bpf: Don't promote bogus looking registers after null check.
[platform/kernel/linux-rpi.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39 #include <linux/static_call.h>
40
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48
49
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53  * Or
54  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55  */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
58
59 /* NOTE: change this value only with kprobe_mutex held */
60 static bool kprobes_all_disarmed;
61
62 /* This protects kprobe_table and optimizing_list */
63 static DEFINE_MUTEX(kprobe_mutex);
64 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
65 static struct {
66         raw_spinlock_t lock ____cacheline_aligned_in_smp;
67 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
68
69 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
70                                         unsigned int __unused)
71 {
72         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
73 }
74
75 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
76 {
77         return &(kretprobe_table_locks[hash].lock);
78 }
79
80 /* Blacklist -- list of struct kprobe_blacklist_entry */
81 static LIST_HEAD(kprobe_blacklist);
82
83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
84 /*
85  * kprobe->ainsn.insn points to the copy of the instruction to be
86  * single-stepped. x86_64, POWER4 and above have no-exec support and
87  * stepping on the instruction on a vmalloced/kmalloced/data page
88  * is a recipe for disaster
89  */
90 struct kprobe_insn_page {
91         struct list_head list;
92         kprobe_opcode_t *insns;         /* Page of instruction slots */
93         struct kprobe_insn_cache *cache;
94         int nused;
95         int ngarbage;
96         char slot_used[];
97 };
98
99 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
100         (offsetof(struct kprobe_insn_page, slot_used) + \
101          (sizeof(char) * (slots)))
102
103 static int slots_per_page(struct kprobe_insn_cache *c)
104 {
105         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
106 }
107
108 enum kprobe_slot_state {
109         SLOT_CLEAN = 0,
110         SLOT_DIRTY = 1,
111         SLOT_USED = 2,
112 };
113
114 void __weak *alloc_insn_page(void)
115 {
116         return module_alloc(PAGE_SIZE);
117 }
118
119 void __weak free_insn_page(void *page)
120 {
121         module_memfree(page);
122 }
123
124 struct kprobe_insn_cache kprobe_insn_slots = {
125         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
126         .alloc = alloc_insn_page,
127         .free = free_insn_page,
128         .sym = KPROBE_INSN_PAGE_SYM,
129         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
130         .insn_size = MAX_INSN_SIZE,
131         .nr_garbage = 0,
132 };
133 static int collect_garbage_slots(struct kprobe_insn_cache *c);
134
135 /**
136  * __get_insn_slot() - Find a slot on an executable page for an instruction.
137  * We allocate an executable page if there's no room on existing ones.
138  */
139 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
140 {
141         struct kprobe_insn_page *kip;
142         kprobe_opcode_t *slot = NULL;
143
144         /* Since the slot array is not protected by rcu, we need a mutex */
145         mutex_lock(&c->mutex);
146  retry:
147         rcu_read_lock();
148         list_for_each_entry_rcu(kip, &c->pages, list) {
149                 if (kip->nused < slots_per_page(c)) {
150                         int i;
151                         for (i = 0; i < slots_per_page(c); i++) {
152                                 if (kip->slot_used[i] == SLOT_CLEAN) {
153                                         kip->slot_used[i] = SLOT_USED;
154                                         kip->nused++;
155                                         slot = kip->insns + (i * c->insn_size);
156                                         rcu_read_unlock();
157                                         goto out;
158                                 }
159                         }
160                         /* kip->nused is broken. Fix it. */
161                         kip->nused = slots_per_page(c);
162                         WARN_ON(1);
163                 }
164         }
165         rcu_read_unlock();
166
167         /* If there are any garbage slots, collect it and try again. */
168         if (c->nr_garbage && collect_garbage_slots(c) == 0)
169                 goto retry;
170
171         /* All out of space.  Need to allocate a new page. */
172         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
173         if (!kip)
174                 goto out;
175
176         /*
177          * Use module_alloc so this page is within +/- 2GB of where the
178          * kernel image and loaded module images reside. This is required
179          * so x86_64 can correctly handle the %rip-relative fixups.
180          */
181         kip->insns = c->alloc();
182         if (!kip->insns) {
183                 kfree(kip);
184                 goto out;
185         }
186         INIT_LIST_HEAD(&kip->list);
187         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
188         kip->slot_used[0] = SLOT_USED;
189         kip->nused = 1;
190         kip->ngarbage = 0;
191         kip->cache = c;
192         list_add_rcu(&kip->list, &c->pages);
193         slot = kip->insns;
194
195         /* Record the perf ksymbol register event after adding the page */
196         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
197                            PAGE_SIZE, false, c->sym);
198 out:
199         mutex_unlock(&c->mutex);
200         return slot;
201 }
202
203 /* Return 1 if all garbages are collected, otherwise 0. */
204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206         kip->slot_used[idx] = SLOT_CLEAN;
207         kip->nused--;
208         if (kip->nused == 0) {
209                 /*
210                  * Page is no longer in use.  Free it unless
211                  * it's the last one.  We keep the last one
212                  * so as not to have to set it up again the
213                  * next time somebody inserts a probe.
214                  */
215                 if (!list_is_singular(&kip->list)) {
216                         /*
217                          * Record perf ksymbol unregister event before removing
218                          * the page.
219                          */
220                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
221                                            (unsigned long)kip->insns, PAGE_SIZE, true,
222                                            kip->cache->sym);
223                         list_del_rcu(&kip->list);
224                         synchronize_rcu();
225                         kip->cache->free(kip->insns);
226                         kfree(kip);
227                 }
228                 return 1;
229         }
230         return 0;
231 }
232
233 static int collect_garbage_slots(struct kprobe_insn_cache *c)
234 {
235         struct kprobe_insn_page *kip, *next;
236
237         /* Ensure no-one is interrupted on the garbages */
238         synchronize_rcu();
239
240         list_for_each_entry_safe(kip, next, &c->pages, list) {
241                 int i;
242                 if (kip->ngarbage == 0)
243                         continue;
244                 kip->ngarbage = 0;      /* we will collect all garbages */
245                 for (i = 0; i < slots_per_page(c); i++) {
246                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
247                                 break;
248                 }
249         }
250         c->nr_garbage = 0;
251         return 0;
252 }
253
254 void __free_insn_slot(struct kprobe_insn_cache *c,
255                       kprobe_opcode_t *slot, int dirty)
256 {
257         struct kprobe_insn_page *kip;
258         long idx;
259
260         mutex_lock(&c->mutex);
261         rcu_read_lock();
262         list_for_each_entry_rcu(kip, &c->pages, list) {
263                 idx = ((long)slot - (long)kip->insns) /
264                         (c->insn_size * sizeof(kprobe_opcode_t));
265                 if (idx >= 0 && idx < slots_per_page(c))
266                         goto out;
267         }
268         /* Could not find this slot. */
269         WARN_ON(1);
270         kip = NULL;
271 out:
272         rcu_read_unlock();
273         /* Mark and sweep: this may sleep */
274         if (kip) {
275                 /* Check double free */
276                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
277                 if (dirty) {
278                         kip->slot_used[idx] = SLOT_DIRTY;
279                         kip->ngarbage++;
280                         if (++c->nr_garbage > slots_per_page(c))
281                                 collect_garbage_slots(c);
282                 } else {
283                         collect_one_slot(kip, idx);
284                 }
285         }
286         mutex_unlock(&c->mutex);
287 }
288
289 /*
290  * Check given address is on the page of kprobe instruction slots.
291  * This will be used for checking whether the address on a stack
292  * is on a text area or not.
293  */
294 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
295 {
296         struct kprobe_insn_page *kip;
297         bool ret = false;
298
299         rcu_read_lock();
300         list_for_each_entry_rcu(kip, &c->pages, list) {
301                 if (addr >= (unsigned long)kip->insns &&
302                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
303                         ret = true;
304                         break;
305                 }
306         }
307         rcu_read_unlock();
308
309         return ret;
310 }
311
312 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
313                              unsigned long *value, char *type, char *sym)
314 {
315         struct kprobe_insn_page *kip;
316         int ret = -ERANGE;
317
318         rcu_read_lock();
319         list_for_each_entry_rcu(kip, &c->pages, list) {
320                 if ((*symnum)--)
321                         continue;
322                 strlcpy(sym, c->sym, KSYM_NAME_LEN);
323                 *type = 't';
324                 *value = (unsigned long)kip->insns;
325                 ret = 0;
326                 break;
327         }
328         rcu_read_unlock();
329
330         return ret;
331 }
332
333 #ifdef CONFIG_OPTPROBES
334 /* For optimized_kprobe buffer */
335 struct kprobe_insn_cache kprobe_optinsn_slots = {
336         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
337         .alloc = alloc_insn_page,
338         .free = free_insn_page,
339         .sym = KPROBE_OPTINSN_PAGE_SYM,
340         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
341         /* .insn_size is initialized later */
342         .nr_garbage = 0,
343 };
344 #endif
345 #endif
346
347 /* We have preemption disabled.. so it is safe to use __ versions */
348 static inline void set_kprobe_instance(struct kprobe *kp)
349 {
350         __this_cpu_write(kprobe_instance, kp);
351 }
352
353 static inline void reset_kprobe_instance(void)
354 {
355         __this_cpu_write(kprobe_instance, NULL);
356 }
357
358 /*
359  * This routine is called either:
360  *      - under the kprobe_mutex - during kprobe_[un]register()
361  *                              OR
362  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
363  */
364 struct kprobe *get_kprobe(void *addr)
365 {
366         struct hlist_head *head;
367         struct kprobe *p;
368
369         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
370         hlist_for_each_entry_rcu(p, head, hlist,
371                                  lockdep_is_held(&kprobe_mutex)) {
372                 if (p->addr == addr)
373                         return p;
374         }
375
376         return NULL;
377 }
378 NOKPROBE_SYMBOL(get_kprobe);
379
380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
381
382 /* Return true if the kprobe is an aggregator */
383 static inline int kprobe_aggrprobe(struct kprobe *p)
384 {
385         return p->pre_handler == aggr_pre_handler;
386 }
387
388 /* Return true(!0) if the kprobe is unused */
389 static inline int kprobe_unused(struct kprobe *p)
390 {
391         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
392                list_empty(&p->list);
393 }
394
395 /*
396  * Keep all fields in the kprobe consistent
397  */
398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
399 {
400         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
401         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
402 }
403
404 #ifdef CONFIG_OPTPROBES
405 /* NOTE: change this value only with kprobe_mutex held */
406 static bool kprobes_allow_optimization;
407
408 /*
409  * Call all pre_handler on the list, but ignores its return value.
410  * This must be called from arch-dep optimized caller.
411  */
412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
413 {
414         struct kprobe *kp;
415
416         list_for_each_entry_rcu(kp, &p->list, list) {
417                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
418                         set_kprobe_instance(kp);
419                         kp->pre_handler(kp, regs);
420                 }
421                 reset_kprobe_instance();
422         }
423 }
424 NOKPROBE_SYMBOL(opt_pre_handler);
425
426 /* Free optimized instructions and optimized_kprobe */
427 static void free_aggr_kprobe(struct kprobe *p)
428 {
429         struct optimized_kprobe *op;
430
431         op = container_of(p, struct optimized_kprobe, kp);
432         arch_remove_optimized_kprobe(op);
433         arch_remove_kprobe(p);
434         kfree(op);
435 }
436
437 /* Return true(!0) if the kprobe is ready for optimization. */
438 static inline int kprobe_optready(struct kprobe *p)
439 {
440         struct optimized_kprobe *op;
441
442         if (kprobe_aggrprobe(p)) {
443                 op = container_of(p, struct optimized_kprobe, kp);
444                 return arch_prepared_optinsn(&op->optinsn);
445         }
446
447         return 0;
448 }
449
450 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
451 static inline int kprobe_disarmed(struct kprobe *p)
452 {
453         struct optimized_kprobe *op;
454
455         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
456         if (!kprobe_aggrprobe(p))
457                 return kprobe_disabled(p);
458
459         op = container_of(p, struct optimized_kprobe, kp);
460
461         return kprobe_disabled(p) && list_empty(&op->list);
462 }
463
464 /* Return true(!0) if the probe is queued on (un)optimizing lists */
465 static int kprobe_queued(struct kprobe *p)
466 {
467         struct optimized_kprobe *op;
468
469         if (kprobe_aggrprobe(p)) {
470                 op = container_of(p, struct optimized_kprobe, kp);
471                 if (!list_empty(&op->list))
472                         return 1;
473         }
474         return 0;
475 }
476
477 /*
478  * Return an optimized kprobe whose optimizing code replaces
479  * instructions including addr (exclude breakpoint).
480  */
481 static struct kprobe *get_optimized_kprobe(unsigned long addr)
482 {
483         int i;
484         struct kprobe *p = NULL;
485         struct optimized_kprobe *op;
486
487         /* Don't check i == 0, since that is a breakpoint case. */
488         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
489                 p = get_kprobe((void *)(addr - i));
490
491         if (p && kprobe_optready(p)) {
492                 op = container_of(p, struct optimized_kprobe, kp);
493                 if (arch_within_optimized_kprobe(op, addr))
494                         return p;
495         }
496
497         return NULL;
498 }
499
500 /* Optimization staging list, protected by kprobe_mutex */
501 static LIST_HEAD(optimizing_list);
502 static LIST_HEAD(unoptimizing_list);
503 static LIST_HEAD(freeing_list);
504
505 static void kprobe_optimizer(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
507 #define OPTIMIZE_DELAY 5
508
509 /*
510  * Optimize (replace a breakpoint with a jump) kprobes listed on
511  * optimizing_list.
512  */
513 static void do_optimize_kprobes(void)
514 {
515         lockdep_assert_held(&text_mutex);
516         /*
517          * The optimization/unoptimization refers online_cpus via
518          * stop_machine() and cpu-hotplug modifies online_cpus.
519          * And same time, text_mutex will be held in cpu-hotplug and here.
520          * This combination can cause a deadlock (cpu-hotplug try to lock
521          * text_mutex but stop_machine can not be done because online_cpus
522          * has been changed)
523          * To avoid this deadlock, caller must have locked cpu hotplug
524          * for preventing cpu-hotplug outside of text_mutex locking.
525          */
526         lockdep_assert_cpus_held();
527
528         /* Optimization never be done when disarmed */
529         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
530             list_empty(&optimizing_list))
531                 return;
532
533         arch_optimize_kprobes(&optimizing_list);
534 }
535
536 /*
537  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
538  * if need) kprobes listed on unoptimizing_list.
539  */
540 static void do_unoptimize_kprobes(void)
541 {
542         struct optimized_kprobe *op, *tmp;
543
544         lockdep_assert_held(&text_mutex);
545         /* See comment in do_optimize_kprobes() */
546         lockdep_assert_cpus_held();
547
548         /* Unoptimization must be done anytime */
549         if (list_empty(&unoptimizing_list))
550                 return;
551
552         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
553         /* Loop free_list for disarming */
554         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
555                 /* Switching from detour code to origin */
556                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
557                 /* Disarm probes if marked disabled */
558                 if (kprobe_disabled(&op->kp))
559                         arch_disarm_kprobe(&op->kp);
560                 if (kprobe_unused(&op->kp)) {
561                         /*
562                          * Remove unused probes from hash list. After waiting
563                          * for synchronization, these probes are reclaimed.
564                          * (reclaiming is done by do_free_cleaned_kprobes.)
565                          */
566                         hlist_del_rcu(&op->kp.hlist);
567                 } else
568                         list_del_init(&op->list);
569         }
570 }
571
572 /* Reclaim all kprobes on the free_list */
573 static void do_free_cleaned_kprobes(void)
574 {
575         struct optimized_kprobe *op, *tmp;
576
577         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
578                 list_del_init(&op->list);
579                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
580                         /*
581                          * This must not happen, but if there is a kprobe
582                          * still in use, keep it on kprobes hash list.
583                          */
584                         continue;
585                 }
586                 free_aggr_kprobe(&op->kp);
587         }
588 }
589
590 /* Start optimizer after OPTIMIZE_DELAY passed */
591 static void kick_kprobe_optimizer(void)
592 {
593         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
594 }
595
596 /* Kprobe jump optimizer */
597 static void kprobe_optimizer(struct work_struct *work)
598 {
599         mutex_lock(&kprobe_mutex);
600         cpus_read_lock();
601         mutex_lock(&text_mutex);
602
603         /*
604          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
605          * kprobes before waiting for quiesence period.
606          */
607         do_unoptimize_kprobes();
608
609         /*
610          * Step 2: Wait for quiesence period to ensure all potentially
611          * preempted tasks to have normally scheduled. Because optprobe
612          * may modify multiple instructions, there is a chance that Nth
613          * instruction is preempted. In that case, such tasks can return
614          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
615          * Note that on non-preemptive kernel, this is transparently converted
616          * to synchronoze_sched() to wait for all interrupts to have completed.
617          */
618         synchronize_rcu_tasks();
619
620         /* Step 3: Optimize kprobes after quiesence period */
621         do_optimize_kprobes();
622
623         /* Step 4: Free cleaned kprobes after quiesence period */
624         do_free_cleaned_kprobes();
625
626         mutex_unlock(&text_mutex);
627         cpus_read_unlock();
628
629         /* Step 5: Kick optimizer again if needed */
630         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
631                 kick_kprobe_optimizer();
632
633         mutex_unlock(&kprobe_mutex);
634 }
635
636 /* Wait for completing optimization and unoptimization */
637 void wait_for_kprobe_optimizer(void)
638 {
639         mutex_lock(&kprobe_mutex);
640
641         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
642                 mutex_unlock(&kprobe_mutex);
643
644                 /* this will also make optimizing_work execute immmediately */
645                 flush_delayed_work(&optimizing_work);
646                 /* @optimizing_work might not have been queued yet, relax */
647                 cpu_relax();
648
649                 mutex_lock(&kprobe_mutex);
650         }
651
652         mutex_unlock(&kprobe_mutex);
653 }
654
655 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
656 {
657         struct optimized_kprobe *_op;
658
659         list_for_each_entry(_op, &unoptimizing_list, list) {
660                 if (op == _op)
661                         return true;
662         }
663
664         return false;
665 }
666
667 /* Optimize kprobe if p is ready to be optimized */
668 static void optimize_kprobe(struct kprobe *p)
669 {
670         struct optimized_kprobe *op;
671
672         /* Check if the kprobe is disabled or not ready for optimization. */
673         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
674             (kprobe_disabled(p) || kprobes_all_disarmed))
675                 return;
676
677         /* kprobes with post_handler can not be optimized */
678         if (p->post_handler)
679                 return;
680
681         op = container_of(p, struct optimized_kprobe, kp);
682
683         /* Check there is no other kprobes at the optimized instructions */
684         if (arch_check_optimized_kprobe(op) < 0)
685                 return;
686
687         /* Check if it is already optimized. */
688         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
689                 if (optprobe_queued_unopt(op)) {
690                         /* This is under unoptimizing. Just dequeue the probe */
691                         list_del_init(&op->list);
692                 }
693                 return;
694         }
695         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
696
697         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
698         if (WARN_ON_ONCE(!list_empty(&op->list)))
699                 return;
700
701         list_add(&op->list, &optimizing_list);
702         kick_kprobe_optimizer();
703 }
704
705 /* Short cut to direct unoptimizing */
706 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
707 {
708         lockdep_assert_cpus_held();
709         arch_unoptimize_kprobe(op);
710         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
711 }
712
713 /* Unoptimize a kprobe if p is optimized */
714 static void unoptimize_kprobe(struct kprobe *p, bool force)
715 {
716         struct optimized_kprobe *op;
717
718         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
719                 return; /* This is not an optprobe nor optimized */
720
721         op = container_of(p, struct optimized_kprobe, kp);
722         if (!kprobe_optimized(p))
723                 return;
724
725         if (!list_empty(&op->list)) {
726                 if (optprobe_queued_unopt(op)) {
727                         /* Queued in unoptimizing queue */
728                         if (force) {
729                                 /*
730                                  * Forcibly unoptimize the kprobe here, and queue it
731                                  * in the freeing list for release afterwards.
732                                  */
733                                 force_unoptimize_kprobe(op);
734                                 list_move(&op->list, &freeing_list);
735                         }
736                 } else {
737                         /* Dequeue from the optimizing queue */
738                         list_del_init(&op->list);
739                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
740                 }
741                 return;
742         }
743
744         /* Optimized kprobe case */
745         if (force) {
746                 /* Forcibly update the code: this is a special case */
747                 force_unoptimize_kprobe(op);
748         } else {
749                 list_add(&op->list, &unoptimizing_list);
750                 kick_kprobe_optimizer();
751         }
752 }
753
754 /* Cancel unoptimizing for reusing */
755 static int reuse_unused_kprobe(struct kprobe *ap)
756 {
757         struct optimized_kprobe *op;
758
759         /*
760          * Unused kprobe MUST be on the way of delayed unoptimizing (means
761          * there is still a relative jump) and disabled.
762          */
763         op = container_of(ap, struct optimized_kprobe, kp);
764         WARN_ON_ONCE(list_empty(&op->list));
765         /* Enable the probe again */
766         ap->flags &= ~KPROBE_FLAG_DISABLED;
767         /* Optimize it again (remove from op->list) */
768         if (!kprobe_optready(ap))
769                 return -EINVAL;
770
771         optimize_kprobe(ap);
772         return 0;
773 }
774
775 /* Remove optimized instructions */
776 static void kill_optimized_kprobe(struct kprobe *p)
777 {
778         struct optimized_kprobe *op;
779
780         op = container_of(p, struct optimized_kprobe, kp);
781         if (!list_empty(&op->list))
782                 /* Dequeue from the (un)optimization queue */
783                 list_del_init(&op->list);
784         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
785
786         if (kprobe_unused(p)) {
787                 /* Enqueue if it is unused */
788                 list_add(&op->list, &freeing_list);
789                 /*
790                  * Remove unused probes from the hash list. After waiting
791                  * for synchronization, this probe is reclaimed.
792                  * (reclaiming is done by do_free_cleaned_kprobes().)
793                  */
794                 hlist_del_rcu(&op->kp.hlist);
795         }
796
797         /* Don't touch the code, because it is already freed. */
798         arch_remove_optimized_kprobe(op);
799 }
800
801 static inline
802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
803 {
804         if (!kprobe_ftrace(p))
805                 arch_prepare_optimized_kprobe(op, p);
806 }
807
808 /* Try to prepare optimized instructions */
809 static void prepare_optimized_kprobe(struct kprobe *p)
810 {
811         struct optimized_kprobe *op;
812
813         op = container_of(p, struct optimized_kprobe, kp);
814         __prepare_optimized_kprobe(op, p);
815 }
816
817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
819 {
820         struct optimized_kprobe *op;
821
822         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
823         if (!op)
824                 return NULL;
825
826         INIT_LIST_HEAD(&op->list);
827         op->kp.addr = p->addr;
828         __prepare_optimized_kprobe(op, p);
829
830         return &op->kp;
831 }
832
833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
834
835 /*
836  * Prepare an optimized_kprobe and optimize it
837  * NOTE: p must be a normal registered kprobe
838  */
839 static void try_to_optimize_kprobe(struct kprobe *p)
840 {
841         struct kprobe *ap;
842         struct optimized_kprobe *op;
843
844         /* Impossible to optimize ftrace-based kprobe */
845         if (kprobe_ftrace(p))
846                 return;
847
848         /* For preparing optimization, jump_label_text_reserved() is called */
849         cpus_read_lock();
850         jump_label_lock();
851         mutex_lock(&text_mutex);
852
853         ap = alloc_aggr_kprobe(p);
854         if (!ap)
855                 goto out;
856
857         op = container_of(ap, struct optimized_kprobe, kp);
858         if (!arch_prepared_optinsn(&op->optinsn)) {
859                 /* If failed to setup optimizing, fallback to kprobe */
860                 arch_remove_optimized_kprobe(op);
861                 kfree(op);
862                 goto out;
863         }
864
865         init_aggr_kprobe(ap, p);
866         optimize_kprobe(ap);    /* This just kicks optimizer thread */
867
868 out:
869         mutex_unlock(&text_mutex);
870         jump_label_unlock();
871         cpus_read_unlock();
872 }
873
874 static void optimize_all_kprobes(void)
875 {
876         struct hlist_head *head;
877         struct kprobe *p;
878         unsigned int i;
879
880         mutex_lock(&kprobe_mutex);
881         /* If optimization is already allowed, just return */
882         if (kprobes_allow_optimization)
883                 goto out;
884
885         cpus_read_lock();
886         kprobes_allow_optimization = true;
887         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888                 head = &kprobe_table[i];
889                 hlist_for_each_entry(p, head, hlist)
890                         if (!kprobe_disabled(p))
891                                 optimize_kprobe(p);
892         }
893         cpus_read_unlock();
894         printk(KERN_INFO "Kprobes globally optimized\n");
895 out:
896         mutex_unlock(&kprobe_mutex);
897 }
898
899 #ifdef CONFIG_SYSCTL
900 static void unoptimize_all_kprobes(void)
901 {
902         struct hlist_head *head;
903         struct kprobe *p;
904         unsigned int i;
905
906         mutex_lock(&kprobe_mutex);
907         /* If optimization is already prohibited, just return */
908         if (!kprobes_allow_optimization) {
909                 mutex_unlock(&kprobe_mutex);
910                 return;
911         }
912
913         cpus_read_lock();
914         kprobes_allow_optimization = false;
915         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
916                 head = &kprobe_table[i];
917                 hlist_for_each_entry(p, head, hlist) {
918                         if (!kprobe_disabled(p))
919                                 unoptimize_kprobe(p, false);
920                 }
921         }
922         cpus_read_unlock();
923         mutex_unlock(&kprobe_mutex);
924
925         /* Wait for unoptimizing completion */
926         wait_for_kprobe_optimizer();
927         printk(KERN_INFO "Kprobes globally unoptimized\n");
928 }
929
930 static DEFINE_MUTEX(kprobe_sysctl_mutex);
931 int sysctl_kprobes_optimization;
932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
933                                       void *buffer, size_t *length,
934                                       loff_t *ppos)
935 {
936         int ret;
937
938         mutex_lock(&kprobe_sysctl_mutex);
939         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
940         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
941
942         if (sysctl_kprobes_optimization)
943                 optimize_all_kprobes();
944         else
945                 unoptimize_all_kprobes();
946         mutex_unlock(&kprobe_sysctl_mutex);
947
948         return ret;
949 }
950 #endif /* CONFIG_SYSCTL */
951
952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
953 static void __arm_kprobe(struct kprobe *p)
954 {
955         struct kprobe *_p;
956
957         /* Check collision with other optimized kprobes */
958         _p = get_optimized_kprobe((unsigned long)p->addr);
959         if (unlikely(_p))
960                 /* Fallback to unoptimized kprobe */
961                 unoptimize_kprobe(_p, true);
962
963         arch_arm_kprobe(p);
964         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
965 }
966
967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
968 static void __disarm_kprobe(struct kprobe *p, bool reopt)
969 {
970         struct kprobe *_p;
971
972         /* Try to unoptimize */
973         unoptimize_kprobe(p, kprobes_all_disarmed);
974
975         if (!kprobe_queued(p)) {
976                 arch_disarm_kprobe(p);
977                 /* If another kprobe was blocked, optimize it. */
978                 _p = get_optimized_kprobe((unsigned long)p->addr);
979                 if (unlikely(_p) && reopt)
980                         optimize_kprobe(_p);
981         }
982         /* TODO: reoptimize others after unoptimized this probe */
983 }
984
985 #else /* !CONFIG_OPTPROBES */
986
987 #define optimize_kprobe(p)                      do {} while (0)
988 #define unoptimize_kprobe(p, f)                 do {} while (0)
989 #define kill_optimized_kprobe(p)                do {} while (0)
990 #define prepare_optimized_kprobe(p)             do {} while (0)
991 #define try_to_optimize_kprobe(p)               do {} while (0)
992 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
993 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
994 #define kprobe_disarmed(p)                      kprobe_disabled(p)
995 #define wait_for_kprobe_optimizer()             do {} while (0)
996
997 static int reuse_unused_kprobe(struct kprobe *ap)
998 {
999         /*
1000          * If the optimized kprobe is NOT supported, the aggr kprobe is
1001          * released at the same time that the last aggregated kprobe is
1002          * unregistered.
1003          * Thus there should be no chance to reuse unused kprobe.
1004          */
1005         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1006         return -EINVAL;
1007 }
1008
1009 static void free_aggr_kprobe(struct kprobe *p)
1010 {
1011         arch_remove_kprobe(p);
1012         kfree(p);
1013 }
1014
1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1016 {
1017         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1018 }
1019 #endif /* CONFIG_OPTPROBES */
1020
1021 #ifdef CONFIG_KPROBES_ON_FTRACE
1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1023         .func = kprobe_ftrace_handler,
1024         .flags = FTRACE_OPS_FL_SAVE_REGS,
1025 };
1026
1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1028         .func = kprobe_ftrace_handler,
1029         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1030 };
1031
1032 static int kprobe_ipmodify_enabled;
1033 static int kprobe_ftrace_enabled;
1034
1035 /* Must ensure p->addr is really on ftrace */
1036 static int prepare_kprobe(struct kprobe *p)
1037 {
1038         if (!kprobe_ftrace(p))
1039                 return arch_prepare_kprobe(p);
1040
1041         return arch_prepare_kprobe_ftrace(p);
1042 }
1043
1044 /* Caller must lock kprobe_mutex */
1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1046                                int *cnt)
1047 {
1048         int ret = 0;
1049
1050         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1051         if (ret) {
1052                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1053                          p->addr, ret);
1054                 return ret;
1055         }
1056
1057         if (*cnt == 0) {
1058                 ret = register_ftrace_function(ops);
1059                 if (ret) {
1060                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1061                         goto err_ftrace;
1062                 }
1063         }
1064
1065         (*cnt)++;
1066         return ret;
1067
1068 err_ftrace:
1069         /*
1070          * At this point, sinec ops is not registered, we should be sefe from
1071          * registering empty filter.
1072          */
1073         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1074         return ret;
1075 }
1076
1077 static int arm_kprobe_ftrace(struct kprobe *p)
1078 {
1079         bool ipmodify = (p->post_handler != NULL);
1080
1081         return __arm_kprobe_ftrace(p,
1082                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1083                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1084 }
1085
1086 /* Caller must lock kprobe_mutex */
1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1088                                   int *cnt)
1089 {
1090         int ret = 0;
1091
1092         if (*cnt == 1) {
1093                 ret = unregister_ftrace_function(ops);
1094                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1095                         return ret;
1096         }
1097
1098         (*cnt)--;
1099
1100         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1102                   p->addr, ret);
1103         return ret;
1104 }
1105
1106 static int disarm_kprobe_ftrace(struct kprobe *p)
1107 {
1108         bool ipmodify = (p->post_handler != NULL);
1109
1110         return __disarm_kprobe_ftrace(p,
1111                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1112                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1113 }
1114 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1115 static inline int prepare_kprobe(struct kprobe *p)
1116 {
1117         return arch_prepare_kprobe(p);
1118 }
1119
1120 static inline int arm_kprobe_ftrace(struct kprobe *p)
1121 {
1122         return -ENODEV;
1123 }
1124
1125 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1126 {
1127         return -ENODEV;
1128 }
1129 #endif
1130
1131 /* Arm a kprobe with text_mutex */
1132 static int arm_kprobe(struct kprobe *kp)
1133 {
1134         if (unlikely(kprobe_ftrace(kp)))
1135                 return arm_kprobe_ftrace(kp);
1136
1137         cpus_read_lock();
1138         mutex_lock(&text_mutex);
1139         __arm_kprobe(kp);
1140         mutex_unlock(&text_mutex);
1141         cpus_read_unlock();
1142
1143         return 0;
1144 }
1145
1146 /* Disarm a kprobe with text_mutex */
1147 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1148 {
1149         if (unlikely(kprobe_ftrace(kp)))
1150                 return disarm_kprobe_ftrace(kp);
1151
1152         cpus_read_lock();
1153         mutex_lock(&text_mutex);
1154         __disarm_kprobe(kp, reopt);
1155         mutex_unlock(&text_mutex);
1156         cpus_read_unlock();
1157
1158         return 0;
1159 }
1160
1161 /*
1162  * Aggregate handlers for multiple kprobes support - these handlers
1163  * take care of invoking the individual kprobe handlers on p->list
1164  */
1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1166 {
1167         struct kprobe *kp;
1168
1169         list_for_each_entry_rcu(kp, &p->list, list) {
1170                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1171                         set_kprobe_instance(kp);
1172                         if (kp->pre_handler(kp, regs))
1173                                 return 1;
1174                 }
1175                 reset_kprobe_instance();
1176         }
1177         return 0;
1178 }
1179 NOKPROBE_SYMBOL(aggr_pre_handler);
1180
1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1182                               unsigned long flags)
1183 {
1184         struct kprobe *kp;
1185
1186         list_for_each_entry_rcu(kp, &p->list, list) {
1187                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1188                         set_kprobe_instance(kp);
1189                         kp->post_handler(kp, regs, flags);
1190                         reset_kprobe_instance();
1191                 }
1192         }
1193 }
1194 NOKPROBE_SYMBOL(aggr_post_handler);
1195
1196 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1197                               int trapnr)
1198 {
1199         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1200
1201         /*
1202          * if we faulted "during" the execution of a user specified
1203          * probe handler, invoke just that probe's fault handler
1204          */
1205         if (cur && cur->fault_handler) {
1206                 if (cur->fault_handler(cur, regs, trapnr))
1207                         return 1;
1208         }
1209         return 0;
1210 }
1211 NOKPROBE_SYMBOL(aggr_fault_handler);
1212
1213 /* Walks the list and increments nmissed count for multiprobe case */
1214 void kprobes_inc_nmissed_count(struct kprobe *p)
1215 {
1216         struct kprobe *kp;
1217         if (!kprobe_aggrprobe(p)) {
1218                 p->nmissed++;
1219         } else {
1220                 list_for_each_entry_rcu(kp, &p->list, list)
1221                         kp->nmissed++;
1222         }
1223         return;
1224 }
1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1226
1227 static void recycle_rp_inst(struct kretprobe_instance *ri)
1228 {
1229         struct kretprobe *rp = ri->rp;
1230
1231         /* remove rp inst off the rprobe_inst_table */
1232         hlist_del(&ri->hlist);
1233         INIT_HLIST_NODE(&ri->hlist);
1234         if (likely(rp)) {
1235                 raw_spin_lock(&rp->lock);
1236                 hlist_add_head(&ri->hlist, &rp->free_instances);
1237                 raw_spin_unlock(&rp->lock);
1238         } else
1239                 kfree_rcu(ri, rcu);
1240 }
1241 NOKPROBE_SYMBOL(recycle_rp_inst);
1242
1243 static void kretprobe_hash_lock(struct task_struct *tsk,
1244                          struct hlist_head **head, unsigned long *flags)
1245 __acquires(hlist_lock)
1246 {
1247         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1248         raw_spinlock_t *hlist_lock;
1249
1250         *head = &kretprobe_inst_table[hash];
1251         hlist_lock = kretprobe_table_lock_ptr(hash);
1252         /*
1253          * Nested is a workaround that will soon not be needed.
1254          * There's other protections that make sure the same lock
1255          * is not taken on the same CPU that lockdep is unaware of.
1256          * Differentiate when it is taken in NMI context.
1257          */
1258         raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi());
1259 }
1260 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1261
1262 static void kretprobe_table_lock(unsigned long hash,
1263                                  unsigned long *flags)
1264 __acquires(hlist_lock)
1265 {
1266         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1267         /*
1268          * Nested is a workaround that will soon not be needed.
1269          * There's other protections that make sure the same lock
1270          * is not taken on the same CPU that lockdep is unaware of.
1271          * Differentiate when it is taken in NMI context.
1272          */
1273         raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi());
1274 }
1275 NOKPROBE_SYMBOL(kretprobe_table_lock);
1276
1277 static void kretprobe_hash_unlock(struct task_struct *tsk,
1278                            unsigned long *flags)
1279 __releases(hlist_lock)
1280 {
1281         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1282         raw_spinlock_t *hlist_lock;
1283
1284         hlist_lock = kretprobe_table_lock_ptr(hash);
1285         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1286 }
1287 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1288
1289 static void kretprobe_table_unlock(unsigned long hash,
1290                                    unsigned long *flags)
1291 __releases(hlist_lock)
1292 {
1293         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1294         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1295 }
1296 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1297
1298 static struct kprobe kprobe_busy = {
1299         .addr = (void *) get_kprobe,
1300 };
1301
1302 void kprobe_busy_begin(void)
1303 {
1304         struct kprobe_ctlblk *kcb;
1305
1306         preempt_disable();
1307         __this_cpu_write(current_kprobe, &kprobe_busy);
1308         kcb = get_kprobe_ctlblk();
1309         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1310 }
1311
1312 void kprobe_busy_end(void)
1313 {
1314         __this_cpu_write(current_kprobe, NULL);
1315         preempt_enable();
1316 }
1317
1318 /*
1319  * This function is called from finish_task_switch when task tk becomes dead,
1320  * so that we can recycle any function-return probe instances associated
1321  * with this task. These left over instances represent probed functions
1322  * that have been called but will never return.
1323  */
1324 void kprobe_flush_task(struct task_struct *tk)
1325 {
1326         struct kretprobe_instance *ri;
1327         struct hlist_head *head;
1328         struct hlist_node *tmp;
1329         unsigned long hash, flags = 0;
1330
1331         if (unlikely(!kprobes_initialized))
1332                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1333                 return;
1334
1335         kprobe_busy_begin();
1336
1337         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1338         head = &kretprobe_inst_table[hash];
1339         kretprobe_table_lock(hash, &flags);
1340         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1341                 if (ri->task == tk)
1342                         recycle_rp_inst(ri);
1343         }
1344         kretprobe_table_unlock(hash, &flags);
1345
1346         kprobe_busy_end();
1347 }
1348 NOKPROBE_SYMBOL(kprobe_flush_task);
1349
1350 static inline void free_rp_inst(struct kretprobe *rp)
1351 {
1352         struct kretprobe_instance *ri;
1353         struct hlist_node *next;
1354
1355         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1356                 hlist_del(&ri->hlist);
1357                 kfree(ri);
1358         }
1359 }
1360
1361 static void cleanup_rp_inst(struct kretprobe *rp)
1362 {
1363         unsigned long flags, hash;
1364         struct kretprobe_instance *ri;
1365         struct hlist_node *next;
1366         struct hlist_head *head;
1367
1368         /* To avoid recursive kretprobe by NMI, set kprobe busy here */
1369         kprobe_busy_begin();
1370         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1371                 kretprobe_table_lock(hash, &flags);
1372                 head = &kretprobe_inst_table[hash];
1373                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1374                         if (ri->rp == rp)
1375                                 ri->rp = NULL;
1376                 }
1377                 kretprobe_table_unlock(hash, &flags);
1378         }
1379         kprobe_busy_end();
1380
1381         free_rp_inst(rp);
1382 }
1383 NOKPROBE_SYMBOL(cleanup_rp_inst);
1384
1385 /* Add the new probe to ap->list */
1386 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1387 {
1388         if (p->post_handler)
1389                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1390
1391         list_add_rcu(&p->list, &ap->list);
1392         if (p->post_handler && !ap->post_handler)
1393                 ap->post_handler = aggr_post_handler;
1394
1395         return 0;
1396 }
1397
1398 /*
1399  * Fill in the required fields of the "manager kprobe". Replace the
1400  * earlier kprobe in the hlist with the manager kprobe
1401  */
1402 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1403 {
1404         /* Copy p's insn slot to ap */
1405         copy_kprobe(p, ap);
1406         flush_insn_slot(ap);
1407         ap->addr = p->addr;
1408         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1409         ap->pre_handler = aggr_pre_handler;
1410         ap->fault_handler = aggr_fault_handler;
1411         /* We don't care the kprobe which has gone. */
1412         if (p->post_handler && !kprobe_gone(p))
1413                 ap->post_handler = aggr_post_handler;
1414
1415         INIT_LIST_HEAD(&ap->list);
1416         INIT_HLIST_NODE(&ap->hlist);
1417
1418         list_add_rcu(&p->list, &ap->list);
1419         hlist_replace_rcu(&p->hlist, &ap->hlist);
1420 }
1421
1422 /*
1423  * This is the second or subsequent kprobe at the address - handle
1424  * the intricacies
1425  */
1426 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1427 {
1428         int ret = 0;
1429         struct kprobe *ap = orig_p;
1430
1431         cpus_read_lock();
1432
1433         /* For preparing optimization, jump_label_text_reserved() is called */
1434         jump_label_lock();
1435         mutex_lock(&text_mutex);
1436
1437         if (!kprobe_aggrprobe(orig_p)) {
1438                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1439                 ap = alloc_aggr_kprobe(orig_p);
1440                 if (!ap) {
1441                         ret = -ENOMEM;
1442                         goto out;
1443                 }
1444                 init_aggr_kprobe(ap, orig_p);
1445         } else if (kprobe_unused(ap)) {
1446                 /* This probe is going to die. Rescue it */
1447                 ret = reuse_unused_kprobe(ap);
1448                 if (ret)
1449                         goto out;
1450         }
1451
1452         if (kprobe_gone(ap)) {
1453                 /*
1454                  * Attempting to insert new probe at the same location that
1455                  * had a probe in the module vaddr area which already
1456                  * freed. So, the instruction slot has already been
1457                  * released. We need a new slot for the new probe.
1458                  */
1459                 ret = arch_prepare_kprobe(ap);
1460                 if (ret)
1461                         /*
1462                          * Even if fail to allocate new slot, don't need to
1463                          * free aggr_probe. It will be used next time, or
1464                          * freed by unregister_kprobe.
1465                          */
1466                         goto out;
1467
1468                 /* Prepare optimized instructions if possible. */
1469                 prepare_optimized_kprobe(ap);
1470
1471                 /*
1472                  * Clear gone flag to prevent allocating new slot again, and
1473                  * set disabled flag because it is not armed yet.
1474                  */
1475                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1476                             | KPROBE_FLAG_DISABLED;
1477         }
1478
1479         /* Copy ap's insn slot to p */
1480         copy_kprobe(ap, p);
1481         ret = add_new_kprobe(ap, p);
1482
1483 out:
1484         mutex_unlock(&text_mutex);
1485         jump_label_unlock();
1486         cpus_read_unlock();
1487
1488         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1489                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1490                 if (!kprobes_all_disarmed) {
1491                         /* Arm the breakpoint again. */
1492                         ret = arm_kprobe(ap);
1493                         if (ret) {
1494                                 ap->flags |= KPROBE_FLAG_DISABLED;
1495                                 list_del_rcu(&p->list);
1496                                 synchronize_rcu();
1497                         }
1498                 }
1499         }
1500         return ret;
1501 }
1502
1503 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1504 {
1505         /* The __kprobes marked functions and entry code must not be probed */
1506         return addr >= (unsigned long)__kprobes_text_start &&
1507                addr < (unsigned long)__kprobes_text_end;
1508 }
1509
1510 static bool __within_kprobe_blacklist(unsigned long addr)
1511 {
1512         struct kprobe_blacklist_entry *ent;
1513
1514         if (arch_within_kprobe_blacklist(addr))
1515                 return true;
1516         /*
1517          * If there exists a kprobe_blacklist, verify and
1518          * fail any probe registration in the prohibited area
1519          */
1520         list_for_each_entry(ent, &kprobe_blacklist, list) {
1521                 if (addr >= ent->start_addr && addr < ent->end_addr)
1522                         return true;
1523         }
1524         return false;
1525 }
1526
1527 bool within_kprobe_blacklist(unsigned long addr)
1528 {
1529         char symname[KSYM_NAME_LEN], *p;
1530
1531         if (__within_kprobe_blacklist(addr))
1532                 return true;
1533
1534         /* Check if the address is on a suffixed-symbol */
1535         if (!lookup_symbol_name(addr, symname)) {
1536                 p = strchr(symname, '.');
1537                 if (!p)
1538                         return false;
1539                 *p = '\0';
1540                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1541                 if (addr)
1542                         return __within_kprobe_blacklist(addr);
1543         }
1544         return false;
1545 }
1546
1547 /*
1548  * If we have a symbol_name argument, look it up and add the offset field
1549  * to it. This way, we can specify a relative address to a symbol.
1550  * This returns encoded errors if it fails to look up symbol or invalid
1551  * combination of parameters.
1552  */
1553 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1554                         const char *symbol_name, unsigned int offset)
1555 {
1556         if ((symbol_name && addr) || (!symbol_name && !addr))
1557                 goto invalid;
1558
1559         if (symbol_name) {
1560                 addr = kprobe_lookup_name(symbol_name, offset);
1561                 if (!addr)
1562                         return ERR_PTR(-ENOENT);
1563         }
1564
1565         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1566         if (addr)
1567                 return addr;
1568
1569 invalid:
1570         return ERR_PTR(-EINVAL);
1571 }
1572
1573 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1574 {
1575         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1576 }
1577
1578 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1579 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1580 {
1581         struct kprobe *ap, *list_p;
1582
1583         lockdep_assert_held(&kprobe_mutex);
1584
1585         ap = get_kprobe(p->addr);
1586         if (unlikely(!ap))
1587                 return NULL;
1588
1589         if (p != ap) {
1590                 list_for_each_entry(list_p, &ap->list, list)
1591                         if (list_p == p)
1592                         /* kprobe p is a valid probe */
1593                                 goto valid;
1594                 return NULL;
1595         }
1596 valid:
1597         return ap;
1598 }
1599
1600 /* Return error if the kprobe is being re-registered */
1601 static inline int check_kprobe_rereg(struct kprobe *p)
1602 {
1603         int ret = 0;
1604
1605         mutex_lock(&kprobe_mutex);
1606         if (__get_valid_kprobe(p))
1607                 ret = -EINVAL;
1608         mutex_unlock(&kprobe_mutex);
1609
1610         return ret;
1611 }
1612
1613 int __weak arch_check_ftrace_location(struct kprobe *p)
1614 {
1615         unsigned long ftrace_addr;
1616
1617         ftrace_addr = ftrace_location((unsigned long)p->addr);
1618         if (ftrace_addr) {
1619 #ifdef CONFIG_KPROBES_ON_FTRACE
1620                 /* Given address is not on the instruction boundary */
1621                 if ((unsigned long)p->addr != ftrace_addr)
1622                         return -EILSEQ;
1623                 p->flags |= KPROBE_FLAG_FTRACE;
1624 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1625                 return -EINVAL;
1626 #endif
1627         }
1628         return 0;
1629 }
1630
1631 static int check_kprobe_address_safe(struct kprobe *p,
1632                                      struct module **probed_mod)
1633 {
1634         int ret;
1635
1636         ret = arch_check_ftrace_location(p);
1637         if (ret)
1638                 return ret;
1639         jump_label_lock();
1640         preempt_disable();
1641
1642         /* Ensure it is not in reserved area nor out of text */
1643         if (!kernel_text_address((unsigned long) p->addr) ||
1644             within_kprobe_blacklist((unsigned long) p->addr) ||
1645             jump_label_text_reserved(p->addr, p->addr) ||
1646             static_call_text_reserved(p->addr, p->addr) ||
1647             find_bug((unsigned long)p->addr)) {
1648                 ret = -EINVAL;
1649                 goto out;
1650         }
1651
1652         /* Check if are we probing a module */
1653         *probed_mod = __module_text_address((unsigned long) p->addr);
1654         if (*probed_mod) {
1655                 /*
1656                  * We must hold a refcount of the probed module while updating
1657                  * its code to prohibit unexpected unloading.
1658                  */
1659                 if (unlikely(!try_module_get(*probed_mod))) {
1660                         ret = -ENOENT;
1661                         goto out;
1662                 }
1663
1664                 /*
1665                  * If the module freed .init.text, we couldn't insert
1666                  * kprobes in there.
1667                  */
1668                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1669                     (*probed_mod)->state != MODULE_STATE_COMING) {
1670                         module_put(*probed_mod);
1671                         *probed_mod = NULL;
1672                         ret = -ENOENT;
1673                 }
1674         }
1675 out:
1676         preempt_enable();
1677         jump_label_unlock();
1678
1679         return ret;
1680 }
1681
1682 int register_kprobe(struct kprobe *p)
1683 {
1684         int ret;
1685         struct kprobe *old_p;
1686         struct module *probed_mod;
1687         kprobe_opcode_t *addr;
1688
1689         /* Adjust probe address from symbol */
1690         addr = kprobe_addr(p);
1691         if (IS_ERR(addr))
1692                 return PTR_ERR(addr);
1693         p->addr = addr;
1694
1695         ret = check_kprobe_rereg(p);
1696         if (ret)
1697                 return ret;
1698
1699         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1700         p->flags &= KPROBE_FLAG_DISABLED;
1701         p->nmissed = 0;
1702         INIT_LIST_HEAD(&p->list);
1703
1704         ret = check_kprobe_address_safe(p, &probed_mod);
1705         if (ret)
1706                 return ret;
1707
1708         mutex_lock(&kprobe_mutex);
1709
1710         old_p = get_kprobe(p->addr);
1711         if (old_p) {
1712                 /* Since this may unoptimize old_p, locking text_mutex. */
1713                 ret = register_aggr_kprobe(old_p, p);
1714                 goto out;
1715         }
1716
1717         cpus_read_lock();
1718         /* Prevent text modification */
1719         mutex_lock(&text_mutex);
1720         ret = prepare_kprobe(p);
1721         mutex_unlock(&text_mutex);
1722         cpus_read_unlock();
1723         if (ret)
1724                 goto out;
1725
1726         INIT_HLIST_NODE(&p->hlist);
1727         hlist_add_head_rcu(&p->hlist,
1728                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1729
1730         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1731                 ret = arm_kprobe(p);
1732                 if (ret) {
1733                         hlist_del_rcu(&p->hlist);
1734                         synchronize_rcu();
1735                         goto out;
1736                 }
1737         }
1738
1739         /* Try to optimize kprobe */
1740         try_to_optimize_kprobe(p);
1741 out:
1742         mutex_unlock(&kprobe_mutex);
1743
1744         if (probed_mod)
1745                 module_put(probed_mod);
1746
1747         return ret;
1748 }
1749 EXPORT_SYMBOL_GPL(register_kprobe);
1750
1751 /* Check if all probes on the aggrprobe are disabled */
1752 static int aggr_kprobe_disabled(struct kprobe *ap)
1753 {
1754         struct kprobe *kp;
1755
1756         lockdep_assert_held(&kprobe_mutex);
1757
1758         list_for_each_entry(kp, &ap->list, list)
1759                 if (!kprobe_disabled(kp))
1760                         /*
1761                          * There is an active probe on the list.
1762                          * We can't disable this ap.
1763                          */
1764                         return 0;
1765
1766         return 1;
1767 }
1768
1769 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1770 static struct kprobe *__disable_kprobe(struct kprobe *p)
1771 {
1772         struct kprobe *orig_p;
1773         int ret;
1774
1775         /* Get an original kprobe for return */
1776         orig_p = __get_valid_kprobe(p);
1777         if (unlikely(orig_p == NULL))
1778                 return ERR_PTR(-EINVAL);
1779
1780         if (!kprobe_disabled(p)) {
1781                 /* Disable probe if it is a child probe */
1782                 if (p != orig_p)
1783                         p->flags |= KPROBE_FLAG_DISABLED;
1784
1785                 /* Try to disarm and disable this/parent probe */
1786                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1787                         /*
1788                          * If kprobes_all_disarmed is set, orig_p
1789                          * should have already been disarmed, so
1790                          * skip unneed disarming process.
1791                          */
1792                         if (!kprobes_all_disarmed) {
1793                                 ret = disarm_kprobe(orig_p, true);
1794                                 if (ret) {
1795                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1796                                         return ERR_PTR(ret);
1797                                 }
1798                         }
1799                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1800                 }
1801         }
1802
1803         return orig_p;
1804 }
1805
1806 /*
1807  * Unregister a kprobe without a scheduler synchronization.
1808  */
1809 static int __unregister_kprobe_top(struct kprobe *p)
1810 {
1811         struct kprobe *ap, *list_p;
1812
1813         /* Disable kprobe. This will disarm it if needed. */
1814         ap = __disable_kprobe(p);
1815         if (IS_ERR(ap))
1816                 return PTR_ERR(ap);
1817
1818         if (ap == p)
1819                 /*
1820                  * This probe is an independent(and non-optimized) kprobe
1821                  * (not an aggrprobe). Remove from the hash list.
1822                  */
1823                 goto disarmed;
1824
1825         /* Following process expects this probe is an aggrprobe */
1826         WARN_ON(!kprobe_aggrprobe(ap));
1827
1828         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1829                 /*
1830                  * !disarmed could be happen if the probe is under delayed
1831                  * unoptimizing.
1832                  */
1833                 goto disarmed;
1834         else {
1835                 /* If disabling probe has special handlers, update aggrprobe */
1836                 if (p->post_handler && !kprobe_gone(p)) {
1837                         list_for_each_entry(list_p, &ap->list, list) {
1838                                 if ((list_p != p) && (list_p->post_handler))
1839                                         goto noclean;
1840                         }
1841                         ap->post_handler = NULL;
1842                 }
1843 noclean:
1844                 /*
1845                  * Remove from the aggrprobe: this path will do nothing in
1846                  * __unregister_kprobe_bottom().
1847                  */
1848                 list_del_rcu(&p->list);
1849                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1850                         /*
1851                          * Try to optimize this probe again, because post
1852                          * handler may have been changed.
1853                          */
1854                         optimize_kprobe(ap);
1855         }
1856         return 0;
1857
1858 disarmed:
1859         hlist_del_rcu(&ap->hlist);
1860         return 0;
1861 }
1862
1863 static void __unregister_kprobe_bottom(struct kprobe *p)
1864 {
1865         struct kprobe *ap;
1866
1867         if (list_empty(&p->list))
1868                 /* This is an independent kprobe */
1869                 arch_remove_kprobe(p);
1870         else if (list_is_singular(&p->list)) {
1871                 /* This is the last child of an aggrprobe */
1872                 ap = list_entry(p->list.next, struct kprobe, list);
1873                 list_del(&p->list);
1874                 free_aggr_kprobe(ap);
1875         }
1876         /* Otherwise, do nothing. */
1877 }
1878
1879 int register_kprobes(struct kprobe **kps, int num)
1880 {
1881         int i, ret = 0;
1882
1883         if (num <= 0)
1884                 return -EINVAL;
1885         for (i = 0; i < num; i++) {
1886                 ret = register_kprobe(kps[i]);
1887                 if (ret < 0) {
1888                         if (i > 0)
1889                                 unregister_kprobes(kps, i);
1890                         break;
1891                 }
1892         }
1893         return ret;
1894 }
1895 EXPORT_SYMBOL_GPL(register_kprobes);
1896
1897 void unregister_kprobe(struct kprobe *p)
1898 {
1899         unregister_kprobes(&p, 1);
1900 }
1901 EXPORT_SYMBOL_GPL(unregister_kprobe);
1902
1903 void unregister_kprobes(struct kprobe **kps, int num)
1904 {
1905         int i;
1906
1907         if (num <= 0)
1908                 return;
1909         mutex_lock(&kprobe_mutex);
1910         for (i = 0; i < num; i++)
1911                 if (__unregister_kprobe_top(kps[i]) < 0)
1912                         kps[i]->addr = NULL;
1913         mutex_unlock(&kprobe_mutex);
1914
1915         synchronize_rcu();
1916         for (i = 0; i < num; i++)
1917                 if (kps[i]->addr)
1918                         __unregister_kprobe_bottom(kps[i]);
1919 }
1920 EXPORT_SYMBOL_GPL(unregister_kprobes);
1921
1922 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1923                                         unsigned long val, void *data)
1924 {
1925         return NOTIFY_DONE;
1926 }
1927 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1928
1929 static struct notifier_block kprobe_exceptions_nb = {
1930         .notifier_call = kprobe_exceptions_notify,
1931         .priority = 0x7fffffff /* we need to be notified first */
1932 };
1933
1934 unsigned long __weak arch_deref_entry_point(void *entry)
1935 {
1936         return (unsigned long)entry;
1937 }
1938
1939 #ifdef CONFIG_KRETPROBES
1940
1941 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1942                                              void *trampoline_address,
1943                                              void *frame_pointer)
1944 {
1945         struct kretprobe_instance *ri = NULL, *last = NULL;
1946         struct hlist_head *head;
1947         struct hlist_node *tmp;
1948         unsigned long flags;
1949         kprobe_opcode_t *correct_ret_addr = NULL;
1950         bool skipped = false;
1951
1952         kretprobe_hash_lock(current, &head, &flags);
1953
1954         /*
1955          * It is possible to have multiple instances associated with a given
1956          * task either because multiple functions in the call path have
1957          * return probes installed on them, and/or more than one
1958          * return probe was registered for a target function.
1959          *
1960          * We can handle this because:
1961          *     - instances are always pushed into the head of the list
1962          *     - when multiple return probes are registered for the same
1963          *       function, the (chronologically) first instance's ret_addr
1964          *       will be the real return address, and all the rest will
1965          *       point to kretprobe_trampoline.
1966          */
1967         hlist_for_each_entry(ri, head, hlist) {
1968                 if (ri->task != current)
1969                         /* another task is sharing our hash bucket */
1970                         continue;
1971                 /*
1972                  * Return probes must be pushed on this hash list correct
1973                  * order (same as return order) so that it can be popped
1974                  * correctly. However, if we find it is pushed it incorrect
1975                  * order, this means we find a function which should not be
1976                  * probed, because the wrong order entry is pushed on the
1977                  * path of processing other kretprobe itself.
1978                  */
1979                 if (ri->fp != frame_pointer) {
1980                         if (!skipped)
1981                                 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
1982                         skipped = true;
1983                         continue;
1984                 }
1985
1986                 correct_ret_addr = ri->ret_addr;
1987                 if (skipped)
1988                         pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
1989                                 ri->rp->kp.addr);
1990
1991                 if (correct_ret_addr != trampoline_address)
1992                         /*
1993                          * This is the real return address. Any other
1994                          * instances associated with this task are for
1995                          * other calls deeper on the call stack
1996                          */
1997                         break;
1998         }
1999
2000         BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address));
2001         last = ri;
2002
2003         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
2004                 if (ri->task != current)
2005                         /* another task is sharing our hash bucket */
2006                         continue;
2007                 if (ri->fp != frame_pointer)
2008                         continue;
2009
2010                 if (ri->rp && ri->rp->handler) {
2011                         struct kprobe *prev = kprobe_running();
2012
2013                         __this_cpu_write(current_kprobe, &ri->rp->kp);
2014                         ri->ret_addr = correct_ret_addr;
2015                         ri->rp->handler(ri, regs);
2016                         __this_cpu_write(current_kprobe, prev);
2017                 }
2018
2019                 recycle_rp_inst(ri);
2020
2021                 if (ri == last)
2022                         break;
2023         }
2024
2025         kretprobe_hash_unlock(current, &flags);
2026
2027         return (unsigned long)correct_ret_addr;
2028 }
2029 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2030
2031 /*
2032  * This kprobe pre_handler is registered with every kretprobe. When probe
2033  * hits it will set up the return probe.
2034  */
2035 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2036 {
2037         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2038         unsigned long hash, flags = 0;
2039         struct kretprobe_instance *ri;
2040
2041         /* TODO: consider to only swap the RA after the last pre_handler fired */
2042         hash = hash_ptr(current, KPROBE_HASH_BITS);
2043         /*
2044          * Nested is a workaround that will soon not be needed.
2045          * There's other protections that make sure the same lock
2046          * is not taken on the same CPU that lockdep is unaware of.
2047          */
2048         raw_spin_lock_irqsave_nested(&rp->lock, flags, 1);
2049         if (!hlist_empty(&rp->free_instances)) {
2050                 ri = hlist_entry(rp->free_instances.first,
2051                                 struct kretprobe_instance, hlist);
2052                 hlist_del(&ri->hlist);
2053                 raw_spin_unlock_irqrestore(&rp->lock, flags);
2054
2055                 ri->rp = rp;
2056                 ri->task = current;
2057
2058                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2059                         raw_spin_lock_irqsave_nested(&rp->lock, flags, 1);
2060                         hlist_add_head(&ri->hlist, &rp->free_instances);
2061                         raw_spin_unlock_irqrestore(&rp->lock, flags);
2062                         return 0;
2063                 }
2064
2065                 arch_prepare_kretprobe(ri, regs);
2066
2067                 /* XXX(hch): why is there no hlist_move_head? */
2068                 INIT_HLIST_NODE(&ri->hlist);
2069                 kretprobe_table_lock(hash, &flags);
2070                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
2071                 kretprobe_table_unlock(hash, &flags);
2072         } else {
2073                 rp->nmissed++;
2074                 raw_spin_unlock_irqrestore(&rp->lock, flags);
2075         }
2076         return 0;
2077 }
2078 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2079
2080 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
2081 {
2082         return !offset;
2083 }
2084
2085 /**
2086  * kprobe_on_func_entry() -- check whether given address is function entry
2087  * @addr: Target address
2088  * @sym:  Target symbol name
2089  * @offset: The offset from the symbol or the address
2090  *
2091  * This checks whether the given @addr+@offset or @sym+@offset is on the
2092  * function entry address or not.
2093  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2094  * And also it returns -ENOENT if it fails the symbol or address lookup.
2095  * Caller must pass @addr or @sym (either one must be NULL), or this
2096  * returns -EINVAL.
2097  */
2098 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2099 {
2100         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
2101
2102         if (IS_ERR(kp_addr))
2103                 return PTR_ERR(kp_addr);
2104
2105         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
2106                 return -ENOENT;
2107
2108         if (!arch_kprobe_on_func_entry(offset))
2109                 return -EINVAL;
2110
2111         return 0;
2112 }
2113
2114 int register_kretprobe(struct kretprobe *rp)
2115 {
2116         int ret;
2117         struct kretprobe_instance *inst;
2118         int i;
2119         void *addr;
2120
2121         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2122         if (ret)
2123                 return ret;
2124
2125         /* If only rp->kp.addr is specified, check reregistering kprobes */
2126         if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
2127                 return -EINVAL;
2128
2129         if (kretprobe_blacklist_size) {
2130                 addr = kprobe_addr(&rp->kp);
2131                 if (IS_ERR(addr))
2132                         return PTR_ERR(addr);
2133
2134                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2135                         if (kretprobe_blacklist[i].addr == addr)
2136                                 return -EINVAL;
2137                 }
2138         }
2139
2140         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2141                 return -E2BIG;
2142
2143         rp->kp.pre_handler = pre_handler_kretprobe;
2144         rp->kp.post_handler = NULL;
2145         rp->kp.fault_handler = NULL;
2146
2147         /* Pre-allocate memory for max kretprobe instances */
2148         if (rp->maxactive <= 0) {
2149 #ifdef CONFIG_PREEMPTION
2150                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2151 #else
2152                 rp->maxactive = num_possible_cpus();
2153 #endif
2154         }
2155         raw_spin_lock_init(&rp->lock);
2156         INIT_HLIST_HEAD(&rp->free_instances);
2157         for (i = 0; i < rp->maxactive; i++) {
2158                 inst = kmalloc(sizeof(struct kretprobe_instance) +
2159                                rp->data_size, GFP_KERNEL);
2160                 if (inst == NULL) {
2161                         free_rp_inst(rp);
2162                         return -ENOMEM;
2163                 }
2164                 INIT_HLIST_NODE(&inst->hlist);
2165                 hlist_add_head(&inst->hlist, &rp->free_instances);
2166         }
2167
2168         rp->nmissed = 0;
2169         /* Establish function entry probe point */
2170         ret = register_kprobe(&rp->kp);
2171         if (ret != 0)
2172                 free_rp_inst(rp);
2173         return ret;
2174 }
2175 EXPORT_SYMBOL_GPL(register_kretprobe);
2176
2177 int register_kretprobes(struct kretprobe **rps, int num)
2178 {
2179         int ret = 0, i;
2180
2181         if (num <= 0)
2182                 return -EINVAL;
2183         for (i = 0; i < num; i++) {
2184                 ret = register_kretprobe(rps[i]);
2185                 if (ret < 0) {
2186                         if (i > 0)
2187                                 unregister_kretprobes(rps, i);
2188                         break;
2189                 }
2190         }
2191         return ret;
2192 }
2193 EXPORT_SYMBOL_GPL(register_kretprobes);
2194
2195 void unregister_kretprobe(struct kretprobe *rp)
2196 {
2197         unregister_kretprobes(&rp, 1);
2198 }
2199 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2200
2201 void unregister_kretprobes(struct kretprobe **rps, int num)
2202 {
2203         int i;
2204
2205         if (num <= 0)
2206                 return;
2207         mutex_lock(&kprobe_mutex);
2208         for (i = 0; i < num; i++)
2209                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2210                         rps[i]->kp.addr = NULL;
2211         mutex_unlock(&kprobe_mutex);
2212
2213         synchronize_rcu();
2214         for (i = 0; i < num; i++) {
2215                 if (rps[i]->kp.addr) {
2216                         __unregister_kprobe_bottom(&rps[i]->kp);
2217                         cleanup_rp_inst(rps[i]);
2218                 }
2219         }
2220 }
2221 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2222
2223 #else /* CONFIG_KRETPROBES */
2224 int register_kretprobe(struct kretprobe *rp)
2225 {
2226         return -ENOSYS;
2227 }
2228 EXPORT_SYMBOL_GPL(register_kretprobe);
2229
2230 int register_kretprobes(struct kretprobe **rps, int num)
2231 {
2232         return -ENOSYS;
2233 }
2234 EXPORT_SYMBOL_GPL(register_kretprobes);
2235
2236 void unregister_kretprobe(struct kretprobe *rp)
2237 {
2238 }
2239 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2240
2241 void unregister_kretprobes(struct kretprobe **rps, int num)
2242 {
2243 }
2244 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2245
2246 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2247 {
2248         return 0;
2249 }
2250 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2251
2252 #endif /* CONFIG_KRETPROBES */
2253
2254 /* Set the kprobe gone and remove its instruction buffer. */
2255 static void kill_kprobe(struct kprobe *p)
2256 {
2257         struct kprobe *kp;
2258
2259         lockdep_assert_held(&kprobe_mutex);
2260
2261         if (WARN_ON_ONCE(kprobe_gone(p)))
2262                 return;
2263
2264         p->flags |= KPROBE_FLAG_GONE;
2265         if (kprobe_aggrprobe(p)) {
2266                 /*
2267                  * If this is an aggr_kprobe, we have to list all the
2268                  * chained probes and mark them GONE.
2269                  */
2270                 list_for_each_entry(kp, &p->list, list)
2271                         kp->flags |= KPROBE_FLAG_GONE;
2272                 p->post_handler = NULL;
2273                 kill_optimized_kprobe(p);
2274         }
2275         /*
2276          * Here, we can remove insn_slot safely, because no thread calls
2277          * the original probed function (which will be freed soon) any more.
2278          */
2279         arch_remove_kprobe(p);
2280
2281         /*
2282          * The module is going away. We should disarm the kprobe which
2283          * is using ftrace, because ftrace framework is still available at
2284          * MODULE_STATE_GOING notification.
2285          */
2286         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2287                 disarm_kprobe_ftrace(p);
2288 }
2289
2290 /* Disable one kprobe */
2291 int disable_kprobe(struct kprobe *kp)
2292 {
2293         int ret = 0;
2294         struct kprobe *p;
2295
2296         mutex_lock(&kprobe_mutex);
2297
2298         /* Disable this kprobe */
2299         p = __disable_kprobe(kp);
2300         if (IS_ERR(p))
2301                 ret = PTR_ERR(p);
2302
2303         mutex_unlock(&kprobe_mutex);
2304         return ret;
2305 }
2306 EXPORT_SYMBOL_GPL(disable_kprobe);
2307
2308 /* Enable one kprobe */
2309 int enable_kprobe(struct kprobe *kp)
2310 {
2311         int ret = 0;
2312         struct kprobe *p;
2313
2314         mutex_lock(&kprobe_mutex);
2315
2316         /* Check whether specified probe is valid. */
2317         p = __get_valid_kprobe(kp);
2318         if (unlikely(p == NULL)) {
2319                 ret = -EINVAL;
2320                 goto out;
2321         }
2322
2323         if (kprobe_gone(kp)) {
2324                 /* This kprobe has gone, we couldn't enable it. */
2325                 ret = -EINVAL;
2326                 goto out;
2327         }
2328
2329         if (p != kp)
2330                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2331
2332         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2333                 p->flags &= ~KPROBE_FLAG_DISABLED;
2334                 ret = arm_kprobe(p);
2335                 if (ret)
2336                         p->flags |= KPROBE_FLAG_DISABLED;
2337         }
2338 out:
2339         mutex_unlock(&kprobe_mutex);
2340         return ret;
2341 }
2342 EXPORT_SYMBOL_GPL(enable_kprobe);
2343
2344 /* Caller must NOT call this in usual path. This is only for critical case */
2345 void dump_kprobe(struct kprobe *kp)
2346 {
2347         pr_err("Dumping kprobe:\n");
2348         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2349                kp->symbol_name, kp->offset, kp->addr);
2350 }
2351 NOKPROBE_SYMBOL(dump_kprobe);
2352
2353 int kprobe_add_ksym_blacklist(unsigned long entry)
2354 {
2355         struct kprobe_blacklist_entry *ent;
2356         unsigned long offset = 0, size = 0;
2357
2358         if (!kernel_text_address(entry) ||
2359             !kallsyms_lookup_size_offset(entry, &size, &offset))
2360                 return -EINVAL;
2361
2362         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2363         if (!ent)
2364                 return -ENOMEM;
2365         ent->start_addr = entry;
2366         ent->end_addr = entry + size;
2367         INIT_LIST_HEAD(&ent->list);
2368         list_add_tail(&ent->list, &kprobe_blacklist);
2369
2370         return (int)size;
2371 }
2372
2373 /* Add all symbols in given area into kprobe blacklist */
2374 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2375 {
2376         unsigned long entry;
2377         int ret = 0;
2378
2379         for (entry = start; entry < end; entry += ret) {
2380                 ret = kprobe_add_ksym_blacklist(entry);
2381                 if (ret < 0)
2382                         return ret;
2383                 if (ret == 0)   /* In case of alias symbol */
2384                         ret = 1;
2385         }
2386         return 0;
2387 }
2388
2389 /* Remove all symbols in given area from kprobe blacklist */
2390 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2391 {
2392         struct kprobe_blacklist_entry *ent, *n;
2393
2394         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2395                 if (ent->start_addr < start || ent->start_addr >= end)
2396                         continue;
2397                 list_del(&ent->list);
2398                 kfree(ent);
2399         }
2400 }
2401
2402 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2403 {
2404         kprobe_remove_area_blacklist(entry, entry + 1);
2405 }
2406
2407 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2408                                    char *type, char *sym)
2409 {
2410         return -ERANGE;
2411 }
2412
2413 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2414                        char *sym)
2415 {
2416 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2417         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2418                 return 0;
2419 #ifdef CONFIG_OPTPROBES
2420         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2421                 return 0;
2422 #endif
2423 #endif
2424         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2425                 return 0;
2426         return -ERANGE;
2427 }
2428
2429 int __init __weak arch_populate_kprobe_blacklist(void)
2430 {
2431         return 0;
2432 }
2433
2434 /*
2435  * Lookup and populate the kprobe_blacklist.
2436  *
2437  * Unlike the kretprobe blacklist, we'll need to determine
2438  * the range of addresses that belong to the said functions,
2439  * since a kprobe need not necessarily be at the beginning
2440  * of a function.
2441  */
2442 static int __init populate_kprobe_blacklist(unsigned long *start,
2443                                              unsigned long *end)
2444 {
2445         unsigned long entry;
2446         unsigned long *iter;
2447         int ret;
2448
2449         for (iter = start; iter < end; iter++) {
2450                 entry = arch_deref_entry_point((void *)*iter);
2451                 ret = kprobe_add_ksym_blacklist(entry);
2452                 if (ret == -EINVAL)
2453                         continue;
2454                 if (ret < 0)
2455                         return ret;
2456         }
2457
2458         /* Symbols in __kprobes_text are blacklisted */
2459         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2460                                         (unsigned long)__kprobes_text_end);
2461         if (ret)
2462                 return ret;
2463
2464         /* Symbols in noinstr section are blacklisted */
2465         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2466                                         (unsigned long)__noinstr_text_end);
2467
2468         return ret ? : arch_populate_kprobe_blacklist();
2469 }
2470
2471 static void add_module_kprobe_blacklist(struct module *mod)
2472 {
2473         unsigned long start, end;
2474         int i;
2475
2476         if (mod->kprobe_blacklist) {
2477                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2478                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2479         }
2480
2481         start = (unsigned long)mod->kprobes_text_start;
2482         if (start) {
2483                 end = start + mod->kprobes_text_size;
2484                 kprobe_add_area_blacklist(start, end);
2485         }
2486
2487         start = (unsigned long)mod->noinstr_text_start;
2488         if (start) {
2489                 end = start + mod->noinstr_text_size;
2490                 kprobe_add_area_blacklist(start, end);
2491         }
2492 }
2493
2494 static void remove_module_kprobe_blacklist(struct module *mod)
2495 {
2496         unsigned long start, end;
2497         int i;
2498
2499         if (mod->kprobe_blacklist) {
2500                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2501                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2502         }
2503
2504         start = (unsigned long)mod->kprobes_text_start;
2505         if (start) {
2506                 end = start + mod->kprobes_text_size;
2507                 kprobe_remove_area_blacklist(start, end);
2508         }
2509
2510         start = (unsigned long)mod->noinstr_text_start;
2511         if (start) {
2512                 end = start + mod->noinstr_text_size;
2513                 kprobe_remove_area_blacklist(start, end);
2514         }
2515 }
2516
2517 /* Module notifier call back, checking kprobes on the module */
2518 static int kprobes_module_callback(struct notifier_block *nb,
2519                                    unsigned long val, void *data)
2520 {
2521         struct module *mod = data;
2522         struct hlist_head *head;
2523         struct kprobe *p;
2524         unsigned int i;
2525         int checkcore = (val == MODULE_STATE_GOING);
2526
2527         if (val == MODULE_STATE_COMING) {
2528                 mutex_lock(&kprobe_mutex);
2529                 add_module_kprobe_blacklist(mod);
2530                 mutex_unlock(&kprobe_mutex);
2531         }
2532         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2533                 return NOTIFY_DONE;
2534
2535         /*
2536          * When MODULE_STATE_GOING was notified, both of module .text and
2537          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2538          * notified, only .init.text section would be freed. We need to
2539          * disable kprobes which have been inserted in the sections.
2540          */
2541         mutex_lock(&kprobe_mutex);
2542         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2543                 head = &kprobe_table[i];
2544                 hlist_for_each_entry(p, head, hlist) {
2545                         if (kprobe_gone(p))
2546                                 continue;
2547
2548                         if (within_module_init((unsigned long)p->addr, mod) ||
2549                             (checkcore &&
2550                              within_module_core((unsigned long)p->addr, mod))) {
2551                                 /*
2552                                  * The vaddr this probe is installed will soon
2553                                  * be vfreed buy not synced to disk. Hence,
2554                                  * disarming the breakpoint isn't needed.
2555                                  *
2556                                  * Note, this will also move any optimized probes
2557                                  * that are pending to be removed from their
2558                                  * corresponding lists to the freeing_list and
2559                                  * will not be touched by the delayed
2560                                  * kprobe_optimizer work handler.
2561                                  */
2562                                 kill_kprobe(p);
2563                         }
2564                 }
2565         }
2566         if (val == MODULE_STATE_GOING)
2567                 remove_module_kprobe_blacklist(mod);
2568         mutex_unlock(&kprobe_mutex);
2569         return NOTIFY_DONE;
2570 }
2571
2572 static struct notifier_block kprobe_module_nb = {
2573         .notifier_call = kprobes_module_callback,
2574         .priority = 0
2575 };
2576
2577 /* Markers of _kprobe_blacklist section */
2578 extern unsigned long __start_kprobe_blacklist[];
2579 extern unsigned long __stop_kprobe_blacklist[];
2580
2581 void kprobe_free_init_mem(void)
2582 {
2583         void *start = (void *)(&__init_begin);
2584         void *end = (void *)(&__init_end);
2585         struct hlist_head *head;
2586         struct kprobe *p;
2587         int i;
2588
2589         mutex_lock(&kprobe_mutex);
2590
2591         /* Kill all kprobes on initmem */
2592         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2593                 head = &kprobe_table[i];
2594                 hlist_for_each_entry(p, head, hlist) {
2595                         if (start <= (void *)p->addr && (void *)p->addr < end)
2596                                 kill_kprobe(p);
2597                 }
2598         }
2599
2600         mutex_unlock(&kprobe_mutex);
2601 }
2602
2603 static int __init init_kprobes(void)
2604 {
2605         int i, err = 0;
2606
2607         /* FIXME allocate the probe table, currently defined statically */
2608         /* initialize all list heads */
2609         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2610                 INIT_HLIST_HEAD(&kprobe_table[i]);
2611                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2612                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2613         }
2614
2615         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2616                                         __stop_kprobe_blacklist);
2617         if (err) {
2618                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2619                 pr_err("Please take care of using kprobes.\n");
2620         }
2621
2622         if (kretprobe_blacklist_size) {
2623                 /* lookup the function address from its name */
2624                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2625                         kretprobe_blacklist[i].addr =
2626                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2627                         if (!kretprobe_blacklist[i].addr)
2628                                 printk("kretprobe: lookup failed: %s\n",
2629                                        kretprobe_blacklist[i].name);
2630                 }
2631         }
2632
2633         /* By default, kprobes are armed */
2634         kprobes_all_disarmed = false;
2635
2636 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2637         /* Init kprobe_optinsn_slots for allocation */
2638         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2639 #endif
2640
2641         err = arch_init_kprobes();
2642         if (!err)
2643                 err = register_die_notifier(&kprobe_exceptions_nb);
2644         if (!err)
2645                 err = register_module_notifier(&kprobe_module_nb);
2646
2647         kprobes_initialized = (err == 0);
2648
2649         if (!err)
2650                 init_test_probes();
2651         return err;
2652 }
2653 early_initcall(init_kprobes);
2654
2655 #if defined(CONFIG_OPTPROBES)
2656 static int __init init_optprobes(void)
2657 {
2658         /*
2659          * Enable kprobe optimization - this kicks the optimizer which
2660          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2661          * not spawned in early initcall. So delay the optimization.
2662          */
2663         optimize_all_kprobes();
2664
2665         return 0;
2666 }
2667 subsys_initcall(init_optprobes);
2668 #endif
2669
2670 #ifdef CONFIG_DEBUG_FS
2671 static void report_probe(struct seq_file *pi, struct kprobe *p,
2672                 const char *sym, int offset, char *modname, struct kprobe *pp)
2673 {
2674         char *kprobe_type;
2675         void *addr = p->addr;
2676
2677         if (p->pre_handler == pre_handler_kretprobe)
2678                 kprobe_type = "r";
2679         else
2680                 kprobe_type = "k";
2681
2682         if (!kallsyms_show_value(pi->file->f_cred))
2683                 addr = NULL;
2684
2685         if (sym)
2686                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2687                         addr, kprobe_type, sym, offset,
2688                         (modname ? modname : " "));
2689         else    /* try to use %pS */
2690                 seq_printf(pi, "%px  %s  %pS ",
2691                         addr, kprobe_type, p->addr);
2692
2693         if (!pp)
2694                 pp = p;
2695         seq_printf(pi, "%s%s%s%s\n",
2696                 (kprobe_gone(p) ? "[GONE]" : ""),
2697                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2698                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2699                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2700 }
2701
2702 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2703 {
2704         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2705 }
2706
2707 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2708 {
2709         (*pos)++;
2710         if (*pos >= KPROBE_TABLE_SIZE)
2711                 return NULL;
2712         return pos;
2713 }
2714
2715 static void kprobe_seq_stop(struct seq_file *f, void *v)
2716 {
2717         /* Nothing to do */
2718 }
2719
2720 static int show_kprobe_addr(struct seq_file *pi, void *v)
2721 {
2722         struct hlist_head *head;
2723         struct kprobe *p, *kp;
2724         const char *sym = NULL;
2725         unsigned int i = *(loff_t *) v;
2726         unsigned long offset = 0;
2727         char *modname, namebuf[KSYM_NAME_LEN];
2728
2729         head = &kprobe_table[i];
2730         preempt_disable();
2731         hlist_for_each_entry_rcu(p, head, hlist) {
2732                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2733                                         &offset, &modname, namebuf);
2734                 if (kprobe_aggrprobe(p)) {
2735                         list_for_each_entry_rcu(kp, &p->list, list)
2736                                 report_probe(pi, kp, sym, offset, modname, p);
2737                 } else
2738                         report_probe(pi, p, sym, offset, modname, NULL);
2739         }
2740         preempt_enable();
2741         return 0;
2742 }
2743
2744 static const struct seq_operations kprobes_sops = {
2745         .start = kprobe_seq_start,
2746         .next  = kprobe_seq_next,
2747         .stop  = kprobe_seq_stop,
2748         .show  = show_kprobe_addr
2749 };
2750
2751 DEFINE_SEQ_ATTRIBUTE(kprobes);
2752
2753 /* kprobes/blacklist -- shows which functions can not be probed */
2754 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2755 {
2756         mutex_lock(&kprobe_mutex);
2757         return seq_list_start(&kprobe_blacklist, *pos);
2758 }
2759
2760 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2761 {
2762         return seq_list_next(v, &kprobe_blacklist, pos);
2763 }
2764
2765 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2766 {
2767         struct kprobe_blacklist_entry *ent =
2768                 list_entry(v, struct kprobe_blacklist_entry, list);
2769
2770         /*
2771          * If /proc/kallsyms is not showing kernel address, we won't
2772          * show them here either.
2773          */
2774         if (!kallsyms_show_value(m->file->f_cred))
2775                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2776                            (void *)ent->start_addr);
2777         else
2778                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2779                            (void *)ent->end_addr, (void *)ent->start_addr);
2780         return 0;
2781 }
2782
2783 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2784 {
2785         mutex_unlock(&kprobe_mutex);
2786 }
2787
2788 static const struct seq_operations kprobe_blacklist_sops = {
2789         .start = kprobe_blacklist_seq_start,
2790         .next  = kprobe_blacklist_seq_next,
2791         .stop  = kprobe_blacklist_seq_stop,
2792         .show  = kprobe_blacklist_seq_show,
2793 };
2794 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2795
2796 static int arm_all_kprobes(void)
2797 {
2798         struct hlist_head *head;
2799         struct kprobe *p;
2800         unsigned int i, total = 0, errors = 0;
2801         int err, ret = 0;
2802
2803         mutex_lock(&kprobe_mutex);
2804
2805         /* If kprobes are armed, just return */
2806         if (!kprobes_all_disarmed)
2807                 goto already_enabled;
2808
2809         /*
2810          * optimize_kprobe() called by arm_kprobe() checks
2811          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2812          * arm_kprobe.
2813          */
2814         kprobes_all_disarmed = false;
2815         /* Arming kprobes doesn't optimize kprobe itself */
2816         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2817                 head = &kprobe_table[i];
2818                 /* Arm all kprobes on a best-effort basis */
2819                 hlist_for_each_entry(p, head, hlist) {
2820                         if (!kprobe_disabled(p)) {
2821                                 err = arm_kprobe(p);
2822                                 if (err)  {
2823                                         errors++;
2824                                         ret = err;
2825                                 }
2826                                 total++;
2827                         }
2828                 }
2829         }
2830
2831         if (errors)
2832                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2833                         errors, total);
2834         else
2835                 pr_info("Kprobes globally enabled\n");
2836
2837 already_enabled:
2838         mutex_unlock(&kprobe_mutex);
2839         return ret;
2840 }
2841
2842 static int disarm_all_kprobes(void)
2843 {
2844         struct hlist_head *head;
2845         struct kprobe *p;
2846         unsigned int i, total = 0, errors = 0;
2847         int err, ret = 0;
2848
2849         mutex_lock(&kprobe_mutex);
2850
2851         /* If kprobes are already disarmed, just return */
2852         if (kprobes_all_disarmed) {
2853                 mutex_unlock(&kprobe_mutex);
2854                 return 0;
2855         }
2856
2857         kprobes_all_disarmed = true;
2858
2859         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2860                 head = &kprobe_table[i];
2861                 /* Disarm all kprobes on a best-effort basis */
2862                 hlist_for_each_entry(p, head, hlist) {
2863                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2864                                 err = disarm_kprobe(p, false);
2865                                 if (err) {
2866                                         errors++;
2867                                         ret = err;
2868                                 }
2869                                 total++;
2870                         }
2871                 }
2872         }
2873
2874         if (errors)
2875                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2876                         errors, total);
2877         else
2878                 pr_info("Kprobes globally disabled\n");
2879
2880         mutex_unlock(&kprobe_mutex);
2881
2882         /* Wait for disarming all kprobes by optimizer */
2883         wait_for_kprobe_optimizer();
2884
2885         return ret;
2886 }
2887
2888 /*
2889  * XXX: The debugfs bool file interface doesn't allow for callbacks
2890  * when the bool state is switched. We can reuse that facility when
2891  * available
2892  */
2893 static ssize_t read_enabled_file_bool(struct file *file,
2894                char __user *user_buf, size_t count, loff_t *ppos)
2895 {
2896         char buf[3];
2897
2898         if (!kprobes_all_disarmed)
2899                 buf[0] = '1';
2900         else
2901                 buf[0] = '0';
2902         buf[1] = '\n';
2903         buf[2] = 0x00;
2904         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2905 }
2906
2907 static ssize_t write_enabled_file_bool(struct file *file,
2908                const char __user *user_buf, size_t count, loff_t *ppos)
2909 {
2910         char buf[32];
2911         size_t buf_size;
2912         int ret = 0;
2913
2914         buf_size = min(count, (sizeof(buf)-1));
2915         if (copy_from_user(buf, user_buf, buf_size))
2916                 return -EFAULT;
2917
2918         buf[buf_size] = '\0';
2919         switch (buf[0]) {
2920         case 'y':
2921         case 'Y':
2922         case '1':
2923                 ret = arm_all_kprobes();
2924                 break;
2925         case 'n':
2926         case 'N':
2927         case '0':
2928                 ret = disarm_all_kprobes();
2929                 break;
2930         default:
2931                 return -EINVAL;
2932         }
2933
2934         if (ret)
2935                 return ret;
2936
2937         return count;
2938 }
2939
2940 static const struct file_operations fops_kp = {
2941         .read =         read_enabled_file_bool,
2942         .write =        write_enabled_file_bool,
2943         .llseek =       default_llseek,
2944 };
2945
2946 static int __init debugfs_kprobe_init(void)
2947 {
2948         struct dentry *dir;
2949
2950         dir = debugfs_create_dir("kprobes", NULL);
2951
2952         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2953
2954         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2955
2956         debugfs_create_file("blacklist", 0400, dir, NULL,
2957                             &kprobe_blacklist_fops);
2958
2959         return 0;
2960 }
2961
2962 late_initcall(debugfs_kprobe_init);
2963 #endif /* CONFIG_DEBUG_FS */