Merge tag 'linux-watchdog-6.5-rc1' of git://www.linux-watchdog.org/linux-watchdog
[platform/kernel/linux-starfive.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *              Probes initial implementation (includes suggestions from
9  *              Rusty Russell).
10  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *              hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *              interface to access function arguments.
14  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *              exceptions notifier to be first on the priority list.
16  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *              <prasanna@in.ibm.com> added function-return probes.
19  */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58  * Or
59  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60  */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71                                         unsigned int __unused)
72 {
73         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75
76 /*
77  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78  * kprobes can not probe.
79  */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90         struct list_head list;
91         kprobe_opcode_t *insns;         /* Page of instruction slots */
92         struct kprobe_insn_cache *cache;
93         int nused;
94         int ngarbage;
95         char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
99         (offsetof(struct kprobe_insn_page, slot_used) + \
100          (sizeof(char) * (slots)))
101
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108         SLOT_CLEAN = 0,
109         SLOT_DIRTY = 1,
110         SLOT_USED = 2,
111 };
112
113 void __weak *alloc_insn_page(void)
114 {
115         /*
116          * Use module_alloc() so this page is within +/- 2GB of where the
117          * kernel image and loaded module images reside. This is required
118          * for most of the architectures.
119          * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120          */
121         return module_alloc(PAGE_SIZE);
122 }
123
124 static void free_insn_page(void *page)
125 {
126         module_memfree(page);
127 }
128
129 struct kprobe_insn_cache kprobe_insn_slots = {
130         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131         .alloc = alloc_insn_page,
132         .free = free_insn_page,
133         .sym = KPROBE_INSN_PAGE_SYM,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156
157                         for (i = 0; i < slots_per_page(c); i++) {
158                                 if (kip->slot_used[i] == SLOT_CLEAN) {
159                                         kip->slot_used[i] = SLOT_USED;
160                                         kip->nused++;
161                                         slot = kip->insns + (i * c->insn_size);
162                                         rcu_read_unlock();
163                                         goto out;
164                                 }
165                         }
166                         /* kip->nused is broken. Fix it. */
167                         kip->nused = slots_per_page(c);
168                         WARN_ON(1);
169                 }
170         }
171         rcu_read_unlock();
172
173         /* If there are any garbage slots, collect it and try again. */
174         if (c->nr_garbage && collect_garbage_slots(c) == 0)
175                 goto retry;
176
177         /* All out of space.  Need to allocate a new page. */
178         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179         if (!kip)
180                 goto out;
181
182         kip->insns = c->alloc();
183         if (!kip->insns) {
184                 kfree(kip);
185                 goto out;
186         }
187         INIT_LIST_HEAD(&kip->list);
188         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189         kip->slot_used[0] = SLOT_USED;
190         kip->nused = 1;
191         kip->ngarbage = 0;
192         kip->cache = c;
193         list_add_rcu(&kip->list, &c->pages);
194         slot = kip->insns;
195
196         /* Record the perf ksymbol register event after adding the page */
197         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198                            PAGE_SIZE, false, c->sym);
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         /*
218                          * Record perf ksymbol unregister event before removing
219                          * the page.
220                          */
221                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222                                            (unsigned long)kip->insns, PAGE_SIZE, true,
223                                            kip->cache->sym);
224                         list_del_rcu(&kip->list);
225                         synchronize_rcu();
226                         kip->cache->free(kip->insns);
227                         kfree(kip);
228                 }
229                 return true;
230         }
231         return false;
232 }
233
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236         struct kprobe_insn_page *kip, *next;
237
238         /* Ensure no-one is interrupted on the garbages */
239         synchronize_rcu();
240
241         list_for_each_entry_safe(kip, next, &c->pages, list) {
242                 int i;
243
244                 if (kip->ngarbage == 0)
245                         continue;
246                 kip->ngarbage = 0;      /* we will collect all garbages */
247                 for (i = 0; i < slots_per_page(c); i++) {
248                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249                                 break;
250                 }
251         }
252         c->nr_garbage = 0;
253         return 0;
254 }
255
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257                       kprobe_opcode_t *slot, int dirty)
258 {
259         struct kprobe_insn_page *kip;
260         long idx;
261
262         mutex_lock(&c->mutex);
263         rcu_read_lock();
264         list_for_each_entry_rcu(kip, &c->pages, list) {
265                 idx = ((long)slot - (long)kip->insns) /
266                         (c->insn_size * sizeof(kprobe_opcode_t));
267                 if (idx >= 0 && idx < slots_per_page(c))
268                         goto out;
269         }
270         /* Could not find this slot. */
271         WARN_ON(1);
272         kip = NULL;
273 out:
274         rcu_read_unlock();
275         /* Mark and sweep: this may sleep */
276         if (kip) {
277                 /* Check double free */
278                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279                 if (dirty) {
280                         kip->slot_used[idx] = SLOT_DIRTY;
281                         kip->ngarbage++;
282                         if (++c->nr_garbage > slots_per_page(c))
283                                 collect_garbage_slots(c);
284                 } else {
285                         collect_one_slot(kip, idx);
286                 }
287         }
288         mutex_unlock(&c->mutex);
289 }
290
291 /*
292  * Check given address is on the page of kprobe instruction slots.
293  * This will be used for checking whether the address on a stack
294  * is on a text area or not.
295  */
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298         struct kprobe_insn_page *kip;
299         bool ret = false;
300
301         rcu_read_lock();
302         list_for_each_entry_rcu(kip, &c->pages, list) {
303                 if (addr >= (unsigned long)kip->insns &&
304                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
305                         ret = true;
306                         break;
307                 }
308         }
309         rcu_read_unlock();
310
311         return ret;
312 }
313
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315                              unsigned long *value, char *type, char *sym)
316 {
317         struct kprobe_insn_page *kip;
318         int ret = -ERANGE;
319
320         rcu_read_lock();
321         list_for_each_entry_rcu(kip, &c->pages, list) {
322                 if ((*symnum)--)
323                         continue;
324                 strscpy(sym, c->sym, KSYM_NAME_LEN);
325                 *type = 't';
326                 *value = (unsigned long)kip->insns;
327                 ret = 0;
328                 break;
329         }
330         rcu_read_unlock();
331
332         return ret;
333 }
334
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
337 {
338         return alloc_insn_page();
339 }
340
341 void __weak free_optinsn_page(void *page)
342 {
343         free_insn_page(page);
344 }
345
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349         .alloc = alloc_optinsn_page,
350         .free = free_optinsn_page,
351         .sym = KPROBE_OPTINSN_PAGE_SYM,
352         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353         /* .insn_size is initialized later */
354         .nr_garbage = 0,
355 };
356 #endif
357 #endif
358
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362         __this_cpu_write(kprobe_instance, kp);
363 }
364
365 static inline void reset_kprobe_instance(void)
366 {
367         __this_cpu_write(kprobe_instance, NULL);
368 }
369
370 /*
371  * This routine is called either:
372  *      - under the 'kprobe_mutex' - during kprobe_[un]register().
373  *                              OR
374  *      - with preemption disabled - from architecture specific code.
375  */
376 struct kprobe *get_kprobe(void *addr)
377 {
378         struct hlist_head *head;
379         struct kprobe *p;
380
381         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382         hlist_for_each_entry_rcu(p, head, hlist,
383                                  lockdep_is_held(&kprobe_mutex)) {
384                 if (p->addr == addr)
385                         return p;
386         }
387
388         return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397         return p->pre_handler == aggr_pre_handler;
398 }
399
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404                list_empty(&p->list);
405 }
406
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417
418 /*
419  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420  * This must be called from arch-dep optimized caller.
421  */
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424         struct kprobe *kp;
425
426         list_for_each_entry_rcu(kp, &p->list, list) {
427                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428                         set_kprobe_instance(kp);
429                         kp->pre_handler(kp, regs);
430                 }
431                 reset_kprobe_instance();
432         }
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439         struct optimized_kprobe *op;
440
441         op = container_of(p, struct optimized_kprobe, kp);
442         arch_remove_optimized_kprobe(op);
443         arch_remove_kprobe(p);
444         kfree(op);
445 }
446
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
449 {
450         struct optimized_kprobe *op;
451
452         if (kprobe_aggrprobe(p)) {
453                 op = container_of(p, struct optimized_kprobe, kp);
454                 return arch_prepared_optinsn(&op->optinsn);
455         }
456
457         return 0;
458 }
459
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 bool kprobe_disarmed(struct kprobe *p)
462 {
463         struct optimized_kprobe *op;
464
465         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466         if (!kprobe_aggrprobe(p))
467                 return kprobe_disabled(p);
468
469         op = container_of(p, struct optimized_kprobe, kp);
470
471         return kprobe_disabled(p) && list_empty(&op->list);
472 }
473
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
476 {
477         struct optimized_kprobe *op;
478
479         if (kprobe_aggrprobe(p)) {
480                 op = container_of(p, struct optimized_kprobe, kp);
481                 if (!list_empty(&op->list))
482                         return true;
483         }
484         return false;
485 }
486
487 /*
488  * Return an optimized kprobe whose optimizing code replaces
489  * instructions including 'addr' (exclude breakpoint).
490  */
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493         int i;
494         struct kprobe *p = NULL;
495         struct optimized_kprobe *op;
496
497         /* Don't check i == 0, since that is a breakpoint case. */
498         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499                 p = get_kprobe(addr - i);
500
501         if (p && kprobe_optready(p)) {
502                 op = container_of(p, struct optimized_kprobe, kp);
503                 if (arch_within_optimized_kprobe(op, addr))
504                         return p;
505         }
506
507         return NULL;
508 }
509
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518
519 /*
520  * Optimize (replace a breakpoint with a jump) kprobes listed on
521  * 'optimizing_list'.
522  */
523 static void do_optimize_kprobes(void)
524 {
525         lockdep_assert_held(&text_mutex);
526         /*
527          * The optimization/unoptimization refers 'online_cpus' via
528          * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529          * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530          * This combination can cause a deadlock (cpu-hotplug tries to lock
531          * 'text_mutex' but stop_machine() can not be done because
532          * the 'online_cpus' has been changed)
533          * To avoid this deadlock, caller must have locked cpu-hotplug
534          * for preventing cpu-hotplug outside of 'text_mutex' locking.
535          */
536         lockdep_assert_cpus_held();
537
538         /* Optimization never be done when disarmed */
539         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540             list_empty(&optimizing_list))
541                 return;
542
543         arch_optimize_kprobes(&optimizing_list);
544 }
545
546 /*
547  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548  * if need) kprobes listed on 'unoptimizing_list'.
549  */
550 static void do_unoptimize_kprobes(void)
551 {
552         struct optimized_kprobe *op, *tmp;
553
554         lockdep_assert_held(&text_mutex);
555         /* See comment in do_optimize_kprobes() */
556         lockdep_assert_cpus_held();
557
558         if (!list_empty(&unoptimizing_list))
559                 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
560
561         /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
562         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
563                 /* Switching from detour code to origin */
564                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
565                 /* Disarm probes if marked disabled and not gone */
566                 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
567                         arch_disarm_kprobe(&op->kp);
568                 if (kprobe_unused(&op->kp)) {
569                         /*
570                          * Remove unused probes from hash list. After waiting
571                          * for synchronization, these probes are reclaimed.
572                          * (reclaiming is done by do_free_cleaned_kprobes().)
573                          */
574                         hlist_del_rcu(&op->kp.hlist);
575                 } else
576                         list_del_init(&op->list);
577         }
578 }
579
580 /* Reclaim all kprobes on the 'freeing_list' */
581 static void do_free_cleaned_kprobes(void)
582 {
583         struct optimized_kprobe *op, *tmp;
584
585         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
586                 list_del_init(&op->list);
587                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
588                         /*
589                          * This must not happen, but if there is a kprobe
590                          * still in use, keep it on kprobes hash list.
591                          */
592                         continue;
593                 }
594                 free_aggr_kprobe(&op->kp);
595         }
596 }
597
598 /* Start optimizer after OPTIMIZE_DELAY passed */
599 static void kick_kprobe_optimizer(void)
600 {
601         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
602 }
603
604 /* Kprobe jump optimizer */
605 static void kprobe_optimizer(struct work_struct *work)
606 {
607         mutex_lock(&kprobe_mutex);
608         cpus_read_lock();
609         mutex_lock(&text_mutex);
610
611         /*
612          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
613          * kprobes before waiting for quiesence period.
614          */
615         do_unoptimize_kprobes();
616
617         /*
618          * Step 2: Wait for quiesence period to ensure all potentially
619          * preempted tasks to have normally scheduled. Because optprobe
620          * may modify multiple instructions, there is a chance that Nth
621          * instruction is preempted. In that case, such tasks can return
622          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
623          * Note that on non-preemptive kernel, this is transparently converted
624          * to synchronoze_sched() to wait for all interrupts to have completed.
625          */
626         synchronize_rcu_tasks();
627
628         /* Step 3: Optimize kprobes after quiesence period */
629         do_optimize_kprobes();
630
631         /* Step 4: Free cleaned kprobes after quiesence period */
632         do_free_cleaned_kprobes();
633
634         mutex_unlock(&text_mutex);
635         cpus_read_unlock();
636
637         /* Step 5: Kick optimizer again if needed */
638         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
639                 kick_kprobe_optimizer();
640
641         mutex_unlock(&kprobe_mutex);
642 }
643
644 /* Wait for completing optimization and unoptimization */
645 void wait_for_kprobe_optimizer(void)
646 {
647         mutex_lock(&kprobe_mutex);
648
649         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
650                 mutex_unlock(&kprobe_mutex);
651
652                 /* This will also make 'optimizing_work' execute immmediately */
653                 flush_delayed_work(&optimizing_work);
654                 /* 'optimizing_work' might not have been queued yet, relax */
655                 cpu_relax();
656
657                 mutex_lock(&kprobe_mutex);
658         }
659
660         mutex_unlock(&kprobe_mutex);
661 }
662
663 bool optprobe_queued_unopt(struct optimized_kprobe *op)
664 {
665         struct optimized_kprobe *_op;
666
667         list_for_each_entry(_op, &unoptimizing_list, list) {
668                 if (op == _op)
669                         return true;
670         }
671
672         return false;
673 }
674
675 /* Optimize kprobe if p is ready to be optimized */
676 static void optimize_kprobe(struct kprobe *p)
677 {
678         struct optimized_kprobe *op;
679
680         /* Check if the kprobe is disabled or not ready for optimization. */
681         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682             (kprobe_disabled(p) || kprobes_all_disarmed))
683                 return;
684
685         /* kprobes with 'post_handler' can not be optimized */
686         if (p->post_handler)
687                 return;
688
689         op = container_of(p, struct optimized_kprobe, kp);
690
691         /* Check there is no other kprobes at the optimized instructions */
692         if (arch_check_optimized_kprobe(op) < 0)
693                 return;
694
695         /* Check if it is already optimized. */
696         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697                 if (optprobe_queued_unopt(op)) {
698                         /* This is under unoptimizing. Just dequeue the probe */
699                         list_del_init(&op->list);
700                 }
701                 return;
702         }
703         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704
705         /*
706          * On the 'unoptimizing_list' and 'optimizing_list',
707          * 'op' must have OPTIMIZED flag
708          */
709         if (WARN_ON_ONCE(!list_empty(&op->list)))
710                 return;
711
712         list_add(&op->list, &optimizing_list);
713         kick_kprobe_optimizer();
714 }
715
716 /* Short cut to direct unoptimizing */
717 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718 {
719         lockdep_assert_cpus_held();
720         arch_unoptimize_kprobe(op);
721         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 }
723
724 /* Unoptimize a kprobe if p is optimized */
725 static void unoptimize_kprobe(struct kprobe *p, bool force)
726 {
727         struct optimized_kprobe *op;
728
729         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730                 return; /* This is not an optprobe nor optimized */
731
732         op = container_of(p, struct optimized_kprobe, kp);
733         if (!kprobe_optimized(p))
734                 return;
735
736         if (!list_empty(&op->list)) {
737                 if (optprobe_queued_unopt(op)) {
738                         /* Queued in unoptimizing queue */
739                         if (force) {
740                                 /*
741                                  * Forcibly unoptimize the kprobe here, and queue it
742                                  * in the freeing list for release afterwards.
743                                  */
744                                 force_unoptimize_kprobe(op);
745                                 list_move(&op->list, &freeing_list);
746                         }
747                 } else {
748                         /* Dequeue from the optimizing queue */
749                         list_del_init(&op->list);
750                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751                 }
752                 return;
753         }
754
755         /* Optimized kprobe case */
756         if (force) {
757                 /* Forcibly update the code: this is a special case */
758                 force_unoptimize_kprobe(op);
759         } else {
760                 list_add(&op->list, &unoptimizing_list);
761                 kick_kprobe_optimizer();
762         }
763 }
764
765 /* Cancel unoptimizing for reusing */
766 static int reuse_unused_kprobe(struct kprobe *ap)
767 {
768         struct optimized_kprobe *op;
769
770         /*
771          * Unused kprobe MUST be on the way of delayed unoptimizing (means
772          * there is still a relative jump) and disabled.
773          */
774         op = container_of(ap, struct optimized_kprobe, kp);
775         WARN_ON_ONCE(list_empty(&op->list));
776         /* Enable the probe again */
777         ap->flags &= ~KPROBE_FLAG_DISABLED;
778         /* Optimize it again. (remove from 'op->list') */
779         if (!kprobe_optready(ap))
780                 return -EINVAL;
781
782         optimize_kprobe(ap);
783         return 0;
784 }
785
786 /* Remove optimized instructions */
787 static void kill_optimized_kprobe(struct kprobe *p)
788 {
789         struct optimized_kprobe *op;
790
791         op = container_of(p, struct optimized_kprobe, kp);
792         if (!list_empty(&op->list))
793                 /* Dequeue from the (un)optimization queue */
794                 list_del_init(&op->list);
795         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796
797         if (kprobe_unused(p)) {
798                 /*
799                  * Unused kprobe is on unoptimizing or freeing list. We move it
800                  * to freeing_list and let the kprobe_optimizer() remove it from
801                  * the kprobe hash list and free it.
802                  */
803                 if (optprobe_queued_unopt(op))
804                         list_move(&op->list, &freeing_list);
805         }
806
807         /* Don't touch the code, because it is already freed. */
808         arch_remove_optimized_kprobe(op);
809 }
810
811 static inline
812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813 {
814         if (!kprobe_ftrace(p))
815                 arch_prepare_optimized_kprobe(op, p);
816 }
817
818 /* Try to prepare optimized instructions */
819 static void prepare_optimized_kprobe(struct kprobe *p)
820 {
821         struct optimized_kprobe *op;
822
823         op = container_of(p, struct optimized_kprobe, kp);
824         __prepare_optimized_kprobe(op, p);
825 }
826
827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829 {
830         struct optimized_kprobe *op;
831
832         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833         if (!op)
834                 return NULL;
835
836         INIT_LIST_HEAD(&op->list);
837         op->kp.addr = p->addr;
838         __prepare_optimized_kprobe(op, p);
839
840         return &op->kp;
841 }
842
843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844
845 /*
846  * Prepare an optimized_kprobe and optimize it.
847  * NOTE: 'p' must be a normal registered kprobe.
848  */
849 static void try_to_optimize_kprobe(struct kprobe *p)
850 {
851         struct kprobe *ap;
852         struct optimized_kprobe *op;
853
854         /* Impossible to optimize ftrace-based kprobe. */
855         if (kprobe_ftrace(p))
856                 return;
857
858         /* For preparing optimization, jump_label_text_reserved() is called. */
859         cpus_read_lock();
860         jump_label_lock();
861         mutex_lock(&text_mutex);
862
863         ap = alloc_aggr_kprobe(p);
864         if (!ap)
865                 goto out;
866
867         op = container_of(ap, struct optimized_kprobe, kp);
868         if (!arch_prepared_optinsn(&op->optinsn)) {
869                 /* If failed to setup optimizing, fallback to kprobe. */
870                 arch_remove_optimized_kprobe(op);
871                 kfree(op);
872                 goto out;
873         }
874
875         init_aggr_kprobe(ap, p);
876         optimize_kprobe(ap);    /* This just kicks optimizer thread. */
877
878 out:
879         mutex_unlock(&text_mutex);
880         jump_label_unlock();
881         cpus_read_unlock();
882 }
883
884 static void optimize_all_kprobes(void)
885 {
886         struct hlist_head *head;
887         struct kprobe *p;
888         unsigned int i;
889
890         mutex_lock(&kprobe_mutex);
891         /* If optimization is already allowed, just return. */
892         if (kprobes_allow_optimization)
893                 goto out;
894
895         cpus_read_lock();
896         kprobes_allow_optimization = true;
897         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
898                 head = &kprobe_table[i];
899                 hlist_for_each_entry(p, head, hlist)
900                         if (!kprobe_disabled(p))
901                                 optimize_kprobe(p);
902         }
903         cpus_read_unlock();
904         pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
905 out:
906         mutex_unlock(&kprobe_mutex);
907 }
908
909 #ifdef CONFIG_SYSCTL
910 static void unoptimize_all_kprobes(void)
911 {
912         struct hlist_head *head;
913         struct kprobe *p;
914         unsigned int i;
915
916         mutex_lock(&kprobe_mutex);
917         /* If optimization is already prohibited, just return. */
918         if (!kprobes_allow_optimization) {
919                 mutex_unlock(&kprobe_mutex);
920                 return;
921         }
922
923         cpus_read_lock();
924         kprobes_allow_optimization = false;
925         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
926                 head = &kprobe_table[i];
927                 hlist_for_each_entry(p, head, hlist) {
928                         if (!kprobe_disabled(p))
929                                 unoptimize_kprobe(p, false);
930                 }
931         }
932         cpus_read_unlock();
933         mutex_unlock(&kprobe_mutex);
934
935         /* Wait for unoptimizing completion. */
936         wait_for_kprobe_optimizer();
937         pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
938 }
939
940 static DEFINE_MUTEX(kprobe_sysctl_mutex);
941 static int sysctl_kprobes_optimization;
942 static int proc_kprobes_optimization_handler(struct ctl_table *table,
943                                              int write, void *buffer,
944                                              size_t *length, loff_t *ppos)
945 {
946         int ret;
947
948         mutex_lock(&kprobe_sysctl_mutex);
949         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
950         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
951
952         if (sysctl_kprobes_optimization)
953                 optimize_all_kprobes();
954         else
955                 unoptimize_all_kprobes();
956         mutex_unlock(&kprobe_sysctl_mutex);
957
958         return ret;
959 }
960
961 static struct ctl_table kprobe_sysctls[] = {
962         {
963                 .procname       = "kprobes-optimization",
964                 .data           = &sysctl_kprobes_optimization,
965                 .maxlen         = sizeof(int),
966                 .mode           = 0644,
967                 .proc_handler   = proc_kprobes_optimization_handler,
968                 .extra1         = SYSCTL_ZERO,
969                 .extra2         = SYSCTL_ONE,
970         },
971         {}
972 };
973
974 static void __init kprobe_sysctls_init(void)
975 {
976         register_sysctl_init("debug", kprobe_sysctls);
977 }
978 #endif /* CONFIG_SYSCTL */
979
980 /* Put a breakpoint for a probe. */
981 static void __arm_kprobe(struct kprobe *p)
982 {
983         struct kprobe *_p;
984
985         lockdep_assert_held(&text_mutex);
986
987         /* Find the overlapping optimized kprobes. */
988         _p = get_optimized_kprobe(p->addr);
989         if (unlikely(_p))
990                 /* Fallback to unoptimized kprobe */
991                 unoptimize_kprobe(_p, true);
992
993         arch_arm_kprobe(p);
994         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
995 }
996
997 /* Remove the breakpoint of a probe. */
998 static void __disarm_kprobe(struct kprobe *p, bool reopt)
999 {
1000         struct kprobe *_p;
1001
1002         lockdep_assert_held(&text_mutex);
1003
1004         /* Try to unoptimize */
1005         unoptimize_kprobe(p, kprobes_all_disarmed);
1006
1007         if (!kprobe_queued(p)) {
1008                 arch_disarm_kprobe(p);
1009                 /* If another kprobe was blocked, re-optimize it. */
1010                 _p = get_optimized_kprobe(p->addr);
1011                 if (unlikely(_p) && reopt)
1012                         optimize_kprobe(_p);
1013         }
1014         /*
1015          * TODO: Since unoptimization and real disarming will be done by
1016          * the worker thread, we can not check whether another probe are
1017          * unoptimized because of this probe here. It should be re-optimized
1018          * by the worker thread.
1019          */
1020 }
1021
1022 #else /* !CONFIG_OPTPROBES */
1023
1024 #define optimize_kprobe(p)                      do {} while (0)
1025 #define unoptimize_kprobe(p, f)                 do {} while (0)
1026 #define kill_optimized_kprobe(p)                do {} while (0)
1027 #define prepare_optimized_kprobe(p)             do {} while (0)
1028 #define try_to_optimize_kprobe(p)               do {} while (0)
1029 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
1030 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
1031 #define kprobe_disarmed(p)                      kprobe_disabled(p)
1032 #define wait_for_kprobe_optimizer()             do {} while (0)
1033
1034 static int reuse_unused_kprobe(struct kprobe *ap)
1035 {
1036         /*
1037          * If the optimized kprobe is NOT supported, the aggr kprobe is
1038          * released at the same time that the last aggregated kprobe is
1039          * unregistered.
1040          * Thus there should be no chance to reuse unused kprobe.
1041          */
1042         WARN_ON_ONCE(1);
1043         return -EINVAL;
1044 }
1045
1046 static void free_aggr_kprobe(struct kprobe *p)
1047 {
1048         arch_remove_kprobe(p);
1049         kfree(p);
1050 }
1051
1052 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1053 {
1054         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1055 }
1056 #endif /* CONFIG_OPTPROBES */
1057
1058 #ifdef CONFIG_KPROBES_ON_FTRACE
1059 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1060         .func = kprobe_ftrace_handler,
1061         .flags = FTRACE_OPS_FL_SAVE_REGS,
1062 };
1063
1064 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1065         .func = kprobe_ftrace_handler,
1066         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1067 };
1068
1069 static int kprobe_ipmodify_enabled;
1070 static int kprobe_ftrace_enabled;
1071
1072 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1073                                int *cnt)
1074 {
1075         int ret = 0;
1076
1077         lockdep_assert_held(&kprobe_mutex);
1078
1079         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1080         if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1081                 return ret;
1082
1083         if (*cnt == 0) {
1084                 ret = register_ftrace_function(ops);
1085                 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1086                         goto err_ftrace;
1087         }
1088
1089         (*cnt)++;
1090         return ret;
1091
1092 err_ftrace:
1093         /*
1094          * At this point, sinec ops is not registered, we should be sefe from
1095          * registering empty filter.
1096          */
1097         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098         return ret;
1099 }
1100
1101 static int arm_kprobe_ftrace(struct kprobe *p)
1102 {
1103         bool ipmodify = (p->post_handler != NULL);
1104
1105         return __arm_kprobe_ftrace(p,
1106                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1107                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1108 }
1109
1110 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1111                                   int *cnt)
1112 {
1113         int ret = 0;
1114
1115         lockdep_assert_held(&kprobe_mutex);
1116
1117         if (*cnt == 1) {
1118                 ret = unregister_ftrace_function(ops);
1119                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1120                         return ret;
1121         }
1122
1123         (*cnt)--;
1124
1125         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1126         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1127                   p->addr, ret);
1128         return ret;
1129 }
1130
1131 static int disarm_kprobe_ftrace(struct kprobe *p)
1132 {
1133         bool ipmodify = (p->post_handler != NULL);
1134
1135         return __disarm_kprobe_ftrace(p,
1136                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1137                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1138 }
1139 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1140 static inline int arm_kprobe_ftrace(struct kprobe *p)
1141 {
1142         return -ENODEV;
1143 }
1144
1145 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1146 {
1147         return -ENODEV;
1148 }
1149 #endif
1150
1151 static int prepare_kprobe(struct kprobe *p)
1152 {
1153         /* Must ensure p->addr is really on ftrace */
1154         if (kprobe_ftrace(p))
1155                 return arch_prepare_kprobe_ftrace(p);
1156
1157         return arch_prepare_kprobe(p);
1158 }
1159
1160 static int arm_kprobe(struct kprobe *kp)
1161 {
1162         if (unlikely(kprobe_ftrace(kp)))
1163                 return arm_kprobe_ftrace(kp);
1164
1165         cpus_read_lock();
1166         mutex_lock(&text_mutex);
1167         __arm_kprobe(kp);
1168         mutex_unlock(&text_mutex);
1169         cpus_read_unlock();
1170
1171         return 0;
1172 }
1173
1174 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1175 {
1176         if (unlikely(kprobe_ftrace(kp)))
1177                 return disarm_kprobe_ftrace(kp);
1178
1179         cpus_read_lock();
1180         mutex_lock(&text_mutex);
1181         __disarm_kprobe(kp, reopt);
1182         mutex_unlock(&text_mutex);
1183         cpus_read_unlock();
1184
1185         return 0;
1186 }
1187
1188 /*
1189  * Aggregate handlers for multiple kprobes support - these handlers
1190  * take care of invoking the individual kprobe handlers on p->list
1191  */
1192 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1193 {
1194         struct kprobe *kp;
1195
1196         list_for_each_entry_rcu(kp, &p->list, list) {
1197                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1198                         set_kprobe_instance(kp);
1199                         if (kp->pre_handler(kp, regs))
1200                                 return 1;
1201                 }
1202                 reset_kprobe_instance();
1203         }
1204         return 0;
1205 }
1206 NOKPROBE_SYMBOL(aggr_pre_handler);
1207
1208 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1209                               unsigned long flags)
1210 {
1211         struct kprobe *kp;
1212
1213         list_for_each_entry_rcu(kp, &p->list, list) {
1214                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1215                         set_kprobe_instance(kp);
1216                         kp->post_handler(kp, regs, flags);
1217                         reset_kprobe_instance();
1218                 }
1219         }
1220 }
1221 NOKPROBE_SYMBOL(aggr_post_handler);
1222
1223 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1224 void kprobes_inc_nmissed_count(struct kprobe *p)
1225 {
1226         struct kprobe *kp;
1227
1228         if (!kprobe_aggrprobe(p)) {
1229                 p->nmissed++;
1230         } else {
1231                 list_for_each_entry_rcu(kp, &p->list, list)
1232                         kp->nmissed++;
1233         }
1234 }
1235 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1236
1237 static struct kprobe kprobe_busy = {
1238         .addr = (void *) get_kprobe,
1239 };
1240
1241 void kprobe_busy_begin(void)
1242 {
1243         struct kprobe_ctlblk *kcb;
1244
1245         preempt_disable();
1246         __this_cpu_write(current_kprobe, &kprobe_busy);
1247         kcb = get_kprobe_ctlblk();
1248         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1249 }
1250
1251 void kprobe_busy_end(void)
1252 {
1253         __this_cpu_write(current_kprobe, NULL);
1254         preempt_enable();
1255 }
1256
1257 /* Add the new probe to 'ap->list'. */
1258 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1259 {
1260         if (p->post_handler)
1261                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1262
1263         list_add_rcu(&p->list, &ap->list);
1264         if (p->post_handler && !ap->post_handler)
1265                 ap->post_handler = aggr_post_handler;
1266
1267         return 0;
1268 }
1269
1270 /*
1271  * Fill in the required fields of the aggregator kprobe. Replace the
1272  * earlier kprobe in the hlist with the aggregator kprobe.
1273  */
1274 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1275 {
1276         /* Copy the insn slot of 'p' to 'ap'. */
1277         copy_kprobe(p, ap);
1278         flush_insn_slot(ap);
1279         ap->addr = p->addr;
1280         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1281         ap->pre_handler = aggr_pre_handler;
1282         /* We don't care the kprobe which has gone. */
1283         if (p->post_handler && !kprobe_gone(p))
1284                 ap->post_handler = aggr_post_handler;
1285
1286         INIT_LIST_HEAD(&ap->list);
1287         INIT_HLIST_NODE(&ap->hlist);
1288
1289         list_add_rcu(&p->list, &ap->list);
1290         hlist_replace_rcu(&p->hlist, &ap->hlist);
1291 }
1292
1293 /*
1294  * This registers the second or subsequent kprobe at the same address.
1295  */
1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298         int ret = 0;
1299         struct kprobe *ap = orig_p;
1300
1301         cpus_read_lock();
1302
1303         /* For preparing optimization, jump_label_text_reserved() is called */
1304         jump_label_lock();
1305         mutex_lock(&text_mutex);
1306
1307         if (!kprobe_aggrprobe(orig_p)) {
1308                 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1309                 ap = alloc_aggr_kprobe(orig_p);
1310                 if (!ap) {
1311                         ret = -ENOMEM;
1312                         goto out;
1313                 }
1314                 init_aggr_kprobe(ap, orig_p);
1315         } else if (kprobe_unused(ap)) {
1316                 /* This probe is going to die. Rescue it */
1317                 ret = reuse_unused_kprobe(ap);
1318                 if (ret)
1319                         goto out;
1320         }
1321
1322         if (kprobe_gone(ap)) {
1323                 /*
1324                  * Attempting to insert new probe at the same location that
1325                  * had a probe in the module vaddr area which already
1326                  * freed. So, the instruction slot has already been
1327                  * released. We need a new slot for the new probe.
1328                  */
1329                 ret = arch_prepare_kprobe(ap);
1330                 if (ret)
1331                         /*
1332                          * Even if fail to allocate new slot, don't need to
1333                          * free the 'ap'. It will be used next time, or
1334                          * freed by unregister_kprobe().
1335                          */
1336                         goto out;
1337
1338                 /* Prepare optimized instructions if possible. */
1339                 prepare_optimized_kprobe(ap);
1340
1341                 /*
1342                  * Clear gone flag to prevent allocating new slot again, and
1343                  * set disabled flag because it is not armed yet.
1344                  */
1345                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346                             | KPROBE_FLAG_DISABLED;
1347         }
1348
1349         /* Copy the insn slot of 'p' to 'ap'. */
1350         copy_kprobe(ap, p);
1351         ret = add_new_kprobe(ap, p);
1352
1353 out:
1354         mutex_unlock(&text_mutex);
1355         jump_label_unlock();
1356         cpus_read_unlock();
1357
1358         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1360                 if (!kprobes_all_disarmed) {
1361                         /* Arm the breakpoint again. */
1362                         ret = arm_kprobe(ap);
1363                         if (ret) {
1364                                 ap->flags |= KPROBE_FLAG_DISABLED;
1365                                 list_del_rcu(&p->list);
1366                                 synchronize_rcu();
1367                         }
1368                 }
1369         }
1370         return ret;
1371 }
1372
1373 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1374 {
1375         /* The '__kprobes' functions and entry code must not be probed. */
1376         return addr >= (unsigned long)__kprobes_text_start &&
1377                addr < (unsigned long)__kprobes_text_end;
1378 }
1379
1380 static bool __within_kprobe_blacklist(unsigned long addr)
1381 {
1382         struct kprobe_blacklist_entry *ent;
1383
1384         if (arch_within_kprobe_blacklist(addr))
1385                 return true;
1386         /*
1387          * If 'kprobe_blacklist' is defined, check the address and
1388          * reject any probe registration in the prohibited area.
1389          */
1390         list_for_each_entry(ent, &kprobe_blacklist, list) {
1391                 if (addr >= ent->start_addr && addr < ent->end_addr)
1392                         return true;
1393         }
1394         return false;
1395 }
1396
1397 bool within_kprobe_blacklist(unsigned long addr)
1398 {
1399         char symname[KSYM_NAME_LEN], *p;
1400
1401         if (__within_kprobe_blacklist(addr))
1402                 return true;
1403
1404         /* Check if the address is on a suffixed-symbol */
1405         if (!lookup_symbol_name(addr, symname)) {
1406                 p = strchr(symname, '.');
1407                 if (!p)
1408                         return false;
1409                 *p = '\0';
1410                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1411                 if (addr)
1412                         return __within_kprobe_blacklist(addr);
1413         }
1414         return false;
1415 }
1416
1417 /*
1418  * arch_adjust_kprobe_addr - adjust the address
1419  * @addr: symbol base address
1420  * @offset: offset within the symbol
1421  * @on_func_entry: was this @addr+@offset on the function entry
1422  *
1423  * Typically returns @addr + @offset, except for special cases where the
1424  * function might be prefixed by a CFI landing pad, in that case any offset
1425  * inside the landing pad is mapped to the first 'real' instruction of the
1426  * symbol.
1427  *
1428  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1429  * instruction at +0.
1430  */
1431 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1432                                                 unsigned long offset,
1433                                                 bool *on_func_entry)
1434 {
1435         *on_func_entry = !offset;
1436         return (kprobe_opcode_t *)(addr + offset);
1437 }
1438
1439 /*
1440  * If 'symbol_name' is specified, look it up and add the 'offset'
1441  * to it. This way, we can specify a relative address to a symbol.
1442  * This returns encoded errors if it fails to look up symbol or invalid
1443  * combination of parameters.
1444  */
1445 static kprobe_opcode_t *
1446 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1447              unsigned long offset, bool *on_func_entry)
1448 {
1449         if ((symbol_name && addr) || (!symbol_name && !addr))
1450                 goto invalid;
1451
1452         if (symbol_name) {
1453                 /*
1454                  * Input: @sym + @offset
1455                  * Output: @addr + @offset
1456                  *
1457                  * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1458                  *       argument into it's output!
1459                  */
1460                 addr = kprobe_lookup_name(symbol_name, offset);
1461                 if (!addr)
1462                         return ERR_PTR(-ENOENT);
1463         }
1464
1465         /*
1466          * So here we have @addr + @offset, displace it into a new
1467          * @addr' + @offset' where @addr' is the symbol start address.
1468          */
1469         addr = (void *)addr + offset;
1470         if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1471                 return ERR_PTR(-ENOENT);
1472         addr = (void *)addr - offset;
1473
1474         /*
1475          * Then ask the architecture to re-combine them, taking care of
1476          * magical function entry details while telling us if this was indeed
1477          * at the start of the function.
1478          */
1479         addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1480         if (addr)
1481                 return addr;
1482
1483 invalid:
1484         return ERR_PTR(-EINVAL);
1485 }
1486
1487 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1488 {
1489         bool on_func_entry;
1490         return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1491 }
1492
1493 /*
1494  * Check the 'p' is valid and return the aggregator kprobe
1495  * at the same address.
1496  */
1497 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1498 {
1499         struct kprobe *ap, *list_p;
1500
1501         lockdep_assert_held(&kprobe_mutex);
1502
1503         ap = get_kprobe(p->addr);
1504         if (unlikely(!ap))
1505                 return NULL;
1506
1507         if (p != ap) {
1508                 list_for_each_entry(list_p, &ap->list, list)
1509                         if (list_p == p)
1510                         /* kprobe p is a valid probe */
1511                                 goto valid;
1512                 return NULL;
1513         }
1514 valid:
1515         return ap;
1516 }
1517
1518 /*
1519  * Warn and return error if the kprobe is being re-registered since
1520  * there must be a software bug.
1521  */
1522 static inline int warn_kprobe_rereg(struct kprobe *p)
1523 {
1524         int ret = 0;
1525
1526         mutex_lock(&kprobe_mutex);
1527         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1528                 ret = -EINVAL;
1529         mutex_unlock(&kprobe_mutex);
1530
1531         return ret;
1532 }
1533
1534 static int check_ftrace_location(struct kprobe *p)
1535 {
1536         unsigned long addr = (unsigned long)p->addr;
1537
1538         if (ftrace_location(addr) == addr) {
1539 #ifdef CONFIG_KPROBES_ON_FTRACE
1540                 p->flags |= KPROBE_FLAG_FTRACE;
1541 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1542                 return -EINVAL;
1543 #endif
1544         }
1545         return 0;
1546 }
1547
1548 static int check_kprobe_address_safe(struct kprobe *p,
1549                                      struct module **probed_mod)
1550 {
1551         int ret;
1552
1553         ret = check_ftrace_location(p);
1554         if (ret)
1555                 return ret;
1556         jump_label_lock();
1557         preempt_disable();
1558
1559         /* Ensure it is not in reserved area nor out of text */
1560         if (!(core_kernel_text((unsigned long) p->addr) ||
1561             is_module_text_address((unsigned long) p->addr)) ||
1562             in_gate_area_no_mm((unsigned long) p->addr) ||
1563             within_kprobe_blacklist((unsigned long) p->addr) ||
1564             jump_label_text_reserved(p->addr, p->addr) ||
1565             static_call_text_reserved(p->addr, p->addr) ||
1566             find_bug((unsigned long)p->addr)) {
1567                 ret = -EINVAL;
1568                 goto out;
1569         }
1570
1571         /* Check if 'p' is probing a module. */
1572         *probed_mod = __module_text_address((unsigned long) p->addr);
1573         if (*probed_mod) {
1574                 /*
1575                  * We must hold a refcount of the probed module while updating
1576                  * its code to prohibit unexpected unloading.
1577                  */
1578                 if (unlikely(!try_module_get(*probed_mod))) {
1579                         ret = -ENOENT;
1580                         goto out;
1581                 }
1582
1583                 /*
1584                  * If the module freed '.init.text', we couldn't insert
1585                  * kprobes in there.
1586                  */
1587                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588                     (*probed_mod)->state != MODULE_STATE_COMING) {
1589                         module_put(*probed_mod);
1590                         *probed_mod = NULL;
1591                         ret = -ENOENT;
1592                 }
1593         }
1594 out:
1595         preempt_enable();
1596         jump_label_unlock();
1597
1598         return ret;
1599 }
1600
1601 int register_kprobe(struct kprobe *p)
1602 {
1603         int ret;
1604         struct kprobe *old_p;
1605         struct module *probed_mod;
1606         kprobe_opcode_t *addr;
1607         bool on_func_entry;
1608
1609         /* Adjust probe address from symbol */
1610         addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1611         if (IS_ERR(addr))
1612                 return PTR_ERR(addr);
1613         p->addr = addr;
1614
1615         ret = warn_kprobe_rereg(p);
1616         if (ret)
1617                 return ret;
1618
1619         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1620         p->flags &= KPROBE_FLAG_DISABLED;
1621         p->nmissed = 0;
1622         INIT_LIST_HEAD(&p->list);
1623
1624         ret = check_kprobe_address_safe(p, &probed_mod);
1625         if (ret)
1626                 return ret;
1627
1628         mutex_lock(&kprobe_mutex);
1629
1630         if (on_func_entry)
1631                 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1632
1633         old_p = get_kprobe(p->addr);
1634         if (old_p) {
1635                 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1636                 ret = register_aggr_kprobe(old_p, p);
1637                 goto out;
1638         }
1639
1640         cpus_read_lock();
1641         /* Prevent text modification */
1642         mutex_lock(&text_mutex);
1643         ret = prepare_kprobe(p);
1644         mutex_unlock(&text_mutex);
1645         cpus_read_unlock();
1646         if (ret)
1647                 goto out;
1648
1649         INIT_HLIST_NODE(&p->hlist);
1650         hlist_add_head_rcu(&p->hlist,
1651                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1652
1653         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1654                 ret = arm_kprobe(p);
1655                 if (ret) {
1656                         hlist_del_rcu(&p->hlist);
1657                         synchronize_rcu();
1658                         goto out;
1659                 }
1660         }
1661
1662         /* Try to optimize kprobe */
1663         try_to_optimize_kprobe(p);
1664 out:
1665         mutex_unlock(&kprobe_mutex);
1666
1667         if (probed_mod)
1668                 module_put(probed_mod);
1669
1670         return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(register_kprobe);
1673
1674 /* Check if all probes on the 'ap' are disabled. */
1675 static bool aggr_kprobe_disabled(struct kprobe *ap)
1676 {
1677         struct kprobe *kp;
1678
1679         lockdep_assert_held(&kprobe_mutex);
1680
1681         list_for_each_entry(kp, &ap->list, list)
1682                 if (!kprobe_disabled(kp))
1683                         /*
1684                          * Since there is an active probe on the list,
1685                          * we can't disable this 'ap'.
1686                          */
1687                         return false;
1688
1689         return true;
1690 }
1691
1692 static struct kprobe *__disable_kprobe(struct kprobe *p)
1693 {
1694         struct kprobe *orig_p;
1695         int ret;
1696
1697         lockdep_assert_held(&kprobe_mutex);
1698
1699         /* Get an original kprobe for return */
1700         orig_p = __get_valid_kprobe(p);
1701         if (unlikely(orig_p == NULL))
1702                 return ERR_PTR(-EINVAL);
1703
1704         if (!kprobe_disabled(p)) {
1705                 /* Disable probe if it is a child probe */
1706                 if (p != orig_p)
1707                         p->flags |= KPROBE_FLAG_DISABLED;
1708
1709                 /* Try to disarm and disable this/parent probe */
1710                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1711                         /*
1712                          * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1713                          * is false, 'orig_p' might not have been armed yet.
1714                          * Note arm_all_kprobes() __tries__ to arm all kprobes
1715                          * on the best effort basis.
1716                          */
1717                         if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1718                                 ret = disarm_kprobe(orig_p, true);
1719                                 if (ret) {
1720                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1721                                         return ERR_PTR(ret);
1722                                 }
1723                         }
1724                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1725                 }
1726         }
1727
1728         return orig_p;
1729 }
1730
1731 /*
1732  * Unregister a kprobe without a scheduler synchronization.
1733  */
1734 static int __unregister_kprobe_top(struct kprobe *p)
1735 {
1736         struct kprobe *ap, *list_p;
1737
1738         /* Disable kprobe. This will disarm it if needed. */
1739         ap = __disable_kprobe(p);
1740         if (IS_ERR(ap))
1741                 return PTR_ERR(ap);
1742
1743         if (ap == p)
1744                 /*
1745                  * This probe is an independent(and non-optimized) kprobe
1746                  * (not an aggrprobe). Remove from the hash list.
1747                  */
1748                 goto disarmed;
1749
1750         /* Following process expects this probe is an aggrprobe */
1751         WARN_ON(!kprobe_aggrprobe(ap));
1752
1753         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1754                 /*
1755                  * !disarmed could be happen if the probe is under delayed
1756                  * unoptimizing.
1757                  */
1758                 goto disarmed;
1759         else {
1760                 /* If disabling probe has special handlers, update aggrprobe */
1761                 if (p->post_handler && !kprobe_gone(p)) {
1762                         list_for_each_entry(list_p, &ap->list, list) {
1763                                 if ((list_p != p) && (list_p->post_handler))
1764                                         goto noclean;
1765                         }
1766                         /*
1767                          * For the kprobe-on-ftrace case, we keep the
1768                          * post_handler setting to identify this aggrprobe
1769                          * armed with kprobe_ipmodify_ops.
1770                          */
1771                         if (!kprobe_ftrace(ap))
1772                                 ap->post_handler = NULL;
1773                 }
1774 noclean:
1775                 /*
1776                  * Remove from the aggrprobe: this path will do nothing in
1777                  * __unregister_kprobe_bottom().
1778                  */
1779                 list_del_rcu(&p->list);
1780                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1781                         /*
1782                          * Try to optimize this probe again, because post
1783                          * handler may have been changed.
1784                          */
1785                         optimize_kprobe(ap);
1786         }
1787         return 0;
1788
1789 disarmed:
1790         hlist_del_rcu(&ap->hlist);
1791         return 0;
1792 }
1793
1794 static void __unregister_kprobe_bottom(struct kprobe *p)
1795 {
1796         struct kprobe *ap;
1797
1798         if (list_empty(&p->list))
1799                 /* This is an independent kprobe */
1800                 arch_remove_kprobe(p);
1801         else if (list_is_singular(&p->list)) {
1802                 /* This is the last child of an aggrprobe */
1803                 ap = list_entry(p->list.next, struct kprobe, list);
1804                 list_del(&p->list);
1805                 free_aggr_kprobe(ap);
1806         }
1807         /* Otherwise, do nothing. */
1808 }
1809
1810 int register_kprobes(struct kprobe **kps, int num)
1811 {
1812         int i, ret = 0;
1813
1814         if (num <= 0)
1815                 return -EINVAL;
1816         for (i = 0; i < num; i++) {
1817                 ret = register_kprobe(kps[i]);
1818                 if (ret < 0) {
1819                         if (i > 0)
1820                                 unregister_kprobes(kps, i);
1821                         break;
1822                 }
1823         }
1824         return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(register_kprobes);
1827
1828 void unregister_kprobe(struct kprobe *p)
1829 {
1830         unregister_kprobes(&p, 1);
1831 }
1832 EXPORT_SYMBOL_GPL(unregister_kprobe);
1833
1834 void unregister_kprobes(struct kprobe **kps, int num)
1835 {
1836         int i;
1837
1838         if (num <= 0)
1839                 return;
1840         mutex_lock(&kprobe_mutex);
1841         for (i = 0; i < num; i++)
1842                 if (__unregister_kprobe_top(kps[i]) < 0)
1843                         kps[i]->addr = NULL;
1844         mutex_unlock(&kprobe_mutex);
1845
1846         synchronize_rcu();
1847         for (i = 0; i < num; i++)
1848                 if (kps[i]->addr)
1849                         __unregister_kprobe_bottom(kps[i]);
1850 }
1851 EXPORT_SYMBOL_GPL(unregister_kprobes);
1852
1853 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1854                                         unsigned long val, void *data)
1855 {
1856         return NOTIFY_DONE;
1857 }
1858 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1859
1860 static struct notifier_block kprobe_exceptions_nb = {
1861         .notifier_call = kprobe_exceptions_notify,
1862         .priority = 0x7fffffff /* we need to be notified first */
1863 };
1864
1865 #ifdef CONFIG_KRETPROBES
1866
1867 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1868 static void free_rp_inst_rcu(struct rcu_head *head)
1869 {
1870         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1871
1872         if (refcount_dec_and_test(&ri->rph->ref))
1873                 kfree(ri->rph);
1874         kfree(ri);
1875 }
1876 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1877
1878 static void recycle_rp_inst(struct kretprobe_instance *ri)
1879 {
1880         struct kretprobe *rp = get_kretprobe(ri);
1881
1882         if (likely(rp))
1883                 freelist_add(&ri->freelist, &rp->freelist);
1884         else
1885                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1886 }
1887 NOKPROBE_SYMBOL(recycle_rp_inst);
1888
1889 /*
1890  * This function is called from delayed_put_task_struct() when a task is
1891  * dead and cleaned up to recycle any kretprobe instances associated with
1892  * this task. These left over instances represent probed functions that
1893  * have been called but will never return.
1894  */
1895 void kprobe_flush_task(struct task_struct *tk)
1896 {
1897         struct kretprobe_instance *ri;
1898         struct llist_node *node;
1899
1900         /* Early boot, not yet initialized. */
1901         if (unlikely(!kprobes_initialized))
1902                 return;
1903
1904         kprobe_busy_begin();
1905
1906         node = __llist_del_all(&tk->kretprobe_instances);
1907         while (node) {
1908                 ri = container_of(node, struct kretprobe_instance, llist);
1909                 node = node->next;
1910
1911                 recycle_rp_inst(ri);
1912         }
1913
1914         kprobe_busy_end();
1915 }
1916 NOKPROBE_SYMBOL(kprobe_flush_task);
1917
1918 static inline void free_rp_inst(struct kretprobe *rp)
1919 {
1920         struct kretprobe_instance *ri;
1921         struct freelist_node *node;
1922         int count = 0;
1923
1924         node = rp->freelist.head;
1925         while (node) {
1926                 ri = container_of(node, struct kretprobe_instance, freelist);
1927                 node = node->next;
1928
1929                 kfree(ri);
1930                 count++;
1931         }
1932
1933         if (refcount_sub_and_test(count, &rp->rph->ref)) {
1934                 kfree(rp->rph);
1935                 rp->rph = NULL;
1936         }
1937 }
1938
1939 /* This assumes the 'tsk' is the current task or the is not running. */
1940 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1941                                                   struct llist_node **cur)
1942 {
1943         struct kretprobe_instance *ri = NULL;
1944         struct llist_node *node = *cur;
1945
1946         if (!node)
1947                 node = tsk->kretprobe_instances.first;
1948         else
1949                 node = node->next;
1950
1951         while (node) {
1952                 ri = container_of(node, struct kretprobe_instance, llist);
1953                 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1954                         *cur = node;
1955                         return ri->ret_addr;
1956                 }
1957                 node = node->next;
1958         }
1959         return NULL;
1960 }
1961 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1962
1963 /**
1964  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1965  * @tsk: Target task
1966  * @fp: A frame pointer
1967  * @cur: a storage of the loop cursor llist_node pointer for next call
1968  *
1969  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1970  * long type. If it finds the return address, this returns that address value,
1971  * or this returns 0.
1972  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1973  * to get the currect return address - which is compared with the
1974  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1975  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1976  * first call, but '@cur' itself must NOT NULL.
1977  */
1978 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1979                                       struct llist_node **cur)
1980 {
1981         struct kretprobe_instance *ri = NULL;
1982         kprobe_opcode_t *ret;
1983
1984         if (WARN_ON_ONCE(!cur))
1985                 return 0;
1986
1987         do {
1988                 ret = __kretprobe_find_ret_addr(tsk, cur);
1989                 if (!ret)
1990                         break;
1991                 ri = container_of(*cur, struct kretprobe_instance, llist);
1992         } while (ri->fp != fp);
1993
1994         return (unsigned long)ret;
1995 }
1996 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1997
1998 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1999                                         kprobe_opcode_t *correct_ret_addr)
2000 {
2001         /*
2002          * Do nothing by default. Please fill this to update the fake return
2003          * address on the stack with the correct one on each arch if possible.
2004          */
2005 }
2006
2007 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2008                                              void *frame_pointer)
2009 {
2010         kprobe_opcode_t *correct_ret_addr = NULL;
2011         struct kretprobe_instance *ri = NULL;
2012         struct llist_node *first, *node = NULL;
2013         struct kretprobe *rp;
2014
2015         /* Find correct address and all nodes for this frame. */
2016         correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2017         if (!correct_ret_addr) {
2018                 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2019                 BUG_ON(1);
2020         }
2021
2022         /*
2023          * Set the return address as the instruction pointer, because if the
2024          * user handler calls stack_trace_save_regs() with this 'regs',
2025          * the stack trace will start from the instruction pointer.
2026          */
2027         instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2028
2029         /* Run the user handler of the nodes. */
2030         first = current->kretprobe_instances.first;
2031         while (first) {
2032                 ri = container_of(first, struct kretprobe_instance, llist);
2033
2034                 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2035                         break;
2036
2037                 rp = get_kretprobe(ri);
2038                 if (rp && rp->handler) {
2039                         struct kprobe *prev = kprobe_running();
2040
2041                         __this_cpu_write(current_kprobe, &rp->kp);
2042                         ri->ret_addr = correct_ret_addr;
2043                         rp->handler(ri, regs);
2044                         __this_cpu_write(current_kprobe, prev);
2045                 }
2046                 if (first == node)
2047                         break;
2048
2049                 first = first->next;
2050         }
2051
2052         arch_kretprobe_fixup_return(regs, correct_ret_addr);
2053
2054         /* Unlink all nodes for this frame. */
2055         first = current->kretprobe_instances.first;
2056         current->kretprobe_instances.first = node->next;
2057         node->next = NULL;
2058
2059         /* Recycle free instances. */
2060         while (first) {
2061                 ri = container_of(first, struct kretprobe_instance, llist);
2062                 first = first->next;
2063
2064                 recycle_rp_inst(ri);
2065         }
2066
2067         return (unsigned long)correct_ret_addr;
2068 }
2069 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2070
2071 /*
2072  * This kprobe pre_handler is registered with every kretprobe. When probe
2073  * hits it will set up the return probe.
2074  */
2075 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2076 {
2077         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2078         struct kretprobe_instance *ri;
2079         struct freelist_node *fn;
2080
2081         fn = freelist_try_get(&rp->freelist);
2082         if (!fn) {
2083                 rp->nmissed++;
2084                 return 0;
2085         }
2086
2087         ri = container_of(fn, struct kretprobe_instance, freelist);
2088
2089         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2090                 freelist_add(&ri->freelist, &rp->freelist);
2091                 return 0;
2092         }
2093
2094         arch_prepare_kretprobe(ri, regs);
2095
2096         __llist_add(&ri->llist, &current->kretprobe_instances);
2097
2098         return 0;
2099 }
2100 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2101 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2102 /*
2103  * This kprobe pre_handler is registered with every kretprobe. When probe
2104  * hits it will set up the return probe.
2105  */
2106 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2107 {
2108         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2109         struct kretprobe_instance *ri;
2110         struct rethook_node *rhn;
2111
2112         rhn = rethook_try_get(rp->rh);
2113         if (!rhn) {
2114                 rp->nmissed++;
2115                 return 0;
2116         }
2117
2118         ri = container_of(rhn, struct kretprobe_instance, node);
2119
2120         if (rp->entry_handler && rp->entry_handler(ri, regs))
2121                 rethook_recycle(rhn);
2122         else
2123                 rethook_hook(rhn, regs, kprobe_ftrace(p));
2124
2125         return 0;
2126 }
2127 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2128
2129 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2130                                       unsigned long ret_addr,
2131                                       struct pt_regs *regs)
2132 {
2133         struct kretprobe *rp = (struct kretprobe *)data;
2134         struct kretprobe_instance *ri;
2135         struct kprobe_ctlblk *kcb;
2136
2137         /* The data must NOT be null. This means rethook data structure is broken. */
2138         if (WARN_ON_ONCE(!data) || !rp->handler)
2139                 return;
2140
2141         __this_cpu_write(current_kprobe, &rp->kp);
2142         kcb = get_kprobe_ctlblk();
2143         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2144
2145         ri = container_of(rh, struct kretprobe_instance, node);
2146         rp->handler(ri, regs);
2147
2148         __this_cpu_write(current_kprobe, NULL);
2149 }
2150 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2151
2152 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2153
2154 /**
2155  * kprobe_on_func_entry() -- check whether given address is function entry
2156  * @addr: Target address
2157  * @sym:  Target symbol name
2158  * @offset: The offset from the symbol or the address
2159  *
2160  * This checks whether the given @addr+@offset or @sym+@offset is on the
2161  * function entry address or not.
2162  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2163  * And also it returns -ENOENT if it fails the symbol or address lookup.
2164  * Caller must pass @addr or @sym (either one must be NULL), or this
2165  * returns -EINVAL.
2166  */
2167 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2168 {
2169         bool on_func_entry;
2170         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2171
2172         if (IS_ERR(kp_addr))
2173                 return PTR_ERR(kp_addr);
2174
2175         if (!on_func_entry)
2176                 return -EINVAL;
2177
2178         return 0;
2179 }
2180
2181 int register_kretprobe(struct kretprobe *rp)
2182 {
2183         int ret;
2184         struct kretprobe_instance *inst;
2185         int i;
2186         void *addr;
2187
2188         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2189         if (ret)
2190                 return ret;
2191
2192         /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2193         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2194                 return -EINVAL;
2195
2196         if (kretprobe_blacklist_size) {
2197                 addr = kprobe_addr(&rp->kp);
2198                 if (IS_ERR(addr))
2199                         return PTR_ERR(addr);
2200
2201                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2202                         if (kretprobe_blacklist[i].addr == addr)
2203                                 return -EINVAL;
2204                 }
2205         }
2206
2207         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2208                 return -E2BIG;
2209
2210         rp->kp.pre_handler = pre_handler_kretprobe;
2211         rp->kp.post_handler = NULL;
2212
2213         /* Pre-allocate memory for max kretprobe instances */
2214         if (rp->maxactive <= 0)
2215                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2216
2217 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2218         rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2219         if (!rp->rh)
2220                 return -ENOMEM;
2221
2222         for (i = 0; i < rp->maxactive; i++) {
2223                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2224                                rp->data_size, GFP_KERNEL);
2225                 if (inst == NULL) {
2226                         rethook_free(rp->rh);
2227                         rp->rh = NULL;
2228                         return -ENOMEM;
2229                 }
2230                 rethook_add_node(rp->rh, &inst->node);
2231         }
2232         rp->nmissed = 0;
2233         /* Establish function entry probe point */
2234         ret = register_kprobe(&rp->kp);
2235         if (ret != 0) {
2236                 rethook_free(rp->rh);
2237                 rp->rh = NULL;
2238         }
2239 #else   /* !CONFIG_KRETPROBE_ON_RETHOOK */
2240         rp->freelist.head = NULL;
2241         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2242         if (!rp->rph)
2243                 return -ENOMEM;
2244
2245         rp->rph->rp = rp;
2246         for (i = 0; i < rp->maxactive; i++) {
2247                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2248                                rp->data_size, GFP_KERNEL);
2249                 if (inst == NULL) {
2250                         refcount_set(&rp->rph->ref, i);
2251                         free_rp_inst(rp);
2252                         return -ENOMEM;
2253                 }
2254                 inst->rph = rp->rph;
2255                 freelist_add(&inst->freelist, &rp->freelist);
2256         }
2257         refcount_set(&rp->rph->ref, i);
2258
2259         rp->nmissed = 0;
2260         /* Establish function entry probe point */
2261         ret = register_kprobe(&rp->kp);
2262         if (ret != 0)
2263                 free_rp_inst(rp);
2264 #endif
2265         return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(register_kretprobe);
2268
2269 int register_kretprobes(struct kretprobe **rps, int num)
2270 {
2271         int ret = 0, i;
2272
2273         if (num <= 0)
2274                 return -EINVAL;
2275         for (i = 0; i < num; i++) {
2276                 ret = register_kretprobe(rps[i]);
2277                 if (ret < 0) {
2278                         if (i > 0)
2279                                 unregister_kretprobes(rps, i);
2280                         break;
2281                 }
2282         }
2283         return ret;
2284 }
2285 EXPORT_SYMBOL_GPL(register_kretprobes);
2286
2287 void unregister_kretprobe(struct kretprobe *rp)
2288 {
2289         unregister_kretprobes(&rp, 1);
2290 }
2291 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2292
2293 void unregister_kretprobes(struct kretprobe **rps, int num)
2294 {
2295         int i;
2296
2297         if (num <= 0)
2298                 return;
2299         mutex_lock(&kprobe_mutex);
2300         for (i = 0; i < num; i++) {
2301                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2302                         rps[i]->kp.addr = NULL;
2303 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2304                 rethook_free(rps[i]->rh);
2305 #else
2306                 rps[i]->rph->rp = NULL;
2307 #endif
2308         }
2309         mutex_unlock(&kprobe_mutex);
2310
2311         synchronize_rcu();
2312         for (i = 0; i < num; i++) {
2313                 if (rps[i]->kp.addr) {
2314                         __unregister_kprobe_bottom(&rps[i]->kp);
2315 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2316                         free_rp_inst(rps[i]);
2317 #endif
2318                 }
2319         }
2320 }
2321 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2322
2323 #else /* CONFIG_KRETPROBES */
2324 int register_kretprobe(struct kretprobe *rp)
2325 {
2326         return -EOPNOTSUPP;
2327 }
2328 EXPORT_SYMBOL_GPL(register_kretprobe);
2329
2330 int register_kretprobes(struct kretprobe **rps, int num)
2331 {
2332         return -EOPNOTSUPP;
2333 }
2334 EXPORT_SYMBOL_GPL(register_kretprobes);
2335
2336 void unregister_kretprobe(struct kretprobe *rp)
2337 {
2338 }
2339 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2340
2341 void unregister_kretprobes(struct kretprobe **rps, int num)
2342 {
2343 }
2344 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2345
2346 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2347 {
2348         return 0;
2349 }
2350 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2351
2352 #endif /* CONFIG_KRETPROBES */
2353
2354 /* Set the kprobe gone and remove its instruction buffer. */
2355 static void kill_kprobe(struct kprobe *p)
2356 {
2357         struct kprobe *kp;
2358
2359         lockdep_assert_held(&kprobe_mutex);
2360
2361         /*
2362          * The module is going away. We should disarm the kprobe which
2363          * is using ftrace, because ftrace framework is still available at
2364          * 'MODULE_STATE_GOING' notification.
2365          */
2366         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2367                 disarm_kprobe_ftrace(p);
2368
2369         p->flags |= KPROBE_FLAG_GONE;
2370         if (kprobe_aggrprobe(p)) {
2371                 /*
2372                  * If this is an aggr_kprobe, we have to list all the
2373                  * chained probes and mark them GONE.
2374                  */
2375                 list_for_each_entry(kp, &p->list, list)
2376                         kp->flags |= KPROBE_FLAG_GONE;
2377                 p->post_handler = NULL;
2378                 kill_optimized_kprobe(p);
2379         }
2380         /*
2381          * Here, we can remove insn_slot safely, because no thread calls
2382          * the original probed function (which will be freed soon) any more.
2383          */
2384         arch_remove_kprobe(p);
2385 }
2386
2387 /* Disable one kprobe */
2388 int disable_kprobe(struct kprobe *kp)
2389 {
2390         int ret = 0;
2391         struct kprobe *p;
2392
2393         mutex_lock(&kprobe_mutex);
2394
2395         /* Disable this kprobe */
2396         p = __disable_kprobe(kp);
2397         if (IS_ERR(p))
2398                 ret = PTR_ERR(p);
2399
2400         mutex_unlock(&kprobe_mutex);
2401         return ret;
2402 }
2403 EXPORT_SYMBOL_GPL(disable_kprobe);
2404
2405 /* Enable one kprobe */
2406 int enable_kprobe(struct kprobe *kp)
2407 {
2408         int ret = 0;
2409         struct kprobe *p;
2410
2411         mutex_lock(&kprobe_mutex);
2412
2413         /* Check whether specified probe is valid. */
2414         p = __get_valid_kprobe(kp);
2415         if (unlikely(p == NULL)) {
2416                 ret = -EINVAL;
2417                 goto out;
2418         }
2419
2420         if (kprobe_gone(kp)) {
2421                 /* This kprobe has gone, we couldn't enable it. */
2422                 ret = -EINVAL;
2423                 goto out;
2424         }
2425
2426         if (p != kp)
2427                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2428
2429         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2430                 p->flags &= ~KPROBE_FLAG_DISABLED;
2431                 ret = arm_kprobe(p);
2432                 if (ret) {
2433                         p->flags |= KPROBE_FLAG_DISABLED;
2434                         if (p != kp)
2435                                 kp->flags |= KPROBE_FLAG_DISABLED;
2436                 }
2437         }
2438 out:
2439         mutex_unlock(&kprobe_mutex);
2440         return ret;
2441 }
2442 EXPORT_SYMBOL_GPL(enable_kprobe);
2443
2444 /* Caller must NOT call this in usual path. This is only for critical case */
2445 void dump_kprobe(struct kprobe *kp)
2446 {
2447         pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2448                kp->symbol_name, kp->offset, kp->addr);
2449 }
2450 NOKPROBE_SYMBOL(dump_kprobe);
2451
2452 int kprobe_add_ksym_blacklist(unsigned long entry)
2453 {
2454         struct kprobe_blacklist_entry *ent;
2455         unsigned long offset = 0, size = 0;
2456
2457         if (!kernel_text_address(entry) ||
2458             !kallsyms_lookup_size_offset(entry, &size, &offset))
2459                 return -EINVAL;
2460
2461         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2462         if (!ent)
2463                 return -ENOMEM;
2464         ent->start_addr = entry;
2465         ent->end_addr = entry + size;
2466         INIT_LIST_HEAD(&ent->list);
2467         list_add_tail(&ent->list, &kprobe_blacklist);
2468
2469         return (int)size;
2470 }
2471
2472 /* Add all symbols in given area into kprobe blacklist */
2473 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2474 {
2475         unsigned long entry;
2476         int ret = 0;
2477
2478         for (entry = start; entry < end; entry += ret) {
2479                 ret = kprobe_add_ksym_blacklist(entry);
2480                 if (ret < 0)
2481                         return ret;
2482                 if (ret == 0)   /* In case of alias symbol */
2483                         ret = 1;
2484         }
2485         return 0;
2486 }
2487
2488 /* Remove all symbols in given area from kprobe blacklist */
2489 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2490 {
2491         struct kprobe_blacklist_entry *ent, *n;
2492
2493         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2494                 if (ent->start_addr < start || ent->start_addr >= end)
2495                         continue;
2496                 list_del(&ent->list);
2497                 kfree(ent);
2498         }
2499 }
2500
2501 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2502 {
2503         kprobe_remove_area_blacklist(entry, entry + 1);
2504 }
2505
2506 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2507                                    char *type, char *sym)
2508 {
2509         return -ERANGE;
2510 }
2511
2512 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2513                        char *sym)
2514 {
2515 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2516         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2517                 return 0;
2518 #ifdef CONFIG_OPTPROBES
2519         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2520                 return 0;
2521 #endif
2522 #endif
2523         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2524                 return 0;
2525         return -ERANGE;
2526 }
2527
2528 int __init __weak arch_populate_kprobe_blacklist(void)
2529 {
2530         return 0;
2531 }
2532
2533 /*
2534  * Lookup and populate the kprobe_blacklist.
2535  *
2536  * Unlike the kretprobe blacklist, we'll need to determine
2537  * the range of addresses that belong to the said functions,
2538  * since a kprobe need not necessarily be at the beginning
2539  * of a function.
2540  */
2541 static int __init populate_kprobe_blacklist(unsigned long *start,
2542                                              unsigned long *end)
2543 {
2544         unsigned long entry;
2545         unsigned long *iter;
2546         int ret;
2547
2548         for (iter = start; iter < end; iter++) {
2549                 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2550                 ret = kprobe_add_ksym_blacklist(entry);
2551                 if (ret == -EINVAL)
2552                         continue;
2553                 if (ret < 0)
2554                         return ret;
2555         }
2556
2557         /* Symbols in '__kprobes_text' are blacklisted */
2558         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2559                                         (unsigned long)__kprobes_text_end);
2560         if (ret)
2561                 return ret;
2562
2563         /* Symbols in 'noinstr' section are blacklisted */
2564         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2565                                         (unsigned long)__noinstr_text_end);
2566
2567         return ret ? : arch_populate_kprobe_blacklist();
2568 }
2569
2570 static void add_module_kprobe_blacklist(struct module *mod)
2571 {
2572         unsigned long start, end;
2573         int i;
2574
2575         if (mod->kprobe_blacklist) {
2576                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2577                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2578         }
2579
2580         start = (unsigned long)mod->kprobes_text_start;
2581         if (start) {
2582                 end = start + mod->kprobes_text_size;
2583                 kprobe_add_area_blacklist(start, end);
2584         }
2585
2586         start = (unsigned long)mod->noinstr_text_start;
2587         if (start) {
2588                 end = start + mod->noinstr_text_size;
2589                 kprobe_add_area_blacklist(start, end);
2590         }
2591 }
2592
2593 static void remove_module_kprobe_blacklist(struct module *mod)
2594 {
2595         unsigned long start, end;
2596         int i;
2597
2598         if (mod->kprobe_blacklist) {
2599                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2600                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2601         }
2602
2603         start = (unsigned long)mod->kprobes_text_start;
2604         if (start) {
2605                 end = start + mod->kprobes_text_size;
2606                 kprobe_remove_area_blacklist(start, end);
2607         }
2608
2609         start = (unsigned long)mod->noinstr_text_start;
2610         if (start) {
2611                 end = start + mod->noinstr_text_size;
2612                 kprobe_remove_area_blacklist(start, end);
2613         }
2614 }
2615
2616 /* Module notifier call back, checking kprobes on the module */
2617 static int kprobes_module_callback(struct notifier_block *nb,
2618                                    unsigned long val, void *data)
2619 {
2620         struct module *mod = data;
2621         struct hlist_head *head;
2622         struct kprobe *p;
2623         unsigned int i;
2624         int checkcore = (val == MODULE_STATE_GOING);
2625
2626         if (val == MODULE_STATE_COMING) {
2627                 mutex_lock(&kprobe_mutex);
2628                 add_module_kprobe_blacklist(mod);
2629                 mutex_unlock(&kprobe_mutex);
2630         }
2631         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2632                 return NOTIFY_DONE;
2633
2634         /*
2635          * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2636          * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2637          * notified, only '.init.text' section would be freed. We need to
2638          * disable kprobes which have been inserted in the sections.
2639          */
2640         mutex_lock(&kprobe_mutex);
2641         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2642                 head = &kprobe_table[i];
2643                 hlist_for_each_entry(p, head, hlist)
2644                         if (within_module_init((unsigned long)p->addr, mod) ||
2645                             (checkcore &&
2646                              within_module_core((unsigned long)p->addr, mod))) {
2647                                 /*
2648                                  * The vaddr this probe is installed will soon
2649                                  * be vfreed buy not synced to disk. Hence,
2650                                  * disarming the breakpoint isn't needed.
2651                                  *
2652                                  * Note, this will also move any optimized probes
2653                                  * that are pending to be removed from their
2654                                  * corresponding lists to the 'freeing_list' and
2655                                  * will not be touched by the delayed
2656                                  * kprobe_optimizer() work handler.
2657                                  */
2658                                 kill_kprobe(p);
2659                         }
2660         }
2661         if (val == MODULE_STATE_GOING)
2662                 remove_module_kprobe_blacklist(mod);
2663         mutex_unlock(&kprobe_mutex);
2664         return NOTIFY_DONE;
2665 }
2666
2667 static struct notifier_block kprobe_module_nb = {
2668         .notifier_call = kprobes_module_callback,
2669         .priority = 0
2670 };
2671
2672 void kprobe_free_init_mem(void)
2673 {
2674         void *start = (void *)(&__init_begin);
2675         void *end = (void *)(&__init_end);
2676         struct hlist_head *head;
2677         struct kprobe *p;
2678         int i;
2679
2680         mutex_lock(&kprobe_mutex);
2681
2682         /* Kill all kprobes on initmem because the target code has been freed. */
2683         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2684                 head = &kprobe_table[i];
2685                 hlist_for_each_entry(p, head, hlist) {
2686                         if (start <= (void *)p->addr && (void *)p->addr < end)
2687                                 kill_kprobe(p);
2688                 }
2689         }
2690
2691         mutex_unlock(&kprobe_mutex);
2692 }
2693
2694 static int __init init_kprobes(void)
2695 {
2696         int i, err = 0;
2697
2698         /* FIXME allocate the probe table, currently defined statically */
2699         /* initialize all list heads */
2700         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2701                 INIT_HLIST_HEAD(&kprobe_table[i]);
2702
2703         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2704                                         __stop_kprobe_blacklist);
2705         if (err)
2706                 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2707
2708         if (kretprobe_blacklist_size) {
2709                 /* lookup the function address from its name */
2710                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2711                         kretprobe_blacklist[i].addr =
2712                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2713                         if (!kretprobe_blacklist[i].addr)
2714                                 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2715                                        kretprobe_blacklist[i].name);
2716                 }
2717         }
2718
2719         /* By default, kprobes are armed */
2720         kprobes_all_disarmed = false;
2721
2722 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2723         /* Init 'kprobe_optinsn_slots' for allocation */
2724         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2725 #endif
2726
2727         err = arch_init_kprobes();
2728         if (!err)
2729                 err = register_die_notifier(&kprobe_exceptions_nb);
2730         if (!err)
2731                 err = register_module_notifier(&kprobe_module_nb);
2732
2733         kprobes_initialized = (err == 0);
2734         kprobe_sysctls_init();
2735         return err;
2736 }
2737 early_initcall(init_kprobes);
2738
2739 #if defined(CONFIG_OPTPROBES)
2740 static int __init init_optprobes(void)
2741 {
2742         /*
2743          * Enable kprobe optimization - this kicks the optimizer which
2744          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2745          * not spawned in early initcall. So delay the optimization.
2746          */
2747         optimize_all_kprobes();
2748
2749         return 0;
2750 }
2751 subsys_initcall(init_optprobes);
2752 #endif
2753
2754 #ifdef CONFIG_DEBUG_FS
2755 static void report_probe(struct seq_file *pi, struct kprobe *p,
2756                 const char *sym, int offset, char *modname, struct kprobe *pp)
2757 {
2758         char *kprobe_type;
2759         void *addr = p->addr;
2760
2761         if (p->pre_handler == pre_handler_kretprobe)
2762                 kprobe_type = "r";
2763         else
2764                 kprobe_type = "k";
2765
2766         if (!kallsyms_show_value(pi->file->f_cred))
2767                 addr = NULL;
2768
2769         if (sym)
2770                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2771                         addr, kprobe_type, sym, offset,
2772                         (modname ? modname : " "));
2773         else    /* try to use %pS */
2774                 seq_printf(pi, "%px  %s  %pS ",
2775                         addr, kprobe_type, p->addr);
2776
2777         if (!pp)
2778                 pp = p;
2779         seq_printf(pi, "%s%s%s%s\n",
2780                 (kprobe_gone(p) ? "[GONE]" : ""),
2781                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2782                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2783                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2784 }
2785
2786 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2787 {
2788         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2789 }
2790
2791 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2792 {
2793         (*pos)++;
2794         if (*pos >= KPROBE_TABLE_SIZE)
2795                 return NULL;
2796         return pos;
2797 }
2798
2799 static void kprobe_seq_stop(struct seq_file *f, void *v)
2800 {
2801         /* Nothing to do */
2802 }
2803
2804 static int show_kprobe_addr(struct seq_file *pi, void *v)
2805 {
2806         struct hlist_head *head;
2807         struct kprobe *p, *kp;
2808         const char *sym = NULL;
2809         unsigned int i = *(loff_t *) v;
2810         unsigned long offset = 0;
2811         char *modname, namebuf[KSYM_NAME_LEN];
2812
2813         head = &kprobe_table[i];
2814         preempt_disable();
2815         hlist_for_each_entry_rcu(p, head, hlist) {
2816                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2817                                         &offset, &modname, namebuf);
2818                 if (kprobe_aggrprobe(p)) {
2819                         list_for_each_entry_rcu(kp, &p->list, list)
2820                                 report_probe(pi, kp, sym, offset, modname, p);
2821                 } else
2822                         report_probe(pi, p, sym, offset, modname, NULL);
2823         }
2824         preempt_enable();
2825         return 0;
2826 }
2827
2828 static const struct seq_operations kprobes_sops = {
2829         .start = kprobe_seq_start,
2830         .next  = kprobe_seq_next,
2831         .stop  = kprobe_seq_stop,
2832         .show  = show_kprobe_addr
2833 };
2834
2835 DEFINE_SEQ_ATTRIBUTE(kprobes);
2836
2837 /* kprobes/blacklist -- shows which functions can not be probed */
2838 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2839 {
2840         mutex_lock(&kprobe_mutex);
2841         return seq_list_start(&kprobe_blacklist, *pos);
2842 }
2843
2844 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2845 {
2846         return seq_list_next(v, &kprobe_blacklist, pos);
2847 }
2848
2849 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2850 {
2851         struct kprobe_blacklist_entry *ent =
2852                 list_entry(v, struct kprobe_blacklist_entry, list);
2853
2854         /*
2855          * If '/proc/kallsyms' is not showing kernel address, we won't
2856          * show them here either.
2857          */
2858         if (!kallsyms_show_value(m->file->f_cred))
2859                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2860                            (void *)ent->start_addr);
2861         else
2862                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2863                            (void *)ent->end_addr, (void *)ent->start_addr);
2864         return 0;
2865 }
2866
2867 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2868 {
2869         mutex_unlock(&kprobe_mutex);
2870 }
2871
2872 static const struct seq_operations kprobe_blacklist_sops = {
2873         .start = kprobe_blacklist_seq_start,
2874         .next  = kprobe_blacklist_seq_next,
2875         .stop  = kprobe_blacklist_seq_stop,
2876         .show  = kprobe_blacklist_seq_show,
2877 };
2878 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2879
2880 static int arm_all_kprobes(void)
2881 {
2882         struct hlist_head *head;
2883         struct kprobe *p;
2884         unsigned int i, total = 0, errors = 0;
2885         int err, ret = 0;
2886
2887         mutex_lock(&kprobe_mutex);
2888
2889         /* If kprobes are armed, just return */
2890         if (!kprobes_all_disarmed)
2891                 goto already_enabled;
2892
2893         /*
2894          * optimize_kprobe() called by arm_kprobe() checks
2895          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2896          * arm_kprobe.
2897          */
2898         kprobes_all_disarmed = false;
2899         /* Arming kprobes doesn't optimize kprobe itself */
2900         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2901                 head = &kprobe_table[i];
2902                 /* Arm all kprobes on a best-effort basis */
2903                 hlist_for_each_entry(p, head, hlist) {
2904                         if (!kprobe_disabled(p)) {
2905                                 err = arm_kprobe(p);
2906                                 if (err)  {
2907                                         errors++;
2908                                         ret = err;
2909                                 }
2910                                 total++;
2911                         }
2912                 }
2913         }
2914
2915         if (errors)
2916                 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2917                         errors, total);
2918         else
2919                 pr_info("Kprobes globally enabled\n");
2920
2921 already_enabled:
2922         mutex_unlock(&kprobe_mutex);
2923         return ret;
2924 }
2925
2926 static int disarm_all_kprobes(void)
2927 {
2928         struct hlist_head *head;
2929         struct kprobe *p;
2930         unsigned int i, total = 0, errors = 0;
2931         int err, ret = 0;
2932
2933         mutex_lock(&kprobe_mutex);
2934
2935         /* If kprobes are already disarmed, just return */
2936         if (kprobes_all_disarmed) {
2937                 mutex_unlock(&kprobe_mutex);
2938                 return 0;
2939         }
2940
2941         kprobes_all_disarmed = true;
2942
2943         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2944                 head = &kprobe_table[i];
2945                 /* Disarm all kprobes on a best-effort basis */
2946                 hlist_for_each_entry(p, head, hlist) {
2947                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2948                                 err = disarm_kprobe(p, false);
2949                                 if (err) {
2950                                         errors++;
2951                                         ret = err;
2952                                 }
2953                                 total++;
2954                         }
2955                 }
2956         }
2957
2958         if (errors)
2959                 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2960                         errors, total);
2961         else
2962                 pr_info("Kprobes globally disabled\n");
2963
2964         mutex_unlock(&kprobe_mutex);
2965
2966         /* Wait for disarming all kprobes by optimizer */
2967         wait_for_kprobe_optimizer();
2968
2969         return ret;
2970 }
2971
2972 /*
2973  * XXX: The debugfs bool file interface doesn't allow for callbacks
2974  * when the bool state is switched. We can reuse that facility when
2975  * available
2976  */
2977 static ssize_t read_enabled_file_bool(struct file *file,
2978                char __user *user_buf, size_t count, loff_t *ppos)
2979 {
2980         char buf[3];
2981
2982         if (!kprobes_all_disarmed)
2983                 buf[0] = '1';
2984         else
2985                 buf[0] = '0';
2986         buf[1] = '\n';
2987         buf[2] = 0x00;
2988         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2989 }
2990
2991 static ssize_t write_enabled_file_bool(struct file *file,
2992                const char __user *user_buf, size_t count, loff_t *ppos)
2993 {
2994         bool enable;
2995         int ret;
2996
2997         ret = kstrtobool_from_user(user_buf, count, &enable);
2998         if (ret)
2999                 return ret;
3000
3001         ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3002         if (ret)
3003                 return ret;
3004
3005         return count;
3006 }
3007
3008 static const struct file_operations fops_kp = {
3009         .read =         read_enabled_file_bool,
3010         .write =        write_enabled_file_bool,
3011         .llseek =       default_llseek,
3012 };
3013
3014 static int __init debugfs_kprobe_init(void)
3015 {
3016         struct dentry *dir;
3017
3018         dir = debugfs_create_dir("kprobes", NULL);
3019
3020         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3021
3022         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3023
3024         debugfs_create_file("blacklist", 0400, dir, NULL,
3025                             &kprobe_blacklist_fops);
3026
3027         return 0;
3028 }
3029
3030 late_initcall(debugfs_kprobe_init);
3031 #endif /* CONFIG_DEBUG_FS */