1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Kernel Probes (KProbes)
5 * Copyright (C) IBM Corporation, 2002, 2004
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation (includes suggestions from
10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11 * hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13 * interface to access function arguments.
14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15 * exceptions notifier to be first on the priority list.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
21 #define pr_fmt(fmt) "kprobes: " fmt
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 unsigned int __unused)
73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78 * kprobes can not probe.
80 static LIST_HEAD(kprobe_blacklist);
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
89 struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
98 #define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
102 static int slots_per_page(struct kprobe_insn_cache *c)
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
107 enum kprobe_slot_state {
113 void __weak *alloc_insn_page(void)
116 * Use module_alloc() so this page is within +/- 2GB of where the
117 * kernel image and loaded module images reside. This is required
118 * for most of the architectures.
119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
121 return module_alloc(PAGE_SIZE);
124 static void free_insn_page(void *page)
126 module_memfree(page);
129 struct kprobe_insn_cache kprobe_insn_slots = {
130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 .alloc = alloc_insn_page,
132 .free = free_insn_page,
133 .sym = KPROBE_INSN_PAGE_SYM,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
161 slot = kip->insns + (i * c->insn_size);
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
173 /* If there are any garbage slots, collect it and try again. */
174 if (c->nr_garbage && collect_garbage_slots(c) == 0)
177 /* All out of space. Need to allocate a new page. */
178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
182 kip->insns = c->alloc();
187 INIT_LIST_HEAD(&kip->list);
188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 kip->slot_used[0] = SLOT_USED;
193 list_add_rcu(&kip->list, &c->pages);
196 /* Record the perf ksymbol register event after adding the page */
197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 PAGE_SIZE, false, c->sym);
200 mutex_unlock(&c->mutex);
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
207 kip->slot_used[idx] = SLOT_CLEAN;
209 if (kip->nused == 0) {
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
216 if (!list_is_singular(&kip->list)) {
218 * Record perf ksymbol unregister event before removing
221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 (unsigned long)kip->insns, PAGE_SIZE, true,
224 list_del_rcu(&kip->list);
226 kip->cache->free(kip->insns);
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
236 struct kprobe_insn_page *kip, *next;
238 /* Ensure no-one is interrupted on the garbages */
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 if (kip->ngarbage == 0)
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < slots_per_page(c); i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
259 struct kprobe_insn_page *kip;
262 mutex_lock(&c->mutex);
264 list_for_each_entry_rcu(kip, &c->pages, list) {
265 idx = ((long)slot - (long)kip->insns) /
266 (c->insn_size * sizeof(kprobe_opcode_t));
267 if (idx >= 0 && idx < slots_per_page(c))
270 /* Could not find this slot. */
275 /* Mark and sweep: this may sleep */
277 /* Check double free */
278 WARN_ON(kip->slot_used[idx] != SLOT_USED);
280 kip->slot_used[idx] = SLOT_DIRTY;
282 if (++c->nr_garbage > slots_per_page(c))
283 collect_garbage_slots(c);
285 collect_one_slot(kip, idx);
288 mutex_unlock(&c->mutex);
292 * Check given address is on the page of kprobe instruction slots.
293 * This will be used for checking whether the address on a stack
294 * is on a text area or not.
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
298 struct kprobe_insn_page *kip;
302 list_for_each_entry_rcu(kip, &c->pages, list) {
303 if (addr >= (unsigned long)kip->insns &&
304 addr < (unsigned long)kip->insns + PAGE_SIZE) {
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 unsigned long *value, char *type, char *sym)
317 struct kprobe_insn_page *kip;
321 list_for_each_entry_rcu(kip, &c->pages, list) {
324 strscpy(sym, c->sym, KSYM_NAME_LEN);
326 *value = (unsigned long)kip->insns;
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
338 return alloc_insn_page();
341 void __weak free_optinsn_page(void *page)
343 free_insn_page(page);
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 .alloc = alloc_optinsn_page,
350 .free = free_optinsn_page,
351 .sym = KPROBE_OPTINSN_PAGE_SYM,
352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 /* .insn_size is initialized later */
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
362 __this_cpu_write(kprobe_instance, kp);
365 static inline void reset_kprobe_instance(void)
367 __this_cpu_write(kprobe_instance, NULL);
371 * This routine is called either:
372 * - under the 'kprobe_mutex' - during kprobe_[un]register().
374 * - with preemption disabled - from architecture specific code.
376 struct kprobe *get_kprobe(void *addr)
378 struct hlist_head *head;
381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 hlist_for_each_entry_rcu(p, head, hlist,
383 lockdep_is_held(&kprobe_mutex)) {
390 NOKPROBE_SYMBOL(get_kprobe);
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
397 return p->pre_handler == aggr_pre_handler;
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
403 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 list_empty(&p->list);
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420 * This must be called from arch-dep optimized caller.
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
426 list_for_each_entry_rcu(kp, &p->list, list) {
427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 set_kprobe_instance(kp);
429 kp->pre_handler(kp, regs);
431 reset_kprobe_instance();
434 NOKPROBE_SYMBOL(opt_pre_handler);
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
439 struct optimized_kprobe *op;
441 op = container_of(p, struct optimized_kprobe, kp);
442 arch_remove_optimized_kprobe(op);
443 arch_remove_kprobe(p);
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
450 struct optimized_kprobe *op;
452 if (kprobe_aggrprobe(p)) {
453 op = container_of(p, struct optimized_kprobe, kp);
454 return arch_prepared_optinsn(&op->optinsn);
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 static inline bool kprobe_disarmed(struct kprobe *p)
463 struct optimized_kprobe *op;
465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 if (!kprobe_aggrprobe(p))
467 return kprobe_disabled(p);
469 op = container_of(p, struct optimized_kprobe, kp);
471 return kprobe_disabled(p) && list_empty(&op->list);
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
477 struct optimized_kprobe *op;
479 if (kprobe_aggrprobe(p)) {
480 op = container_of(p, struct optimized_kprobe, kp);
481 if (!list_empty(&op->list))
488 * Return an optimized kprobe whose optimizing code replaces
489 * instructions including 'addr' (exclude breakpoint).
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
494 struct kprobe *p = NULL;
495 struct optimized_kprobe *op;
497 /* Don't check i == 0, since that is a breakpoint case. */
498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 p = get_kprobe(addr - i);
501 if (p && kprobe_optready(p)) {
502 op = container_of(p, struct optimized_kprobe, kp);
503 if (arch_within_optimized_kprobe(op, addr))
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
520 * Optimize (replace a breakpoint with a jump) kprobes listed on
523 static void do_optimize_kprobes(void)
525 lockdep_assert_held(&text_mutex);
527 * The optimization/unoptimization refers 'online_cpus' via
528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 * 'text_mutex' but stop_machine() can not be done because
532 * the 'online_cpus' has been changed)
533 * To avoid this deadlock, caller must have locked cpu-hotplug
534 * for preventing cpu-hotplug outside of 'text_mutex' locking.
536 lockdep_assert_cpus_held();
538 /* Optimization never be done when disarmed */
539 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 list_empty(&optimizing_list))
543 arch_optimize_kprobes(&optimizing_list);
547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548 * if need) kprobes listed on 'unoptimizing_list'.
550 static void do_unoptimize_kprobes(void)
552 struct optimized_kprobe *op, *tmp;
554 lockdep_assert_held(&text_mutex);
555 /* See comment in do_optimize_kprobes() */
556 lockdep_assert_cpus_held();
558 /* Unoptimization must be done anytime */
559 if (list_empty(&unoptimizing_list))
562 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
563 /* Loop on 'freeing_list' for disarming */
564 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
565 /* Switching from detour code to origin */
566 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
567 /* Disarm probes if marked disabled */
568 if (kprobe_disabled(&op->kp))
569 arch_disarm_kprobe(&op->kp);
570 if (kprobe_unused(&op->kp)) {
572 * Remove unused probes from hash list. After waiting
573 * for synchronization, these probes are reclaimed.
574 * (reclaiming is done by do_free_cleaned_kprobes().)
576 hlist_del_rcu(&op->kp.hlist);
578 list_del_init(&op->list);
582 /* Reclaim all kprobes on the 'freeing_list' */
583 static void do_free_cleaned_kprobes(void)
585 struct optimized_kprobe *op, *tmp;
587 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
588 list_del_init(&op->list);
589 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
591 * This must not happen, but if there is a kprobe
592 * still in use, keep it on kprobes hash list.
596 free_aggr_kprobe(&op->kp);
600 /* Start optimizer after OPTIMIZE_DELAY passed */
601 static void kick_kprobe_optimizer(void)
603 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
606 /* Kprobe jump optimizer */
607 static void kprobe_optimizer(struct work_struct *work)
609 mutex_lock(&kprobe_mutex);
611 mutex_lock(&text_mutex);
614 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
615 * kprobes before waiting for quiesence period.
617 do_unoptimize_kprobes();
620 * Step 2: Wait for quiesence period to ensure all potentially
621 * preempted tasks to have normally scheduled. Because optprobe
622 * may modify multiple instructions, there is a chance that Nth
623 * instruction is preempted. In that case, such tasks can return
624 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
625 * Note that on non-preemptive kernel, this is transparently converted
626 * to synchronoze_sched() to wait for all interrupts to have completed.
628 synchronize_rcu_tasks();
630 /* Step 3: Optimize kprobes after quiesence period */
631 do_optimize_kprobes();
633 /* Step 4: Free cleaned kprobes after quiesence period */
634 do_free_cleaned_kprobes();
636 mutex_unlock(&text_mutex);
639 /* Step 5: Kick optimizer again if needed */
640 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
641 kick_kprobe_optimizer();
643 mutex_unlock(&kprobe_mutex);
646 /* Wait for completing optimization and unoptimization */
647 void wait_for_kprobe_optimizer(void)
649 mutex_lock(&kprobe_mutex);
651 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
652 mutex_unlock(&kprobe_mutex);
654 /* This will also make 'optimizing_work' execute immmediately */
655 flush_delayed_work(&optimizing_work);
656 /* 'optimizing_work' might not have been queued yet, relax */
659 mutex_lock(&kprobe_mutex);
662 mutex_unlock(&kprobe_mutex);
665 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
667 struct optimized_kprobe *_op;
669 list_for_each_entry(_op, &unoptimizing_list, list) {
677 /* Optimize kprobe if p is ready to be optimized */
678 static void optimize_kprobe(struct kprobe *p)
680 struct optimized_kprobe *op;
682 /* Check if the kprobe is disabled or not ready for optimization. */
683 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
684 (kprobe_disabled(p) || kprobes_all_disarmed))
687 /* kprobes with 'post_handler' can not be optimized */
691 op = container_of(p, struct optimized_kprobe, kp);
693 /* Check there is no other kprobes at the optimized instructions */
694 if (arch_check_optimized_kprobe(op) < 0)
697 /* Check if it is already optimized. */
698 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
699 if (optprobe_queued_unopt(op)) {
700 /* This is under unoptimizing. Just dequeue the probe */
701 list_del_init(&op->list);
705 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
708 * On the 'unoptimizing_list' and 'optimizing_list',
709 * 'op' must have OPTIMIZED flag
711 if (WARN_ON_ONCE(!list_empty(&op->list)))
714 list_add(&op->list, &optimizing_list);
715 kick_kprobe_optimizer();
718 /* Short cut to direct unoptimizing */
719 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
721 lockdep_assert_cpus_held();
722 arch_unoptimize_kprobe(op);
723 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726 /* Unoptimize a kprobe if p is optimized */
727 static void unoptimize_kprobe(struct kprobe *p, bool force)
729 struct optimized_kprobe *op;
731 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
732 return; /* This is not an optprobe nor optimized */
734 op = container_of(p, struct optimized_kprobe, kp);
735 if (!kprobe_optimized(p))
738 if (!list_empty(&op->list)) {
739 if (optprobe_queued_unopt(op)) {
740 /* Queued in unoptimizing queue */
743 * Forcibly unoptimize the kprobe here, and queue it
744 * in the freeing list for release afterwards.
746 force_unoptimize_kprobe(op);
747 list_move(&op->list, &freeing_list);
750 /* Dequeue from the optimizing queue */
751 list_del_init(&op->list);
752 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
757 /* Optimized kprobe case */
759 /* Forcibly update the code: this is a special case */
760 force_unoptimize_kprobe(op);
762 list_add(&op->list, &unoptimizing_list);
763 kick_kprobe_optimizer();
767 /* Cancel unoptimizing for reusing */
768 static int reuse_unused_kprobe(struct kprobe *ap)
770 struct optimized_kprobe *op;
773 * Unused kprobe MUST be on the way of delayed unoptimizing (means
774 * there is still a relative jump) and disabled.
776 op = container_of(ap, struct optimized_kprobe, kp);
777 WARN_ON_ONCE(list_empty(&op->list));
778 /* Enable the probe again */
779 ap->flags &= ~KPROBE_FLAG_DISABLED;
780 /* Optimize it again. (remove from 'op->list') */
781 if (!kprobe_optready(ap))
788 /* Remove optimized instructions */
789 static void kill_optimized_kprobe(struct kprobe *p)
791 struct optimized_kprobe *op;
793 op = container_of(p, struct optimized_kprobe, kp);
794 if (!list_empty(&op->list))
795 /* Dequeue from the (un)optimization queue */
796 list_del_init(&op->list);
797 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
799 if (kprobe_unused(p)) {
800 /* Enqueue if it is unused */
801 list_add(&op->list, &freeing_list);
803 * Remove unused probes from the hash list. After waiting
804 * for synchronization, this probe is reclaimed.
805 * (reclaiming is done by do_free_cleaned_kprobes().)
807 hlist_del_rcu(&op->kp.hlist);
810 /* Don't touch the code, because it is already freed. */
811 arch_remove_optimized_kprobe(op);
815 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
817 if (!kprobe_ftrace(p))
818 arch_prepare_optimized_kprobe(op, p);
821 /* Try to prepare optimized instructions */
822 static void prepare_optimized_kprobe(struct kprobe *p)
824 struct optimized_kprobe *op;
826 op = container_of(p, struct optimized_kprobe, kp);
827 __prepare_optimized_kprobe(op, p);
830 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
831 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
833 struct optimized_kprobe *op;
835 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
839 INIT_LIST_HEAD(&op->list);
840 op->kp.addr = p->addr;
841 __prepare_optimized_kprobe(op, p);
846 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
849 * Prepare an optimized_kprobe and optimize it.
850 * NOTE: 'p' must be a normal registered kprobe.
852 static void try_to_optimize_kprobe(struct kprobe *p)
855 struct optimized_kprobe *op;
857 /* Impossible to optimize ftrace-based kprobe. */
858 if (kprobe_ftrace(p))
861 /* For preparing optimization, jump_label_text_reserved() is called. */
864 mutex_lock(&text_mutex);
866 ap = alloc_aggr_kprobe(p);
870 op = container_of(ap, struct optimized_kprobe, kp);
871 if (!arch_prepared_optinsn(&op->optinsn)) {
872 /* If failed to setup optimizing, fallback to kprobe. */
873 arch_remove_optimized_kprobe(op);
878 init_aggr_kprobe(ap, p);
879 optimize_kprobe(ap); /* This just kicks optimizer thread. */
882 mutex_unlock(&text_mutex);
887 static void optimize_all_kprobes(void)
889 struct hlist_head *head;
893 mutex_lock(&kprobe_mutex);
894 /* If optimization is already allowed, just return. */
895 if (kprobes_allow_optimization)
899 kprobes_allow_optimization = true;
900 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
901 head = &kprobe_table[i];
902 hlist_for_each_entry(p, head, hlist)
903 if (!kprobe_disabled(p))
907 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
909 mutex_unlock(&kprobe_mutex);
913 static void unoptimize_all_kprobes(void)
915 struct hlist_head *head;
919 mutex_lock(&kprobe_mutex);
920 /* If optimization is already prohibited, just return. */
921 if (!kprobes_allow_optimization) {
922 mutex_unlock(&kprobe_mutex);
927 kprobes_allow_optimization = false;
928 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
929 head = &kprobe_table[i];
930 hlist_for_each_entry(p, head, hlist) {
931 if (!kprobe_disabled(p))
932 unoptimize_kprobe(p, false);
936 mutex_unlock(&kprobe_mutex);
938 /* Wait for unoptimizing completion. */
939 wait_for_kprobe_optimizer();
940 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
943 static DEFINE_MUTEX(kprobe_sysctl_mutex);
944 static int sysctl_kprobes_optimization;
945 static int proc_kprobes_optimization_handler(struct ctl_table *table,
946 int write, void *buffer,
947 size_t *length, loff_t *ppos)
951 mutex_lock(&kprobe_sysctl_mutex);
952 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
953 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
955 if (sysctl_kprobes_optimization)
956 optimize_all_kprobes();
958 unoptimize_all_kprobes();
959 mutex_unlock(&kprobe_sysctl_mutex);
964 static struct ctl_table kprobe_sysctls[] = {
966 .procname = "kprobes-optimization",
967 .data = &sysctl_kprobes_optimization,
968 .maxlen = sizeof(int),
970 .proc_handler = proc_kprobes_optimization_handler,
971 .extra1 = SYSCTL_ZERO,
972 .extra2 = SYSCTL_ONE,
977 static void __init kprobe_sysctls_init(void)
979 register_sysctl_init("debug", kprobe_sysctls);
981 #endif /* CONFIG_SYSCTL */
983 /* Put a breakpoint for a probe. */
984 static void __arm_kprobe(struct kprobe *p)
988 lockdep_assert_held(&text_mutex);
990 /* Find the overlapping optimized kprobes. */
991 _p = get_optimized_kprobe(p->addr);
993 /* Fallback to unoptimized kprobe */
994 unoptimize_kprobe(_p, true);
997 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
1000 /* Remove the breakpoint of a probe. */
1001 static void __disarm_kprobe(struct kprobe *p, bool reopt)
1005 lockdep_assert_held(&text_mutex);
1007 /* Try to unoptimize */
1008 unoptimize_kprobe(p, kprobes_all_disarmed);
1010 if (!kprobe_queued(p)) {
1011 arch_disarm_kprobe(p);
1012 /* If another kprobe was blocked, re-optimize it. */
1013 _p = get_optimized_kprobe(p->addr);
1014 if (unlikely(_p) && reopt)
1015 optimize_kprobe(_p);
1018 * TODO: Since unoptimization and real disarming will be done by
1019 * the worker thread, we can not check whether another probe are
1020 * unoptimized because of this probe here. It should be re-optimized
1021 * by the worker thread.
1025 #else /* !CONFIG_OPTPROBES */
1027 #define optimize_kprobe(p) do {} while (0)
1028 #define unoptimize_kprobe(p, f) do {} while (0)
1029 #define kill_optimized_kprobe(p) do {} while (0)
1030 #define prepare_optimized_kprobe(p) do {} while (0)
1031 #define try_to_optimize_kprobe(p) do {} while (0)
1032 #define __arm_kprobe(p) arch_arm_kprobe(p)
1033 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
1034 #define kprobe_disarmed(p) kprobe_disabled(p)
1035 #define wait_for_kprobe_optimizer() do {} while (0)
1037 static int reuse_unused_kprobe(struct kprobe *ap)
1040 * If the optimized kprobe is NOT supported, the aggr kprobe is
1041 * released at the same time that the last aggregated kprobe is
1043 * Thus there should be no chance to reuse unused kprobe.
1049 static void free_aggr_kprobe(struct kprobe *p)
1051 arch_remove_kprobe(p);
1055 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1057 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1059 #endif /* CONFIG_OPTPROBES */
1061 #ifdef CONFIG_KPROBES_ON_FTRACE
1062 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063 .func = kprobe_ftrace_handler,
1064 .flags = FTRACE_OPS_FL_SAVE_REGS,
1067 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068 .func = kprobe_ftrace_handler,
1069 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1072 static int kprobe_ipmodify_enabled;
1073 static int kprobe_ftrace_enabled;
1075 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1080 lockdep_assert_held(&kprobe_mutex);
1082 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1087 ret = register_ftrace_function(ops);
1088 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1097 * At this point, sinec ops is not registered, we should be sefe from
1098 * registering empty filter.
1100 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1104 static int arm_kprobe_ftrace(struct kprobe *p)
1106 bool ipmodify = (p->post_handler != NULL);
1108 return __arm_kprobe_ftrace(p,
1109 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1113 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1118 lockdep_assert_held(&kprobe_mutex);
1121 ret = unregister_ftrace_function(ops);
1122 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1128 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1134 static int disarm_kprobe_ftrace(struct kprobe *p)
1136 bool ipmodify = (p->post_handler != NULL);
1138 return __disarm_kprobe_ftrace(p,
1139 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1142 #else /* !CONFIG_KPROBES_ON_FTRACE */
1143 static inline int arm_kprobe_ftrace(struct kprobe *p)
1148 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1154 static int prepare_kprobe(struct kprobe *p)
1156 /* Must ensure p->addr is really on ftrace */
1157 if (kprobe_ftrace(p))
1158 return arch_prepare_kprobe_ftrace(p);
1160 return arch_prepare_kprobe(p);
1163 static int arm_kprobe(struct kprobe *kp)
1165 if (unlikely(kprobe_ftrace(kp)))
1166 return arm_kprobe_ftrace(kp);
1169 mutex_lock(&text_mutex);
1171 mutex_unlock(&text_mutex);
1177 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1179 if (unlikely(kprobe_ftrace(kp)))
1180 return disarm_kprobe_ftrace(kp);
1183 mutex_lock(&text_mutex);
1184 __disarm_kprobe(kp, reopt);
1185 mutex_unlock(&text_mutex);
1192 * Aggregate handlers for multiple kprobes support - these handlers
1193 * take care of invoking the individual kprobe handlers on p->list
1195 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1199 list_for_each_entry_rcu(kp, &p->list, list) {
1200 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201 set_kprobe_instance(kp);
1202 if (kp->pre_handler(kp, regs))
1205 reset_kprobe_instance();
1209 NOKPROBE_SYMBOL(aggr_pre_handler);
1211 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212 unsigned long flags)
1216 list_for_each_entry_rcu(kp, &p->list, list) {
1217 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218 set_kprobe_instance(kp);
1219 kp->post_handler(kp, regs, flags);
1220 reset_kprobe_instance();
1224 NOKPROBE_SYMBOL(aggr_post_handler);
1226 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1227 void kprobes_inc_nmissed_count(struct kprobe *p)
1231 if (!kprobe_aggrprobe(p)) {
1234 list_for_each_entry_rcu(kp, &p->list, list)
1238 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1240 static struct kprobe kprobe_busy = {
1241 .addr = (void *) get_kprobe,
1244 void kprobe_busy_begin(void)
1246 struct kprobe_ctlblk *kcb;
1249 __this_cpu_write(current_kprobe, &kprobe_busy);
1250 kcb = get_kprobe_ctlblk();
1251 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1254 void kprobe_busy_end(void)
1256 __this_cpu_write(current_kprobe, NULL);
1260 /* Add the new probe to 'ap->list'. */
1261 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1263 if (p->post_handler)
1264 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1266 list_add_rcu(&p->list, &ap->list);
1267 if (p->post_handler && !ap->post_handler)
1268 ap->post_handler = aggr_post_handler;
1274 * Fill in the required fields of the aggregator kprobe. Replace the
1275 * earlier kprobe in the hlist with the aggregator kprobe.
1277 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1279 /* Copy the insn slot of 'p' to 'ap'. */
1281 flush_insn_slot(ap);
1283 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1284 ap->pre_handler = aggr_pre_handler;
1285 /* We don't care the kprobe which has gone. */
1286 if (p->post_handler && !kprobe_gone(p))
1287 ap->post_handler = aggr_post_handler;
1289 INIT_LIST_HEAD(&ap->list);
1290 INIT_HLIST_NODE(&ap->hlist);
1292 list_add_rcu(&p->list, &ap->list);
1293 hlist_replace_rcu(&p->hlist, &ap->hlist);
1297 * This registers the second or subsequent kprobe at the same address.
1299 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1302 struct kprobe *ap = orig_p;
1306 /* For preparing optimization, jump_label_text_reserved() is called */
1308 mutex_lock(&text_mutex);
1310 if (!kprobe_aggrprobe(orig_p)) {
1311 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1312 ap = alloc_aggr_kprobe(orig_p);
1317 init_aggr_kprobe(ap, orig_p);
1318 } else if (kprobe_unused(ap)) {
1319 /* This probe is going to die. Rescue it */
1320 ret = reuse_unused_kprobe(ap);
1325 if (kprobe_gone(ap)) {
1327 * Attempting to insert new probe at the same location that
1328 * had a probe in the module vaddr area which already
1329 * freed. So, the instruction slot has already been
1330 * released. We need a new slot for the new probe.
1332 ret = arch_prepare_kprobe(ap);
1335 * Even if fail to allocate new slot, don't need to
1336 * free the 'ap'. It will be used next time, or
1337 * freed by unregister_kprobe().
1341 /* Prepare optimized instructions if possible. */
1342 prepare_optimized_kprobe(ap);
1345 * Clear gone flag to prevent allocating new slot again, and
1346 * set disabled flag because it is not armed yet.
1348 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 | KPROBE_FLAG_DISABLED;
1352 /* Copy the insn slot of 'p' to 'ap'. */
1354 ret = add_new_kprobe(ap, p);
1357 mutex_unlock(&text_mutex);
1358 jump_label_unlock();
1361 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 if (!kprobes_all_disarmed) {
1364 /* Arm the breakpoint again. */
1365 ret = arm_kprobe(ap);
1367 ap->flags |= KPROBE_FLAG_DISABLED;
1368 list_del_rcu(&p->list);
1376 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1378 /* The '__kprobes' functions and entry code must not be probed. */
1379 return addr >= (unsigned long)__kprobes_text_start &&
1380 addr < (unsigned long)__kprobes_text_end;
1383 static bool __within_kprobe_blacklist(unsigned long addr)
1385 struct kprobe_blacklist_entry *ent;
1387 if (arch_within_kprobe_blacklist(addr))
1390 * If 'kprobe_blacklist' is defined, check the address and
1391 * reject any probe registration in the prohibited area.
1393 list_for_each_entry(ent, &kprobe_blacklist, list) {
1394 if (addr >= ent->start_addr && addr < ent->end_addr)
1400 bool within_kprobe_blacklist(unsigned long addr)
1402 char symname[KSYM_NAME_LEN], *p;
1404 if (__within_kprobe_blacklist(addr))
1407 /* Check if the address is on a suffixed-symbol */
1408 if (!lookup_symbol_name(addr, symname)) {
1409 p = strchr(symname, '.');
1413 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1415 return __within_kprobe_blacklist(addr);
1421 * arch_adjust_kprobe_addr - adjust the address
1422 * @addr: symbol base address
1423 * @offset: offset within the symbol
1424 * @on_func_entry: was this @addr+@offset on the function entry
1426 * Typically returns @addr + @offset, except for special cases where the
1427 * function might be prefixed by a CFI landing pad, in that case any offset
1428 * inside the landing pad is mapped to the first 'real' instruction of the
1431 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1432 * instruction at +0.
1434 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1435 unsigned long offset,
1436 bool *on_func_entry)
1438 *on_func_entry = !offset;
1439 return (kprobe_opcode_t *)(addr + offset);
1443 * If 'symbol_name' is specified, look it up and add the 'offset'
1444 * to it. This way, we can specify a relative address to a symbol.
1445 * This returns encoded errors if it fails to look up symbol or invalid
1446 * combination of parameters.
1448 static kprobe_opcode_t *
1449 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1450 unsigned long offset, bool *on_func_entry)
1452 if ((symbol_name && addr) || (!symbol_name && !addr))
1457 * Input: @sym + @offset
1458 * Output: @addr + @offset
1460 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1461 * argument into it's output!
1463 addr = kprobe_lookup_name(symbol_name, offset);
1465 return ERR_PTR(-ENOENT);
1469 * So here we have @addr + @offset, displace it into a new
1470 * @addr' + @offset' where @addr' is the symbol start address.
1472 addr = (void *)addr + offset;
1473 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1474 return ERR_PTR(-ENOENT);
1475 addr = (void *)addr - offset;
1478 * Then ask the architecture to re-combine them, taking care of
1479 * magical function entry details while telling us if this was indeed
1480 * at the start of the function.
1482 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1487 return ERR_PTR(-EINVAL);
1490 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1493 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1497 * Check the 'p' is valid and return the aggregator kprobe
1498 * at the same address.
1500 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1502 struct kprobe *ap, *list_p;
1504 lockdep_assert_held(&kprobe_mutex);
1506 ap = get_kprobe(p->addr);
1511 list_for_each_entry(list_p, &ap->list, list)
1513 /* kprobe p is a valid probe */
1522 * Warn and return error if the kprobe is being re-registered since
1523 * there must be a software bug.
1525 static inline int warn_kprobe_rereg(struct kprobe *p)
1529 mutex_lock(&kprobe_mutex);
1530 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1532 mutex_unlock(&kprobe_mutex);
1537 static int check_ftrace_location(struct kprobe *p)
1539 unsigned long addr = (unsigned long)p->addr;
1541 if (ftrace_location(addr) == addr) {
1542 #ifdef CONFIG_KPROBES_ON_FTRACE
1543 p->flags |= KPROBE_FLAG_FTRACE;
1544 #else /* !CONFIG_KPROBES_ON_FTRACE */
1551 static int check_kprobe_address_safe(struct kprobe *p,
1552 struct module **probed_mod)
1556 ret = check_ftrace_location(p);
1562 /* Ensure it is not in reserved area nor out of text */
1563 if (!(core_kernel_text((unsigned long) p->addr) ||
1564 is_module_text_address((unsigned long) p->addr)) ||
1565 in_gate_area_no_mm((unsigned long) p->addr) ||
1566 within_kprobe_blacklist((unsigned long) p->addr) ||
1567 jump_label_text_reserved(p->addr, p->addr) ||
1568 static_call_text_reserved(p->addr, p->addr) ||
1569 find_bug((unsigned long)p->addr)) {
1574 /* Check if 'p' is probing a module. */
1575 *probed_mod = __module_text_address((unsigned long) p->addr);
1578 * We must hold a refcount of the probed module while updating
1579 * its code to prohibit unexpected unloading.
1581 if (unlikely(!try_module_get(*probed_mod))) {
1587 * If the module freed '.init.text', we couldn't insert
1590 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591 (*probed_mod)->state != MODULE_STATE_COMING) {
1592 module_put(*probed_mod);
1599 jump_label_unlock();
1604 int register_kprobe(struct kprobe *p)
1607 struct kprobe *old_p;
1608 struct module *probed_mod;
1609 kprobe_opcode_t *addr;
1612 /* Adjust probe address from symbol */
1613 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1615 return PTR_ERR(addr);
1618 ret = warn_kprobe_rereg(p);
1622 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1623 p->flags &= KPROBE_FLAG_DISABLED;
1625 INIT_LIST_HEAD(&p->list);
1627 ret = check_kprobe_address_safe(p, &probed_mod);
1631 mutex_lock(&kprobe_mutex);
1634 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1636 old_p = get_kprobe(p->addr);
1638 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1639 ret = register_aggr_kprobe(old_p, p);
1644 /* Prevent text modification */
1645 mutex_lock(&text_mutex);
1646 ret = prepare_kprobe(p);
1647 mutex_unlock(&text_mutex);
1652 INIT_HLIST_NODE(&p->hlist);
1653 hlist_add_head_rcu(&p->hlist,
1654 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1656 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1657 ret = arm_kprobe(p);
1659 hlist_del_rcu(&p->hlist);
1665 /* Try to optimize kprobe */
1666 try_to_optimize_kprobe(p);
1668 mutex_unlock(&kprobe_mutex);
1671 module_put(probed_mod);
1675 EXPORT_SYMBOL_GPL(register_kprobe);
1677 /* Check if all probes on the 'ap' are disabled. */
1678 static bool aggr_kprobe_disabled(struct kprobe *ap)
1682 lockdep_assert_held(&kprobe_mutex);
1684 list_for_each_entry(kp, &ap->list, list)
1685 if (!kprobe_disabled(kp))
1687 * Since there is an active probe on the list,
1688 * we can't disable this 'ap'.
1695 static struct kprobe *__disable_kprobe(struct kprobe *p)
1697 struct kprobe *orig_p;
1700 lockdep_assert_held(&kprobe_mutex);
1702 /* Get an original kprobe for return */
1703 orig_p = __get_valid_kprobe(p);
1704 if (unlikely(orig_p == NULL))
1705 return ERR_PTR(-EINVAL);
1707 if (!kprobe_disabled(p)) {
1708 /* Disable probe if it is a child probe */
1710 p->flags |= KPROBE_FLAG_DISABLED;
1712 /* Try to disarm and disable this/parent probe */
1713 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1715 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1716 * is false, 'orig_p' might not have been armed yet.
1717 * Note arm_all_kprobes() __tries__ to arm all kprobes
1718 * on the best effort basis.
1720 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1721 ret = disarm_kprobe(orig_p, true);
1723 p->flags &= ~KPROBE_FLAG_DISABLED;
1724 return ERR_PTR(ret);
1727 orig_p->flags |= KPROBE_FLAG_DISABLED;
1735 * Unregister a kprobe without a scheduler synchronization.
1737 static int __unregister_kprobe_top(struct kprobe *p)
1739 struct kprobe *ap, *list_p;
1741 /* Disable kprobe. This will disarm it if needed. */
1742 ap = __disable_kprobe(p);
1748 * This probe is an independent(and non-optimized) kprobe
1749 * (not an aggrprobe). Remove from the hash list.
1753 /* Following process expects this probe is an aggrprobe */
1754 WARN_ON(!kprobe_aggrprobe(ap));
1756 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1758 * !disarmed could be happen if the probe is under delayed
1763 /* If disabling probe has special handlers, update aggrprobe */
1764 if (p->post_handler && !kprobe_gone(p)) {
1765 list_for_each_entry(list_p, &ap->list, list) {
1766 if ((list_p != p) && (list_p->post_handler))
1769 ap->post_handler = NULL;
1773 * Remove from the aggrprobe: this path will do nothing in
1774 * __unregister_kprobe_bottom().
1776 list_del_rcu(&p->list);
1777 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1779 * Try to optimize this probe again, because post
1780 * handler may have been changed.
1782 optimize_kprobe(ap);
1787 hlist_del_rcu(&ap->hlist);
1791 static void __unregister_kprobe_bottom(struct kprobe *p)
1795 if (list_empty(&p->list))
1796 /* This is an independent kprobe */
1797 arch_remove_kprobe(p);
1798 else if (list_is_singular(&p->list)) {
1799 /* This is the last child of an aggrprobe */
1800 ap = list_entry(p->list.next, struct kprobe, list);
1802 free_aggr_kprobe(ap);
1804 /* Otherwise, do nothing. */
1807 int register_kprobes(struct kprobe **kps, int num)
1813 for (i = 0; i < num; i++) {
1814 ret = register_kprobe(kps[i]);
1817 unregister_kprobes(kps, i);
1823 EXPORT_SYMBOL_GPL(register_kprobes);
1825 void unregister_kprobe(struct kprobe *p)
1827 unregister_kprobes(&p, 1);
1829 EXPORT_SYMBOL_GPL(unregister_kprobe);
1831 void unregister_kprobes(struct kprobe **kps, int num)
1837 mutex_lock(&kprobe_mutex);
1838 for (i = 0; i < num; i++)
1839 if (__unregister_kprobe_top(kps[i]) < 0)
1840 kps[i]->addr = NULL;
1841 mutex_unlock(&kprobe_mutex);
1844 for (i = 0; i < num; i++)
1846 __unregister_kprobe_bottom(kps[i]);
1848 EXPORT_SYMBOL_GPL(unregister_kprobes);
1850 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1851 unsigned long val, void *data)
1855 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1857 static struct notifier_block kprobe_exceptions_nb = {
1858 .notifier_call = kprobe_exceptions_notify,
1859 .priority = 0x7fffffff /* we need to be notified first */
1862 #ifdef CONFIG_KRETPROBES
1864 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1865 static void free_rp_inst_rcu(struct rcu_head *head)
1867 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1869 if (refcount_dec_and_test(&ri->rph->ref))
1873 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1875 static void recycle_rp_inst(struct kretprobe_instance *ri)
1877 struct kretprobe *rp = get_kretprobe(ri);
1880 freelist_add(&ri->freelist, &rp->freelist);
1882 call_rcu(&ri->rcu, free_rp_inst_rcu);
1884 NOKPROBE_SYMBOL(recycle_rp_inst);
1887 * This function is called from delayed_put_task_struct() when a task is
1888 * dead and cleaned up to recycle any kretprobe instances associated with
1889 * this task. These left over instances represent probed functions that
1890 * have been called but will never return.
1892 void kprobe_flush_task(struct task_struct *tk)
1894 struct kretprobe_instance *ri;
1895 struct llist_node *node;
1897 /* Early boot, not yet initialized. */
1898 if (unlikely(!kprobes_initialized))
1901 kprobe_busy_begin();
1903 node = __llist_del_all(&tk->kretprobe_instances);
1905 ri = container_of(node, struct kretprobe_instance, llist);
1908 recycle_rp_inst(ri);
1913 NOKPROBE_SYMBOL(kprobe_flush_task);
1915 static inline void free_rp_inst(struct kretprobe *rp)
1917 struct kretprobe_instance *ri;
1918 struct freelist_node *node;
1921 node = rp->freelist.head;
1923 ri = container_of(node, struct kretprobe_instance, freelist);
1930 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1936 /* This assumes the 'tsk' is the current task or the is not running. */
1937 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1938 struct llist_node **cur)
1940 struct kretprobe_instance *ri = NULL;
1941 struct llist_node *node = *cur;
1944 node = tsk->kretprobe_instances.first;
1949 ri = container_of(node, struct kretprobe_instance, llist);
1950 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1952 return ri->ret_addr;
1958 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1961 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1963 * @fp: A frame pointer
1964 * @cur: a storage of the loop cursor llist_node pointer for next call
1966 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1967 * long type. If it finds the return address, this returns that address value,
1968 * or this returns 0.
1969 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1970 * to get the currect return address - which is compared with the
1971 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1972 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1973 * first call, but '@cur' itself must NOT NULL.
1975 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1976 struct llist_node **cur)
1978 struct kretprobe_instance *ri = NULL;
1979 kprobe_opcode_t *ret;
1981 if (WARN_ON_ONCE(!cur))
1985 ret = __kretprobe_find_ret_addr(tsk, cur);
1988 ri = container_of(*cur, struct kretprobe_instance, llist);
1989 } while (ri->fp != fp);
1991 return (unsigned long)ret;
1993 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1995 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1996 kprobe_opcode_t *correct_ret_addr)
1999 * Do nothing by default. Please fill this to update the fake return
2000 * address on the stack with the correct one on each arch if possible.
2004 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2005 void *frame_pointer)
2007 kprobe_opcode_t *correct_ret_addr = NULL;
2008 struct kretprobe_instance *ri = NULL;
2009 struct llist_node *first, *node = NULL;
2010 struct kretprobe *rp;
2012 /* Find correct address and all nodes for this frame. */
2013 correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2014 if (!correct_ret_addr) {
2015 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2020 * Set the return address as the instruction pointer, because if the
2021 * user handler calls stack_trace_save_regs() with this 'regs',
2022 * the stack trace will start from the instruction pointer.
2024 instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2026 /* Run the user handler of the nodes. */
2027 first = current->kretprobe_instances.first;
2029 ri = container_of(first, struct kretprobe_instance, llist);
2031 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2034 rp = get_kretprobe(ri);
2035 if (rp && rp->handler) {
2036 struct kprobe *prev = kprobe_running();
2038 __this_cpu_write(current_kprobe, &rp->kp);
2039 ri->ret_addr = correct_ret_addr;
2040 rp->handler(ri, regs);
2041 __this_cpu_write(current_kprobe, prev);
2046 first = first->next;
2049 arch_kretprobe_fixup_return(regs, correct_ret_addr);
2051 /* Unlink all nodes for this frame. */
2052 first = current->kretprobe_instances.first;
2053 current->kretprobe_instances.first = node->next;
2056 /* Recycle free instances. */
2058 ri = container_of(first, struct kretprobe_instance, llist);
2059 first = first->next;
2061 recycle_rp_inst(ri);
2064 return (unsigned long)correct_ret_addr;
2066 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2069 * This kprobe pre_handler is registered with every kretprobe. When probe
2070 * hits it will set up the return probe.
2072 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2074 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2075 struct kretprobe_instance *ri;
2076 struct freelist_node *fn;
2078 fn = freelist_try_get(&rp->freelist);
2084 ri = container_of(fn, struct kretprobe_instance, freelist);
2086 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2087 freelist_add(&ri->freelist, &rp->freelist);
2091 arch_prepare_kretprobe(ri, regs);
2093 __llist_add(&ri->llist, ¤t->kretprobe_instances);
2097 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2098 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2100 * This kprobe pre_handler is registered with every kretprobe. When probe
2101 * hits it will set up the return probe.
2103 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2105 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2106 struct kretprobe_instance *ri;
2107 struct rethook_node *rhn;
2109 rhn = rethook_try_get(rp->rh);
2115 ri = container_of(rhn, struct kretprobe_instance, node);
2117 if (rp->entry_handler && rp->entry_handler(ri, regs))
2118 rethook_recycle(rhn);
2120 rethook_hook(rhn, regs, kprobe_ftrace(p));
2124 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2126 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2127 struct pt_regs *regs)
2129 struct kretprobe *rp = (struct kretprobe *)data;
2130 struct kretprobe_instance *ri;
2131 struct kprobe_ctlblk *kcb;
2133 /* The data must NOT be null. This means rethook data structure is broken. */
2134 if (WARN_ON_ONCE(!data) || !rp->handler)
2137 __this_cpu_write(current_kprobe, &rp->kp);
2138 kcb = get_kprobe_ctlblk();
2139 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2141 ri = container_of(rh, struct kretprobe_instance, node);
2142 rp->handler(ri, regs);
2144 __this_cpu_write(current_kprobe, NULL);
2146 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2148 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2151 * kprobe_on_func_entry() -- check whether given address is function entry
2152 * @addr: Target address
2153 * @sym: Target symbol name
2154 * @offset: The offset from the symbol or the address
2156 * This checks whether the given @addr+@offset or @sym+@offset is on the
2157 * function entry address or not.
2158 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2159 * And also it returns -ENOENT if it fails the symbol or address lookup.
2160 * Caller must pass @addr or @sym (either one must be NULL), or this
2163 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2166 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2168 if (IS_ERR(kp_addr))
2169 return PTR_ERR(kp_addr);
2177 int register_kretprobe(struct kretprobe *rp)
2180 struct kretprobe_instance *inst;
2184 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2188 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2189 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2192 if (kretprobe_blacklist_size) {
2193 addr = kprobe_addr(&rp->kp);
2195 return PTR_ERR(addr);
2197 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2198 if (kretprobe_blacklist[i].addr == addr)
2203 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2206 rp->kp.pre_handler = pre_handler_kretprobe;
2207 rp->kp.post_handler = NULL;
2209 /* Pre-allocate memory for max kretprobe instances */
2210 if (rp->maxactive <= 0) {
2211 #ifdef CONFIG_PREEMPTION
2212 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2214 rp->maxactive = num_possible_cpus();
2217 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2218 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2222 for (i = 0; i < rp->maxactive; i++) {
2223 inst = kzalloc(sizeof(struct kretprobe_instance) +
2224 rp->data_size, GFP_KERNEL);
2226 rethook_free(rp->rh);
2230 rethook_add_node(rp->rh, &inst->node);
2233 /* Establish function entry probe point */
2234 ret = register_kprobe(&rp->kp);
2236 rethook_free(rp->rh);
2239 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */
2240 rp->freelist.head = NULL;
2241 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2246 for (i = 0; i < rp->maxactive; i++) {
2247 inst = kzalloc(sizeof(struct kretprobe_instance) +
2248 rp->data_size, GFP_KERNEL);
2250 refcount_set(&rp->rph->ref, i);
2254 inst->rph = rp->rph;
2255 freelist_add(&inst->freelist, &rp->freelist);
2257 refcount_set(&rp->rph->ref, i);
2260 /* Establish function entry probe point */
2261 ret = register_kprobe(&rp->kp);
2267 EXPORT_SYMBOL_GPL(register_kretprobe);
2269 int register_kretprobes(struct kretprobe **rps, int num)
2275 for (i = 0; i < num; i++) {
2276 ret = register_kretprobe(rps[i]);
2279 unregister_kretprobes(rps, i);
2285 EXPORT_SYMBOL_GPL(register_kretprobes);
2287 void unregister_kretprobe(struct kretprobe *rp)
2289 unregister_kretprobes(&rp, 1);
2291 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2293 void unregister_kretprobes(struct kretprobe **rps, int num)
2299 mutex_lock(&kprobe_mutex);
2300 for (i = 0; i < num; i++) {
2301 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2302 rps[i]->kp.addr = NULL;
2303 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2304 rethook_free(rps[i]->rh);
2306 rps[i]->rph->rp = NULL;
2309 mutex_unlock(&kprobe_mutex);
2312 for (i = 0; i < num; i++) {
2313 if (rps[i]->kp.addr) {
2314 __unregister_kprobe_bottom(&rps[i]->kp);
2315 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2316 free_rp_inst(rps[i]);
2321 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2323 #else /* CONFIG_KRETPROBES */
2324 int register_kretprobe(struct kretprobe *rp)
2328 EXPORT_SYMBOL_GPL(register_kretprobe);
2330 int register_kretprobes(struct kretprobe **rps, int num)
2334 EXPORT_SYMBOL_GPL(register_kretprobes);
2336 void unregister_kretprobe(struct kretprobe *rp)
2339 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2341 void unregister_kretprobes(struct kretprobe **rps, int num)
2344 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2346 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2350 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2352 #endif /* CONFIG_KRETPROBES */
2354 /* Set the kprobe gone and remove its instruction buffer. */
2355 static void kill_kprobe(struct kprobe *p)
2359 lockdep_assert_held(&kprobe_mutex);
2361 p->flags |= KPROBE_FLAG_GONE;
2362 if (kprobe_aggrprobe(p)) {
2364 * If this is an aggr_kprobe, we have to list all the
2365 * chained probes and mark them GONE.
2367 list_for_each_entry(kp, &p->list, list)
2368 kp->flags |= KPROBE_FLAG_GONE;
2369 p->post_handler = NULL;
2370 kill_optimized_kprobe(p);
2373 * Here, we can remove insn_slot safely, because no thread calls
2374 * the original probed function (which will be freed soon) any more.
2376 arch_remove_kprobe(p);
2379 * The module is going away. We should disarm the kprobe which
2380 * is using ftrace, because ftrace framework is still available at
2381 * 'MODULE_STATE_GOING' notification.
2383 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2384 disarm_kprobe_ftrace(p);
2387 /* Disable one kprobe */
2388 int disable_kprobe(struct kprobe *kp)
2393 mutex_lock(&kprobe_mutex);
2395 /* Disable this kprobe */
2396 p = __disable_kprobe(kp);
2400 mutex_unlock(&kprobe_mutex);
2403 EXPORT_SYMBOL_GPL(disable_kprobe);
2405 /* Enable one kprobe */
2406 int enable_kprobe(struct kprobe *kp)
2411 mutex_lock(&kprobe_mutex);
2413 /* Check whether specified probe is valid. */
2414 p = __get_valid_kprobe(kp);
2415 if (unlikely(p == NULL)) {
2420 if (kprobe_gone(kp)) {
2421 /* This kprobe has gone, we couldn't enable it. */
2427 kp->flags &= ~KPROBE_FLAG_DISABLED;
2429 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2430 p->flags &= ~KPROBE_FLAG_DISABLED;
2431 ret = arm_kprobe(p);
2433 p->flags |= KPROBE_FLAG_DISABLED;
2435 kp->flags |= KPROBE_FLAG_DISABLED;
2439 mutex_unlock(&kprobe_mutex);
2442 EXPORT_SYMBOL_GPL(enable_kprobe);
2444 /* Caller must NOT call this in usual path. This is only for critical case */
2445 void dump_kprobe(struct kprobe *kp)
2447 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2448 kp->symbol_name, kp->offset, kp->addr);
2450 NOKPROBE_SYMBOL(dump_kprobe);
2452 int kprobe_add_ksym_blacklist(unsigned long entry)
2454 struct kprobe_blacklist_entry *ent;
2455 unsigned long offset = 0, size = 0;
2457 if (!kernel_text_address(entry) ||
2458 !kallsyms_lookup_size_offset(entry, &size, &offset))
2461 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2464 ent->start_addr = entry;
2465 ent->end_addr = entry + size;
2466 INIT_LIST_HEAD(&ent->list);
2467 list_add_tail(&ent->list, &kprobe_blacklist);
2472 /* Add all symbols in given area into kprobe blacklist */
2473 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2475 unsigned long entry;
2478 for (entry = start; entry < end; entry += ret) {
2479 ret = kprobe_add_ksym_blacklist(entry);
2482 if (ret == 0) /* In case of alias symbol */
2488 /* Remove all symbols in given area from kprobe blacklist */
2489 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2491 struct kprobe_blacklist_entry *ent, *n;
2493 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2494 if (ent->start_addr < start || ent->start_addr >= end)
2496 list_del(&ent->list);
2501 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2503 kprobe_remove_area_blacklist(entry, entry + 1);
2506 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2507 char *type, char *sym)
2512 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2515 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2516 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2518 #ifdef CONFIG_OPTPROBES
2519 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2523 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2528 int __init __weak arch_populate_kprobe_blacklist(void)
2534 * Lookup and populate the kprobe_blacklist.
2536 * Unlike the kretprobe blacklist, we'll need to determine
2537 * the range of addresses that belong to the said functions,
2538 * since a kprobe need not necessarily be at the beginning
2541 static int __init populate_kprobe_blacklist(unsigned long *start,
2544 unsigned long entry;
2545 unsigned long *iter;
2548 for (iter = start; iter < end; iter++) {
2549 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2550 ret = kprobe_add_ksym_blacklist(entry);
2557 /* Symbols in '__kprobes_text' are blacklisted */
2558 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2559 (unsigned long)__kprobes_text_end);
2563 /* Symbols in 'noinstr' section are blacklisted */
2564 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2565 (unsigned long)__noinstr_text_end);
2567 return ret ? : arch_populate_kprobe_blacklist();
2570 static void add_module_kprobe_blacklist(struct module *mod)
2572 unsigned long start, end;
2575 if (mod->kprobe_blacklist) {
2576 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2577 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2580 start = (unsigned long)mod->kprobes_text_start;
2582 end = start + mod->kprobes_text_size;
2583 kprobe_add_area_blacklist(start, end);
2586 start = (unsigned long)mod->noinstr_text_start;
2588 end = start + mod->noinstr_text_size;
2589 kprobe_add_area_blacklist(start, end);
2593 static void remove_module_kprobe_blacklist(struct module *mod)
2595 unsigned long start, end;
2598 if (mod->kprobe_blacklist) {
2599 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2600 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2603 start = (unsigned long)mod->kprobes_text_start;
2605 end = start + mod->kprobes_text_size;
2606 kprobe_remove_area_blacklist(start, end);
2609 start = (unsigned long)mod->noinstr_text_start;
2611 end = start + mod->noinstr_text_size;
2612 kprobe_remove_area_blacklist(start, end);
2616 /* Module notifier call back, checking kprobes on the module */
2617 static int kprobes_module_callback(struct notifier_block *nb,
2618 unsigned long val, void *data)
2620 struct module *mod = data;
2621 struct hlist_head *head;
2624 int checkcore = (val == MODULE_STATE_GOING);
2626 if (val == MODULE_STATE_COMING) {
2627 mutex_lock(&kprobe_mutex);
2628 add_module_kprobe_blacklist(mod);
2629 mutex_unlock(&kprobe_mutex);
2631 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2635 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2636 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2637 * notified, only '.init.text' section would be freed. We need to
2638 * disable kprobes which have been inserted in the sections.
2640 mutex_lock(&kprobe_mutex);
2641 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2642 head = &kprobe_table[i];
2643 hlist_for_each_entry(p, head, hlist)
2644 if (within_module_init((unsigned long)p->addr, mod) ||
2646 within_module_core((unsigned long)p->addr, mod))) {
2648 * The vaddr this probe is installed will soon
2649 * be vfreed buy not synced to disk. Hence,
2650 * disarming the breakpoint isn't needed.
2652 * Note, this will also move any optimized probes
2653 * that are pending to be removed from their
2654 * corresponding lists to the 'freeing_list' and
2655 * will not be touched by the delayed
2656 * kprobe_optimizer() work handler.
2661 if (val == MODULE_STATE_GOING)
2662 remove_module_kprobe_blacklist(mod);
2663 mutex_unlock(&kprobe_mutex);
2667 static struct notifier_block kprobe_module_nb = {
2668 .notifier_call = kprobes_module_callback,
2672 void kprobe_free_init_mem(void)
2674 void *start = (void *)(&__init_begin);
2675 void *end = (void *)(&__init_end);
2676 struct hlist_head *head;
2680 mutex_lock(&kprobe_mutex);
2682 /* Kill all kprobes on initmem because the target code has been freed. */
2683 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2684 head = &kprobe_table[i];
2685 hlist_for_each_entry(p, head, hlist) {
2686 if (start <= (void *)p->addr && (void *)p->addr < end)
2691 mutex_unlock(&kprobe_mutex);
2694 static int __init init_kprobes(void)
2698 /* FIXME allocate the probe table, currently defined statically */
2699 /* initialize all list heads */
2700 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2701 INIT_HLIST_HEAD(&kprobe_table[i]);
2703 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2704 __stop_kprobe_blacklist);
2706 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2708 if (kretprobe_blacklist_size) {
2709 /* lookup the function address from its name */
2710 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2711 kretprobe_blacklist[i].addr =
2712 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2713 if (!kretprobe_blacklist[i].addr)
2714 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2715 kretprobe_blacklist[i].name);
2719 /* By default, kprobes are armed */
2720 kprobes_all_disarmed = false;
2722 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2723 /* Init 'kprobe_optinsn_slots' for allocation */
2724 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2727 err = arch_init_kprobes();
2729 err = register_die_notifier(&kprobe_exceptions_nb);
2731 err = register_module_notifier(&kprobe_module_nb);
2733 kprobes_initialized = (err == 0);
2734 kprobe_sysctls_init();
2737 early_initcall(init_kprobes);
2739 #if defined(CONFIG_OPTPROBES)
2740 static int __init init_optprobes(void)
2743 * Enable kprobe optimization - this kicks the optimizer which
2744 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2745 * not spawned in early initcall. So delay the optimization.
2747 optimize_all_kprobes();
2751 subsys_initcall(init_optprobes);
2754 #ifdef CONFIG_DEBUG_FS
2755 static void report_probe(struct seq_file *pi, struct kprobe *p,
2756 const char *sym, int offset, char *modname, struct kprobe *pp)
2759 void *addr = p->addr;
2761 if (p->pre_handler == pre_handler_kretprobe)
2766 if (!kallsyms_show_value(pi->file->f_cred))
2770 seq_printf(pi, "%px %s %s+0x%x %s ",
2771 addr, kprobe_type, sym, offset,
2772 (modname ? modname : " "));
2773 else /* try to use %pS */
2774 seq_printf(pi, "%px %s %pS ",
2775 addr, kprobe_type, p->addr);
2779 seq_printf(pi, "%s%s%s%s\n",
2780 (kprobe_gone(p) ? "[GONE]" : ""),
2781 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2782 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2783 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2786 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2788 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2791 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2794 if (*pos >= KPROBE_TABLE_SIZE)
2799 static void kprobe_seq_stop(struct seq_file *f, void *v)
2804 static int show_kprobe_addr(struct seq_file *pi, void *v)
2806 struct hlist_head *head;
2807 struct kprobe *p, *kp;
2808 const char *sym = NULL;
2809 unsigned int i = *(loff_t *) v;
2810 unsigned long offset = 0;
2811 char *modname, namebuf[KSYM_NAME_LEN];
2813 head = &kprobe_table[i];
2815 hlist_for_each_entry_rcu(p, head, hlist) {
2816 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2817 &offset, &modname, namebuf);
2818 if (kprobe_aggrprobe(p)) {
2819 list_for_each_entry_rcu(kp, &p->list, list)
2820 report_probe(pi, kp, sym, offset, modname, p);
2822 report_probe(pi, p, sym, offset, modname, NULL);
2828 static const struct seq_operations kprobes_sops = {
2829 .start = kprobe_seq_start,
2830 .next = kprobe_seq_next,
2831 .stop = kprobe_seq_stop,
2832 .show = show_kprobe_addr
2835 DEFINE_SEQ_ATTRIBUTE(kprobes);
2837 /* kprobes/blacklist -- shows which functions can not be probed */
2838 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2840 mutex_lock(&kprobe_mutex);
2841 return seq_list_start(&kprobe_blacklist, *pos);
2844 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2846 return seq_list_next(v, &kprobe_blacklist, pos);
2849 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2851 struct kprobe_blacklist_entry *ent =
2852 list_entry(v, struct kprobe_blacklist_entry, list);
2855 * If '/proc/kallsyms' is not showing kernel address, we won't
2856 * show them here either.
2858 if (!kallsyms_show_value(m->file->f_cred))
2859 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2860 (void *)ent->start_addr);
2862 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2863 (void *)ent->end_addr, (void *)ent->start_addr);
2867 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2869 mutex_unlock(&kprobe_mutex);
2872 static const struct seq_operations kprobe_blacklist_sops = {
2873 .start = kprobe_blacklist_seq_start,
2874 .next = kprobe_blacklist_seq_next,
2875 .stop = kprobe_blacklist_seq_stop,
2876 .show = kprobe_blacklist_seq_show,
2878 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2880 static int arm_all_kprobes(void)
2882 struct hlist_head *head;
2884 unsigned int i, total = 0, errors = 0;
2887 mutex_lock(&kprobe_mutex);
2889 /* If kprobes are armed, just return */
2890 if (!kprobes_all_disarmed)
2891 goto already_enabled;
2894 * optimize_kprobe() called by arm_kprobe() checks
2895 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2898 kprobes_all_disarmed = false;
2899 /* Arming kprobes doesn't optimize kprobe itself */
2900 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2901 head = &kprobe_table[i];
2902 /* Arm all kprobes on a best-effort basis */
2903 hlist_for_each_entry(p, head, hlist) {
2904 if (!kprobe_disabled(p)) {
2905 err = arm_kprobe(p);
2916 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2919 pr_info("Kprobes globally enabled\n");
2922 mutex_unlock(&kprobe_mutex);
2926 static int disarm_all_kprobes(void)
2928 struct hlist_head *head;
2930 unsigned int i, total = 0, errors = 0;
2933 mutex_lock(&kprobe_mutex);
2935 /* If kprobes are already disarmed, just return */
2936 if (kprobes_all_disarmed) {
2937 mutex_unlock(&kprobe_mutex);
2941 kprobes_all_disarmed = true;
2943 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2944 head = &kprobe_table[i];
2945 /* Disarm all kprobes on a best-effort basis */
2946 hlist_for_each_entry(p, head, hlist) {
2947 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2948 err = disarm_kprobe(p, false);
2959 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2962 pr_info("Kprobes globally disabled\n");
2964 mutex_unlock(&kprobe_mutex);
2966 /* Wait for disarming all kprobes by optimizer */
2967 wait_for_kprobe_optimizer();
2973 * XXX: The debugfs bool file interface doesn't allow for callbacks
2974 * when the bool state is switched. We can reuse that facility when
2977 static ssize_t read_enabled_file_bool(struct file *file,
2978 char __user *user_buf, size_t count, loff_t *ppos)
2982 if (!kprobes_all_disarmed)
2988 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2991 static ssize_t write_enabled_file_bool(struct file *file,
2992 const char __user *user_buf, size_t count, loff_t *ppos)
2997 ret = kstrtobool_from_user(user_buf, count, &enable);
3001 ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3008 static const struct file_operations fops_kp = {
3009 .read = read_enabled_file_bool,
3010 .write = write_enabled_file_bool,
3011 .llseek = default_llseek,
3014 static int __init debugfs_kprobe_init(void)
3018 dir = debugfs_create_dir("kprobes", NULL);
3020 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3022 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3024 debugfs_create_file("blacklist", 0400, dir, NULL,
3025 &kprobe_blacklist_fops);
3030 late_initcall(debugfs_kprobe_init);
3031 #endif /* CONFIG_DEBUG_FS */