Merge tag 'f2fs-for-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[platform/kernel/linux-starfive.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *              Probes initial implementation (includes suggestions from
9  *              Rusty Russell).
10  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *              hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *              interface to access function arguments.
14  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *              exceptions notifier to be first on the priority list.
16  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *              <prasanna@in.ibm.com> added function-return probes.
19  */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58  * Or
59  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60  */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71                                         unsigned int __unused)
72 {
73         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75
76 /*
77  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78  * kprobes can not probe.
79  */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90         struct list_head list;
91         kprobe_opcode_t *insns;         /* Page of instruction slots */
92         struct kprobe_insn_cache *cache;
93         int nused;
94         int ngarbage;
95         char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
99         (offsetof(struct kprobe_insn_page, slot_used) + \
100          (sizeof(char) * (slots)))
101
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108         SLOT_CLEAN = 0,
109         SLOT_DIRTY = 1,
110         SLOT_USED = 2,
111 };
112
113 void __weak *alloc_insn_page(void)
114 {
115         /*
116          * Use module_alloc() so this page is within +/- 2GB of where the
117          * kernel image and loaded module images reside. This is required
118          * for most of the architectures.
119          * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120          */
121         return module_alloc(PAGE_SIZE);
122 }
123
124 static void free_insn_page(void *page)
125 {
126         module_memfree(page);
127 }
128
129 struct kprobe_insn_cache kprobe_insn_slots = {
130         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131         .alloc = alloc_insn_page,
132         .free = free_insn_page,
133         .sym = KPROBE_INSN_PAGE_SYM,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156
157                         for (i = 0; i < slots_per_page(c); i++) {
158                                 if (kip->slot_used[i] == SLOT_CLEAN) {
159                                         kip->slot_used[i] = SLOT_USED;
160                                         kip->nused++;
161                                         slot = kip->insns + (i * c->insn_size);
162                                         rcu_read_unlock();
163                                         goto out;
164                                 }
165                         }
166                         /* kip->nused is broken. Fix it. */
167                         kip->nused = slots_per_page(c);
168                         WARN_ON(1);
169                 }
170         }
171         rcu_read_unlock();
172
173         /* If there are any garbage slots, collect it and try again. */
174         if (c->nr_garbage && collect_garbage_slots(c) == 0)
175                 goto retry;
176
177         /* All out of space.  Need to allocate a new page. */
178         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179         if (!kip)
180                 goto out;
181
182         kip->insns = c->alloc();
183         if (!kip->insns) {
184                 kfree(kip);
185                 goto out;
186         }
187         INIT_LIST_HEAD(&kip->list);
188         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189         kip->slot_used[0] = SLOT_USED;
190         kip->nused = 1;
191         kip->ngarbage = 0;
192         kip->cache = c;
193         list_add_rcu(&kip->list, &c->pages);
194         slot = kip->insns;
195
196         /* Record the perf ksymbol register event after adding the page */
197         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198                            PAGE_SIZE, false, c->sym);
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         /*
218                          * Record perf ksymbol unregister event before removing
219                          * the page.
220                          */
221                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222                                            (unsigned long)kip->insns, PAGE_SIZE, true,
223                                            kip->cache->sym);
224                         list_del_rcu(&kip->list);
225                         synchronize_rcu();
226                         kip->cache->free(kip->insns);
227                         kfree(kip);
228                 }
229                 return true;
230         }
231         return false;
232 }
233
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236         struct kprobe_insn_page *kip, *next;
237
238         /* Ensure no-one is interrupted on the garbages */
239         synchronize_rcu();
240
241         list_for_each_entry_safe(kip, next, &c->pages, list) {
242                 int i;
243
244                 if (kip->ngarbage == 0)
245                         continue;
246                 kip->ngarbage = 0;      /* we will collect all garbages */
247                 for (i = 0; i < slots_per_page(c); i++) {
248                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249                                 break;
250                 }
251         }
252         c->nr_garbage = 0;
253         return 0;
254 }
255
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257                       kprobe_opcode_t *slot, int dirty)
258 {
259         struct kprobe_insn_page *kip;
260         long idx;
261
262         mutex_lock(&c->mutex);
263         rcu_read_lock();
264         list_for_each_entry_rcu(kip, &c->pages, list) {
265                 idx = ((long)slot - (long)kip->insns) /
266                         (c->insn_size * sizeof(kprobe_opcode_t));
267                 if (idx >= 0 && idx < slots_per_page(c))
268                         goto out;
269         }
270         /* Could not find this slot. */
271         WARN_ON(1);
272         kip = NULL;
273 out:
274         rcu_read_unlock();
275         /* Mark and sweep: this may sleep */
276         if (kip) {
277                 /* Check double free */
278                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279                 if (dirty) {
280                         kip->slot_used[idx] = SLOT_DIRTY;
281                         kip->ngarbage++;
282                         if (++c->nr_garbage > slots_per_page(c))
283                                 collect_garbage_slots(c);
284                 } else {
285                         collect_one_slot(kip, idx);
286                 }
287         }
288         mutex_unlock(&c->mutex);
289 }
290
291 /*
292  * Check given address is on the page of kprobe instruction slots.
293  * This will be used for checking whether the address on a stack
294  * is on a text area or not.
295  */
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298         struct kprobe_insn_page *kip;
299         bool ret = false;
300
301         rcu_read_lock();
302         list_for_each_entry_rcu(kip, &c->pages, list) {
303                 if (addr >= (unsigned long)kip->insns &&
304                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
305                         ret = true;
306                         break;
307                 }
308         }
309         rcu_read_unlock();
310
311         return ret;
312 }
313
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315                              unsigned long *value, char *type, char *sym)
316 {
317         struct kprobe_insn_page *kip;
318         int ret = -ERANGE;
319
320         rcu_read_lock();
321         list_for_each_entry_rcu(kip, &c->pages, list) {
322                 if ((*symnum)--)
323                         continue;
324                 strscpy(sym, c->sym, KSYM_NAME_LEN);
325                 *type = 't';
326                 *value = (unsigned long)kip->insns;
327                 ret = 0;
328                 break;
329         }
330         rcu_read_unlock();
331
332         return ret;
333 }
334
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
337 {
338         return alloc_insn_page();
339 }
340
341 void __weak free_optinsn_page(void *page)
342 {
343         free_insn_page(page);
344 }
345
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349         .alloc = alloc_optinsn_page,
350         .free = free_optinsn_page,
351         .sym = KPROBE_OPTINSN_PAGE_SYM,
352         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353         /* .insn_size is initialized later */
354         .nr_garbage = 0,
355 };
356 #endif
357 #endif
358
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362         __this_cpu_write(kprobe_instance, kp);
363 }
364
365 static inline void reset_kprobe_instance(void)
366 {
367         __this_cpu_write(kprobe_instance, NULL);
368 }
369
370 /*
371  * This routine is called either:
372  *      - under the 'kprobe_mutex' - during kprobe_[un]register().
373  *                              OR
374  *      - with preemption disabled - from architecture specific code.
375  */
376 struct kprobe *get_kprobe(void *addr)
377 {
378         struct hlist_head *head;
379         struct kprobe *p;
380
381         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382         hlist_for_each_entry_rcu(p, head, hlist,
383                                  lockdep_is_held(&kprobe_mutex)) {
384                 if (p->addr == addr)
385                         return p;
386         }
387
388         return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397         return p->pre_handler == aggr_pre_handler;
398 }
399
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404                list_empty(&p->list);
405 }
406
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417
418 /*
419  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420  * This must be called from arch-dep optimized caller.
421  */
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424         struct kprobe *kp;
425
426         list_for_each_entry_rcu(kp, &p->list, list) {
427                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428                         set_kprobe_instance(kp);
429                         kp->pre_handler(kp, regs);
430                 }
431                 reset_kprobe_instance();
432         }
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439         struct optimized_kprobe *op;
440
441         op = container_of(p, struct optimized_kprobe, kp);
442         arch_remove_optimized_kprobe(op);
443         arch_remove_kprobe(p);
444         kfree(op);
445 }
446
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
449 {
450         struct optimized_kprobe *op;
451
452         if (kprobe_aggrprobe(p)) {
453                 op = container_of(p, struct optimized_kprobe, kp);
454                 return arch_prepared_optinsn(&op->optinsn);
455         }
456
457         return 0;
458 }
459
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 static inline bool kprobe_disarmed(struct kprobe *p)
462 {
463         struct optimized_kprobe *op;
464
465         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466         if (!kprobe_aggrprobe(p))
467                 return kprobe_disabled(p);
468
469         op = container_of(p, struct optimized_kprobe, kp);
470
471         return kprobe_disabled(p) && list_empty(&op->list);
472 }
473
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
476 {
477         struct optimized_kprobe *op;
478
479         if (kprobe_aggrprobe(p)) {
480                 op = container_of(p, struct optimized_kprobe, kp);
481                 if (!list_empty(&op->list))
482                         return true;
483         }
484         return false;
485 }
486
487 /*
488  * Return an optimized kprobe whose optimizing code replaces
489  * instructions including 'addr' (exclude breakpoint).
490  */
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493         int i;
494         struct kprobe *p = NULL;
495         struct optimized_kprobe *op;
496
497         /* Don't check i == 0, since that is a breakpoint case. */
498         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499                 p = get_kprobe(addr - i);
500
501         if (p && kprobe_optready(p)) {
502                 op = container_of(p, struct optimized_kprobe, kp);
503                 if (arch_within_optimized_kprobe(op, addr))
504                         return p;
505         }
506
507         return NULL;
508 }
509
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518
519 /*
520  * Optimize (replace a breakpoint with a jump) kprobes listed on
521  * 'optimizing_list'.
522  */
523 static void do_optimize_kprobes(void)
524 {
525         lockdep_assert_held(&text_mutex);
526         /*
527          * The optimization/unoptimization refers 'online_cpus' via
528          * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529          * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530          * This combination can cause a deadlock (cpu-hotplug tries to lock
531          * 'text_mutex' but stop_machine() can not be done because
532          * the 'online_cpus' has been changed)
533          * To avoid this deadlock, caller must have locked cpu-hotplug
534          * for preventing cpu-hotplug outside of 'text_mutex' locking.
535          */
536         lockdep_assert_cpus_held();
537
538         /* Optimization never be done when disarmed */
539         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540             list_empty(&optimizing_list))
541                 return;
542
543         arch_optimize_kprobes(&optimizing_list);
544 }
545
546 /*
547  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548  * if need) kprobes listed on 'unoptimizing_list'.
549  */
550 static void do_unoptimize_kprobes(void)
551 {
552         struct optimized_kprobe *op, *tmp;
553
554         lockdep_assert_held(&text_mutex);
555         /* See comment in do_optimize_kprobes() */
556         lockdep_assert_cpus_held();
557
558         /* Unoptimization must be done anytime */
559         if (list_empty(&unoptimizing_list))
560                 return;
561
562         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
563         /* Loop on 'freeing_list' for disarming */
564         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
565                 /* Switching from detour code to origin */
566                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
567                 /* Disarm probes if marked disabled */
568                 if (kprobe_disabled(&op->kp))
569                         arch_disarm_kprobe(&op->kp);
570                 if (kprobe_unused(&op->kp)) {
571                         /*
572                          * Remove unused probes from hash list. After waiting
573                          * for synchronization, these probes are reclaimed.
574                          * (reclaiming is done by do_free_cleaned_kprobes().)
575                          */
576                         hlist_del_rcu(&op->kp.hlist);
577                 } else
578                         list_del_init(&op->list);
579         }
580 }
581
582 /* Reclaim all kprobes on the 'freeing_list' */
583 static void do_free_cleaned_kprobes(void)
584 {
585         struct optimized_kprobe *op, *tmp;
586
587         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
588                 list_del_init(&op->list);
589                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
590                         /*
591                          * This must not happen, but if there is a kprobe
592                          * still in use, keep it on kprobes hash list.
593                          */
594                         continue;
595                 }
596                 free_aggr_kprobe(&op->kp);
597         }
598 }
599
600 /* Start optimizer after OPTIMIZE_DELAY passed */
601 static void kick_kprobe_optimizer(void)
602 {
603         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
604 }
605
606 /* Kprobe jump optimizer */
607 static void kprobe_optimizer(struct work_struct *work)
608 {
609         mutex_lock(&kprobe_mutex);
610         cpus_read_lock();
611         mutex_lock(&text_mutex);
612
613         /*
614          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
615          * kprobes before waiting for quiesence period.
616          */
617         do_unoptimize_kprobes();
618
619         /*
620          * Step 2: Wait for quiesence period to ensure all potentially
621          * preempted tasks to have normally scheduled. Because optprobe
622          * may modify multiple instructions, there is a chance that Nth
623          * instruction is preempted. In that case, such tasks can return
624          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
625          * Note that on non-preemptive kernel, this is transparently converted
626          * to synchronoze_sched() to wait for all interrupts to have completed.
627          */
628         synchronize_rcu_tasks();
629
630         /* Step 3: Optimize kprobes after quiesence period */
631         do_optimize_kprobes();
632
633         /* Step 4: Free cleaned kprobes after quiesence period */
634         do_free_cleaned_kprobes();
635
636         mutex_unlock(&text_mutex);
637         cpus_read_unlock();
638
639         /* Step 5: Kick optimizer again if needed */
640         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
641                 kick_kprobe_optimizer();
642
643         mutex_unlock(&kprobe_mutex);
644 }
645
646 /* Wait for completing optimization and unoptimization */
647 void wait_for_kprobe_optimizer(void)
648 {
649         mutex_lock(&kprobe_mutex);
650
651         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
652                 mutex_unlock(&kprobe_mutex);
653
654                 /* This will also make 'optimizing_work' execute immmediately */
655                 flush_delayed_work(&optimizing_work);
656                 /* 'optimizing_work' might not have been queued yet, relax */
657                 cpu_relax();
658
659                 mutex_lock(&kprobe_mutex);
660         }
661
662         mutex_unlock(&kprobe_mutex);
663 }
664
665 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
666 {
667         struct optimized_kprobe *_op;
668
669         list_for_each_entry(_op, &unoptimizing_list, list) {
670                 if (op == _op)
671                         return true;
672         }
673
674         return false;
675 }
676
677 /* Optimize kprobe if p is ready to be optimized */
678 static void optimize_kprobe(struct kprobe *p)
679 {
680         struct optimized_kprobe *op;
681
682         /* Check if the kprobe is disabled or not ready for optimization. */
683         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
684             (kprobe_disabled(p) || kprobes_all_disarmed))
685                 return;
686
687         /* kprobes with 'post_handler' can not be optimized */
688         if (p->post_handler)
689                 return;
690
691         op = container_of(p, struct optimized_kprobe, kp);
692
693         /* Check there is no other kprobes at the optimized instructions */
694         if (arch_check_optimized_kprobe(op) < 0)
695                 return;
696
697         /* Check if it is already optimized. */
698         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
699                 if (optprobe_queued_unopt(op)) {
700                         /* This is under unoptimizing. Just dequeue the probe */
701                         list_del_init(&op->list);
702                 }
703                 return;
704         }
705         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
706
707         /*
708          * On the 'unoptimizing_list' and 'optimizing_list',
709          * 'op' must have OPTIMIZED flag
710          */
711         if (WARN_ON_ONCE(!list_empty(&op->list)))
712                 return;
713
714         list_add(&op->list, &optimizing_list);
715         kick_kprobe_optimizer();
716 }
717
718 /* Short cut to direct unoptimizing */
719 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
720 {
721         lockdep_assert_cpus_held();
722         arch_unoptimize_kprobe(op);
723         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
724 }
725
726 /* Unoptimize a kprobe if p is optimized */
727 static void unoptimize_kprobe(struct kprobe *p, bool force)
728 {
729         struct optimized_kprobe *op;
730
731         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
732                 return; /* This is not an optprobe nor optimized */
733
734         op = container_of(p, struct optimized_kprobe, kp);
735         if (!kprobe_optimized(p))
736                 return;
737
738         if (!list_empty(&op->list)) {
739                 if (optprobe_queued_unopt(op)) {
740                         /* Queued in unoptimizing queue */
741                         if (force) {
742                                 /*
743                                  * Forcibly unoptimize the kprobe here, and queue it
744                                  * in the freeing list for release afterwards.
745                                  */
746                                 force_unoptimize_kprobe(op);
747                                 list_move(&op->list, &freeing_list);
748                         }
749                 } else {
750                         /* Dequeue from the optimizing queue */
751                         list_del_init(&op->list);
752                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
753                 }
754                 return;
755         }
756
757         /* Optimized kprobe case */
758         if (force) {
759                 /* Forcibly update the code: this is a special case */
760                 force_unoptimize_kprobe(op);
761         } else {
762                 list_add(&op->list, &unoptimizing_list);
763                 kick_kprobe_optimizer();
764         }
765 }
766
767 /* Cancel unoptimizing for reusing */
768 static int reuse_unused_kprobe(struct kprobe *ap)
769 {
770         struct optimized_kprobe *op;
771
772         /*
773          * Unused kprobe MUST be on the way of delayed unoptimizing (means
774          * there is still a relative jump) and disabled.
775          */
776         op = container_of(ap, struct optimized_kprobe, kp);
777         WARN_ON_ONCE(list_empty(&op->list));
778         /* Enable the probe again */
779         ap->flags &= ~KPROBE_FLAG_DISABLED;
780         /* Optimize it again. (remove from 'op->list') */
781         if (!kprobe_optready(ap))
782                 return -EINVAL;
783
784         optimize_kprobe(ap);
785         return 0;
786 }
787
788 /* Remove optimized instructions */
789 static void kill_optimized_kprobe(struct kprobe *p)
790 {
791         struct optimized_kprobe *op;
792
793         op = container_of(p, struct optimized_kprobe, kp);
794         if (!list_empty(&op->list))
795                 /* Dequeue from the (un)optimization queue */
796                 list_del_init(&op->list);
797         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
798
799         if (kprobe_unused(p)) {
800                 /* Enqueue if it is unused */
801                 list_add(&op->list, &freeing_list);
802                 /*
803                  * Remove unused probes from the hash list. After waiting
804                  * for synchronization, this probe is reclaimed.
805                  * (reclaiming is done by do_free_cleaned_kprobes().)
806                  */
807                 hlist_del_rcu(&op->kp.hlist);
808         }
809
810         /* Don't touch the code, because it is already freed. */
811         arch_remove_optimized_kprobe(op);
812 }
813
814 static inline
815 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
816 {
817         if (!kprobe_ftrace(p))
818                 arch_prepare_optimized_kprobe(op, p);
819 }
820
821 /* Try to prepare optimized instructions */
822 static void prepare_optimized_kprobe(struct kprobe *p)
823 {
824         struct optimized_kprobe *op;
825
826         op = container_of(p, struct optimized_kprobe, kp);
827         __prepare_optimized_kprobe(op, p);
828 }
829
830 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
831 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
832 {
833         struct optimized_kprobe *op;
834
835         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
836         if (!op)
837                 return NULL;
838
839         INIT_LIST_HEAD(&op->list);
840         op->kp.addr = p->addr;
841         __prepare_optimized_kprobe(op, p);
842
843         return &op->kp;
844 }
845
846 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
847
848 /*
849  * Prepare an optimized_kprobe and optimize it.
850  * NOTE: 'p' must be a normal registered kprobe.
851  */
852 static void try_to_optimize_kprobe(struct kprobe *p)
853 {
854         struct kprobe *ap;
855         struct optimized_kprobe *op;
856
857         /* Impossible to optimize ftrace-based kprobe. */
858         if (kprobe_ftrace(p))
859                 return;
860
861         /* For preparing optimization, jump_label_text_reserved() is called. */
862         cpus_read_lock();
863         jump_label_lock();
864         mutex_lock(&text_mutex);
865
866         ap = alloc_aggr_kprobe(p);
867         if (!ap)
868                 goto out;
869
870         op = container_of(ap, struct optimized_kprobe, kp);
871         if (!arch_prepared_optinsn(&op->optinsn)) {
872                 /* If failed to setup optimizing, fallback to kprobe. */
873                 arch_remove_optimized_kprobe(op);
874                 kfree(op);
875                 goto out;
876         }
877
878         init_aggr_kprobe(ap, p);
879         optimize_kprobe(ap);    /* This just kicks optimizer thread. */
880
881 out:
882         mutex_unlock(&text_mutex);
883         jump_label_unlock();
884         cpus_read_unlock();
885 }
886
887 static void optimize_all_kprobes(void)
888 {
889         struct hlist_head *head;
890         struct kprobe *p;
891         unsigned int i;
892
893         mutex_lock(&kprobe_mutex);
894         /* If optimization is already allowed, just return. */
895         if (kprobes_allow_optimization)
896                 goto out;
897
898         cpus_read_lock();
899         kprobes_allow_optimization = true;
900         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
901                 head = &kprobe_table[i];
902                 hlist_for_each_entry(p, head, hlist)
903                         if (!kprobe_disabled(p))
904                                 optimize_kprobe(p);
905         }
906         cpus_read_unlock();
907         pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
908 out:
909         mutex_unlock(&kprobe_mutex);
910 }
911
912 #ifdef CONFIG_SYSCTL
913 static void unoptimize_all_kprobes(void)
914 {
915         struct hlist_head *head;
916         struct kprobe *p;
917         unsigned int i;
918
919         mutex_lock(&kprobe_mutex);
920         /* If optimization is already prohibited, just return. */
921         if (!kprobes_allow_optimization) {
922                 mutex_unlock(&kprobe_mutex);
923                 return;
924         }
925
926         cpus_read_lock();
927         kprobes_allow_optimization = false;
928         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
929                 head = &kprobe_table[i];
930                 hlist_for_each_entry(p, head, hlist) {
931                         if (!kprobe_disabled(p))
932                                 unoptimize_kprobe(p, false);
933                 }
934         }
935         cpus_read_unlock();
936         mutex_unlock(&kprobe_mutex);
937
938         /* Wait for unoptimizing completion. */
939         wait_for_kprobe_optimizer();
940         pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
941 }
942
943 static DEFINE_MUTEX(kprobe_sysctl_mutex);
944 static int sysctl_kprobes_optimization;
945 static int proc_kprobes_optimization_handler(struct ctl_table *table,
946                                              int write, void *buffer,
947                                              size_t *length, loff_t *ppos)
948 {
949         int ret;
950
951         mutex_lock(&kprobe_sysctl_mutex);
952         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
953         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
954
955         if (sysctl_kprobes_optimization)
956                 optimize_all_kprobes();
957         else
958                 unoptimize_all_kprobes();
959         mutex_unlock(&kprobe_sysctl_mutex);
960
961         return ret;
962 }
963
964 static struct ctl_table kprobe_sysctls[] = {
965         {
966                 .procname       = "kprobes-optimization",
967                 .data           = &sysctl_kprobes_optimization,
968                 .maxlen         = sizeof(int),
969                 .mode           = 0644,
970                 .proc_handler   = proc_kprobes_optimization_handler,
971                 .extra1         = SYSCTL_ZERO,
972                 .extra2         = SYSCTL_ONE,
973         },
974         {}
975 };
976
977 static void __init kprobe_sysctls_init(void)
978 {
979         register_sysctl_init("debug", kprobe_sysctls);
980 }
981 #endif /* CONFIG_SYSCTL */
982
983 /* Put a breakpoint for a probe. */
984 static void __arm_kprobe(struct kprobe *p)
985 {
986         struct kprobe *_p;
987
988         lockdep_assert_held(&text_mutex);
989
990         /* Find the overlapping optimized kprobes. */
991         _p = get_optimized_kprobe(p->addr);
992         if (unlikely(_p))
993                 /* Fallback to unoptimized kprobe */
994                 unoptimize_kprobe(_p, true);
995
996         arch_arm_kprobe(p);
997         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
998 }
999
1000 /* Remove the breakpoint of a probe. */
1001 static void __disarm_kprobe(struct kprobe *p, bool reopt)
1002 {
1003         struct kprobe *_p;
1004
1005         lockdep_assert_held(&text_mutex);
1006
1007         /* Try to unoptimize */
1008         unoptimize_kprobe(p, kprobes_all_disarmed);
1009
1010         if (!kprobe_queued(p)) {
1011                 arch_disarm_kprobe(p);
1012                 /* If another kprobe was blocked, re-optimize it. */
1013                 _p = get_optimized_kprobe(p->addr);
1014                 if (unlikely(_p) && reopt)
1015                         optimize_kprobe(_p);
1016         }
1017         /*
1018          * TODO: Since unoptimization and real disarming will be done by
1019          * the worker thread, we can not check whether another probe are
1020          * unoptimized because of this probe here. It should be re-optimized
1021          * by the worker thread.
1022          */
1023 }
1024
1025 #else /* !CONFIG_OPTPROBES */
1026
1027 #define optimize_kprobe(p)                      do {} while (0)
1028 #define unoptimize_kprobe(p, f)                 do {} while (0)
1029 #define kill_optimized_kprobe(p)                do {} while (0)
1030 #define prepare_optimized_kprobe(p)             do {} while (0)
1031 #define try_to_optimize_kprobe(p)               do {} while (0)
1032 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
1033 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
1034 #define kprobe_disarmed(p)                      kprobe_disabled(p)
1035 #define wait_for_kprobe_optimizer()             do {} while (0)
1036
1037 static int reuse_unused_kprobe(struct kprobe *ap)
1038 {
1039         /*
1040          * If the optimized kprobe is NOT supported, the aggr kprobe is
1041          * released at the same time that the last aggregated kprobe is
1042          * unregistered.
1043          * Thus there should be no chance to reuse unused kprobe.
1044          */
1045         WARN_ON_ONCE(1);
1046         return -EINVAL;
1047 }
1048
1049 static void free_aggr_kprobe(struct kprobe *p)
1050 {
1051         arch_remove_kprobe(p);
1052         kfree(p);
1053 }
1054
1055 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1056 {
1057         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1058 }
1059 #endif /* CONFIG_OPTPROBES */
1060
1061 #ifdef CONFIG_KPROBES_ON_FTRACE
1062 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063         .func = kprobe_ftrace_handler,
1064         .flags = FTRACE_OPS_FL_SAVE_REGS,
1065 };
1066
1067 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068         .func = kprobe_ftrace_handler,
1069         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1070 };
1071
1072 static int kprobe_ipmodify_enabled;
1073 static int kprobe_ftrace_enabled;
1074
1075 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1076                                int *cnt)
1077 {
1078         int ret = 0;
1079
1080         lockdep_assert_held(&kprobe_mutex);
1081
1082         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083         if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1084                 return ret;
1085
1086         if (*cnt == 0) {
1087                 ret = register_ftrace_function(ops);
1088                 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1089                         goto err_ftrace;
1090         }
1091
1092         (*cnt)++;
1093         return ret;
1094
1095 err_ftrace:
1096         /*
1097          * At this point, sinec ops is not registered, we should be sefe from
1098          * registering empty filter.
1099          */
1100         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101         return ret;
1102 }
1103
1104 static int arm_kprobe_ftrace(struct kprobe *p)
1105 {
1106         bool ipmodify = (p->post_handler != NULL);
1107
1108         return __arm_kprobe_ftrace(p,
1109                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1111 }
1112
1113 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1114                                   int *cnt)
1115 {
1116         int ret = 0;
1117
1118         lockdep_assert_held(&kprobe_mutex);
1119
1120         if (*cnt == 1) {
1121                 ret = unregister_ftrace_function(ops);
1122                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1123                         return ret;
1124         }
1125
1126         (*cnt)--;
1127
1128         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1130                   p->addr, ret);
1131         return ret;
1132 }
1133
1134 static int disarm_kprobe_ftrace(struct kprobe *p)
1135 {
1136         bool ipmodify = (p->post_handler != NULL);
1137
1138         return __disarm_kprobe_ftrace(p,
1139                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1141 }
1142 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1143 static inline int arm_kprobe_ftrace(struct kprobe *p)
1144 {
1145         return -ENODEV;
1146 }
1147
1148 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1149 {
1150         return -ENODEV;
1151 }
1152 #endif
1153
1154 static int prepare_kprobe(struct kprobe *p)
1155 {
1156         /* Must ensure p->addr is really on ftrace */
1157         if (kprobe_ftrace(p))
1158                 return arch_prepare_kprobe_ftrace(p);
1159
1160         return arch_prepare_kprobe(p);
1161 }
1162
1163 static int arm_kprobe(struct kprobe *kp)
1164 {
1165         if (unlikely(kprobe_ftrace(kp)))
1166                 return arm_kprobe_ftrace(kp);
1167
1168         cpus_read_lock();
1169         mutex_lock(&text_mutex);
1170         __arm_kprobe(kp);
1171         mutex_unlock(&text_mutex);
1172         cpus_read_unlock();
1173
1174         return 0;
1175 }
1176
1177 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1178 {
1179         if (unlikely(kprobe_ftrace(kp)))
1180                 return disarm_kprobe_ftrace(kp);
1181
1182         cpus_read_lock();
1183         mutex_lock(&text_mutex);
1184         __disarm_kprobe(kp, reopt);
1185         mutex_unlock(&text_mutex);
1186         cpus_read_unlock();
1187
1188         return 0;
1189 }
1190
1191 /*
1192  * Aggregate handlers for multiple kprobes support - these handlers
1193  * take care of invoking the individual kprobe handlers on p->list
1194  */
1195 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1196 {
1197         struct kprobe *kp;
1198
1199         list_for_each_entry_rcu(kp, &p->list, list) {
1200                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201                         set_kprobe_instance(kp);
1202                         if (kp->pre_handler(kp, regs))
1203                                 return 1;
1204                 }
1205                 reset_kprobe_instance();
1206         }
1207         return 0;
1208 }
1209 NOKPROBE_SYMBOL(aggr_pre_handler);
1210
1211 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212                               unsigned long flags)
1213 {
1214         struct kprobe *kp;
1215
1216         list_for_each_entry_rcu(kp, &p->list, list) {
1217                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218                         set_kprobe_instance(kp);
1219                         kp->post_handler(kp, regs, flags);
1220                         reset_kprobe_instance();
1221                 }
1222         }
1223 }
1224 NOKPROBE_SYMBOL(aggr_post_handler);
1225
1226 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1227 void kprobes_inc_nmissed_count(struct kprobe *p)
1228 {
1229         struct kprobe *kp;
1230
1231         if (!kprobe_aggrprobe(p)) {
1232                 p->nmissed++;
1233         } else {
1234                 list_for_each_entry_rcu(kp, &p->list, list)
1235                         kp->nmissed++;
1236         }
1237 }
1238 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1239
1240 static struct kprobe kprobe_busy = {
1241         .addr = (void *) get_kprobe,
1242 };
1243
1244 void kprobe_busy_begin(void)
1245 {
1246         struct kprobe_ctlblk *kcb;
1247
1248         preempt_disable();
1249         __this_cpu_write(current_kprobe, &kprobe_busy);
1250         kcb = get_kprobe_ctlblk();
1251         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252 }
1253
1254 void kprobe_busy_end(void)
1255 {
1256         __this_cpu_write(current_kprobe, NULL);
1257         preempt_enable();
1258 }
1259
1260 /* Add the new probe to 'ap->list'. */
1261 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1262 {
1263         if (p->post_handler)
1264                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1265
1266         list_add_rcu(&p->list, &ap->list);
1267         if (p->post_handler && !ap->post_handler)
1268                 ap->post_handler = aggr_post_handler;
1269
1270         return 0;
1271 }
1272
1273 /*
1274  * Fill in the required fields of the aggregator kprobe. Replace the
1275  * earlier kprobe in the hlist with the aggregator kprobe.
1276  */
1277 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1278 {
1279         /* Copy the insn slot of 'p' to 'ap'. */
1280         copy_kprobe(p, ap);
1281         flush_insn_slot(ap);
1282         ap->addr = p->addr;
1283         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1284         ap->pre_handler = aggr_pre_handler;
1285         /* We don't care the kprobe which has gone. */
1286         if (p->post_handler && !kprobe_gone(p))
1287                 ap->post_handler = aggr_post_handler;
1288
1289         INIT_LIST_HEAD(&ap->list);
1290         INIT_HLIST_NODE(&ap->hlist);
1291
1292         list_add_rcu(&p->list, &ap->list);
1293         hlist_replace_rcu(&p->hlist, &ap->hlist);
1294 }
1295
1296 /*
1297  * This registers the second or subsequent kprobe at the same address.
1298  */
1299 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1300 {
1301         int ret = 0;
1302         struct kprobe *ap = orig_p;
1303
1304         cpus_read_lock();
1305
1306         /* For preparing optimization, jump_label_text_reserved() is called */
1307         jump_label_lock();
1308         mutex_lock(&text_mutex);
1309
1310         if (!kprobe_aggrprobe(orig_p)) {
1311                 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1312                 ap = alloc_aggr_kprobe(orig_p);
1313                 if (!ap) {
1314                         ret = -ENOMEM;
1315                         goto out;
1316                 }
1317                 init_aggr_kprobe(ap, orig_p);
1318         } else if (kprobe_unused(ap)) {
1319                 /* This probe is going to die. Rescue it */
1320                 ret = reuse_unused_kprobe(ap);
1321                 if (ret)
1322                         goto out;
1323         }
1324
1325         if (kprobe_gone(ap)) {
1326                 /*
1327                  * Attempting to insert new probe at the same location that
1328                  * had a probe in the module vaddr area which already
1329                  * freed. So, the instruction slot has already been
1330                  * released. We need a new slot for the new probe.
1331                  */
1332                 ret = arch_prepare_kprobe(ap);
1333                 if (ret)
1334                         /*
1335                          * Even if fail to allocate new slot, don't need to
1336                          * free the 'ap'. It will be used next time, or
1337                          * freed by unregister_kprobe().
1338                          */
1339                         goto out;
1340
1341                 /* Prepare optimized instructions if possible. */
1342                 prepare_optimized_kprobe(ap);
1343
1344                 /*
1345                  * Clear gone flag to prevent allocating new slot again, and
1346                  * set disabled flag because it is not armed yet.
1347                  */
1348                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349                             | KPROBE_FLAG_DISABLED;
1350         }
1351
1352         /* Copy the insn slot of 'p' to 'ap'. */
1353         copy_kprobe(ap, p);
1354         ret = add_new_kprobe(ap, p);
1355
1356 out:
1357         mutex_unlock(&text_mutex);
1358         jump_label_unlock();
1359         cpus_read_unlock();
1360
1361         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363                 if (!kprobes_all_disarmed) {
1364                         /* Arm the breakpoint again. */
1365                         ret = arm_kprobe(ap);
1366                         if (ret) {
1367                                 ap->flags |= KPROBE_FLAG_DISABLED;
1368                                 list_del_rcu(&p->list);
1369                                 synchronize_rcu();
1370                         }
1371                 }
1372         }
1373         return ret;
1374 }
1375
1376 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1377 {
1378         /* The '__kprobes' functions and entry code must not be probed. */
1379         return addr >= (unsigned long)__kprobes_text_start &&
1380                addr < (unsigned long)__kprobes_text_end;
1381 }
1382
1383 static bool __within_kprobe_blacklist(unsigned long addr)
1384 {
1385         struct kprobe_blacklist_entry *ent;
1386
1387         if (arch_within_kprobe_blacklist(addr))
1388                 return true;
1389         /*
1390          * If 'kprobe_blacklist' is defined, check the address and
1391          * reject any probe registration in the prohibited area.
1392          */
1393         list_for_each_entry(ent, &kprobe_blacklist, list) {
1394                 if (addr >= ent->start_addr && addr < ent->end_addr)
1395                         return true;
1396         }
1397         return false;
1398 }
1399
1400 bool within_kprobe_blacklist(unsigned long addr)
1401 {
1402         char symname[KSYM_NAME_LEN], *p;
1403
1404         if (__within_kprobe_blacklist(addr))
1405                 return true;
1406
1407         /* Check if the address is on a suffixed-symbol */
1408         if (!lookup_symbol_name(addr, symname)) {
1409                 p = strchr(symname, '.');
1410                 if (!p)
1411                         return false;
1412                 *p = '\0';
1413                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1414                 if (addr)
1415                         return __within_kprobe_blacklist(addr);
1416         }
1417         return false;
1418 }
1419
1420 /*
1421  * arch_adjust_kprobe_addr - adjust the address
1422  * @addr: symbol base address
1423  * @offset: offset within the symbol
1424  * @on_func_entry: was this @addr+@offset on the function entry
1425  *
1426  * Typically returns @addr + @offset, except for special cases where the
1427  * function might be prefixed by a CFI landing pad, in that case any offset
1428  * inside the landing pad is mapped to the first 'real' instruction of the
1429  * symbol.
1430  *
1431  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1432  * instruction at +0.
1433  */
1434 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1435                                                 unsigned long offset,
1436                                                 bool *on_func_entry)
1437 {
1438         *on_func_entry = !offset;
1439         return (kprobe_opcode_t *)(addr + offset);
1440 }
1441
1442 /*
1443  * If 'symbol_name' is specified, look it up and add the 'offset'
1444  * to it. This way, we can specify a relative address to a symbol.
1445  * This returns encoded errors if it fails to look up symbol or invalid
1446  * combination of parameters.
1447  */
1448 static kprobe_opcode_t *
1449 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1450              unsigned long offset, bool *on_func_entry)
1451 {
1452         if ((symbol_name && addr) || (!symbol_name && !addr))
1453                 goto invalid;
1454
1455         if (symbol_name) {
1456                 /*
1457                  * Input: @sym + @offset
1458                  * Output: @addr + @offset
1459                  *
1460                  * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1461                  *       argument into it's output!
1462                  */
1463                 addr = kprobe_lookup_name(symbol_name, offset);
1464                 if (!addr)
1465                         return ERR_PTR(-ENOENT);
1466         }
1467
1468         /*
1469          * So here we have @addr + @offset, displace it into a new
1470          * @addr' + @offset' where @addr' is the symbol start address.
1471          */
1472         addr = (void *)addr + offset;
1473         if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1474                 return ERR_PTR(-ENOENT);
1475         addr = (void *)addr - offset;
1476
1477         /*
1478          * Then ask the architecture to re-combine them, taking care of
1479          * magical function entry details while telling us if this was indeed
1480          * at the start of the function.
1481          */
1482         addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1483         if (addr)
1484                 return addr;
1485
1486 invalid:
1487         return ERR_PTR(-EINVAL);
1488 }
1489
1490 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1491 {
1492         bool on_func_entry;
1493         return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1494 }
1495
1496 /*
1497  * Check the 'p' is valid and return the aggregator kprobe
1498  * at the same address.
1499  */
1500 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1501 {
1502         struct kprobe *ap, *list_p;
1503
1504         lockdep_assert_held(&kprobe_mutex);
1505
1506         ap = get_kprobe(p->addr);
1507         if (unlikely(!ap))
1508                 return NULL;
1509
1510         if (p != ap) {
1511                 list_for_each_entry(list_p, &ap->list, list)
1512                         if (list_p == p)
1513                         /* kprobe p is a valid probe */
1514                                 goto valid;
1515                 return NULL;
1516         }
1517 valid:
1518         return ap;
1519 }
1520
1521 /*
1522  * Warn and return error if the kprobe is being re-registered since
1523  * there must be a software bug.
1524  */
1525 static inline int warn_kprobe_rereg(struct kprobe *p)
1526 {
1527         int ret = 0;
1528
1529         mutex_lock(&kprobe_mutex);
1530         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1531                 ret = -EINVAL;
1532         mutex_unlock(&kprobe_mutex);
1533
1534         return ret;
1535 }
1536
1537 static int check_ftrace_location(struct kprobe *p)
1538 {
1539         unsigned long addr = (unsigned long)p->addr;
1540
1541         if (ftrace_location(addr) == addr) {
1542 #ifdef CONFIG_KPROBES_ON_FTRACE
1543                 p->flags |= KPROBE_FLAG_FTRACE;
1544 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1545                 return -EINVAL;
1546 #endif
1547         }
1548         return 0;
1549 }
1550
1551 static int check_kprobe_address_safe(struct kprobe *p,
1552                                      struct module **probed_mod)
1553 {
1554         int ret;
1555
1556         ret = check_ftrace_location(p);
1557         if (ret)
1558                 return ret;
1559         jump_label_lock();
1560         preempt_disable();
1561
1562         /* Ensure it is not in reserved area nor out of text */
1563         if (!(core_kernel_text((unsigned long) p->addr) ||
1564             is_module_text_address((unsigned long) p->addr)) ||
1565             in_gate_area_no_mm((unsigned long) p->addr) ||
1566             within_kprobe_blacklist((unsigned long) p->addr) ||
1567             jump_label_text_reserved(p->addr, p->addr) ||
1568             static_call_text_reserved(p->addr, p->addr) ||
1569             find_bug((unsigned long)p->addr)) {
1570                 ret = -EINVAL;
1571                 goto out;
1572         }
1573
1574         /* Check if 'p' is probing a module. */
1575         *probed_mod = __module_text_address((unsigned long) p->addr);
1576         if (*probed_mod) {
1577                 /*
1578                  * We must hold a refcount of the probed module while updating
1579                  * its code to prohibit unexpected unloading.
1580                  */
1581                 if (unlikely(!try_module_get(*probed_mod))) {
1582                         ret = -ENOENT;
1583                         goto out;
1584                 }
1585
1586                 /*
1587                  * If the module freed '.init.text', we couldn't insert
1588                  * kprobes in there.
1589                  */
1590                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591                     (*probed_mod)->state != MODULE_STATE_COMING) {
1592                         module_put(*probed_mod);
1593                         *probed_mod = NULL;
1594                         ret = -ENOENT;
1595                 }
1596         }
1597 out:
1598         preempt_enable();
1599         jump_label_unlock();
1600
1601         return ret;
1602 }
1603
1604 int register_kprobe(struct kprobe *p)
1605 {
1606         int ret;
1607         struct kprobe *old_p;
1608         struct module *probed_mod;
1609         kprobe_opcode_t *addr;
1610         bool on_func_entry;
1611
1612         /* Adjust probe address from symbol */
1613         addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1614         if (IS_ERR(addr))
1615                 return PTR_ERR(addr);
1616         p->addr = addr;
1617
1618         ret = warn_kprobe_rereg(p);
1619         if (ret)
1620                 return ret;
1621
1622         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1623         p->flags &= KPROBE_FLAG_DISABLED;
1624         p->nmissed = 0;
1625         INIT_LIST_HEAD(&p->list);
1626
1627         ret = check_kprobe_address_safe(p, &probed_mod);
1628         if (ret)
1629                 return ret;
1630
1631         mutex_lock(&kprobe_mutex);
1632
1633         if (on_func_entry)
1634                 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1635
1636         old_p = get_kprobe(p->addr);
1637         if (old_p) {
1638                 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1639                 ret = register_aggr_kprobe(old_p, p);
1640                 goto out;
1641         }
1642
1643         cpus_read_lock();
1644         /* Prevent text modification */
1645         mutex_lock(&text_mutex);
1646         ret = prepare_kprobe(p);
1647         mutex_unlock(&text_mutex);
1648         cpus_read_unlock();
1649         if (ret)
1650                 goto out;
1651
1652         INIT_HLIST_NODE(&p->hlist);
1653         hlist_add_head_rcu(&p->hlist,
1654                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1655
1656         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1657                 ret = arm_kprobe(p);
1658                 if (ret) {
1659                         hlist_del_rcu(&p->hlist);
1660                         synchronize_rcu();
1661                         goto out;
1662                 }
1663         }
1664
1665         /* Try to optimize kprobe */
1666         try_to_optimize_kprobe(p);
1667 out:
1668         mutex_unlock(&kprobe_mutex);
1669
1670         if (probed_mod)
1671                 module_put(probed_mod);
1672
1673         return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(register_kprobe);
1676
1677 /* Check if all probes on the 'ap' are disabled. */
1678 static bool aggr_kprobe_disabled(struct kprobe *ap)
1679 {
1680         struct kprobe *kp;
1681
1682         lockdep_assert_held(&kprobe_mutex);
1683
1684         list_for_each_entry(kp, &ap->list, list)
1685                 if (!kprobe_disabled(kp))
1686                         /*
1687                          * Since there is an active probe on the list,
1688                          * we can't disable this 'ap'.
1689                          */
1690                         return false;
1691
1692         return true;
1693 }
1694
1695 static struct kprobe *__disable_kprobe(struct kprobe *p)
1696 {
1697         struct kprobe *orig_p;
1698         int ret;
1699
1700         lockdep_assert_held(&kprobe_mutex);
1701
1702         /* Get an original kprobe for return */
1703         orig_p = __get_valid_kprobe(p);
1704         if (unlikely(orig_p == NULL))
1705                 return ERR_PTR(-EINVAL);
1706
1707         if (!kprobe_disabled(p)) {
1708                 /* Disable probe if it is a child probe */
1709                 if (p != orig_p)
1710                         p->flags |= KPROBE_FLAG_DISABLED;
1711
1712                 /* Try to disarm and disable this/parent probe */
1713                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1714                         /*
1715                          * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1716                          * is false, 'orig_p' might not have been armed yet.
1717                          * Note arm_all_kprobes() __tries__ to arm all kprobes
1718                          * on the best effort basis.
1719                          */
1720                         if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1721                                 ret = disarm_kprobe(orig_p, true);
1722                                 if (ret) {
1723                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1724                                         return ERR_PTR(ret);
1725                                 }
1726                         }
1727                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1728                 }
1729         }
1730
1731         return orig_p;
1732 }
1733
1734 /*
1735  * Unregister a kprobe without a scheduler synchronization.
1736  */
1737 static int __unregister_kprobe_top(struct kprobe *p)
1738 {
1739         struct kprobe *ap, *list_p;
1740
1741         /* Disable kprobe. This will disarm it if needed. */
1742         ap = __disable_kprobe(p);
1743         if (IS_ERR(ap))
1744                 return PTR_ERR(ap);
1745
1746         if (ap == p)
1747                 /*
1748                  * This probe is an independent(and non-optimized) kprobe
1749                  * (not an aggrprobe). Remove from the hash list.
1750                  */
1751                 goto disarmed;
1752
1753         /* Following process expects this probe is an aggrprobe */
1754         WARN_ON(!kprobe_aggrprobe(ap));
1755
1756         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1757                 /*
1758                  * !disarmed could be happen if the probe is under delayed
1759                  * unoptimizing.
1760                  */
1761                 goto disarmed;
1762         else {
1763                 /* If disabling probe has special handlers, update aggrprobe */
1764                 if (p->post_handler && !kprobe_gone(p)) {
1765                         list_for_each_entry(list_p, &ap->list, list) {
1766                                 if ((list_p != p) && (list_p->post_handler))
1767                                         goto noclean;
1768                         }
1769                         ap->post_handler = NULL;
1770                 }
1771 noclean:
1772                 /*
1773                  * Remove from the aggrprobe: this path will do nothing in
1774                  * __unregister_kprobe_bottom().
1775                  */
1776                 list_del_rcu(&p->list);
1777                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1778                         /*
1779                          * Try to optimize this probe again, because post
1780                          * handler may have been changed.
1781                          */
1782                         optimize_kprobe(ap);
1783         }
1784         return 0;
1785
1786 disarmed:
1787         hlist_del_rcu(&ap->hlist);
1788         return 0;
1789 }
1790
1791 static void __unregister_kprobe_bottom(struct kprobe *p)
1792 {
1793         struct kprobe *ap;
1794
1795         if (list_empty(&p->list))
1796                 /* This is an independent kprobe */
1797                 arch_remove_kprobe(p);
1798         else if (list_is_singular(&p->list)) {
1799                 /* This is the last child of an aggrprobe */
1800                 ap = list_entry(p->list.next, struct kprobe, list);
1801                 list_del(&p->list);
1802                 free_aggr_kprobe(ap);
1803         }
1804         /* Otherwise, do nothing. */
1805 }
1806
1807 int register_kprobes(struct kprobe **kps, int num)
1808 {
1809         int i, ret = 0;
1810
1811         if (num <= 0)
1812                 return -EINVAL;
1813         for (i = 0; i < num; i++) {
1814                 ret = register_kprobe(kps[i]);
1815                 if (ret < 0) {
1816                         if (i > 0)
1817                                 unregister_kprobes(kps, i);
1818                         break;
1819                 }
1820         }
1821         return ret;
1822 }
1823 EXPORT_SYMBOL_GPL(register_kprobes);
1824
1825 void unregister_kprobe(struct kprobe *p)
1826 {
1827         unregister_kprobes(&p, 1);
1828 }
1829 EXPORT_SYMBOL_GPL(unregister_kprobe);
1830
1831 void unregister_kprobes(struct kprobe **kps, int num)
1832 {
1833         int i;
1834
1835         if (num <= 0)
1836                 return;
1837         mutex_lock(&kprobe_mutex);
1838         for (i = 0; i < num; i++)
1839                 if (__unregister_kprobe_top(kps[i]) < 0)
1840                         kps[i]->addr = NULL;
1841         mutex_unlock(&kprobe_mutex);
1842
1843         synchronize_rcu();
1844         for (i = 0; i < num; i++)
1845                 if (kps[i]->addr)
1846                         __unregister_kprobe_bottom(kps[i]);
1847 }
1848 EXPORT_SYMBOL_GPL(unregister_kprobes);
1849
1850 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1851                                         unsigned long val, void *data)
1852 {
1853         return NOTIFY_DONE;
1854 }
1855 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1856
1857 static struct notifier_block kprobe_exceptions_nb = {
1858         .notifier_call = kprobe_exceptions_notify,
1859         .priority = 0x7fffffff /* we need to be notified first */
1860 };
1861
1862 #ifdef CONFIG_KRETPROBES
1863
1864 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1865 static void free_rp_inst_rcu(struct rcu_head *head)
1866 {
1867         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1868
1869         if (refcount_dec_and_test(&ri->rph->ref))
1870                 kfree(ri->rph);
1871         kfree(ri);
1872 }
1873 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1874
1875 static void recycle_rp_inst(struct kretprobe_instance *ri)
1876 {
1877         struct kretprobe *rp = get_kretprobe(ri);
1878
1879         if (likely(rp))
1880                 freelist_add(&ri->freelist, &rp->freelist);
1881         else
1882                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1883 }
1884 NOKPROBE_SYMBOL(recycle_rp_inst);
1885
1886 /*
1887  * This function is called from delayed_put_task_struct() when a task is
1888  * dead and cleaned up to recycle any kretprobe instances associated with
1889  * this task. These left over instances represent probed functions that
1890  * have been called but will never return.
1891  */
1892 void kprobe_flush_task(struct task_struct *tk)
1893 {
1894         struct kretprobe_instance *ri;
1895         struct llist_node *node;
1896
1897         /* Early boot, not yet initialized. */
1898         if (unlikely(!kprobes_initialized))
1899                 return;
1900
1901         kprobe_busy_begin();
1902
1903         node = __llist_del_all(&tk->kretprobe_instances);
1904         while (node) {
1905                 ri = container_of(node, struct kretprobe_instance, llist);
1906                 node = node->next;
1907
1908                 recycle_rp_inst(ri);
1909         }
1910
1911         kprobe_busy_end();
1912 }
1913 NOKPROBE_SYMBOL(kprobe_flush_task);
1914
1915 static inline void free_rp_inst(struct kretprobe *rp)
1916 {
1917         struct kretprobe_instance *ri;
1918         struct freelist_node *node;
1919         int count = 0;
1920
1921         node = rp->freelist.head;
1922         while (node) {
1923                 ri = container_of(node, struct kretprobe_instance, freelist);
1924                 node = node->next;
1925
1926                 kfree(ri);
1927                 count++;
1928         }
1929
1930         if (refcount_sub_and_test(count, &rp->rph->ref)) {
1931                 kfree(rp->rph);
1932                 rp->rph = NULL;
1933         }
1934 }
1935
1936 /* This assumes the 'tsk' is the current task or the is not running. */
1937 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1938                                                   struct llist_node **cur)
1939 {
1940         struct kretprobe_instance *ri = NULL;
1941         struct llist_node *node = *cur;
1942
1943         if (!node)
1944                 node = tsk->kretprobe_instances.first;
1945         else
1946                 node = node->next;
1947
1948         while (node) {
1949                 ri = container_of(node, struct kretprobe_instance, llist);
1950                 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1951                         *cur = node;
1952                         return ri->ret_addr;
1953                 }
1954                 node = node->next;
1955         }
1956         return NULL;
1957 }
1958 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1959
1960 /**
1961  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1962  * @tsk: Target task
1963  * @fp: A frame pointer
1964  * @cur: a storage of the loop cursor llist_node pointer for next call
1965  *
1966  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1967  * long type. If it finds the return address, this returns that address value,
1968  * or this returns 0.
1969  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1970  * to get the currect return address - which is compared with the
1971  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1972  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1973  * first call, but '@cur' itself must NOT NULL.
1974  */
1975 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1976                                       struct llist_node **cur)
1977 {
1978         struct kretprobe_instance *ri = NULL;
1979         kprobe_opcode_t *ret;
1980
1981         if (WARN_ON_ONCE(!cur))
1982                 return 0;
1983
1984         do {
1985                 ret = __kretprobe_find_ret_addr(tsk, cur);
1986                 if (!ret)
1987                         break;
1988                 ri = container_of(*cur, struct kretprobe_instance, llist);
1989         } while (ri->fp != fp);
1990
1991         return (unsigned long)ret;
1992 }
1993 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1994
1995 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1996                                         kprobe_opcode_t *correct_ret_addr)
1997 {
1998         /*
1999          * Do nothing by default. Please fill this to update the fake return
2000          * address on the stack with the correct one on each arch if possible.
2001          */
2002 }
2003
2004 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2005                                              void *frame_pointer)
2006 {
2007         kprobe_opcode_t *correct_ret_addr = NULL;
2008         struct kretprobe_instance *ri = NULL;
2009         struct llist_node *first, *node = NULL;
2010         struct kretprobe *rp;
2011
2012         /* Find correct address and all nodes for this frame. */
2013         correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2014         if (!correct_ret_addr) {
2015                 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2016                 BUG_ON(1);
2017         }
2018
2019         /*
2020          * Set the return address as the instruction pointer, because if the
2021          * user handler calls stack_trace_save_regs() with this 'regs',
2022          * the stack trace will start from the instruction pointer.
2023          */
2024         instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2025
2026         /* Run the user handler of the nodes. */
2027         first = current->kretprobe_instances.first;
2028         while (first) {
2029                 ri = container_of(first, struct kretprobe_instance, llist);
2030
2031                 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2032                         break;
2033
2034                 rp = get_kretprobe(ri);
2035                 if (rp && rp->handler) {
2036                         struct kprobe *prev = kprobe_running();
2037
2038                         __this_cpu_write(current_kprobe, &rp->kp);
2039                         ri->ret_addr = correct_ret_addr;
2040                         rp->handler(ri, regs);
2041                         __this_cpu_write(current_kprobe, prev);
2042                 }
2043                 if (first == node)
2044                         break;
2045
2046                 first = first->next;
2047         }
2048
2049         arch_kretprobe_fixup_return(regs, correct_ret_addr);
2050
2051         /* Unlink all nodes for this frame. */
2052         first = current->kretprobe_instances.first;
2053         current->kretprobe_instances.first = node->next;
2054         node->next = NULL;
2055
2056         /* Recycle free instances. */
2057         while (first) {
2058                 ri = container_of(first, struct kretprobe_instance, llist);
2059                 first = first->next;
2060
2061                 recycle_rp_inst(ri);
2062         }
2063
2064         return (unsigned long)correct_ret_addr;
2065 }
2066 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2067
2068 /*
2069  * This kprobe pre_handler is registered with every kretprobe. When probe
2070  * hits it will set up the return probe.
2071  */
2072 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2073 {
2074         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2075         struct kretprobe_instance *ri;
2076         struct freelist_node *fn;
2077
2078         fn = freelist_try_get(&rp->freelist);
2079         if (!fn) {
2080                 rp->nmissed++;
2081                 return 0;
2082         }
2083
2084         ri = container_of(fn, struct kretprobe_instance, freelist);
2085
2086         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2087                 freelist_add(&ri->freelist, &rp->freelist);
2088                 return 0;
2089         }
2090
2091         arch_prepare_kretprobe(ri, regs);
2092
2093         __llist_add(&ri->llist, &current->kretprobe_instances);
2094
2095         return 0;
2096 }
2097 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2098 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2099 /*
2100  * This kprobe pre_handler is registered with every kretprobe. When probe
2101  * hits it will set up the return probe.
2102  */
2103 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2104 {
2105         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2106         struct kretprobe_instance *ri;
2107         struct rethook_node *rhn;
2108
2109         rhn = rethook_try_get(rp->rh);
2110         if (!rhn) {
2111                 rp->nmissed++;
2112                 return 0;
2113         }
2114
2115         ri = container_of(rhn, struct kretprobe_instance, node);
2116
2117         if (rp->entry_handler && rp->entry_handler(ri, regs))
2118                 rethook_recycle(rhn);
2119         else
2120                 rethook_hook(rhn, regs, kprobe_ftrace(p));
2121
2122         return 0;
2123 }
2124 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2125
2126 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2127                                       struct pt_regs *regs)
2128 {
2129         struct kretprobe *rp = (struct kretprobe *)data;
2130         struct kretprobe_instance *ri;
2131         struct kprobe_ctlblk *kcb;
2132
2133         /* The data must NOT be null. This means rethook data structure is broken. */
2134         if (WARN_ON_ONCE(!data) || !rp->handler)
2135                 return;
2136
2137         __this_cpu_write(current_kprobe, &rp->kp);
2138         kcb = get_kprobe_ctlblk();
2139         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2140
2141         ri = container_of(rh, struct kretprobe_instance, node);
2142         rp->handler(ri, regs);
2143
2144         __this_cpu_write(current_kprobe, NULL);
2145 }
2146 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2147
2148 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2149
2150 /**
2151  * kprobe_on_func_entry() -- check whether given address is function entry
2152  * @addr: Target address
2153  * @sym:  Target symbol name
2154  * @offset: The offset from the symbol or the address
2155  *
2156  * This checks whether the given @addr+@offset or @sym+@offset is on the
2157  * function entry address or not.
2158  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2159  * And also it returns -ENOENT if it fails the symbol or address lookup.
2160  * Caller must pass @addr or @sym (either one must be NULL), or this
2161  * returns -EINVAL.
2162  */
2163 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2164 {
2165         bool on_func_entry;
2166         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2167
2168         if (IS_ERR(kp_addr))
2169                 return PTR_ERR(kp_addr);
2170
2171         if (!on_func_entry)
2172                 return -EINVAL;
2173
2174         return 0;
2175 }
2176
2177 int register_kretprobe(struct kretprobe *rp)
2178 {
2179         int ret;
2180         struct kretprobe_instance *inst;
2181         int i;
2182         void *addr;
2183
2184         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2185         if (ret)
2186                 return ret;
2187
2188         /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2189         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2190                 return -EINVAL;
2191
2192         if (kretprobe_blacklist_size) {
2193                 addr = kprobe_addr(&rp->kp);
2194                 if (IS_ERR(addr))
2195                         return PTR_ERR(addr);
2196
2197                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2198                         if (kretprobe_blacklist[i].addr == addr)
2199                                 return -EINVAL;
2200                 }
2201         }
2202
2203         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2204                 return -E2BIG;
2205
2206         rp->kp.pre_handler = pre_handler_kretprobe;
2207         rp->kp.post_handler = NULL;
2208
2209         /* Pre-allocate memory for max kretprobe instances */
2210         if (rp->maxactive <= 0) {
2211 #ifdef CONFIG_PREEMPTION
2212                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2213 #else
2214                 rp->maxactive = num_possible_cpus();
2215 #endif
2216         }
2217 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2218         rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2219         if (!rp->rh)
2220                 return -ENOMEM;
2221
2222         for (i = 0; i < rp->maxactive; i++) {
2223                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2224                                rp->data_size, GFP_KERNEL);
2225                 if (inst == NULL) {
2226                         rethook_free(rp->rh);
2227                         rp->rh = NULL;
2228                         return -ENOMEM;
2229                 }
2230                 rethook_add_node(rp->rh, &inst->node);
2231         }
2232         rp->nmissed = 0;
2233         /* Establish function entry probe point */
2234         ret = register_kprobe(&rp->kp);
2235         if (ret != 0) {
2236                 rethook_free(rp->rh);
2237                 rp->rh = NULL;
2238         }
2239 #else   /* !CONFIG_KRETPROBE_ON_RETHOOK */
2240         rp->freelist.head = NULL;
2241         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2242         if (!rp->rph)
2243                 return -ENOMEM;
2244
2245         rp->rph->rp = rp;
2246         for (i = 0; i < rp->maxactive; i++) {
2247                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2248                                rp->data_size, GFP_KERNEL);
2249                 if (inst == NULL) {
2250                         refcount_set(&rp->rph->ref, i);
2251                         free_rp_inst(rp);
2252                         return -ENOMEM;
2253                 }
2254                 inst->rph = rp->rph;
2255                 freelist_add(&inst->freelist, &rp->freelist);
2256         }
2257         refcount_set(&rp->rph->ref, i);
2258
2259         rp->nmissed = 0;
2260         /* Establish function entry probe point */
2261         ret = register_kprobe(&rp->kp);
2262         if (ret != 0)
2263                 free_rp_inst(rp);
2264 #endif
2265         return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(register_kretprobe);
2268
2269 int register_kretprobes(struct kretprobe **rps, int num)
2270 {
2271         int ret = 0, i;
2272
2273         if (num <= 0)
2274                 return -EINVAL;
2275         for (i = 0; i < num; i++) {
2276                 ret = register_kretprobe(rps[i]);
2277                 if (ret < 0) {
2278                         if (i > 0)
2279                                 unregister_kretprobes(rps, i);
2280                         break;
2281                 }
2282         }
2283         return ret;
2284 }
2285 EXPORT_SYMBOL_GPL(register_kretprobes);
2286
2287 void unregister_kretprobe(struct kretprobe *rp)
2288 {
2289         unregister_kretprobes(&rp, 1);
2290 }
2291 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2292
2293 void unregister_kretprobes(struct kretprobe **rps, int num)
2294 {
2295         int i;
2296
2297         if (num <= 0)
2298                 return;
2299         mutex_lock(&kprobe_mutex);
2300         for (i = 0; i < num; i++) {
2301                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2302                         rps[i]->kp.addr = NULL;
2303 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2304                 rethook_free(rps[i]->rh);
2305 #else
2306                 rps[i]->rph->rp = NULL;
2307 #endif
2308         }
2309         mutex_unlock(&kprobe_mutex);
2310
2311         synchronize_rcu();
2312         for (i = 0; i < num; i++) {
2313                 if (rps[i]->kp.addr) {
2314                         __unregister_kprobe_bottom(&rps[i]->kp);
2315 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2316                         free_rp_inst(rps[i]);
2317 #endif
2318                 }
2319         }
2320 }
2321 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2322
2323 #else /* CONFIG_KRETPROBES */
2324 int register_kretprobe(struct kretprobe *rp)
2325 {
2326         return -EOPNOTSUPP;
2327 }
2328 EXPORT_SYMBOL_GPL(register_kretprobe);
2329
2330 int register_kretprobes(struct kretprobe **rps, int num)
2331 {
2332         return -EOPNOTSUPP;
2333 }
2334 EXPORT_SYMBOL_GPL(register_kretprobes);
2335
2336 void unregister_kretprobe(struct kretprobe *rp)
2337 {
2338 }
2339 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2340
2341 void unregister_kretprobes(struct kretprobe **rps, int num)
2342 {
2343 }
2344 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2345
2346 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2347 {
2348         return 0;
2349 }
2350 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2351
2352 #endif /* CONFIG_KRETPROBES */
2353
2354 /* Set the kprobe gone and remove its instruction buffer. */
2355 static void kill_kprobe(struct kprobe *p)
2356 {
2357         struct kprobe *kp;
2358
2359         lockdep_assert_held(&kprobe_mutex);
2360
2361         p->flags |= KPROBE_FLAG_GONE;
2362         if (kprobe_aggrprobe(p)) {
2363                 /*
2364                  * If this is an aggr_kprobe, we have to list all the
2365                  * chained probes and mark them GONE.
2366                  */
2367                 list_for_each_entry(kp, &p->list, list)
2368                         kp->flags |= KPROBE_FLAG_GONE;
2369                 p->post_handler = NULL;
2370                 kill_optimized_kprobe(p);
2371         }
2372         /*
2373          * Here, we can remove insn_slot safely, because no thread calls
2374          * the original probed function (which will be freed soon) any more.
2375          */
2376         arch_remove_kprobe(p);
2377
2378         /*
2379          * The module is going away. We should disarm the kprobe which
2380          * is using ftrace, because ftrace framework is still available at
2381          * 'MODULE_STATE_GOING' notification.
2382          */
2383         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2384                 disarm_kprobe_ftrace(p);
2385 }
2386
2387 /* Disable one kprobe */
2388 int disable_kprobe(struct kprobe *kp)
2389 {
2390         int ret = 0;
2391         struct kprobe *p;
2392
2393         mutex_lock(&kprobe_mutex);
2394
2395         /* Disable this kprobe */
2396         p = __disable_kprobe(kp);
2397         if (IS_ERR(p))
2398                 ret = PTR_ERR(p);
2399
2400         mutex_unlock(&kprobe_mutex);
2401         return ret;
2402 }
2403 EXPORT_SYMBOL_GPL(disable_kprobe);
2404
2405 /* Enable one kprobe */
2406 int enable_kprobe(struct kprobe *kp)
2407 {
2408         int ret = 0;
2409         struct kprobe *p;
2410
2411         mutex_lock(&kprobe_mutex);
2412
2413         /* Check whether specified probe is valid. */
2414         p = __get_valid_kprobe(kp);
2415         if (unlikely(p == NULL)) {
2416                 ret = -EINVAL;
2417                 goto out;
2418         }
2419
2420         if (kprobe_gone(kp)) {
2421                 /* This kprobe has gone, we couldn't enable it. */
2422                 ret = -EINVAL;
2423                 goto out;
2424         }
2425
2426         if (p != kp)
2427                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2428
2429         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2430                 p->flags &= ~KPROBE_FLAG_DISABLED;
2431                 ret = arm_kprobe(p);
2432                 if (ret)
2433                         p->flags |= KPROBE_FLAG_DISABLED;
2434         }
2435 out:
2436         mutex_unlock(&kprobe_mutex);
2437         return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(enable_kprobe);
2440
2441 /* Caller must NOT call this in usual path. This is only for critical case */
2442 void dump_kprobe(struct kprobe *kp)
2443 {
2444         pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2445                kp->symbol_name, kp->offset, kp->addr);
2446 }
2447 NOKPROBE_SYMBOL(dump_kprobe);
2448
2449 int kprobe_add_ksym_blacklist(unsigned long entry)
2450 {
2451         struct kprobe_blacklist_entry *ent;
2452         unsigned long offset = 0, size = 0;
2453
2454         if (!kernel_text_address(entry) ||
2455             !kallsyms_lookup_size_offset(entry, &size, &offset))
2456                 return -EINVAL;
2457
2458         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2459         if (!ent)
2460                 return -ENOMEM;
2461         ent->start_addr = entry;
2462         ent->end_addr = entry + size;
2463         INIT_LIST_HEAD(&ent->list);
2464         list_add_tail(&ent->list, &kprobe_blacklist);
2465
2466         return (int)size;
2467 }
2468
2469 /* Add all symbols in given area into kprobe blacklist */
2470 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2471 {
2472         unsigned long entry;
2473         int ret = 0;
2474
2475         for (entry = start; entry < end; entry += ret) {
2476                 ret = kprobe_add_ksym_blacklist(entry);
2477                 if (ret < 0)
2478                         return ret;
2479                 if (ret == 0)   /* In case of alias symbol */
2480                         ret = 1;
2481         }
2482         return 0;
2483 }
2484
2485 /* Remove all symbols in given area from kprobe blacklist */
2486 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2487 {
2488         struct kprobe_blacklist_entry *ent, *n;
2489
2490         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2491                 if (ent->start_addr < start || ent->start_addr >= end)
2492                         continue;
2493                 list_del(&ent->list);
2494                 kfree(ent);
2495         }
2496 }
2497
2498 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2499 {
2500         kprobe_remove_area_blacklist(entry, entry + 1);
2501 }
2502
2503 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2504                                    char *type, char *sym)
2505 {
2506         return -ERANGE;
2507 }
2508
2509 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2510                        char *sym)
2511 {
2512 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2513         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2514                 return 0;
2515 #ifdef CONFIG_OPTPROBES
2516         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2517                 return 0;
2518 #endif
2519 #endif
2520         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2521                 return 0;
2522         return -ERANGE;
2523 }
2524
2525 int __init __weak arch_populate_kprobe_blacklist(void)
2526 {
2527         return 0;
2528 }
2529
2530 /*
2531  * Lookup and populate the kprobe_blacklist.
2532  *
2533  * Unlike the kretprobe blacklist, we'll need to determine
2534  * the range of addresses that belong to the said functions,
2535  * since a kprobe need not necessarily be at the beginning
2536  * of a function.
2537  */
2538 static int __init populate_kprobe_blacklist(unsigned long *start,
2539                                              unsigned long *end)
2540 {
2541         unsigned long entry;
2542         unsigned long *iter;
2543         int ret;
2544
2545         for (iter = start; iter < end; iter++) {
2546                 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2547                 ret = kprobe_add_ksym_blacklist(entry);
2548                 if (ret == -EINVAL)
2549                         continue;
2550                 if (ret < 0)
2551                         return ret;
2552         }
2553
2554         /* Symbols in '__kprobes_text' are blacklisted */
2555         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2556                                         (unsigned long)__kprobes_text_end);
2557         if (ret)
2558                 return ret;
2559
2560         /* Symbols in 'noinstr' section are blacklisted */
2561         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2562                                         (unsigned long)__noinstr_text_end);
2563
2564         return ret ? : arch_populate_kprobe_blacklist();
2565 }
2566
2567 static void add_module_kprobe_blacklist(struct module *mod)
2568 {
2569         unsigned long start, end;
2570         int i;
2571
2572         if (mod->kprobe_blacklist) {
2573                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2574                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2575         }
2576
2577         start = (unsigned long)mod->kprobes_text_start;
2578         if (start) {
2579                 end = start + mod->kprobes_text_size;
2580                 kprobe_add_area_blacklist(start, end);
2581         }
2582
2583         start = (unsigned long)mod->noinstr_text_start;
2584         if (start) {
2585                 end = start + mod->noinstr_text_size;
2586                 kprobe_add_area_blacklist(start, end);
2587         }
2588 }
2589
2590 static void remove_module_kprobe_blacklist(struct module *mod)
2591 {
2592         unsigned long start, end;
2593         int i;
2594
2595         if (mod->kprobe_blacklist) {
2596                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2597                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2598         }
2599
2600         start = (unsigned long)mod->kprobes_text_start;
2601         if (start) {
2602                 end = start + mod->kprobes_text_size;
2603                 kprobe_remove_area_blacklist(start, end);
2604         }
2605
2606         start = (unsigned long)mod->noinstr_text_start;
2607         if (start) {
2608                 end = start + mod->noinstr_text_size;
2609                 kprobe_remove_area_blacklist(start, end);
2610         }
2611 }
2612
2613 /* Module notifier call back, checking kprobes on the module */
2614 static int kprobes_module_callback(struct notifier_block *nb,
2615                                    unsigned long val, void *data)
2616 {
2617         struct module *mod = data;
2618         struct hlist_head *head;
2619         struct kprobe *p;
2620         unsigned int i;
2621         int checkcore = (val == MODULE_STATE_GOING);
2622
2623         if (val == MODULE_STATE_COMING) {
2624                 mutex_lock(&kprobe_mutex);
2625                 add_module_kprobe_blacklist(mod);
2626                 mutex_unlock(&kprobe_mutex);
2627         }
2628         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2629                 return NOTIFY_DONE;
2630
2631         /*
2632          * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2633          * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2634          * notified, only '.init.text' section would be freed. We need to
2635          * disable kprobes which have been inserted in the sections.
2636          */
2637         mutex_lock(&kprobe_mutex);
2638         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2639                 head = &kprobe_table[i];
2640                 hlist_for_each_entry(p, head, hlist)
2641                         if (within_module_init((unsigned long)p->addr, mod) ||
2642                             (checkcore &&
2643                              within_module_core((unsigned long)p->addr, mod))) {
2644                                 /*
2645                                  * The vaddr this probe is installed will soon
2646                                  * be vfreed buy not synced to disk. Hence,
2647                                  * disarming the breakpoint isn't needed.
2648                                  *
2649                                  * Note, this will also move any optimized probes
2650                                  * that are pending to be removed from their
2651                                  * corresponding lists to the 'freeing_list' and
2652                                  * will not be touched by the delayed
2653                                  * kprobe_optimizer() work handler.
2654                                  */
2655                                 kill_kprobe(p);
2656                         }
2657         }
2658         if (val == MODULE_STATE_GOING)
2659                 remove_module_kprobe_blacklist(mod);
2660         mutex_unlock(&kprobe_mutex);
2661         return NOTIFY_DONE;
2662 }
2663
2664 static struct notifier_block kprobe_module_nb = {
2665         .notifier_call = kprobes_module_callback,
2666         .priority = 0
2667 };
2668
2669 void kprobe_free_init_mem(void)
2670 {
2671         void *start = (void *)(&__init_begin);
2672         void *end = (void *)(&__init_end);
2673         struct hlist_head *head;
2674         struct kprobe *p;
2675         int i;
2676
2677         mutex_lock(&kprobe_mutex);
2678
2679         /* Kill all kprobes on initmem because the target code has been freed. */
2680         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2681                 head = &kprobe_table[i];
2682                 hlist_for_each_entry(p, head, hlist) {
2683                         if (start <= (void *)p->addr && (void *)p->addr < end)
2684                                 kill_kprobe(p);
2685                 }
2686         }
2687
2688         mutex_unlock(&kprobe_mutex);
2689 }
2690
2691 static int __init init_kprobes(void)
2692 {
2693         int i, err = 0;
2694
2695         /* FIXME allocate the probe table, currently defined statically */
2696         /* initialize all list heads */
2697         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2698                 INIT_HLIST_HEAD(&kprobe_table[i]);
2699
2700         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2701                                         __stop_kprobe_blacklist);
2702         if (err)
2703                 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2704
2705         if (kretprobe_blacklist_size) {
2706                 /* lookup the function address from its name */
2707                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2708                         kretprobe_blacklist[i].addr =
2709                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2710                         if (!kretprobe_blacklist[i].addr)
2711                                 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2712                                        kretprobe_blacklist[i].name);
2713                 }
2714         }
2715
2716         /* By default, kprobes are armed */
2717         kprobes_all_disarmed = false;
2718
2719 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2720         /* Init 'kprobe_optinsn_slots' for allocation */
2721         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2722 #endif
2723
2724         err = arch_init_kprobes();
2725         if (!err)
2726                 err = register_die_notifier(&kprobe_exceptions_nb);
2727         if (!err)
2728                 err = register_module_notifier(&kprobe_module_nb);
2729
2730         kprobes_initialized = (err == 0);
2731         kprobe_sysctls_init();
2732         return err;
2733 }
2734 early_initcall(init_kprobes);
2735
2736 #if defined(CONFIG_OPTPROBES)
2737 static int __init init_optprobes(void)
2738 {
2739         /*
2740          * Enable kprobe optimization - this kicks the optimizer which
2741          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2742          * not spawned in early initcall. So delay the optimization.
2743          */
2744         optimize_all_kprobes();
2745
2746         return 0;
2747 }
2748 subsys_initcall(init_optprobes);
2749 #endif
2750
2751 #ifdef CONFIG_DEBUG_FS
2752 static void report_probe(struct seq_file *pi, struct kprobe *p,
2753                 const char *sym, int offset, char *modname, struct kprobe *pp)
2754 {
2755         char *kprobe_type;
2756         void *addr = p->addr;
2757
2758         if (p->pre_handler == pre_handler_kretprobe)
2759                 kprobe_type = "r";
2760         else
2761                 kprobe_type = "k";
2762
2763         if (!kallsyms_show_value(pi->file->f_cred))
2764                 addr = NULL;
2765
2766         if (sym)
2767                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2768                         addr, kprobe_type, sym, offset,
2769                         (modname ? modname : " "));
2770         else    /* try to use %pS */
2771                 seq_printf(pi, "%px  %s  %pS ",
2772                         addr, kprobe_type, p->addr);
2773
2774         if (!pp)
2775                 pp = p;
2776         seq_printf(pi, "%s%s%s%s\n",
2777                 (kprobe_gone(p) ? "[GONE]" : ""),
2778                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2779                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2780                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2781 }
2782
2783 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2784 {
2785         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2786 }
2787
2788 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2789 {
2790         (*pos)++;
2791         if (*pos >= KPROBE_TABLE_SIZE)
2792                 return NULL;
2793         return pos;
2794 }
2795
2796 static void kprobe_seq_stop(struct seq_file *f, void *v)
2797 {
2798         /* Nothing to do */
2799 }
2800
2801 static int show_kprobe_addr(struct seq_file *pi, void *v)
2802 {
2803         struct hlist_head *head;
2804         struct kprobe *p, *kp;
2805         const char *sym = NULL;
2806         unsigned int i = *(loff_t *) v;
2807         unsigned long offset = 0;
2808         char *modname, namebuf[KSYM_NAME_LEN];
2809
2810         head = &kprobe_table[i];
2811         preempt_disable();
2812         hlist_for_each_entry_rcu(p, head, hlist) {
2813                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2814                                         &offset, &modname, namebuf);
2815                 if (kprobe_aggrprobe(p)) {
2816                         list_for_each_entry_rcu(kp, &p->list, list)
2817                                 report_probe(pi, kp, sym, offset, modname, p);
2818                 } else
2819                         report_probe(pi, p, sym, offset, modname, NULL);
2820         }
2821         preempt_enable();
2822         return 0;
2823 }
2824
2825 static const struct seq_operations kprobes_sops = {
2826         .start = kprobe_seq_start,
2827         .next  = kprobe_seq_next,
2828         .stop  = kprobe_seq_stop,
2829         .show  = show_kprobe_addr
2830 };
2831
2832 DEFINE_SEQ_ATTRIBUTE(kprobes);
2833
2834 /* kprobes/blacklist -- shows which functions can not be probed */
2835 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2836 {
2837         mutex_lock(&kprobe_mutex);
2838         return seq_list_start(&kprobe_blacklist, *pos);
2839 }
2840
2841 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2842 {
2843         return seq_list_next(v, &kprobe_blacklist, pos);
2844 }
2845
2846 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2847 {
2848         struct kprobe_blacklist_entry *ent =
2849                 list_entry(v, struct kprobe_blacklist_entry, list);
2850
2851         /*
2852          * If '/proc/kallsyms' is not showing kernel address, we won't
2853          * show them here either.
2854          */
2855         if (!kallsyms_show_value(m->file->f_cred))
2856                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2857                            (void *)ent->start_addr);
2858         else
2859                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2860                            (void *)ent->end_addr, (void *)ent->start_addr);
2861         return 0;
2862 }
2863
2864 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2865 {
2866         mutex_unlock(&kprobe_mutex);
2867 }
2868
2869 static const struct seq_operations kprobe_blacklist_sops = {
2870         .start = kprobe_blacklist_seq_start,
2871         .next  = kprobe_blacklist_seq_next,
2872         .stop  = kprobe_blacklist_seq_stop,
2873         .show  = kprobe_blacklist_seq_show,
2874 };
2875 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2876
2877 static int arm_all_kprobes(void)
2878 {
2879         struct hlist_head *head;
2880         struct kprobe *p;
2881         unsigned int i, total = 0, errors = 0;
2882         int err, ret = 0;
2883
2884         mutex_lock(&kprobe_mutex);
2885
2886         /* If kprobes are armed, just return */
2887         if (!kprobes_all_disarmed)
2888                 goto already_enabled;
2889
2890         /*
2891          * optimize_kprobe() called by arm_kprobe() checks
2892          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2893          * arm_kprobe.
2894          */
2895         kprobes_all_disarmed = false;
2896         /* Arming kprobes doesn't optimize kprobe itself */
2897         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2898                 head = &kprobe_table[i];
2899                 /* Arm all kprobes on a best-effort basis */
2900                 hlist_for_each_entry(p, head, hlist) {
2901                         if (!kprobe_disabled(p)) {
2902                                 err = arm_kprobe(p);
2903                                 if (err)  {
2904                                         errors++;
2905                                         ret = err;
2906                                 }
2907                                 total++;
2908                         }
2909                 }
2910         }
2911
2912         if (errors)
2913                 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2914                         errors, total);
2915         else
2916                 pr_info("Kprobes globally enabled\n");
2917
2918 already_enabled:
2919         mutex_unlock(&kprobe_mutex);
2920         return ret;
2921 }
2922
2923 static int disarm_all_kprobes(void)
2924 {
2925         struct hlist_head *head;
2926         struct kprobe *p;
2927         unsigned int i, total = 0, errors = 0;
2928         int err, ret = 0;
2929
2930         mutex_lock(&kprobe_mutex);
2931
2932         /* If kprobes are already disarmed, just return */
2933         if (kprobes_all_disarmed) {
2934                 mutex_unlock(&kprobe_mutex);
2935                 return 0;
2936         }
2937
2938         kprobes_all_disarmed = true;
2939
2940         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2941                 head = &kprobe_table[i];
2942                 /* Disarm all kprobes on a best-effort basis */
2943                 hlist_for_each_entry(p, head, hlist) {
2944                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2945                                 err = disarm_kprobe(p, false);
2946                                 if (err) {
2947                                         errors++;
2948                                         ret = err;
2949                                 }
2950                                 total++;
2951                         }
2952                 }
2953         }
2954
2955         if (errors)
2956                 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2957                         errors, total);
2958         else
2959                 pr_info("Kprobes globally disabled\n");
2960
2961         mutex_unlock(&kprobe_mutex);
2962
2963         /* Wait for disarming all kprobes by optimizer */
2964         wait_for_kprobe_optimizer();
2965
2966         return ret;
2967 }
2968
2969 /*
2970  * XXX: The debugfs bool file interface doesn't allow for callbacks
2971  * when the bool state is switched. We can reuse that facility when
2972  * available
2973  */
2974 static ssize_t read_enabled_file_bool(struct file *file,
2975                char __user *user_buf, size_t count, loff_t *ppos)
2976 {
2977         char buf[3];
2978
2979         if (!kprobes_all_disarmed)
2980                 buf[0] = '1';
2981         else
2982                 buf[0] = '0';
2983         buf[1] = '\n';
2984         buf[2] = 0x00;
2985         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2986 }
2987
2988 static ssize_t write_enabled_file_bool(struct file *file,
2989                const char __user *user_buf, size_t count, loff_t *ppos)
2990 {
2991         bool enable;
2992         int ret;
2993
2994         ret = kstrtobool_from_user(user_buf, count, &enable);
2995         if (ret)
2996                 return ret;
2997
2998         ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2999         if (ret)
3000                 return ret;
3001
3002         return count;
3003 }
3004
3005 static const struct file_operations fops_kp = {
3006         .read =         read_enabled_file_bool,
3007         .write =        write_enabled_file_bool,
3008         .llseek =       default_llseek,
3009 };
3010
3011 static int __init debugfs_kprobe_init(void)
3012 {
3013         struct dentry *dir;
3014
3015         dir = debugfs_create_dir("kprobes", NULL);
3016
3017         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3018
3019         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3020
3021         debugfs_create_file("blacklist", 0400, dir, NULL,
3022                             &kprobe_blacklist_fops);
3023
3024         return 0;
3025 }
3026
3027 late_initcall(debugfs_kprobe_init);
3028 #endif /* CONFIG_DEBUG_FS */