Merge tag 'pm-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[platform/kernel/linux-rpi.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47
48
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52  * Or
53  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54  */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56
57 /* NOTE: change this value only with kprobe_mutex held */
58 static bool kprobes_all_disarmed;
59
60 /* This protects kprobe_table and optimizing_list */
61 static DEFINE_MUTEX(kprobe_mutex);
62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
63
64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
65                                         unsigned int __unused)
66 {
67         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 }
69
70 /* Blacklist -- list of struct kprobe_blacklist_entry */
71 static LIST_HEAD(kprobe_blacklist);
72
73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
74 /*
75  * kprobe->ainsn.insn points to the copy of the instruction to be
76  * single-stepped. x86_64, POWER4 and above have no-exec support and
77  * stepping on the instruction on a vmalloced/kmalloced/data page
78  * is a recipe for disaster
79  */
80 struct kprobe_insn_page {
81         struct list_head list;
82         kprobe_opcode_t *insns;         /* Page of instruction slots */
83         struct kprobe_insn_cache *cache;
84         int nused;
85         int ngarbage;
86         char slot_used[];
87 };
88
89 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
90         (offsetof(struct kprobe_insn_page, slot_used) + \
91          (sizeof(char) * (slots)))
92
93 static int slots_per_page(struct kprobe_insn_cache *c)
94 {
95         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
96 }
97
98 enum kprobe_slot_state {
99         SLOT_CLEAN = 0,
100         SLOT_DIRTY = 1,
101         SLOT_USED = 2,
102 };
103
104 void __weak *alloc_insn_page(void)
105 {
106         return module_alloc(PAGE_SIZE);
107 }
108
109 void __weak free_insn_page(void *page)
110 {
111         module_memfree(page);
112 }
113
114 struct kprobe_insn_cache kprobe_insn_slots = {
115         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
116         .alloc = alloc_insn_page,
117         .free = free_insn_page,
118         .sym = KPROBE_INSN_PAGE_SYM,
119         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
120         .insn_size = MAX_INSN_SIZE,
121         .nr_garbage = 0,
122 };
123 static int collect_garbage_slots(struct kprobe_insn_cache *c);
124
125 /**
126  * __get_insn_slot() - Find a slot on an executable page for an instruction.
127  * We allocate an executable page if there's no room on existing ones.
128  */
129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
130 {
131         struct kprobe_insn_page *kip;
132         kprobe_opcode_t *slot = NULL;
133
134         /* Since the slot array is not protected by rcu, we need a mutex */
135         mutex_lock(&c->mutex);
136  retry:
137         rcu_read_lock();
138         list_for_each_entry_rcu(kip, &c->pages, list) {
139                 if (kip->nused < slots_per_page(c)) {
140                         int i;
141                         for (i = 0; i < slots_per_page(c); i++) {
142                                 if (kip->slot_used[i] == SLOT_CLEAN) {
143                                         kip->slot_used[i] = SLOT_USED;
144                                         kip->nused++;
145                                         slot = kip->insns + (i * c->insn_size);
146                                         rcu_read_unlock();
147                                         goto out;
148                                 }
149                         }
150                         /* kip->nused is broken. Fix it. */
151                         kip->nused = slots_per_page(c);
152                         WARN_ON(1);
153                 }
154         }
155         rcu_read_unlock();
156
157         /* If there are any garbage slots, collect it and try again. */
158         if (c->nr_garbage && collect_garbage_slots(c) == 0)
159                 goto retry;
160
161         /* All out of space.  Need to allocate a new page. */
162         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
163         if (!kip)
164                 goto out;
165
166         /*
167          * Use module_alloc so this page is within +/- 2GB of where the
168          * kernel image and loaded module images reside. This is required
169          * so x86_64 can correctly handle the %rip-relative fixups.
170          */
171         kip->insns = c->alloc();
172         if (!kip->insns) {
173                 kfree(kip);
174                 goto out;
175         }
176         INIT_LIST_HEAD(&kip->list);
177         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
178         kip->slot_used[0] = SLOT_USED;
179         kip->nused = 1;
180         kip->ngarbage = 0;
181         kip->cache = c;
182         list_add_rcu(&kip->list, &c->pages);
183         slot = kip->insns;
184
185         /* Record the perf ksymbol register event after adding the page */
186         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
187                            PAGE_SIZE, false, c->sym);
188 out:
189         mutex_unlock(&c->mutex);
190         return slot;
191 }
192
193 /* Return 1 if all garbages are collected, otherwise 0. */
194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
195 {
196         kip->slot_used[idx] = SLOT_CLEAN;
197         kip->nused--;
198         if (kip->nused == 0) {
199                 /*
200                  * Page is no longer in use.  Free it unless
201                  * it's the last one.  We keep the last one
202                  * so as not to have to set it up again the
203                  * next time somebody inserts a probe.
204                  */
205                 if (!list_is_singular(&kip->list)) {
206                         /*
207                          * Record perf ksymbol unregister event before removing
208                          * the page.
209                          */
210                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
211                                            (unsigned long)kip->insns, PAGE_SIZE, true,
212                                            kip->cache->sym);
213                         list_del_rcu(&kip->list);
214                         synchronize_rcu();
215                         kip->cache->free(kip->insns);
216                         kfree(kip);
217                 }
218                 return 1;
219         }
220         return 0;
221 }
222
223 static int collect_garbage_slots(struct kprobe_insn_cache *c)
224 {
225         struct kprobe_insn_page *kip, *next;
226
227         /* Ensure no-one is interrupted on the garbages */
228         synchronize_rcu();
229
230         list_for_each_entry_safe(kip, next, &c->pages, list) {
231                 int i;
232                 if (kip->ngarbage == 0)
233                         continue;
234                 kip->ngarbage = 0;      /* we will collect all garbages */
235                 for (i = 0; i < slots_per_page(c); i++) {
236                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
237                                 break;
238                 }
239         }
240         c->nr_garbage = 0;
241         return 0;
242 }
243
244 void __free_insn_slot(struct kprobe_insn_cache *c,
245                       kprobe_opcode_t *slot, int dirty)
246 {
247         struct kprobe_insn_page *kip;
248         long idx;
249
250         mutex_lock(&c->mutex);
251         rcu_read_lock();
252         list_for_each_entry_rcu(kip, &c->pages, list) {
253                 idx = ((long)slot - (long)kip->insns) /
254                         (c->insn_size * sizeof(kprobe_opcode_t));
255                 if (idx >= 0 && idx < slots_per_page(c))
256                         goto out;
257         }
258         /* Could not find this slot. */
259         WARN_ON(1);
260         kip = NULL;
261 out:
262         rcu_read_unlock();
263         /* Mark and sweep: this may sleep */
264         if (kip) {
265                 /* Check double free */
266                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
267                 if (dirty) {
268                         kip->slot_used[idx] = SLOT_DIRTY;
269                         kip->ngarbage++;
270                         if (++c->nr_garbage > slots_per_page(c))
271                                 collect_garbage_slots(c);
272                 } else {
273                         collect_one_slot(kip, idx);
274                 }
275         }
276         mutex_unlock(&c->mutex);
277 }
278
279 /*
280  * Check given address is on the page of kprobe instruction slots.
281  * This will be used for checking whether the address on a stack
282  * is on a text area or not.
283  */
284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
285 {
286         struct kprobe_insn_page *kip;
287         bool ret = false;
288
289         rcu_read_lock();
290         list_for_each_entry_rcu(kip, &c->pages, list) {
291                 if (addr >= (unsigned long)kip->insns &&
292                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
293                         ret = true;
294                         break;
295                 }
296         }
297         rcu_read_unlock();
298
299         return ret;
300 }
301
302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
303                              unsigned long *value, char *type, char *sym)
304 {
305         struct kprobe_insn_page *kip;
306         int ret = -ERANGE;
307
308         rcu_read_lock();
309         list_for_each_entry_rcu(kip, &c->pages, list) {
310                 if ((*symnum)--)
311                         continue;
312                 strlcpy(sym, c->sym, KSYM_NAME_LEN);
313                 *type = 't';
314                 *value = (unsigned long)kip->insns;
315                 ret = 0;
316                 break;
317         }
318         rcu_read_unlock();
319
320         return ret;
321 }
322
323 #ifdef CONFIG_OPTPROBES
324 /* For optimized_kprobe buffer */
325 struct kprobe_insn_cache kprobe_optinsn_slots = {
326         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
327         .alloc = alloc_insn_page,
328         .free = free_insn_page,
329         .sym = KPROBE_OPTINSN_PAGE_SYM,
330         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
331         /* .insn_size is initialized later */
332         .nr_garbage = 0,
333 };
334 #endif
335 #endif
336
337 /* We have preemption disabled.. so it is safe to use __ versions */
338 static inline void set_kprobe_instance(struct kprobe *kp)
339 {
340         __this_cpu_write(kprobe_instance, kp);
341 }
342
343 static inline void reset_kprobe_instance(void)
344 {
345         __this_cpu_write(kprobe_instance, NULL);
346 }
347
348 /*
349  * This routine is called either:
350  *      - under the kprobe_mutex - during kprobe_[un]register()
351  *                              OR
352  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
353  */
354 struct kprobe *get_kprobe(void *addr)
355 {
356         struct hlist_head *head;
357         struct kprobe *p;
358
359         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
360         hlist_for_each_entry_rcu(p, head, hlist,
361                                  lockdep_is_held(&kprobe_mutex)) {
362                 if (p->addr == addr)
363                         return p;
364         }
365
366         return NULL;
367 }
368 NOKPROBE_SYMBOL(get_kprobe);
369
370 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
371
372 /* Return true if the kprobe is an aggregator */
373 static inline int kprobe_aggrprobe(struct kprobe *p)
374 {
375         return p->pre_handler == aggr_pre_handler;
376 }
377
378 /* Return true(!0) if the kprobe is unused */
379 static inline int kprobe_unused(struct kprobe *p)
380 {
381         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
382                list_empty(&p->list);
383 }
384
385 /*
386  * Keep all fields in the kprobe consistent
387  */
388 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
389 {
390         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
391         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
392 }
393
394 #ifdef CONFIG_OPTPROBES
395 /* NOTE: change this value only with kprobe_mutex held */
396 static bool kprobes_allow_optimization;
397
398 /*
399  * Call all pre_handler on the list, but ignores its return value.
400  * This must be called from arch-dep optimized caller.
401  */
402 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
403 {
404         struct kprobe *kp;
405
406         list_for_each_entry_rcu(kp, &p->list, list) {
407                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
408                         set_kprobe_instance(kp);
409                         kp->pre_handler(kp, regs);
410                 }
411                 reset_kprobe_instance();
412         }
413 }
414 NOKPROBE_SYMBOL(opt_pre_handler);
415
416 /* Free optimized instructions and optimized_kprobe */
417 static void free_aggr_kprobe(struct kprobe *p)
418 {
419         struct optimized_kprobe *op;
420
421         op = container_of(p, struct optimized_kprobe, kp);
422         arch_remove_optimized_kprobe(op);
423         arch_remove_kprobe(p);
424         kfree(op);
425 }
426
427 /* Return true(!0) if the kprobe is ready for optimization. */
428 static inline int kprobe_optready(struct kprobe *p)
429 {
430         struct optimized_kprobe *op;
431
432         if (kprobe_aggrprobe(p)) {
433                 op = container_of(p, struct optimized_kprobe, kp);
434                 return arch_prepared_optinsn(&op->optinsn);
435         }
436
437         return 0;
438 }
439
440 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
441 static inline int kprobe_disarmed(struct kprobe *p)
442 {
443         struct optimized_kprobe *op;
444
445         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
446         if (!kprobe_aggrprobe(p))
447                 return kprobe_disabled(p);
448
449         op = container_of(p, struct optimized_kprobe, kp);
450
451         return kprobe_disabled(p) && list_empty(&op->list);
452 }
453
454 /* Return true(!0) if the probe is queued on (un)optimizing lists */
455 static int kprobe_queued(struct kprobe *p)
456 {
457         struct optimized_kprobe *op;
458
459         if (kprobe_aggrprobe(p)) {
460                 op = container_of(p, struct optimized_kprobe, kp);
461                 if (!list_empty(&op->list))
462                         return 1;
463         }
464         return 0;
465 }
466
467 /*
468  * Return an optimized kprobe whose optimizing code replaces
469  * instructions including addr (exclude breakpoint).
470  */
471 static struct kprobe *get_optimized_kprobe(unsigned long addr)
472 {
473         int i;
474         struct kprobe *p = NULL;
475         struct optimized_kprobe *op;
476
477         /* Don't check i == 0, since that is a breakpoint case. */
478         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
479                 p = get_kprobe((void *)(addr - i));
480
481         if (p && kprobe_optready(p)) {
482                 op = container_of(p, struct optimized_kprobe, kp);
483                 if (arch_within_optimized_kprobe(op, addr))
484                         return p;
485         }
486
487         return NULL;
488 }
489
490 /* Optimization staging list, protected by kprobe_mutex */
491 static LIST_HEAD(optimizing_list);
492 static LIST_HEAD(unoptimizing_list);
493 static LIST_HEAD(freeing_list);
494
495 static void kprobe_optimizer(struct work_struct *work);
496 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
497 #define OPTIMIZE_DELAY 5
498
499 /*
500  * Optimize (replace a breakpoint with a jump) kprobes listed on
501  * optimizing_list.
502  */
503 static void do_optimize_kprobes(void)
504 {
505         lockdep_assert_held(&text_mutex);
506         /*
507          * The optimization/unoptimization refers online_cpus via
508          * stop_machine() and cpu-hotplug modifies online_cpus.
509          * And same time, text_mutex will be held in cpu-hotplug and here.
510          * This combination can cause a deadlock (cpu-hotplug try to lock
511          * text_mutex but stop_machine can not be done because online_cpus
512          * has been changed)
513          * To avoid this deadlock, caller must have locked cpu hotplug
514          * for preventing cpu-hotplug outside of text_mutex locking.
515          */
516         lockdep_assert_cpus_held();
517
518         /* Optimization never be done when disarmed */
519         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
520             list_empty(&optimizing_list))
521                 return;
522
523         arch_optimize_kprobes(&optimizing_list);
524 }
525
526 /*
527  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
528  * if need) kprobes listed on unoptimizing_list.
529  */
530 static void do_unoptimize_kprobes(void)
531 {
532         struct optimized_kprobe *op, *tmp;
533
534         lockdep_assert_held(&text_mutex);
535         /* See comment in do_optimize_kprobes() */
536         lockdep_assert_cpus_held();
537
538         /* Unoptimization must be done anytime */
539         if (list_empty(&unoptimizing_list))
540                 return;
541
542         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
543         /* Loop free_list for disarming */
544         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
545                 /* Switching from detour code to origin */
546                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
547                 /* Disarm probes if marked disabled */
548                 if (kprobe_disabled(&op->kp))
549                         arch_disarm_kprobe(&op->kp);
550                 if (kprobe_unused(&op->kp)) {
551                         /*
552                          * Remove unused probes from hash list. After waiting
553                          * for synchronization, these probes are reclaimed.
554                          * (reclaiming is done by do_free_cleaned_kprobes.)
555                          */
556                         hlist_del_rcu(&op->kp.hlist);
557                 } else
558                         list_del_init(&op->list);
559         }
560 }
561
562 /* Reclaim all kprobes on the free_list */
563 static void do_free_cleaned_kprobes(void)
564 {
565         struct optimized_kprobe *op, *tmp;
566
567         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
568                 list_del_init(&op->list);
569                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
570                         /*
571                          * This must not happen, but if there is a kprobe
572                          * still in use, keep it on kprobes hash list.
573                          */
574                         continue;
575                 }
576                 free_aggr_kprobe(&op->kp);
577         }
578 }
579
580 /* Start optimizer after OPTIMIZE_DELAY passed */
581 static void kick_kprobe_optimizer(void)
582 {
583         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
584 }
585
586 /* Kprobe jump optimizer */
587 static void kprobe_optimizer(struct work_struct *work)
588 {
589         mutex_lock(&kprobe_mutex);
590         cpus_read_lock();
591         mutex_lock(&text_mutex);
592
593         /*
594          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
595          * kprobes before waiting for quiesence period.
596          */
597         do_unoptimize_kprobes();
598
599         /*
600          * Step 2: Wait for quiesence period to ensure all potentially
601          * preempted tasks to have normally scheduled. Because optprobe
602          * may modify multiple instructions, there is a chance that Nth
603          * instruction is preempted. In that case, such tasks can return
604          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
605          * Note that on non-preemptive kernel, this is transparently converted
606          * to synchronoze_sched() to wait for all interrupts to have completed.
607          */
608         synchronize_rcu_tasks();
609
610         /* Step 3: Optimize kprobes after quiesence period */
611         do_optimize_kprobes();
612
613         /* Step 4: Free cleaned kprobes after quiesence period */
614         do_free_cleaned_kprobes();
615
616         mutex_unlock(&text_mutex);
617         cpus_read_unlock();
618
619         /* Step 5: Kick optimizer again if needed */
620         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
621                 kick_kprobe_optimizer();
622
623         mutex_unlock(&kprobe_mutex);
624 }
625
626 /* Wait for completing optimization and unoptimization */
627 void wait_for_kprobe_optimizer(void)
628 {
629         mutex_lock(&kprobe_mutex);
630
631         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
632                 mutex_unlock(&kprobe_mutex);
633
634                 /* this will also make optimizing_work execute immmediately */
635                 flush_delayed_work(&optimizing_work);
636                 /* @optimizing_work might not have been queued yet, relax */
637                 cpu_relax();
638
639                 mutex_lock(&kprobe_mutex);
640         }
641
642         mutex_unlock(&kprobe_mutex);
643 }
644
645 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
646 {
647         struct optimized_kprobe *_op;
648
649         list_for_each_entry(_op, &unoptimizing_list, list) {
650                 if (op == _op)
651                         return true;
652         }
653
654         return false;
655 }
656
657 /* Optimize kprobe if p is ready to be optimized */
658 static void optimize_kprobe(struct kprobe *p)
659 {
660         struct optimized_kprobe *op;
661
662         /* Check if the kprobe is disabled or not ready for optimization. */
663         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
664             (kprobe_disabled(p) || kprobes_all_disarmed))
665                 return;
666
667         /* kprobes with post_handler can not be optimized */
668         if (p->post_handler)
669                 return;
670
671         op = container_of(p, struct optimized_kprobe, kp);
672
673         /* Check there is no other kprobes at the optimized instructions */
674         if (arch_check_optimized_kprobe(op) < 0)
675                 return;
676
677         /* Check if it is already optimized. */
678         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
679                 if (optprobe_queued_unopt(op)) {
680                         /* This is under unoptimizing. Just dequeue the probe */
681                         list_del_init(&op->list);
682                 }
683                 return;
684         }
685         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
686
687         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
688         if (WARN_ON_ONCE(!list_empty(&op->list)))
689                 return;
690
691         list_add(&op->list, &optimizing_list);
692         kick_kprobe_optimizer();
693 }
694
695 /* Short cut to direct unoptimizing */
696 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
697 {
698         lockdep_assert_cpus_held();
699         arch_unoptimize_kprobe(op);
700         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
701 }
702
703 /* Unoptimize a kprobe if p is optimized */
704 static void unoptimize_kprobe(struct kprobe *p, bool force)
705 {
706         struct optimized_kprobe *op;
707
708         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
709                 return; /* This is not an optprobe nor optimized */
710
711         op = container_of(p, struct optimized_kprobe, kp);
712         if (!kprobe_optimized(p))
713                 return;
714
715         if (!list_empty(&op->list)) {
716                 if (optprobe_queued_unopt(op)) {
717                         /* Queued in unoptimizing queue */
718                         if (force) {
719                                 /*
720                                  * Forcibly unoptimize the kprobe here, and queue it
721                                  * in the freeing list for release afterwards.
722                                  */
723                                 force_unoptimize_kprobe(op);
724                                 list_move(&op->list, &freeing_list);
725                         }
726                 } else {
727                         /* Dequeue from the optimizing queue */
728                         list_del_init(&op->list);
729                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
730                 }
731                 return;
732         }
733
734         /* Optimized kprobe case */
735         if (force) {
736                 /* Forcibly update the code: this is a special case */
737                 force_unoptimize_kprobe(op);
738         } else {
739                 list_add(&op->list, &unoptimizing_list);
740                 kick_kprobe_optimizer();
741         }
742 }
743
744 /* Cancel unoptimizing for reusing */
745 static int reuse_unused_kprobe(struct kprobe *ap)
746 {
747         struct optimized_kprobe *op;
748
749         /*
750          * Unused kprobe MUST be on the way of delayed unoptimizing (means
751          * there is still a relative jump) and disabled.
752          */
753         op = container_of(ap, struct optimized_kprobe, kp);
754         WARN_ON_ONCE(list_empty(&op->list));
755         /* Enable the probe again */
756         ap->flags &= ~KPROBE_FLAG_DISABLED;
757         /* Optimize it again (remove from op->list) */
758         if (!kprobe_optready(ap))
759                 return -EINVAL;
760
761         optimize_kprobe(ap);
762         return 0;
763 }
764
765 /* Remove optimized instructions */
766 static void kill_optimized_kprobe(struct kprobe *p)
767 {
768         struct optimized_kprobe *op;
769
770         op = container_of(p, struct optimized_kprobe, kp);
771         if (!list_empty(&op->list))
772                 /* Dequeue from the (un)optimization queue */
773                 list_del_init(&op->list);
774         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
775
776         if (kprobe_unused(p)) {
777                 /* Enqueue if it is unused */
778                 list_add(&op->list, &freeing_list);
779                 /*
780                  * Remove unused probes from the hash list. After waiting
781                  * for synchronization, this probe is reclaimed.
782                  * (reclaiming is done by do_free_cleaned_kprobes().)
783                  */
784                 hlist_del_rcu(&op->kp.hlist);
785         }
786
787         /* Don't touch the code, because it is already freed. */
788         arch_remove_optimized_kprobe(op);
789 }
790
791 static inline
792 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
793 {
794         if (!kprobe_ftrace(p))
795                 arch_prepare_optimized_kprobe(op, p);
796 }
797
798 /* Try to prepare optimized instructions */
799 static void prepare_optimized_kprobe(struct kprobe *p)
800 {
801         struct optimized_kprobe *op;
802
803         op = container_of(p, struct optimized_kprobe, kp);
804         __prepare_optimized_kprobe(op, p);
805 }
806
807 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
808 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
809 {
810         struct optimized_kprobe *op;
811
812         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
813         if (!op)
814                 return NULL;
815
816         INIT_LIST_HEAD(&op->list);
817         op->kp.addr = p->addr;
818         __prepare_optimized_kprobe(op, p);
819
820         return &op->kp;
821 }
822
823 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
824
825 /*
826  * Prepare an optimized_kprobe and optimize it
827  * NOTE: p must be a normal registered kprobe
828  */
829 static void try_to_optimize_kprobe(struct kprobe *p)
830 {
831         struct kprobe *ap;
832         struct optimized_kprobe *op;
833
834         /* Impossible to optimize ftrace-based kprobe */
835         if (kprobe_ftrace(p))
836                 return;
837
838         /* For preparing optimization, jump_label_text_reserved() is called */
839         cpus_read_lock();
840         jump_label_lock();
841         mutex_lock(&text_mutex);
842
843         ap = alloc_aggr_kprobe(p);
844         if (!ap)
845                 goto out;
846
847         op = container_of(ap, struct optimized_kprobe, kp);
848         if (!arch_prepared_optinsn(&op->optinsn)) {
849                 /* If failed to setup optimizing, fallback to kprobe */
850                 arch_remove_optimized_kprobe(op);
851                 kfree(op);
852                 goto out;
853         }
854
855         init_aggr_kprobe(ap, p);
856         optimize_kprobe(ap);    /* This just kicks optimizer thread */
857
858 out:
859         mutex_unlock(&text_mutex);
860         jump_label_unlock();
861         cpus_read_unlock();
862 }
863
864 static void optimize_all_kprobes(void)
865 {
866         struct hlist_head *head;
867         struct kprobe *p;
868         unsigned int i;
869
870         mutex_lock(&kprobe_mutex);
871         /* If optimization is already allowed, just return */
872         if (kprobes_allow_optimization)
873                 goto out;
874
875         cpus_read_lock();
876         kprobes_allow_optimization = true;
877         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
878                 head = &kprobe_table[i];
879                 hlist_for_each_entry(p, head, hlist)
880                         if (!kprobe_disabled(p))
881                                 optimize_kprobe(p);
882         }
883         cpus_read_unlock();
884         printk(KERN_INFO "Kprobes globally optimized\n");
885 out:
886         mutex_unlock(&kprobe_mutex);
887 }
888
889 #ifdef CONFIG_SYSCTL
890 static void unoptimize_all_kprobes(void)
891 {
892         struct hlist_head *head;
893         struct kprobe *p;
894         unsigned int i;
895
896         mutex_lock(&kprobe_mutex);
897         /* If optimization is already prohibited, just return */
898         if (!kprobes_allow_optimization) {
899                 mutex_unlock(&kprobe_mutex);
900                 return;
901         }
902
903         cpus_read_lock();
904         kprobes_allow_optimization = false;
905         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
906                 head = &kprobe_table[i];
907                 hlist_for_each_entry(p, head, hlist) {
908                         if (!kprobe_disabled(p))
909                                 unoptimize_kprobe(p, false);
910                 }
911         }
912         cpus_read_unlock();
913         mutex_unlock(&kprobe_mutex);
914
915         /* Wait for unoptimizing completion */
916         wait_for_kprobe_optimizer();
917         printk(KERN_INFO "Kprobes globally unoptimized\n");
918 }
919
920 static DEFINE_MUTEX(kprobe_sysctl_mutex);
921 int sysctl_kprobes_optimization;
922 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
923                                       void *buffer, size_t *length,
924                                       loff_t *ppos)
925 {
926         int ret;
927
928         mutex_lock(&kprobe_sysctl_mutex);
929         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
930         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
931
932         if (sysctl_kprobes_optimization)
933                 optimize_all_kprobes();
934         else
935                 unoptimize_all_kprobes();
936         mutex_unlock(&kprobe_sysctl_mutex);
937
938         return ret;
939 }
940 #endif /* CONFIG_SYSCTL */
941
942 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
943 static void __arm_kprobe(struct kprobe *p)
944 {
945         struct kprobe *_p;
946
947         /* Check collision with other optimized kprobes */
948         _p = get_optimized_kprobe((unsigned long)p->addr);
949         if (unlikely(_p))
950                 /* Fallback to unoptimized kprobe */
951                 unoptimize_kprobe(_p, true);
952
953         arch_arm_kprobe(p);
954         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
955 }
956
957 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
958 static void __disarm_kprobe(struct kprobe *p, bool reopt)
959 {
960         struct kprobe *_p;
961
962         /* Try to unoptimize */
963         unoptimize_kprobe(p, kprobes_all_disarmed);
964
965         if (!kprobe_queued(p)) {
966                 arch_disarm_kprobe(p);
967                 /* If another kprobe was blocked, optimize it. */
968                 _p = get_optimized_kprobe((unsigned long)p->addr);
969                 if (unlikely(_p) && reopt)
970                         optimize_kprobe(_p);
971         }
972         /* TODO: reoptimize others after unoptimized this probe */
973 }
974
975 #else /* !CONFIG_OPTPROBES */
976
977 #define optimize_kprobe(p)                      do {} while (0)
978 #define unoptimize_kprobe(p, f)                 do {} while (0)
979 #define kill_optimized_kprobe(p)                do {} while (0)
980 #define prepare_optimized_kprobe(p)             do {} while (0)
981 #define try_to_optimize_kprobe(p)               do {} while (0)
982 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
983 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
984 #define kprobe_disarmed(p)                      kprobe_disabled(p)
985 #define wait_for_kprobe_optimizer()             do {} while (0)
986
987 static int reuse_unused_kprobe(struct kprobe *ap)
988 {
989         /*
990          * If the optimized kprobe is NOT supported, the aggr kprobe is
991          * released at the same time that the last aggregated kprobe is
992          * unregistered.
993          * Thus there should be no chance to reuse unused kprobe.
994          */
995         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
996         return -EINVAL;
997 }
998
999 static void free_aggr_kprobe(struct kprobe *p)
1000 {
1001         arch_remove_kprobe(p);
1002         kfree(p);
1003 }
1004
1005 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1006 {
1007         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1008 }
1009 #endif /* CONFIG_OPTPROBES */
1010
1011 #ifdef CONFIG_KPROBES_ON_FTRACE
1012 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1013         .func = kprobe_ftrace_handler,
1014         .flags = FTRACE_OPS_FL_SAVE_REGS,
1015 };
1016
1017 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1018         .func = kprobe_ftrace_handler,
1019         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1020 };
1021
1022 static int kprobe_ipmodify_enabled;
1023 static int kprobe_ftrace_enabled;
1024
1025 /* Must ensure p->addr is really on ftrace */
1026 static int prepare_kprobe(struct kprobe *p)
1027 {
1028         if (!kprobe_ftrace(p))
1029                 return arch_prepare_kprobe(p);
1030
1031         return arch_prepare_kprobe_ftrace(p);
1032 }
1033
1034 /* Caller must lock kprobe_mutex */
1035 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1036                                int *cnt)
1037 {
1038         int ret = 0;
1039
1040         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1041         if (ret) {
1042                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1043                          p->addr, ret);
1044                 return ret;
1045         }
1046
1047         if (*cnt == 0) {
1048                 ret = register_ftrace_function(ops);
1049                 if (ret) {
1050                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1051                         goto err_ftrace;
1052                 }
1053         }
1054
1055         (*cnt)++;
1056         return ret;
1057
1058 err_ftrace:
1059         /*
1060          * At this point, sinec ops is not registered, we should be sefe from
1061          * registering empty filter.
1062          */
1063         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1064         return ret;
1065 }
1066
1067 static int arm_kprobe_ftrace(struct kprobe *p)
1068 {
1069         bool ipmodify = (p->post_handler != NULL);
1070
1071         return __arm_kprobe_ftrace(p,
1072                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1073                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1074 }
1075
1076 /* Caller must lock kprobe_mutex */
1077 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1078                                   int *cnt)
1079 {
1080         int ret = 0;
1081
1082         if (*cnt == 1) {
1083                 ret = unregister_ftrace_function(ops);
1084                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1085                         return ret;
1086         }
1087
1088         (*cnt)--;
1089
1090         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1091         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1092                   p->addr, ret);
1093         return ret;
1094 }
1095
1096 static int disarm_kprobe_ftrace(struct kprobe *p)
1097 {
1098         bool ipmodify = (p->post_handler != NULL);
1099
1100         return __disarm_kprobe_ftrace(p,
1101                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1102                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1103 }
1104 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1105 static inline int prepare_kprobe(struct kprobe *p)
1106 {
1107         return arch_prepare_kprobe(p);
1108 }
1109
1110 static inline int arm_kprobe_ftrace(struct kprobe *p)
1111 {
1112         return -ENODEV;
1113 }
1114
1115 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1116 {
1117         return -ENODEV;
1118 }
1119 #endif
1120
1121 /* Arm a kprobe with text_mutex */
1122 static int arm_kprobe(struct kprobe *kp)
1123 {
1124         if (unlikely(kprobe_ftrace(kp)))
1125                 return arm_kprobe_ftrace(kp);
1126
1127         cpus_read_lock();
1128         mutex_lock(&text_mutex);
1129         __arm_kprobe(kp);
1130         mutex_unlock(&text_mutex);
1131         cpus_read_unlock();
1132
1133         return 0;
1134 }
1135
1136 /* Disarm a kprobe with text_mutex */
1137 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1138 {
1139         if (unlikely(kprobe_ftrace(kp)))
1140                 return disarm_kprobe_ftrace(kp);
1141
1142         cpus_read_lock();
1143         mutex_lock(&text_mutex);
1144         __disarm_kprobe(kp, reopt);
1145         mutex_unlock(&text_mutex);
1146         cpus_read_unlock();
1147
1148         return 0;
1149 }
1150
1151 /*
1152  * Aggregate handlers for multiple kprobes support - these handlers
1153  * take care of invoking the individual kprobe handlers on p->list
1154  */
1155 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1156 {
1157         struct kprobe *kp;
1158
1159         list_for_each_entry_rcu(kp, &p->list, list) {
1160                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1161                         set_kprobe_instance(kp);
1162                         if (kp->pre_handler(kp, regs))
1163                                 return 1;
1164                 }
1165                 reset_kprobe_instance();
1166         }
1167         return 0;
1168 }
1169 NOKPROBE_SYMBOL(aggr_pre_handler);
1170
1171 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1172                               unsigned long flags)
1173 {
1174         struct kprobe *kp;
1175
1176         list_for_each_entry_rcu(kp, &p->list, list) {
1177                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1178                         set_kprobe_instance(kp);
1179                         kp->post_handler(kp, regs, flags);
1180                         reset_kprobe_instance();
1181                 }
1182         }
1183 }
1184 NOKPROBE_SYMBOL(aggr_post_handler);
1185
1186 /* Walks the list and increments nmissed count for multiprobe case */
1187 void kprobes_inc_nmissed_count(struct kprobe *p)
1188 {
1189         struct kprobe *kp;
1190         if (!kprobe_aggrprobe(p)) {
1191                 p->nmissed++;
1192         } else {
1193                 list_for_each_entry_rcu(kp, &p->list, list)
1194                         kp->nmissed++;
1195         }
1196         return;
1197 }
1198 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1199
1200 static void free_rp_inst_rcu(struct rcu_head *head)
1201 {
1202         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1203
1204         if (refcount_dec_and_test(&ri->rph->ref))
1205                 kfree(ri->rph);
1206         kfree(ri);
1207 }
1208 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1209
1210 static void recycle_rp_inst(struct kretprobe_instance *ri)
1211 {
1212         struct kretprobe *rp = get_kretprobe(ri);
1213
1214         if (likely(rp)) {
1215                 freelist_add(&ri->freelist, &rp->freelist);
1216         } else
1217                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1218 }
1219 NOKPROBE_SYMBOL(recycle_rp_inst);
1220
1221 static struct kprobe kprobe_busy = {
1222         .addr = (void *) get_kprobe,
1223 };
1224
1225 void kprobe_busy_begin(void)
1226 {
1227         struct kprobe_ctlblk *kcb;
1228
1229         preempt_disable();
1230         __this_cpu_write(current_kprobe, &kprobe_busy);
1231         kcb = get_kprobe_ctlblk();
1232         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1233 }
1234
1235 void kprobe_busy_end(void)
1236 {
1237         __this_cpu_write(current_kprobe, NULL);
1238         preempt_enable();
1239 }
1240
1241 /*
1242  * This function is called from finish_task_switch when task tk becomes dead,
1243  * so that we can recycle any function-return probe instances associated
1244  * with this task. These left over instances represent probed functions
1245  * that have been called but will never return.
1246  */
1247 void kprobe_flush_task(struct task_struct *tk)
1248 {
1249         struct kretprobe_instance *ri;
1250         struct llist_node *node;
1251
1252         /* Early boot, not yet initialized. */
1253         if (unlikely(!kprobes_initialized))
1254                 return;
1255
1256         kprobe_busy_begin();
1257
1258         node = __llist_del_all(&tk->kretprobe_instances);
1259         while (node) {
1260                 ri = container_of(node, struct kretprobe_instance, llist);
1261                 node = node->next;
1262
1263                 recycle_rp_inst(ri);
1264         }
1265
1266         kprobe_busy_end();
1267 }
1268 NOKPROBE_SYMBOL(kprobe_flush_task);
1269
1270 static inline void free_rp_inst(struct kretprobe *rp)
1271 {
1272         struct kretprobe_instance *ri;
1273         struct freelist_node *node;
1274         int count = 0;
1275
1276         node = rp->freelist.head;
1277         while (node) {
1278                 ri = container_of(node, struct kretprobe_instance, freelist);
1279                 node = node->next;
1280
1281                 kfree(ri);
1282                 count++;
1283         }
1284
1285         if (refcount_sub_and_test(count, &rp->rph->ref)) {
1286                 kfree(rp->rph);
1287                 rp->rph = NULL;
1288         }
1289 }
1290
1291 /* Add the new probe to ap->list */
1292 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1293 {
1294         if (p->post_handler)
1295                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1296
1297         list_add_rcu(&p->list, &ap->list);
1298         if (p->post_handler && !ap->post_handler)
1299                 ap->post_handler = aggr_post_handler;
1300
1301         return 0;
1302 }
1303
1304 /*
1305  * Fill in the required fields of the "manager kprobe". Replace the
1306  * earlier kprobe in the hlist with the manager kprobe
1307  */
1308 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1309 {
1310         /* Copy p's insn slot to ap */
1311         copy_kprobe(p, ap);
1312         flush_insn_slot(ap);
1313         ap->addr = p->addr;
1314         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1315         ap->pre_handler = aggr_pre_handler;
1316         /* We don't care the kprobe which has gone. */
1317         if (p->post_handler && !kprobe_gone(p))
1318                 ap->post_handler = aggr_post_handler;
1319
1320         INIT_LIST_HEAD(&ap->list);
1321         INIT_HLIST_NODE(&ap->hlist);
1322
1323         list_add_rcu(&p->list, &ap->list);
1324         hlist_replace_rcu(&p->hlist, &ap->hlist);
1325 }
1326
1327 /*
1328  * This is the second or subsequent kprobe at the address - handle
1329  * the intricacies
1330  */
1331 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1332 {
1333         int ret = 0;
1334         struct kprobe *ap = orig_p;
1335
1336         cpus_read_lock();
1337
1338         /* For preparing optimization, jump_label_text_reserved() is called */
1339         jump_label_lock();
1340         mutex_lock(&text_mutex);
1341
1342         if (!kprobe_aggrprobe(orig_p)) {
1343                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1344                 ap = alloc_aggr_kprobe(orig_p);
1345                 if (!ap) {
1346                         ret = -ENOMEM;
1347                         goto out;
1348                 }
1349                 init_aggr_kprobe(ap, orig_p);
1350         } else if (kprobe_unused(ap)) {
1351                 /* This probe is going to die. Rescue it */
1352                 ret = reuse_unused_kprobe(ap);
1353                 if (ret)
1354                         goto out;
1355         }
1356
1357         if (kprobe_gone(ap)) {
1358                 /*
1359                  * Attempting to insert new probe at the same location that
1360                  * had a probe in the module vaddr area which already
1361                  * freed. So, the instruction slot has already been
1362                  * released. We need a new slot for the new probe.
1363                  */
1364                 ret = arch_prepare_kprobe(ap);
1365                 if (ret)
1366                         /*
1367                          * Even if fail to allocate new slot, don't need to
1368                          * free aggr_probe. It will be used next time, or
1369                          * freed by unregister_kprobe.
1370                          */
1371                         goto out;
1372
1373                 /* Prepare optimized instructions if possible. */
1374                 prepare_optimized_kprobe(ap);
1375
1376                 /*
1377                  * Clear gone flag to prevent allocating new slot again, and
1378                  * set disabled flag because it is not armed yet.
1379                  */
1380                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1381                             | KPROBE_FLAG_DISABLED;
1382         }
1383
1384         /* Copy ap's insn slot to p */
1385         copy_kprobe(ap, p);
1386         ret = add_new_kprobe(ap, p);
1387
1388 out:
1389         mutex_unlock(&text_mutex);
1390         jump_label_unlock();
1391         cpus_read_unlock();
1392
1393         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1394                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1395                 if (!kprobes_all_disarmed) {
1396                         /* Arm the breakpoint again. */
1397                         ret = arm_kprobe(ap);
1398                         if (ret) {
1399                                 ap->flags |= KPROBE_FLAG_DISABLED;
1400                                 list_del_rcu(&p->list);
1401                                 synchronize_rcu();
1402                         }
1403                 }
1404         }
1405         return ret;
1406 }
1407
1408 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1409 {
1410         /* The __kprobes marked functions and entry code must not be probed */
1411         return addr >= (unsigned long)__kprobes_text_start &&
1412                addr < (unsigned long)__kprobes_text_end;
1413 }
1414
1415 static bool __within_kprobe_blacklist(unsigned long addr)
1416 {
1417         struct kprobe_blacklist_entry *ent;
1418
1419         if (arch_within_kprobe_blacklist(addr))
1420                 return true;
1421         /*
1422          * If there exists a kprobe_blacklist, verify and
1423          * fail any probe registration in the prohibited area
1424          */
1425         list_for_each_entry(ent, &kprobe_blacklist, list) {
1426                 if (addr >= ent->start_addr && addr < ent->end_addr)
1427                         return true;
1428         }
1429         return false;
1430 }
1431
1432 bool within_kprobe_blacklist(unsigned long addr)
1433 {
1434         char symname[KSYM_NAME_LEN], *p;
1435
1436         if (__within_kprobe_blacklist(addr))
1437                 return true;
1438
1439         /* Check if the address is on a suffixed-symbol */
1440         if (!lookup_symbol_name(addr, symname)) {
1441                 p = strchr(symname, '.');
1442                 if (!p)
1443                         return false;
1444                 *p = '\0';
1445                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1446                 if (addr)
1447                         return __within_kprobe_blacklist(addr);
1448         }
1449         return false;
1450 }
1451
1452 /*
1453  * If we have a symbol_name argument, look it up and add the offset field
1454  * to it. This way, we can specify a relative address to a symbol.
1455  * This returns encoded errors if it fails to look up symbol or invalid
1456  * combination of parameters.
1457  */
1458 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1459                         const char *symbol_name, unsigned int offset)
1460 {
1461         if ((symbol_name && addr) || (!symbol_name && !addr))
1462                 goto invalid;
1463
1464         if (symbol_name) {
1465                 addr = kprobe_lookup_name(symbol_name, offset);
1466                 if (!addr)
1467                         return ERR_PTR(-ENOENT);
1468         }
1469
1470         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1471         if (addr)
1472                 return addr;
1473
1474 invalid:
1475         return ERR_PTR(-EINVAL);
1476 }
1477
1478 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1479 {
1480         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1481 }
1482
1483 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1484 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1485 {
1486         struct kprobe *ap, *list_p;
1487
1488         lockdep_assert_held(&kprobe_mutex);
1489
1490         ap = get_kprobe(p->addr);
1491         if (unlikely(!ap))
1492                 return NULL;
1493
1494         if (p != ap) {
1495                 list_for_each_entry(list_p, &ap->list, list)
1496                         if (list_p == p)
1497                         /* kprobe p is a valid probe */
1498                                 goto valid;
1499                 return NULL;
1500         }
1501 valid:
1502         return ap;
1503 }
1504
1505 /*
1506  * Warn and return error if the kprobe is being re-registered since
1507  * there must be a software bug.
1508  */
1509 static inline int warn_kprobe_rereg(struct kprobe *p)
1510 {
1511         int ret = 0;
1512
1513         mutex_lock(&kprobe_mutex);
1514         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1515                 ret = -EINVAL;
1516         mutex_unlock(&kprobe_mutex);
1517
1518         return ret;
1519 }
1520
1521 int __weak arch_check_ftrace_location(struct kprobe *p)
1522 {
1523         unsigned long ftrace_addr;
1524
1525         ftrace_addr = ftrace_location((unsigned long)p->addr);
1526         if (ftrace_addr) {
1527 #ifdef CONFIG_KPROBES_ON_FTRACE
1528                 /* Given address is not on the instruction boundary */
1529                 if ((unsigned long)p->addr != ftrace_addr)
1530                         return -EILSEQ;
1531                 p->flags |= KPROBE_FLAG_FTRACE;
1532 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1533                 return -EINVAL;
1534 #endif
1535         }
1536         return 0;
1537 }
1538
1539 static int check_kprobe_address_safe(struct kprobe *p,
1540                                      struct module **probed_mod)
1541 {
1542         int ret;
1543
1544         ret = arch_check_ftrace_location(p);
1545         if (ret)
1546                 return ret;
1547         jump_label_lock();
1548         preempt_disable();
1549
1550         /* Ensure it is not in reserved area nor out of text */
1551         if (!kernel_text_address((unsigned long) p->addr) ||
1552             within_kprobe_blacklist((unsigned long) p->addr) ||
1553             jump_label_text_reserved(p->addr, p->addr) ||
1554             find_bug((unsigned long)p->addr)) {
1555                 ret = -EINVAL;
1556                 goto out;
1557         }
1558
1559         /* Check if are we probing a module */
1560         *probed_mod = __module_text_address((unsigned long) p->addr);
1561         if (*probed_mod) {
1562                 /*
1563                  * We must hold a refcount of the probed module while updating
1564                  * its code to prohibit unexpected unloading.
1565                  */
1566                 if (unlikely(!try_module_get(*probed_mod))) {
1567                         ret = -ENOENT;
1568                         goto out;
1569                 }
1570
1571                 /*
1572                  * If the module freed .init.text, we couldn't insert
1573                  * kprobes in there.
1574                  */
1575                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1576                     (*probed_mod)->state != MODULE_STATE_COMING) {
1577                         module_put(*probed_mod);
1578                         *probed_mod = NULL;
1579                         ret = -ENOENT;
1580                 }
1581         }
1582 out:
1583         preempt_enable();
1584         jump_label_unlock();
1585
1586         return ret;
1587 }
1588
1589 int register_kprobe(struct kprobe *p)
1590 {
1591         int ret;
1592         struct kprobe *old_p;
1593         struct module *probed_mod;
1594         kprobe_opcode_t *addr;
1595
1596         /* Adjust probe address from symbol */
1597         addr = kprobe_addr(p);
1598         if (IS_ERR(addr))
1599                 return PTR_ERR(addr);
1600         p->addr = addr;
1601
1602         ret = warn_kprobe_rereg(p);
1603         if (ret)
1604                 return ret;
1605
1606         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1607         p->flags &= KPROBE_FLAG_DISABLED;
1608         p->nmissed = 0;
1609         INIT_LIST_HEAD(&p->list);
1610
1611         ret = check_kprobe_address_safe(p, &probed_mod);
1612         if (ret)
1613                 return ret;
1614
1615         mutex_lock(&kprobe_mutex);
1616
1617         old_p = get_kprobe(p->addr);
1618         if (old_p) {
1619                 /* Since this may unoptimize old_p, locking text_mutex. */
1620                 ret = register_aggr_kprobe(old_p, p);
1621                 goto out;
1622         }
1623
1624         cpus_read_lock();
1625         /* Prevent text modification */
1626         mutex_lock(&text_mutex);
1627         ret = prepare_kprobe(p);
1628         mutex_unlock(&text_mutex);
1629         cpus_read_unlock();
1630         if (ret)
1631                 goto out;
1632
1633         INIT_HLIST_NODE(&p->hlist);
1634         hlist_add_head_rcu(&p->hlist,
1635                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1636
1637         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1638                 ret = arm_kprobe(p);
1639                 if (ret) {
1640                         hlist_del_rcu(&p->hlist);
1641                         synchronize_rcu();
1642                         goto out;
1643                 }
1644         }
1645
1646         /* Try to optimize kprobe */
1647         try_to_optimize_kprobe(p);
1648 out:
1649         mutex_unlock(&kprobe_mutex);
1650
1651         if (probed_mod)
1652                 module_put(probed_mod);
1653
1654         return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(register_kprobe);
1657
1658 /* Check if all probes on the aggrprobe are disabled */
1659 static int aggr_kprobe_disabled(struct kprobe *ap)
1660 {
1661         struct kprobe *kp;
1662
1663         lockdep_assert_held(&kprobe_mutex);
1664
1665         list_for_each_entry(kp, &ap->list, list)
1666                 if (!kprobe_disabled(kp))
1667                         /*
1668                          * There is an active probe on the list.
1669                          * We can't disable this ap.
1670                          */
1671                         return 0;
1672
1673         return 1;
1674 }
1675
1676 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1677 static struct kprobe *__disable_kprobe(struct kprobe *p)
1678 {
1679         struct kprobe *orig_p;
1680         int ret;
1681
1682         /* Get an original kprobe for return */
1683         orig_p = __get_valid_kprobe(p);
1684         if (unlikely(orig_p == NULL))
1685                 return ERR_PTR(-EINVAL);
1686
1687         if (!kprobe_disabled(p)) {
1688                 /* Disable probe if it is a child probe */
1689                 if (p != orig_p)
1690                         p->flags |= KPROBE_FLAG_DISABLED;
1691
1692                 /* Try to disarm and disable this/parent probe */
1693                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1694                         /*
1695                          * If kprobes_all_disarmed is set, orig_p
1696                          * should have already been disarmed, so
1697                          * skip unneed disarming process.
1698                          */
1699                         if (!kprobes_all_disarmed) {
1700                                 ret = disarm_kprobe(orig_p, true);
1701                                 if (ret) {
1702                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1703                                         return ERR_PTR(ret);
1704                                 }
1705                         }
1706                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1707                 }
1708         }
1709
1710         return orig_p;
1711 }
1712
1713 /*
1714  * Unregister a kprobe without a scheduler synchronization.
1715  */
1716 static int __unregister_kprobe_top(struct kprobe *p)
1717 {
1718         struct kprobe *ap, *list_p;
1719
1720         /* Disable kprobe. This will disarm it if needed. */
1721         ap = __disable_kprobe(p);
1722         if (IS_ERR(ap))
1723                 return PTR_ERR(ap);
1724
1725         if (ap == p)
1726                 /*
1727                  * This probe is an independent(and non-optimized) kprobe
1728                  * (not an aggrprobe). Remove from the hash list.
1729                  */
1730                 goto disarmed;
1731
1732         /* Following process expects this probe is an aggrprobe */
1733         WARN_ON(!kprobe_aggrprobe(ap));
1734
1735         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1736                 /*
1737                  * !disarmed could be happen if the probe is under delayed
1738                  * unoptimizing.
1739                  */
1740                 goto disarmed;
1741         else {
1742                 /* If disabling probe has special handlers, update aggrprobe */
1743                 if (p->post_handler && !kprobe_gone(p)) {
1744                         list_for_each_entry(list_p, &ap->list, list) {
1745                                 if ((list_p != p) && (list_p->post_handler))
1746                                         goto noclean;
1747                         }
1748                         ap->post_handler = NULL;
1749                 }
1750 noclean:
1751                 /*
1752                  * Remove from the aggrprobe: this path will do nothing in
1753                  * __unregister_kprobe_bottom().
1754                  */
1755                 list_del_rcu(&p->list);
1756                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1757                         /*
1758                          * Try to optimize this probe again, because post
1759                          * handler may have been changed.
1760                          */
1761                         optimize_kprobe(ap);
1762         }
1763         return 0;
1764
1765 disarmed:
1766         hlist_del_rcu(&ap->hlist);
1767         return 0;
1768 }
1769
1770 static void __unregister_kprobe_bottom(struct kprobe *p)
1771 {
1772         struct kprobe *ap;
1773
1774         if (list_empty(&p->list))
1775                 /* This is an independent kprobe */
1776                 arch_remove_kprobe(p);
1777         else if (list_is_singular(&p->list)) {
1778                 /* This is the last child of an aggrprobe */
1779                 ap = list_entry(p->list.next, struct kprobe, list);
1780                 list_del(&p->list);
1781                 free_aggr_kprobe(ap);
1782         }
1783         /* Otherwise, do nothing. */
1784 }
1785
1786 int register_kprobes(struct kprobe **kps, int num)
1787 {
1788         int i, ret = 0;
1789
1790         if (num <= 0)
1791                 return -EINVAL;
1792         for (i = 0; i < num; i++) {
1793                 ret = register_kprobe(kps[i]);
1794                 if (ret < 0) {
1795                         if (i > 0)
1796                                 unregister_kprobes(kps, i);
1797                         break;
1798                 }
1799         }
1800         return ret;
1801 }
1802 EXPORT_SYMBOL_GPL(register_kprobes);
1803
1804 void unregister_kprobe(struct kprobe *p)
1805 {
1806         unregister_kprobes(&p, 1);
1807 }
1808 EXPORT_SYMBOL_GPL(unregister_kprobe);
1809
1810 void unregister_kprobes(struct kprobe **kps, int num)
1811 {
1812         int i;
1813
1814         if (num <= 0)
1815                 return;
1816         mutex_lock(&kprobe_mutex);
1817         for (i = 0; i < num; i++)
1818                 if (__unregister_kprobe_top(kps[i]) < 0)
1819                         kps[i]->addr = NULL;
1820         mutex_unlock(&kprobe_mutex);
1821
1822         synchronize_rcu();
1823         for (i = 0; i < num; i++)
1824                 if (kps[i]->addr)
1825                         __unregister_kprobe_bottom(kps[i]);
1826 }
1827 EXPORT_SYMBOL_GPL(unregister_kprobes);
1828
1829 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1830                                         unsigned long val, void *data)
1831 {
1832         return NOTIFY_DONE;
1833 }
1834 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1835
1836 static struct notifier_block kprobe_exceptions_nb = {
1837         .notifier_call = kprobe_exceptions_notify,
1838         .priority = 0x7fffffff /* we need to be notified first */
1839 };
1840
1841 unsigned long __weak arch_deref_entry_point(void *entry)
1842 {
1843         return (unsigned long)entry;
1844 }
1845
1846 #ifdef CONFIG_KRETPROBES
1847
1848 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1849                                              void *trampoline_address,
1850                                              void *frame_pointer)
1851 {
1852         kprobe_opcode_t *correct_ret_addr = NULL;
1853         struct kretprobe_instance *ri = NULL;
1854         struct llist_node *first, *node;
1855         struct kretprobe *rp;
1856
1857         /* Find all nodes for this frame. */
1858         first = node = current->kretprobe_instances.first;
1859         while (node) {
1860                 ri = container_of(node, struct kretprobe_instance, llist);
1861
1862                 BUG_ON(ri->fp != frame_pointer);
1863
1864                 if (ri->ret_addr != trampoline_address) {
1865                         correct_ret_addr = ri->ret_addr;
1866                         /*
1867                          * This is the real return address. Any other
1868                          * instances associated with this task are for
1869                          * other calls deeper on the call stack
1870                          */
1871                         goto found;
1872                 }
1873
1874                 node = node->next;
1875         }
1876         pr_err("Oops! Kretprobe fails to find correct return address.\n");
1877         BUG_ON(1);
1878
1879 found:
1880         /* Unlink all nodes for this frame. */
1881         current->kretprobe_instances.first = node->next;
1882         node->next = NULL;
1883
1884         /* Run them..  */
1885         while (first) {
1886                 ri = container_of(first, struct kretprobe_instance, llist);
1887                 first = first->next;
1888
1889                 rp = get_kretprobe(ri);
1890                 if (rp && rp->handler) {
1891                         struct kprobe *prev = kprobe_running();
1892
1893                         __this_cpu_write(current_kprobe, &rp->kp);
1894                         ri->ret_addr = correct_ret_addr;
1895                         rp->handler(ri, regs);
1896                         __this_cpu_write(current_kprobe, prev);
1897                 }
1898
1899                 recycle_rp_inst(ri);
1900         }
1901
1902         return (unsigned long)correct_ret_addr;
1903 }
1904 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1905
1906 /*
1907  * This kprobe pre_handler is registered with every kretprobe. When probe
1908  * hits it will set up the return probe.
1909  */
1910 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1911 {
1912         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1913         struct kretprobe_instance *ri;
1914         struct freelist_node *fn;
1915
1916         fn = freelist_try_get(&rp->freelist);
1917         if (!fn) {
1918                 rp->nmissed++;
1919                 return 0;
1920         }
1921
1922         ri = container_of(fn, struct kretprobe_instance, freelist);
1923
1924         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1925                 freelist_add(&ri->freelist, &rp->freelist);
1926                 return 0;
1927         }
1928
1929         arch_prepare_kretprobe(ri, regs);
1930
1931         __llist_add(&ri->llist, &current->kretprobe_instances);
1932
1933         return 0;
1934 }
1935 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1936
1937 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1938 {
1939         return !offset;
1940 }
1941
1942 /**
1943  * kprobe_on_func_entry() -- check whether given address is function entry
1944  * @addr: Target address
1945  * @sym:  Target symbol name
1946  * @offset: The offset from the symbol or the address
1947  *
1948  * This checks whether the given @addr+@offset or @sym+@offset is on the
1949  * function entry address or not.
1950  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1951  * And also it returns -ENOENT if it fails the symbol or address lookup.
1952  * Caller must pass @addr or @sym (either one must be NULL), or this
1953  * returns -EINVAL.
1954  */
1955 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1956 {
1957         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1958
1959         if (IS_ERR(kp_addr))
1960                 return PTR_ERR(kp_addr);
1961
1962         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1963                 return -ENOENT;
1964
1965         if (!arch_kprobe_on_func_entry(offset))
1966                 return -EINVAL;
1967
1968         return 0;
1969 }
1970
1971 int register_kretprobe(struct kretprobe *rp)
1972 {
1973         int ret;
1974         struct kretprobe_instance *inst;
1975         int i;
1976         void *addr;
1977
1978         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1979         if (ret)
1980                 return ret;
1981
1982         /* If only rp->kp.addr is specified, check reregistering kprobes */
1983         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1984                 return -EINVAL;
1985
1986         if (kretprobe_blacklist_size) {
1987                 addr = kprobe_addr(&rp->kp);
1988                 if (IS_ERR(addr))
1989                         return PTR_ERR(addr);
1990
1991                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1992                         if (kretprobe_blacklist[i].addr == addr)
1993                                 return -EINVAL;
1994                 }
1995         }
1996
1997         rp->kp.pre_handler = pre_handler_kretprobe;
1998         rp->kp.post_handler = NULL;
1999
2000         /* Pre-allocate memory for max kretprobe instances */
2001         if (rp->maxactive <= 0) {
2002 #ifdef CONFIG_PREEMPTION
2003                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2004 #else
2005                 rp->maxactive = num_possible_cpus();
2006 #endif
2007         }
2008         rp->freelist.head = NULL;
2009         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2010         if (!rp->rph)
2011                 return -ENOMEM;
2012
2013         rp->rph->rp = rp;
2014         for (i = 0; i < rp->maxactive; i++) {
2015                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2016                                rp->data_size, GFP_KERNEL);
2017                 if (inst == NULL) {
2018                         refcount_set(&rp->rph->ref, i);
2019                         free_rp_inst(rp);
2020                         return -ENOMEM;
2021                 }
2022                 inst->rph = rp->rph;
2023                 freelist_add(&inst->freelist, &rp->freelist);
2024         }
2025         refcount_set(&rp->rph->ref, i);
2026
2027         rp->nmissed = 0;
2028         /* Establish function entry probe point */
2029         ret = register_kprobe(&rp->kp);
2030         if (ret != 0)
2031                 free_rp_inst(rp);
2032         return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(register_kretprobe);
2035
2036 int register_kretprobes(struct kretprobe **rps, int num)
2037 {
2038         int ret = 0, i;
2039
2040         if (num <= 0)
2041                 return -EINVAL;
2042         for (i = 0; i < num; i++) {
2043                 ret = register_kretprobe(rps[i]);
2044                 if (ret < 0) {
2045                         if (i > 0)
2046                                 unregister_kretprobes(rps, i);
2047                         break;
2048                 }
2049         }
2050         return ret;
2051 }
2052 EXPORT_SYMBOL_GPL(register_kretprobes);
2053
2054 void unregister_kretprobe(struct kretprobe *rp)
2055 {
2056         unregister_kretprobes(&rp, 1);
2057 }
2058 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2059
2060 void unregister_kretprobes(struct kretprobe **rps, int num)
2061 {
2062         int i;
2063
2064         if (num <= 0)
2065                 return;
2066         mutex_lock(&kprobe_mutex);
2067         for (i = 0; i < num; i++) {
2068                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2069                         rps[i]->kp.addr = NULL;
2070                 rps[i]->rph->rp = NULL;
2071         }
2072         mutex_unlock(&kprobe_mutex);
2073
2074         synchronize_rcu();
2075         for (i = 0; i < num; i++) {
2076                 if (rps[i]->kp.addr) {
2077                         __unregister_kprobe_bottom(&rps[i]->kp);
2078                         free_rp_inst(rps[i]);
2079                 }
2080         }
2081 }
2082 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2083
2084 #else /* CONFIG_KRETPROBES */
2085 int register_kretprobe(struct kretprobe *rp)
2086 {
2087         return -ENOSYS;
2088 }
2089 EXPORT_SYMBOL_GPL(register_kretprobe);
2090
2091 int register_kretprobes(struct kretprobe **rps, int num)
2092 {
2093         return -ENOSYS;
2094 }
2095 EXPORT_SYMBOL_GPL(register_kretprobes);
2096
2097 void unregister_kretprobe(struct kretprobe *rp)
2098 {
2099 }
2100 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2101
2102 void unregister_kretprobes(struct kretprobe **rps, int num)
2103 {
2104 }
2105 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2106
2107 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2108 {
2109         return 0;
2110 }
2111 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2112
2113 #endif /* CONFIG_KRETPROBES */
2114
2115 /* Set the kprobe gone and remove its instruction buffer. */
2116 static void kill_kprobe(struct kprobe *p)
2117 {
2118         struct kprobe *kp;
2119
2120         lockdep_assert_held(&kprobe_mutex);
2121
2122         p->flags |= KPROBE_FLAG_GONE;
2123         if (kprobe_aggrprobe(p)) {
2124                 /*
2125                  * If this is an aggr_kprobe, we have to list all the
2126                  * chained probes and mark them GONE.
2127                  */
2128                 list_for_each_entry(kp, &p->list, list)
2129                         kp->flags |= KPROBE_FLAG_GONE;
2130                 p->post_handler = NULL;
2131                 kill_optimized_kprobe(p);
2132         }
2133         /*
2134          * Here, we can remove insn_slot safely, because no thread calls
2135          * the original probed function (which will be freed soon) any more.
2136          */
2137         arch_remove_kprobe(p);
2138
2139         /*
2140          * The module is going away. We should disarm the kprobe which
2141          * is using ftrace, because ftrace framework is still available at
2142          * MODULE_STATE_GOING notification.
2143          */
2144         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2145                 disarm_kprobe_ftrace(p);
2146 }
2147
2148 /* Disable one kprobe */
2149 int disable_kprobe(struct kprobe *kp)
2150 {
2151         int ret = 0;
2152         struct kprobe *p;
2153
2154         mutex_lock(&kprobe_mutex);
2155
2156         /* Disable this kprobe */
2157         p = __disable_kprobe(kp);
2158         if (IS_ERR(p))
2159                 ret = PTR_ERR(p);
2160
2161         mutex_unlock(&kprobe_mutex);
2162         return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(disable_kprobe);
2165
2166 /* Enable one kprobe */
2167 int enable_kprobe(struct kprobe *kp)
2168 {
2169         int ret = 0;
2170         struct kprobe *p;
2171
2172         mutex_lock(&kprobe_mutex);
2173
2174         /* Check whether specified probe is valid. */
2175         p = __get_valid_kprobe(kp);
2176         if (unlikely(p == NULL)) {
2177                 ret = -EINVAL;
2178                 goto out;
2179         }
2180
2181         if (kprobe_gone(kp)) {
2182                 /* This kprobe has gone, we couldn't enable it. */
2183                 ret = -EINVAL;
2184                 goto out;
2185         }
2186
2187         if (p != kp)
2188                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2189
2190         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2191                 p->flags &= ~KPROBE_FLAG_DISABLED;
2192                 ret = arm_kprobe(p);
2193                 if (ret)
2194                         p->flags |= KPROBE_FLAG_DISABLED;
2195         }
2196 out:
2197         mutex_unlock(&kprobe_mutex);
2198         return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(enable_kprobe);
2201
2202 /* Caller must NOT call this in usual path. This is only for critical case */
2203 void dump_kprobe(struct kprobe *kp)
2204 {
2205         pr_err("Dumping kprobe:\n");
2206         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2207                kp->symbol_name, kp->offset, kp->addr);
2208 }
2209 NOKPROBE_SYMBOL(dump_kprobe);
2210
2211 int kprobe_add_ksym_blacklist(unsigned long entry)
2212 {
2213         struct kprobe_blacklist_entry *ent;
2214         unsigned long offset = 0, size = 0;
2215
2216         if (!kernel_text_address(entry) ||
2217             !kallsyms_lookup_size_offset(entry, &size, &offset))
2218                 return -EINVAL;
2219
2220         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2221         if (!ent)
2222                 return -ENOMEM;
2223         ent->start_addr = entry;
2224         ent->end_addr = entry + size;
2225         INIT_LIST_HEAD(&ent->list);
2226         list_add_tail(&ent->list, &kprobe_blacklist);
2227
2228         return (int)size;
2229 }
2230
2231 /* Add all symbols in given area into kprobe blacklist */
2232 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2233 {
2234         unsigned long entry;
2235         int ret = 0;
2236
2237         for (entry = start; entry < end; entry += ret) {
2238                 ret = kprobe_add_ksym_blacklist(entry);
2239                 if (ret < 0)
2240                         return ret;
2241                 if (ret == 0)   /* In case of alias symbol */
2242                         ret = 1;
2243         }
2244         return 0;
2245 }
2246
2247 /* Remove all symbols in given area from kprobe blacklist */
2248 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2249 {
2250         struct kprobe_blacklist_entry *ent, *n;
2251
2252         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2253                 if (ent->start_addr < start || ent->start_addr >= end)
2254                         continue;
2255                 list_del(&ent->list);
2256                 kfree(ent);
2257         }
2258 }
2259
2260 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2261 {
2262         kprobe_remove_area_blacklist(entry, entry + 1);
2263 }
2264
2265 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2266                                    char *type, char *sym)
2267 {
2268         return -ERANGE;
2269 }
2270
2271 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2272                        char *sym)
2273 {
2274 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2275         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2276                 return 0;
2277 #ifdef CONFIG_OPTPROBES
2278         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2279                 return 0;
2280 #endif
2281 #endif
2282         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2283                 return 0;
2284         return -ERANGE;
2285 }
2286
2287 int __init __weak arch_populate_kprobe_blacklist(void)
2288 {
2289         return 0;
2290 }
2291
2292 /*
2293  * Lookup and populate the kprobe_blacklist.
2294  *
2295  * Unlike the kretprobe blacklist, we'll need to determine
2296  * the range of addresses that belong to the said functions,
2297  * since a kprobe need not necessarily be at the beginning
2298  * of a function.
2299  */
2300 static int __init populate_kprobe_blacklist(unsigned long *start,
2301                                              unsigned long *end)
2302 {
2303         unsigned long entry;
2304         unsigned long *iter;
2305         int ret;
2306
2307         for (iter = start; iter < end; iter++) {
2308                 entry = arch_deref_entry_point((void *)*iter);
2309                 ret = kprobe_add_ksym_blacklist(entry);
2310                 if (ret == -EINVAL)
2311                         continue;
2312                 if (ret < 0)
2313                         return ret;
2314         }
2315
2316         /* Symbols in __kprobes_text are blacklisted */
2317         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2318                                         (unsigned long)__kprobes_text_end);
2319         if (ret)
2320                 return ret;
2321
2322         /* Symbols in noinstr section are blacklisted */
2323         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2324                                         (unsigned long)__noinstr_text_end);
2325
2326         return ret ? : arch_populate_kprobe_blacklist();
2327 }
2328
2329 static void add_module_kprobe_blacklist(struct module *mod)
2330 {
2331         unsigned long start, end;
2332         int i;
2333
2334         if (mod->kprobe_blacklist) {
2335                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2336                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2337         }
2338
2339         start = (unsigned long)mod->kprobes_text_start;
2340         if (start) {
2341                 end = start + mod->kprobes_text_size;
2342                 kprobe_add_area_blacklist(start, end);
2343         }
2344
2345         start = (unsigned long)mod->noinstr_text_start;
2346         if (start) {
2347                 end = start + mod->noinstr_text_size;
2348                 kprobe_add_area_blacklist(start, end);
2349         }
2350 }
2351
2352 static void remove_module_kprobe_blacklist(struct module *mod)
2353 {
2354         unsigned long start, end;
2355         int i;
2356
2357         if (mod->kprobe_blacklist) {
2358                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2359                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2360         }
2361
2362         start = (unsigned long)mod->kprobes_text_start;
2363         if (start) {
2364                 end = start + mod->kprobes_text_size;
2365                 kprobe_remove_area_blacklist(start, end);
2366         }
2367
2368         start = (unsigned long)mod->noinstr_text_start;
2369         if (start) {
2370                 end = start + mod->noinstr_text_size;
2371                 kprobe_remove_area_blacklist(start, end);
2372         }
2373 }
2374
2375 /* Module notifier call back, checking kprobes on the module */
2376 static int kprobes_module_callback(struct notifier_block *nb,
2377                                    unsigned long val, void *data)
2378 {
2379         struct module *mod = data;
2380         struct hlist_head *head;
2381         struct kprobe *p;
2382         unsigned int i;
2383         int checkcore = (val == MODULE_STATE_GOING);
2384
2385         if (val == MODULE_STATE_COMING) {
2386                 mutex_lock(&kprobe_mutex);
2387                 add_module_kprobe_blacklist(mod);
2388                 mutex_unlock(&kprobe_mutex);
2389         }
2390         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2391                 return NOTIFY_DONE;
2392
2393         /*
2394          * When MODULE_STATE_GOING was notified, both of module .text and
2395          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2396          * notified, only .init.text section would be freed. We need to
2397          * disable kprobes which have been inserted in the sections.
2398          */
2399         mutex_lock(&kprobe_mutex);
2400         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2401                 head = &kprobe_table[i];
2402                 hlist_for_each_entry(p, head, hlist)
2403                         if (within_module_init((unsigned long)p->addr, mod) ||
2404                             (checkcore &&
2405                              within_module_core((unsigned long)p->addr, mod))) {
2406                                 /*
2407                                  * The vaddr this probe is installed will soon
2408                                  * be vfreed buy not synced to disk. Hence,
2409                                  * disarming the breakpoint isn't needed.
2410                                  *
2411                                  * Note, this will also move any optimized probes
2412                                  * that are pending to be removed from their
2413                                  * corresponding lists to the freeing_list and
2414                                  * will not be touched by the delayed
2415                                  * kprobe_optimizer work handler.
2416                                  */
2417                                 kill_kprobe(p);
2418                         }
2419         }
2420         if (val == MODULE_STATE_GOING)
2421                 remove_module_kprobe_blacklist(mod);
2422         mutex_unlock(&kprobe_mutex);
2423         return NOTIFY_DONE;
2424 }
2425
2426 static struct notifier_block kprobe_module_nb = {
2427         .notifier_call = kprobes_module_callback,
2428         .priority = 0
2429 };
2430
2431 /* Markers of _kprobe_blacklist section */
2432 extern unsigned long __start_kprobe_blacklist[];
2433 extern unsigned long __stop_kprobe_blacklist[];
2434
2435 void kprobe_free_init_mem(void)
2436 {
2437         void *start = (void *)(&__init_begin);
2438         void *end = (void *)(&__init_end);
2439         struct hlist_head *head;
2440         struct kprobe *p;
2441         int i;
2442
2443         mutex_lock(&kprobe_mutex);
2444
2445         /* Kill all kprobes on initmem */
2446         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2447                 head = &kprobe_table[i];
2448                 hlist_for_each_entry(p, head, hlist) {
2449                         if (start <= (void *)p->addr && (void *)p->addr < end)
2450                                 kill_kprobe(p);
2451                 }
2452         }
2453
2454         mutex_unlock(&kprobe_mutex);
2455 }
2456
2457 static int __init init_kprobes(void)
2458 {
2459         int i, err = 0;
2460
2461         /* FIXME allocate the probe table, currently defined statically */
2462         /* initialize all list heads */
2463         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2464                 INIT_HLIST_HEAD(&kprobe_table[i]);
2465
2466         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2467                                         __stop_kprobe_blacklist);
2468         if (err) {
2469                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2470                 pr_err("Please take care of using kprobes.\n");
2471         }
2472
2473         if (kretprobe_blacklist_size) {
2474                 /* lookup the function address from its name */
2475                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2476                         kretprobe_blacklist[i].addr =
2477                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2478                         if (!kretprobe_blacklist[i].addr)
2479                                 printk("kretprobe: lookup failed: %s\n",
2480                                        kretprobe_blacklist[i].name);
2481                 }
2482         }
2483
2484         /* By default, kprobes are armed */
2485         kprobes_all_disarmed = false;
2486
2487 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2488         /* Init kprobe_optinsn_slots for allocation */
2489         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2490 #endif
2491
2492         err = arch_init_kprobes();
2493         if (!err)
2494                 err = register_die_notifier(&kprobe_exceptions_nb);
2495         if (!err)
2496                 err = register_module_notifier(&kprobe_module_nb);
2497
2498         kprobes_initialized = (err == 0);
2499
2500         if (!err)
2501                 init_test_probes();
2502         return err;
2503 }
2504 early_initcall(init_kprobes);
2505
2506 #if defined(CONFIG_OPTPROBES)
2507 static int __init init_optprobes(void)
2508 {
2509         /*
2510          * Enable kprobe optimization - this kicks the optimizer which
2511          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2512          * not spawned in early initcall. So delay the optimization.
2513          */
2514         optimize_all_kprobes();
2515
2516         return 0;
2517 }
2518 subsys_initcall(init_optprobes);
2519 #endif
2520
2521 #ifdef CONFIG_DEBUG_FS
2522 static void report_probe(struct seq_file *pi, struct kprobe *p,
2523                 const char *sym, int offset, char *modname, struct kprobe *pp)
2524 {
2525         char *kprobe_type;
2526         void *addr = p->addr;
2527
2528         if (p->pre_handler == pre_handler_kretprobe)
2529                 kprobe_type = "r";
2530         else
2531                 kprobe_type = "k";
2532
2533         if (!kallsyms_show_value(pi->file->f_cred))
2534                 addr = NULL;
2535
2536         if (sym)
2537                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2538                         addr, kprobe_type, sym, offset,
2539                         (modname ? modname : " "));
2540         else    /* try to use %pS */
2541                 seq_printf(pi, "%px  %s  %pS ",
2542                         addr, kprobe_type, p->addr);
2543
2544         if (!pp)
2545                 pp = p;
2546         seq_printf(pi, "%s%s%s%s\n",
2547                 (kprobe_gone(p) ? "[GONE]" : ""),
2548                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2549                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2550                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2551 }
2552
2553 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2554 {
2555         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2556 }
2557
2558 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2559 {
2560         (*pos)++;
2561         if (*pos >= KPROBE_TABLE_SIZE)
2562                 return NULL;
2563         return pos;
2564 }
2565
2566 static void kprobe_seq_stop(struct seq_file *f, void *v)
2567 {
2568         /* Nothing to do */
2569 }
2570
2571 static int show_kprobe_addr(struct seq_file *pi, void *v)
2572 {
2573         struct hlist_head *head;
2574         struct kprobe *p, *kp;
2575         const char *sym = NULL;
2576         unsigned int i = *(loff_t *) v;
2577         unsigned long offset = 0;
2578         char *modname, namebuf[KSYM_NAME_LEN];
2579
2580         head = &kprobe_table[i];
2581         preempt_disable();
2582         hlist_for_each_entry_rcu(p, head, hlist) {
2583                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2584                                         &offset, &modname, namebuf);
2585                 if (kprobe_aggrprobe(p)) {
2586                         list_for_each_entry_rcu(kp, &p->list, list)
2587                                 report_probe(pi, kp, sym, offset, modname, p);
2588                 } else
2589                         report_probe(pi, p, sym, offset, modname, NULL);
2590         }
2591         preempt_enable();
2592         return 0;
2593 }
2594
2595 static const struct seq_operations kprobes_sops = {
2596         .start = kprobe_seq_start,
2597         .next  = kprobe_seq_next,
2598         .stop  = kprobe_seq_stop,
2599         .show  = show_kprobe_addr
2600 };
2601
2602 DEFINE_SEQ_ATTRIBUTE(kprobes);
2603
2604 /* kprobes/blacklist -- shows which functions can not be probed */
2605 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2606 {
2607         mutex_lock(&kprobe_mutex);
2608         return seq_list_start(&kprobe_blacklist, *pos);
2609 }
2610
2611 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2612 {
2613         return seq_list_next(v, &kprobe_blacklist, pos);
2614 }
2615
2616 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2617 {
2618         struct kprobe_blacklist_entry *ent =
2619                 list_entry(v, struct kprobe_blacklist_entry, list);
2620
2621         /*
2622          * If /proc/kallsyms is not showing kernel address, we won't
2623          * show them here either.
2624          */
2625         if (!kallsyms_show_value(m->file->f_cred))
2626                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2627                            (void *)ent->start_addr);
2628         else
2629                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2630                            (void *)ent->end_addr, (void *)ent->start_addr);
2631         return 0;
2632 }
2633
2634 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2635 {
2636         mutex_unlock(&kprobe_mutex);
2637 }
2638
2639 static const struct seq_operations kprobe_blacklist_sops = {
2640         .start = kprobe_blacklist_seq_start,
2641         .next  = kprobe_blacklist_seq_next,
2642         .stop  = kprobe_blacklist_seq_stop,
2643         .show  = kprobe_blacklist_seq_show,
2644 };
2645 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2646
2647 static int arm_all_kprobes(void)
2648 {
2649         struct hlist_head *head;
2650         struct kprobe *p;
2651         unsigned int i, total = 0, errors = 0;
2652         int err, ret = 0;
2653
2654         mutex_lock(&kprobe_mutex);
2655
2656         /* If kprobes are armed, just return */
2657         if (!kprobes_all_disarmed)
2658                 goto already_enabled;
2659
2660         /*
2661          * optimize_kprobe() called by arm_kprobe() checks
2662          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2663          * arm_kprobe.
2664          */
2665         kprobes_all_disarmed = false;
2666         /* Arming kprobes doesn't optimize kprobe itself */
2667         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2668                 head = &kprobe_table[i];
2669                 /* Arm all kprobes on a best-effort basis */
2670                 hlist_for_each_entry(p, head, hlist) {
2671                         if (!kprobe_disabled(p)) {
2672                                 err = arm_kprobe(p);
2673                                 if (err)  {
2674                                         errors++;
2675                                         ret = err;
2676                                 }
2677                                 total++;
2678                         }
2679                 }
2680         }
2681
2682         if (errors)
2683                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2684                         errors, total);
2685         else
2686                 pr_info("Kprobes globally enabled\n");
2687
2688 already_enabled:
2689         mutex_unlock(&kprobe_mutex);
2690         return ret;
2691 }
2692
2693 static int disarm_all_kprobes(void)
2694 {
2695         struct hlist_head *head;
2696         struct kprobe *p;
2697         unsigned int i, total = 0, errors = 0;
2698         int err, ret = 0;
2699
2700         mutex_lock(&kprobe_mutex);
2701
2702         /* If kprobes are already disarmed, just return */
2703         if (kprobes_all_disarmed) {
2704                 mutex_unlock(&kprobe_mutex);
2705                 return 0;
2706         }
2707
2708         kprobes_all_disarmed = true;
2709
2710         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2711                 head = &kprobe_table[i];
2712                 /* Disarm all kprobes on a best-effort basis */
2713                 hlist_for_each_entry(p, head, hlist) {
2714                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2715                                 err = disarm_kprobe(p, false);
2716                                 if (err) {
2717                                         errors++;
2718                                         ret = err;
2719                                 }
2720                                 total++;
2721                         }
2722                 }
2723         }
2724
2725         if (errors)
2726                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2727                         errors, total);
2728         else
2729                 pr_info("Kprobes globally disabled\n");
2730
2731         mutex_unlock(&kprobe_mutex);
2732
2733         /* Wait for disarming all kprobes by optimizer */
2734         wait_for_kprobe_optimizer();
2735
2736         return ret;
2737 }
2738
2739 /*
2740  * XXX: The debugfs bool file interface doesn't allow for callbacks
2741  * when the bool state is switched. We can reuse that facility when
2742  * available
2743  */
2744 static ssize_t read_enabled_file_bool(struct file *file,
2745                char __user *user_buf, size_t count, loff_t *ppos)
2746 {
2747         char buf[3];
2748
2749         if (!kprobes_all_disarmed)
2750                 buf[0] = '1';
2751         else
2752                 buf[0] = '0';
2753         buf[1] = '\n';
2754         buf[2] = 0x00;
2755         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2756 }
2757
2758 static ssize_t write_enabled_file_bool(struct file *file,
2759                const char __user *user_buf, size_t count, loff_t *ppos)
2760 {
2761         char buf[32];
2762         size_t buf_size;
2763         int ret = 0;
2764
2765         buf_size = min(count, (sizeof(buf)-1));
2766         if (copy_from_user(buf, user_buf, buf_size))
2767                 return -EFAULT;
2768
2769         buf[buf_size] = '\0';
2770         switch (buf[0]) {
2771         case 'y':
2772         case 'Y':
2773         case '1':
2774                 ret = arm_all_kprobes();
2775                 break;
2776         case 'n':
2777         case 'N':
2778         case '0':
2779                 ret = disarm_all_kprobes();
2780                 break;
2781         default:
2782                 return -EINVAL;
2783         }
2784
2785         if (ret)
2786                 return ret;
2787
2788         return count;
2789 }
2790
2791 static const struct file_operations fops_kp = {
2792         .read =         read_enabled_file_bool,
2793         .write =        write_enabled_file_bool,
2794         .llseek =       default_llseek,
2795 };
2796
2797 static int __init debugfs_kprobe_init(void)
2798 {
2799         struct dentry *dir;
2800         unsigned int value = 1;
2801
2802         dir = debugfs_create_dir("kprobes", NULL);
2803
2804         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2805
2806         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2807
2808         debugfs_create_file("blacklist", 0400, dir, NULL,
2809                             &kprobe_blacklist_fops);
2810
2811         return 0;
2812 }
2813
2814 late_initcall(debugfs_kprobe_init);
2815 #endif /* CONFIG_DEBUG_FS */