,
2104 * since a kprobe need not necessarily be at the beginning
2107 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2108 kprobe_lookup_name(kb->name, addr);
2112 kb->start_addr = (unsigned long)addr;
2113 symbol_name = kallsyms_lookup(kb->start_addr,
2114 &size, &offset, &modname, namebuf);
2121 if (kretprobe_blacklist_size) {
2122 /* lookup the function address from its name */
2123 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2124 kprobe_lookup_name(kretprobe_blacklist[i].name,
2125 kretprobe_blacklist[i].addr);
2126 if (!kretprobe_blacklist[i].addr)
2127 printk("kretprobe: lookup failed: %s\n",
2128 kretprobe_blacklist[i].name);
2132 #if defined(CONFIG_OPTPROBES)
2133 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2134 /* Init kprobe_optinsn_slots */
2135 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2137 /* By default, kprobes can be optimized */
2138 kprobes_allow_optimization = true;
2141 /* By default, kprobes are armed */
2142 kprobes_all_disarmed = false;
2144 err = arch_init_kprobes();
2146 err = register_die_notifier(&kprobe_exceptions_nb);
2148 err = register_module_notifier(&kprobe_module_nb);
2150 kprobes_initialized = (err == 0);
2157 #ifdef CONFIG_DEBUG_FS
2158 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2159 const char *sym, int offset, char *modname, struct kprobe *pp)
2163 if (p->pre_handler == pre_handler_kretprobe)
2165 else if (p->pre_handler == setjmp_pre_handler)
2171 seq_printf(pi, "%p %s %s+0x%x %s ",
2172 p->addr, kprobe_type, sym, offset,
2173 (modname ? modname : " "));
2175 seq_printf(pi, "%p %s %p ",
2176 p->addr, kprobe_type, p->addr);
2180 seq_printf(pi, "%s%s%s%s\n",
2181 (kprobe_gone(p) ? "[GONE]" : ""),
2182 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2183 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2184 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2187 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2189 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2192 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2195 if (*pos >= KPROBE_TABLE_SIZE)
2200 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2205 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2207 struct hlist_head *head;
2208 struct kprobe *p, *kp;
2209 const char *sym = NULL;
2210 unsigned int i = *(loff_t *) v;
2211 unsigned long offset = 0;
2212 char *modname, namebuf[128];
2214 head = &kprobe_table[i];
2216 hlist_for_each_entry_rcu(p, head, hlist) {
2217 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2218 &offset, &modname, namebuf);
2219 if (kprobe_aggrprobe(p)) {
2220 list_for_each_entry_rcu(kp, &p->list, list)
2221 report_probe(pi, kp, sym, offset, modname, p);
2223 report_probe(pi, p, sym, offset, modname, NULL);
2229 static const struct seq_operations kprobes_seq_ops = {
2230 .start = kprobe_seq_start,
2231 .next = kprobe_seq_next,
2232 .stop = kprobe_seq_stop,
2233 .show = show_kprobe_addr
2236 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2238 return seq_open(filp, &kprobes_seq_ops);
2241 static const struct file_operations debugfs_kprobes_operations = {
2242 .open = kprobes_open,
2244 .llseek = seq_lseek,
2245 .release = seq_release,
2248 static void __kprobes arm_all_kprobes(void)
2250 struct hlist_head *head;
2254 mutex_lock(&kprobe_mutex);
2256 /* If kprobes are armed, just return */
2257 if (!kprobes_all_disarmed)
2258 goto already_enabled;
2260 /* Arming kprobes doesn't optimize kprobe itself */
2261 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2262 head = &kprobe_table[i];
2263 hlist_for_each_entry_rcu(p, head, hlist)
2264 if (!kprobe_disabled(p))
2268 kprobes_all_disarmed = false;
2269 printk(KERN_INFO "Kprobes globally enabled\n");
2272 mutex_unlock(&kprobe_mutex);
2276 static void __kprobes disarm_all_kprobes(void)
2278 struct hlist_head *head;
2282 mutex_lock(&kprobe_mutex);
2284 /* If kprobes are already disarmed, just return */
2285 if (kprobes_all_disarmed) {
2286 mutex_unlock(&kprobe_mutex);
2290 kprobes_all_disarmed = true;
2291 printk(KERN_INFO "Kprobes globally disabled\n");
2293 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2294 head = &kprobe_table[i];
2295 hlist_for_each_entry_rcu(p, head, hlist) {
2296 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2297 disarm_kprobe(p, false);
2300 mutex_unlock(&kprobe_mutex);
2302 /* Wait for disarming all kprobes by optimizer */
2303 wait_for_kprobe_optimizer();
2307 * XXX: The debugfs bool file interface doesn't allow for callbacks
2308 * when the bool state is switched. We can reuse that facility when
2311 static ssize_t read_enabled_file_bool(struct file *file,
2312 char __user *user_buf, size_t count, loff_t *ppos)
2316 if (!kprobes_all_disarmed)
2322 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2325 static ssize_t write_enabled_file_bool(struct file *file,
2326 const char __user *user_buf, size_t count, loff_t *ppos)
2331 buf_size = min(count, (sizeof(buf)-1));
2332 if (copy_from_user(buf, user_buf, buf_size))
2344 disarm_all_kprobes();
2351 static const struct file_operations fops_kp = {
2352 .read = read_enabled_file_bool,
2353 .write = write_enabled_file_bool,
2354 .llseek = default_llseek,
2357 static int __kprobes debugfs_kprobe_init(void)
2359 struct dentry *dir, *file;
2360 unsigned int value = 1;
2362 dir = debugfs_create_dir("kprobes", NULL);
2366 file = debugfs_create_file("list", 0444, dir, NULL,
2367 &debugfs_kprobes_operations);
2369 debugfs_remove(dir);
2373 file = debugfs_create_file("enabled", 0600, dir,
2376 debugfs_remove(dir);
2383 late_initcall(debugfs_kprobe_init);
2384 #endif /* CONFIG_DEBUG_FS */
2386 module_init(init_kprobes);
2388 /* defined in arch/.../kernel/kprobes.c */
2389 EXPORT_SYMBOL_GPL(jprobe_return);