aed90788db5c1b89de1f04a332c965b3cbb28ce9
[platform/kernel/linux-rpi.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         lockdep_assert_held(&text_mutex);
487         /*
488          * The optimization/unoptimization refers online_cpus via
489          * stop_machine() and cpu-hotplug modifies online_cpus.
490          * And same time, text_mutex will be held in cpu-hotplug and here.
491          * This combination can cause a deadlock (cpu-hotplug try to lock
492          * text_mutex but stop_machine can not be done because online_cpus
493          * has been changed)
494          * To avoid this deadlock, caller must have locked cpu hotplug
495          * for preventing cpu-hotplug outside of text_mutex locking.
496          */
497         lockdep_assert_cpus_held();
498
499         /* Optimization never be done when disarmed */
500         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501             list_empty(&optimizing_list))
502                 return;
503
504         arch_optimize_kprobes(&optimizing_list);
505 }
506
507 /*
508  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509  * if need) kprobes listed on unoptimizing_list.
510  */
511 static void do_unoptimize_kprobes(void)
512 {
513         struct optimized_kprobe *op, *tmp;
514
515         lockdep_assert_held(&text_mutex);
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524         /* Loop free_list for disarming */
525         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526                 /* Disarm probes if marked disabled */
527                 if (kprobe_disabled(&op->kp))
528                         arch_disarm_kprobe(&op->kp);
529                 if (kprobe_unused(&op->kp)) {
530                         /*
531                          * Remove unused probes from hash list. After waiting
532                          * for synchronization, these probes are reclaimed.
533                          * (reclaiming is done by do_free_cleaned_kprobes.)
534                          */
535                         hlist_del_rcu(&op->kp.hlist);
536                 } else
537                         list_del_init(&op->list);
538         }
539 }
540
541 /* Reclaim all kprobes on the free_list */
542 static void do_free_cleaned_kprobes(void)
543 {
544         struct optimized_kprobe *op, *tmp;
545
546         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
547                 list_del_init(&op->list);
548                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
549                         /*
550                          * This must not happen, but if there is a kprobe
551                          * still in use, keep it on kprobes hash list.
552                          */
553                         continue;
554                 }
555                 free_aggr_kprobe(&op->kp);
556         }
557 }
558
559 /* Start optimizer after OPTIMIZE_DELAY passed */
560 static void kick_kprobe_optimizer(void)
561 {
562         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
563 }
564
565 /* Kprobe jump optimizer */
566 static void kprobe_optimizer(struct work_struct *work)
567 {
568         mutex_lock(&kprobe_mutex);
569         cpus_read_lock();
570         mutex_lock(&text_mutex);
571         /* Lock modules while optimizing kprobes */
572         mutex_lock(&module_mutex);
573
574         /*
575          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
576          * kprobes before waiting for quiesence period.
577          */
578         do_unoptimize_kprobes();
579
580         /*
581          * Step 2: Wait for quiesence period to ensure all potentially
582          * preempted tasks to have normally scheduled. Because optprobe
583          * may modify multiple instructions, there is a chance that Nth
584          * instruction is preempted. In that case, such tasks can return
585          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
586          * Note that on non-preemptive kernel, this is transparently converted
587          * to synchronoze_sched() to wait for all interrupts to have completed.
588          */
589         synchronize_rcu_tasks();
590
591         /* Step 3: Optimize kprobes after quiesence period */
592         do_optimize_kprobes();
593
594         /* Step 4: Free cleaned kprobes after quiesence period */
595         do_free_cleaned_kprobes();
596
597         mutex_unlock(&module_mutex);
598         mutex_unlock(&text_mutex);
599         cpus_read_unlock();
600         mutex_unlock(&kprobe_mutex);
601
602         /* Step 5: Kick optimizer again if needed */
603         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
604                 kick_kprobe_optimizer();
605 }
606
607 /* Wait for completing optimization and unoptimization */
608 void wait_for_kprobe_optimizer(void)
609 {
610         mutex_lock(&kprobe_mutex);
611
612         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
613                 mutex_unlock(&kprobe_mutex);
614
615                 /* this will also make optimizing_work execute immmediately */
616                 flush_delayed_work(&optimizing_work);
617                 /* @optimizing_work might not have been queued yet, relax */
618                 cpu_relax();
619
620                 mutex_lock(&kprobe_mutex);
621         }
622
623         mutex_unlock(&kprobe_mutex);
624 }
625
626 /* Optimize kprobe if p is ready to be optimized */
627 static void optimize_kprobe(struct kprobe *p)
628 {
629         struct optimized_kprobe *op;
630
631         /* Check if the kprobe is disabled or not ready for optimization. */
632         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
633             (kprobe_disabled(p) || kprobes_all_disarmed))
634                 return;
635
636         /* kprobes with post_handler can not be optimized */
637         if (p->post_handler)
638                 return;
639
640         op = container_of(p, struct optimized_kprobe, kp);
641
642         /* Check there is no other kprobes at the optimized instructions */
643         if (arch_check_optimized_kprobe(op) < 0)
644                 return;
645
646         /* Check if it is already optimized. */
647         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
648                 return;
649         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
650
651         if (!list_empty(&op->list))
652                 /* This is under unoptimizing. Just dequeue the probe */
653                 list_del_init(&op->list);
654         else {
655                 list_add(&op->list, &optimizing_list);
656                 kick_kprobe_optimizer();
657         }
658 }
659
660 /* Short cut to direct unoptimizing */
661 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
662 {
663         lockdep_assert_cpus_held();
664         arch_unoptimize_kprobe(op);
665         if (kprobe_disabled(&op->kp))
666                 arch_disarm_kprobe(&op->kp);
667 }
668
669 /* Unoptimize a kprobe if p is optimized */
670 static void unoptimize_kprobe(struct kprobe *p, bool force)
671 {
672         struct optimized_kprobe *op;
673
674         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
675                 return; /* This is not an optprobe nor optimized */
676
677         op = container_of(p, struct optimized_kprobe, kp);
678         if (!kprobe_optimized(p)) {
679                 /* Unoptimized or unoptimizing case */
680                 if (force && !list_empty(&op->list)) {
681                         /*
682                          * Only if this is unoptimizing kprobe and forced,
683                          * forcibly unoptimize it. (No need to unoptimize
684                          * unoptimized kprobe again :)
685                          */
686                         list_del_init(&op->list);
687                         force_unoptimize_kprobe(op);
688                 }
689                 return;
690         }
691
692         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693         if (!list_empty(&op->list)) {
694                 /* Dequeue from the optimization queue */
695                 list_del_init(&op->list);
696                 return;
697         }
698         /* Optimized kprobe case */
699         if (force)
700                 /* Forcibly update the code: this is a special case */
701                 force_unoptimize_kprobe(op);
702         else {
703                 list_add(&op->list, &unoptimizing_list);
704                 kick_kprobe_optimizer();
705         }
706 }
707
708 /* Cancel unoptimizing for reusing */
709 static int reuse_unused_kprobe(struct kprobe *ap)
710 {
711         struct optimized_kprobe *op;
712
713         BUG_ON(!kprobe_unused(ap));
714         /*
715          * Unused kprobe MUST be on the way of delayed unoptimizing (means
716          * there is still a relative jump) and disabled.
717          */
718         op = container_of(ap, struct optimized_kprobe, kp);
719         WARN_ON_ONCE(list_empty(&op->list));
720         /* Enable the probe again */
721         ap->flags &= ~KPROBE_FLAG_DISABLED;
722         /* Optimize it again (remove from op->list) */
723         if (!kprobe_optready(ap))
724                 return -EINVAL;
725
726         optimize_kprobe(ap);
727         return 0;
728 }
729
730 /* Remove optimized instructions */
731 static void kill_optimized_kprobe(struct kprobe *p)
732 {
733         struct optimized_kprobe *op;
734
735         op = container_of(p, struct optimized_kprobe, kp);
736         if (!list_empty(&op->list))
737                 /* Dequeue from the (un)optimization queue */
738                 list_del_init(&op->list);
739         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
740
741         if (kprobe_unused(p)) {
742                 /* Enqueue if it is unused */
743                 list_add(&op->list, &freeing_list);
744                 /*
745                  * Remove unused probes from the hash list. After waiting
746                  * for synchronization, this probe is reclaimed.
747                  * (reclaiming is done by do_free_cleaned_kprobes().)
748                  */
749                 hlist_del_rcu(&op->kp.hlist);
750         }
751
752         /* Don't touch the code, because it is already freed. */
753         arch_remove_optimized_kprobe(op);
754 }
755
756 static inline
757 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
758 {
759         if (!kprobe_ftrace(p))
760                 arch_prepare_optimized_kprobe(op, p);
761 }
762
763 /* Try to prepare optimized instructions */
764 static void prepare_optimized_kprobe(struct kprobe *p)
765 {
766         struct optimized_kprobe *op;
767
768         op = container_of(p, struct optimized_kprobe, kp);
769         __prepare_optimized_kprobe(op, p);
770 }
771
772 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
773 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
774 {
775         struct optimized_kprobe *op;
776
777         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
778         if (!op)
779                 return NULL;
780
781         INIT_LIST_HEAD(&op->list);
782         op->kp.addr = p->addr;
783         __prepare_optimized_kprobe(op, p);
784
785         return &op->kp;
786 }
787
788 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
789
790 /*
791  * Prepare an optimized_kprobe and optimize it
792  * NOTE: p must be a normal registered kprobe
793  */
794 static void try_to_optimize_kprobe(struct kprobe *p)
795 {
796         struct kprobe *ap;
797         struct optimized_kprobe *op;
798
799         /* Impossible to optimize ftrace-based kprobe */
800         if (kprobe_ftrace(p))
801                 return;
802
803         /* For preparing optimization, jump_label_text_reserved() is called */
804         cpus_read_lock();
805         jump_label_lock();
806         mutex_lock(&text_mutex);
807
808         ap = alloc_aggr_kprobe(p);
809         if (!ap)
810                 goto out;
811
812         op = container_of(ap, struct optimized_kprobe, kp);
813         if (!arch_prepared_optinsn(&op->optinsn)) {
814                 /* If failed to setup optimizing, fallback to kprobe */
815                 arch_remove_optimized_kprobe(op);
816                 kfree(op);
817                 goto out;
818         }
819
820         init_aggr_kprobe(ap, p);
821         optimize_kprobe(ap);    /* This just kicks optimizer thread */
822
823 out:
824         mutex_unlock(&text_mutex);
825         jump_label_unlock();
826         cpus_read_unlock();
827 }
828
829 #ifdef CONFIG_SYSCTL
830 static void optimize_all_kprobes(void)
831 {
832         struct hlist_head *head;
833         struct kprobe *p;
834         unsigned int i;
835
836         mutex_lock(&kprobe_mutex);
837         /* If optimization is already allowed, just return */
838         if (kprobes_allow_optimization)
839                 goto out;
840
841         cpus_read_lock();
842         kprobes_allow_optimization = true;
843         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
844                 head = &kprobe_table[i];
845                 hlist_for_each_entry_rcu(p, head, hlist)
846                         if (!kprobe_disabled(p))
847                                 optimize_kprobe(p);
848         }
849         cpus_read_unlock();
850         printk(KERN_INFO "Kprobes globally optimized\n");
851 out:
852         mutex_unlock(&kprobe_mutex);
853 }
854
855 static void unoptimize_all_kprobes(void)
856 {
857         struct hlist_head *head;
858         struct kprobe *p;
859         unsigned int i;
860
861         mutex_lock(&kprobe_mutex);
862         /* If optimization is already prohibited, just return */
863         if (!kprobes_allow_optimization) {
864                 mutex_unlock(&kprobe_mutex);
865                 return;
866         }
867
868         cpus_read_lock();
869         kprobes_allow_optimization = false;
870         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
871                 head = &kprobe_table[i];
872                 hlist_for_each_entry_rcu(p, head, hlist) {
873                         if (!kprobe_disabled(p))
874                                 unoptimize_kprobe(p, false);
875                 }
876         }
877         cpus_read_unlock();
878         mutex_unlock(&kprobe_mutex);
879
880         /* Wait for unoptimizing completion */
881         wait_for_kprobe_optimizer();
882         printk(KERN_INFO "Kprobes globally unoptimized\n");
883 }
884
885 static DEFINE_MUTEX(kprobe_sysctl_mutex);
886 int sysctl_kprobes_optimization;
887 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
888                                       void __user *buffer, size_t *length,
889                                       loff_t *ppos)
890 {
891         int ret;
892
893         mutex_lock(&kprobe_sysctl_mutex);
894         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
895         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
896
897         if (sysctl_kprobes_optimization)
898                 optimize_all_kprobes();
899         else
900                 unoptimize_all_kprobes();
901         mutex_unlock(&kprobe_sysctl_mutex);
902
903         return ret;
904 }
905 #endif /* CONFIG_SYSCTL */
906
907 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
908 static void __arm_kprobe(struct kprobe *p)
909 {
910         struct kprobe *_p;
911
912         /* Check collision with other optimized kprobes */
913         _p = get_optimized_kprobe((unsigned long)p->addr);
914         if (unlikely(_p))
915                 /* Fallback to unoptimized kprobe */
916                 unoptimize_kprobe(_p, true);
917
918         arch_arm_kprobe(p);
919         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
920 }
921
922 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
923 static void __disarm_kprobe(struct kprobe *p, bool reopt)
924 {
925         struct kprobe *_p;
926
927         /* Try to unoptimize */
928         unoptimize_kprobe(p, kprobes_all_disarmed);
929
930         if (!kprobe_queued(p)) {
931                 arch_disarm_kprobe(p);
932                 /* If another kprobe was blocked, optimize it. */
933                 _p = get_optimized_kprobe((unsigned long)p->addr);
934                 if (unlikely(_p) && reopt)
935                         optimize_kprobe(_p);
936         }
937         /* TODO: reoptimize others after unoptimized this probe */
938 }
939
940 #else /* !CONFIG_OPTPROBES */
941
942 #define optimize_kprobe(p)                      do {} while (0)
943 #define unoptimize_kprobe(p, f)                 do {} while (0)
944 #define kill_optimized_kprobe(p)                do {} while (0)
945 #define prepare_optimized_kprobe(p)             do {} while (0)
946 #define try_to_optimize_kprobe(p)               do {} while (0)
947 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
948 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
949 #define kprobe_disarmed(p)                      kprobe_disabled(p)
950 #define wait_for_kprobe_optimizer()             do {} while (0)
951
952 static int reuse_unused_kprobe(struct kprobe *ap)
953 {
954         /*
955          * If the optimized kprobe is NOT supported, the aggr kprobe is
956          * released at the same time that the last aggregated kprobe is
957          * unregistered.
958          * Thus there should be no chance to reuse unused kprobe.
959          */
960         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
961         return -EINVAL;
962 }
963
964 static void free_aggr_kprobe(struct kprobe *p)
965 {
966         arch_remove_kprobe(p);
967         kfree(p);
968 }
969
970 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
971 {
972         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
973 }
974 #endif /* CONFIG_OPTPROBES */
975
976 #ifdef CONFIG_KPROBES_ON_FTRACE
977 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
978         .func = kprobe_ftrace_handler,
979         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
980 };
981 static int kprobe_ftrace_enabled;
982
983 /* Must ensure p->addr is really on ftrace */
984 static int prepare_kprobe(struct kprobe *p)
985 {
986         if (!kprobe_ftrace(p))
987                 return arch_prepare_kprobe(p);
988
989         return arch_prepare_kprobe_ftrace(p);
990 }
991
992 /* Caller must lock kprobe_mutex */
993 static int arm_kprobe_ftrace(struct kprobe *p)
994 {
995         int ret = 0;
996
997         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
998                                    (unsigned long)p->addr, 0, 0);
999         if (ret) {
1000                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1001                          p->addr, ret);
1002                 return ret;
1003         }
1004
1005         if (kprobe_ftrace_enabled == 0) {
1006                 ret = register_ftrace_function(&kprobe_ftrace_ops);
1007                 if (ret) {
1008                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1009                         goto err_ftrace;
1010                 }
1011         }
1012
1013         kprobe_ftrace_enabled++;
1014         return ret;
1015
1016 err_ftrace:
1017         /*
1018          * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1019          * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1020          * empty filter_hash which would undesirably trace all functions.
1021          */
1022         ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1023         return ret;
1024 }
1025
1026 /* Caller must lock kprobe_mutex */
1027 static int disarm_kprobe_ftrace(struct kprobe *p)
1028 {
1029         int ret = 0;
1030
1031         if (kprobe_ftrace_enabled == 1) {
1032                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1033                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1034                         return ret;
1035         }
1036
1037         kprobe_ftrace_enabled--;
1038
1039         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1040                            (unsigned long)p->addr, 1, 0);
1041         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1042                   p->addr, ret);
1043         return ret;
1044 }
1045 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1046 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1047 #define arm_kprobe_ftrace(p)    (-ENODEV)
1048 #define disarm_kprobe_ftrace(p) (-ENODEV)
1049 #endif
1050
1051 /* Arm a kprobe with text_mutex */
1052 static int arm_kprobe(struct kprobe *kp)
1053 {
1054         if (unlikely(kprobe_ftrace(kp)))
1055                 return arm_kprobe_ftrace(kp);
1056
1057         cpus_read_lock();
1058         mutex_lock(&text_mutex);
1059         __arm_kprobe(kp);
1060         mutex_unlock(&text_mutex);
1061         cpus_read_unlock();
1062
1063         return 0;
1064 }
1065
1066 /* Disarm a kprobe with text_mutex */
1067 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1068 {
1069         if (unlikely(kprobe_ftrace(kp)))
1070                 return disarm_kprobe_ftrace(kp);
1071
1072         cpus_read_lock();
1073         mutex_lock(&text_mutex);
1074         __disarm_kprobe(kp, reopt);
1075         mutex_unlock(&text_mutex);
1076         cpus_read_unlock();
1077
1078         return 0;
1079 }
1080
1081 /*
1082  * Aggregate handlers for multiple kprobes support - these handlers
1083  * take care of invoking the individual kprobe handlers on p->list
1084  */
1085 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1086 {
1087         struct kprobe *kp;
1088
1089         list_for_each_entry_rcu(kp, &p->list, list) {
1090                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1091                         set_kprobe_instance(kp);
1092                         if (kp->pre_handler(kp, regs))
1093                                 return 1;
1094                 }
1095                 reset_kprobe_instance();
1096         }
1097         return 0;
1098 }
1099 NOKPROBE_SYMBOL(aggr_pre_handler);
1100
1101 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1102                               unsigned long flags)
1103 {
1104         struct kprobe *kp;
1105
1106         list_for_each_entry_rcu(kp, &p->list, list) {
1107                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1108                         set_kprobe_instance(kp);
1109                         kp->post_handler(kp, regs, flags);
1110                         reset_kprobe_instance();
1111                 }
1112         }
1113 }
1114 NOKPROBE_SYMBOL(aggr_post_handler);
1115
1116 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1117                               int trapnr)
1118 {
1119         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1120
1121         /*
1122          * if we faulted "during" the execution of a user specified
1123          * probe handler, invoke just that probe's fault handler
1124          */
1125         if (cur && cur->fault_handler) {
1126                 if (cur->fault_handler(cur, regs, trapnr))
1127                         return 1;
1128         }
1129         return 0;
1130 }
1131 NOKPROBE_SYMBOL(aggr_fault_handler);
1132
1133 /* Walks the list and increments nmissed count for multiprobe case */
1134 void kprobes_inc_nmissed_count(struct kprobe *p)
1135 {
1136         struct kprobe *kp;
1137         if (!kprobe_aggrprobe(p)) {
1138                 p->nmissed++;
1139         } else {
1140                 list_for_each_entry_rcu(kp, &p->list, list)
1141                         kp->nmissed++;
1142         }
1143         return;
1144 }
1145 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1146
1147 void recycle_rp_inst(struct kretprobe_instance *ri,
1148                      struct hlist_head *head)
1149 {
1150         struct kretprobe *rp = ri->rp;
1151
1152         /* remove rp inst off the rprobe_inst_table */
1153         hlist_del(&ri->hlist);
1154         INIT_HLIST_NODE(&ri->hlist);
1155         if (likely(rp)) {
1156                 raw_spin_lock(&rp->lock);
1157                 hlist_add_head(&ri->hlist, &rp->free_instances);
1158                 raw_spin_unlock(&rp->lock);
1159         } else
1160                 /* Unregistering */
1161                 hlist_add_head(&ri->hlist, head);
1162 }
1163 NOKPROBE_SYMBOL(recycle_rp_inst);
1164
1165 void kretprobe_hash_lock(struct task_struct *tsk,
1166                          struct hlist_head **head, unsigned long *flags)
1167 __acquires(hlist_lock)
1168 {
1169         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1170         raw_spinlock_t *hlist_lock;
1171
1172         *head = &kretprobe_inst_table[hash];
1173         hlist_lock = kretprobe_table_lock_ptr(hash);
1174         raw_spin_lock_irqsave(hlist_lock, *flags);
1175 }
1176 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1177
1178 static void kretprobe_table_lock(unsigned long hash,
1179                                  unsigned long *flags)
1180 __acquires(hlist_lock)
1181 {
1182         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1183         raw_spin_lock_irqsave(hlist_lock, *flags);
1184 }
1185 NOKPROBE_SYMBOL(kretprobe_table_lock);
1186
1187 void kretprobe_hash_unlock(struct task_struct *tsk,
1188                            unsigned long *flags)
1189 __releases(hlist_lock)
1190 {
1191         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1192         raw_spinlock_t *hlist_lock;
1193
1194         hlist_lock = kretprobe_table_lock_ptr(hash);
1195         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1196 }
1197 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1198
1199 static void kretprobe_table_unlock(unsigned long hash,
1200                                    unsigned long *flags)
1201 __releases(hlist_lock)
1202 {
1203         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1205 }
1206 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1207
1208 /*
1209  * This function is called from finish_task_switch when task tk becomes dead,
1210  * so that we can recycle any function-return probe instances associated
1211  * with this task. These left over instances represent probed functions
1212  * that have been called but will never return.
1213  */
1214 void kprobe_flush_task(struct task_struct *tk)
1215 {
1216         struct kretprobe_instance *ri;
1217         struct hlist_head *head, empty_rp;
1218         struct hlist_node *tmp;
1219         unsigned long hash, flags = 0;
1220
1221         if (unlikely(!kprobes_initialized))
1222                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1223                 return;
1224
1225         INIT_HLIST_HEAD(&empty_rp);
1226         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1227         head = &kretprobe_inst_table[hash];
1228         kretprobe_table_lock(hash, &flags);
1229         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1230                 if (ri->task == tk)
1231                         recycle_rp_inst(ri, &empty_rp);
1232         }
1233         kretprobe_table_unlock(hash, &flags);
1234         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1235                 hlist_del(&ri->hlist);
1236                 kfree(ri);
1237         }
1238 }
1239 NOKPROBE_SYMBOL(kprobe_flush_task);
1240
1241 static inline void free_rp_inst(struct kretprobe *rp)
1242 {
1243         struct kretprobe_instance *ri;
1244         struct hlist_node *next;
1245
1246         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1247                 hlist_del(&ri->hlist);
1248                 kfree(ri);
1249         }
1250 }
1251
1252 static void cleanup_rp_inst(struct kretprobe *rp)
1253 {
1254         unsigned long flags, hash;
1255         struct kretprobe_instance *ri;
1256         struct hlist_node *next;
1257         struct hlist_head *head;
1258
1259         /* No race here */
1260         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1261                 kretprobe_table_lock(hash, &flags);
1262                 head = &kretprobe_inst_table[hash];
1263                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1264                         if (ri->rp == rp)
1265                                 ri->rp = NULL;
1266                 }
1267                 kretprobe_table_unlock(hash, &flags);
1268         }
1269         free_rp_inst(rp);
1270 }
1271 NOKPROBE_SYMBOL(cleanup_rp_inst);
1272
1273 /* Add the new probe to ap->list */
1274 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1275 {
1276         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1277
1278         if (p->post_handler)
1279                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1280
1281         list_add_rcu(&p->list, &ap->list);
1282         if (p->post_handler && !ap->post_handler)
1283                 ap->post_handler = aggr_post_handler;
1284
1285         return 0;
1286 }
1287
1288 /*
1289  * Fill in the required fields of the "manager kprobe". Replace the
1290  * earlier kprobe in the hlist with the manager kprobe
1291  */
1292 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1293 {
1294         /* Copy p's insn slot to ap */
1295         copy_kprobe(p, ap);
1296         flush_insn_slot(ap);
1297         ap->addr = p->addr;
1298         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1299         ap->pre_handler = aggr_pre_handler;
1300         ap->fault_handler = aggr_fault_handler;
1301         /* We don't care the kprobe which has gone. */
1302         if (p->post_handler && !kprobe_gone(p))
1303                 ap->post_handler = aggr_post_handler;
1304
1305         INIT_LIST_HEAD(&ap->list);
1306         INIT_HLIST_NODE(&ap->hlist);
1307
1308         list_add_rcu(&p->list, &ap->list);
1309         hlist_replace_rcu(&p->hlist, &ap->hlist);
1310 }
1311
1312 /*
1313  * This is the second or subsequent kprobe at the address - handle
1314  * the intricacies
1315  */
1316 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1317 {
1318         int ret = 0;
1319         struct kprobe *ap = orig_p;
1320
1321         cpus_read_lock();
1322
1323         /* For preparing optimization, jump_label_text_reserved() is called */
1324         jump_label_lock();
1325         mutex_lock(&text_mutex);
1326
1327         if (!kprobe_aggrprobe(orig_p)) {
1328                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1329                 ap = alloc_aggr_kprobe(orig_p);
1330                 if (!ap) {
1331                         ret = -ENOMEM;
1332                         goto out;
1333                 }
1334                 init_aggr_kprobe(ap, orig_p);
1335         } else if (kprobe_unused(ap)) {
1336                 /* This probe is going to die. Rescue it */
1337                 ret = reuse_unused_kprobe(ap);
1338                 if (ret)
1339                         goto out;
1340         }
1341
1342         if (kprobe_gone(ap)) {
1343                 /*
1344                  * Attempting to insert new probe at the same location that
1345                  * had a probe in the module vaddr area which already
1346                  * freed. So, the instruction slot has already been
1347                  * released. We need a new slot for the new probe.
1348                  */
1349                 ret = arch_prepare_kprobe(ap);
1350                 if (ret)
1351                         /*
1352                          * Even if fail to allocate new slot, don't need to
1353                          * free aggr_probe. It will be used next time, or
1354                          * freed by unregister_kprobe.
1355                          */
1356                         goto out;
1357
1358                 /* Prepare optimized instructions if possible. */
1359                 prepare_optimized_kprobe(ap);
1360
1361                 /*
1362                  * Clear gone flag to prevent allocating new slot again, and
1363                  * set disabled flag because it is not armed yet.
1364                  */
1365                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1366                             | KPROBE_FLAG_DISABLED;
1367         }
1368
1369         /* Copy ap's insn slot to p */
1370         copy_kprobe(ap, p);
1371         ret = add_new_kprobe(ap, p);
1372
1373 out:
1374         mutex_unlock(&text_mutex);
1375         jump_label_unlock();
1376         cpus_read_unlock();
1377
1378         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1379                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1380                 if (!kprobes_all_disarmed) {
1381                         /* Arm the breakpoint again. */
1382                         ret = arm_kprobe(ap);
1383                         if (ret) {
1384                                 ap->flags |= KPROBE_FLAG_DISABLED;
1385                                 list_del_rcu(&p->list);
1386                                 synchronize_sched();
1387                         }
1388                 }
1389         }
1390         return ret;
1391 }
1392
1393 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1394 {
1395         /* The __kprobes marked functions and entry code must not be probed */
1396         return addr >= (unsigned long)__kprobes_text_start &&
1397                addr < (unsigned long)__kprobes_text_end;
1398 }
1399
1400 bool within_kprobe_blacklist(unsigned long addr)
1401 {
1402         struct kprobe_blacklist_entry *ent;
1403
1404         if (arch_within_kprobe_blacklist(addr))
1405                 return true;
1406         /*
1407          * If there exists a kprobe_blacklist, verify and
1408          * fail any probe registration in the prohibited area
1409          */
1410         list_for_each_entry(ent, &kprobe_blacklist, list) {
1411                 if (addr >= ent->start_addr && addr < ent->end_addr)
1412                         return true;
1413         }
1414
1415         return false;
1416 }
1417
1418 /*
1419  * If we have a symbol_name argument, look it up and add the offset field
1420  * to it. This way, we can specify a relative address to a symbol.
1421  * This returns encoded errors if it fails to look up symbol or invalid
1422  * combination of parameters.
1423  */
1424 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1425                         const char *symbol_name, unsigned int offset)
1426 {
1427         if ((symbol_name && addr) || (!symbol_name && !addr))
1428                 goto invalid;
1429
1430         if (symbol_name) {
1431                 addr = kprobe_lookup_name(symbol_name, offset);
1432                 if (!addr)
1433                         return ERR_PTR(-ENOENT);
1434         }
1435
1436         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1437         if (addr)
1438                 return addr;
1439
1440 invalid:
1441         return ERR_PTR(-EINVAL);
1442 }
1443
1444 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1445 {
1446         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1447 }
1448
1449 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1450 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1451 {
1452         struct kprobe *ap, *list_p;
1453
1454         ap = get_kprobe(p->addr);
1455         if (unlikely(!ap))
1456                 return NULL;
1457
1458         if (p != ap) {
1459                 list_for_each_entry_rcu(list_p, &ap->list, list)
1460                         if (list_p == p)
1461                         /* kprobe p is a valid probe */
1462                                 goto valid;
1463                 return NULL;
1464         }
1465 valid:
1466         return ap;
1467 }
1468
1469 /* Return error if the kprobe is being re-registered */
1470 static inline int check_kprobe_rereg(struct kprobe *p)
1471 {
1472         int ret = 0;
1473
1474         mutex_lock(&kprobe_mutex);
1475         if (__get_valid_kprobe(p))
1476                 ret = -EINVAL;
1477         mutex_unlock(&kprobe_mutex);
1478
1479         return ret;
1480 }
1481
1482 int __weak arch_check_ftrace_location(struct kprobe *p)
1483 {
1484         unsigned long ftrace_addr;
1485
1486         ftrace_addr = ftrace_location((unsigned long)p->addr);
1487         if (ftrace_addr) {
1488 #ifdef CONFIG_KPROBES_ON_FTRACE
1489                 /* Given address is not on the instruction boundary */
1490                 if ((unsigned long)p->addr != ftrace_addr)
1491                         return -EILSEQ;
1492                 p->flags |= KPROBE_FLAG_FTRACE;
1493 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1494                 return -EINVAL;
1495 #endif
1496         }
1497         return 0;
1498 }
1499
1500 static int check_kprobe_address_safe(struct kprobe *p,
1501                                      struct module **probed_mod)
1502 {
1503         int ret;
1504
1505         ret = arch_check_ftrace_location(p);
1506         if (ret)
1507                 return ret;
1508         jump_label_lock();
1509         preempt_disable();
1510
1511         /* Ensure it is not in reserved area nor out of text */
1512         if (!kernel_text_address((unsigned long) p->addr) ||
1513             within_kprobe_blacklist((unsigned long) p->addr) ||
1514             jump_label_text_reserved(p->addr, p->addr) ||
1515             find_bug((unsigned long)p->addr)) {
1516                 ret = -EINVAL;
1517                 goto out;
1518         }
1519
1520         /* Check if are we probing a module */
1521         *probed_mod = __module_text_address((unsigned long) p->addr);
1522         if (*probed_mod) {
1523                 /*
1524                  * We must hold a refcount of the probed module while updating
1525                  * its code to prohibit unexpected unloading.
1526                  */
1527                 if (unlikely(!try_module_get(*probed_mod))) {
1528                         ret = -ENOENT;
1529                         goto out;
1530                 }
1531
1532                 /*
1533                  * If the module freed .init.text, we couldn't insert
1534                  * kprobes in there.
1535                  */
1536                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1537                     (*probed_mod)->state != MODULE_STATE_COMING) {
1538                         module_put(*probed_mod);
1539                         *probed_mod = NULL;
1540                         ret = -ENOENT;
1541                 }
1542         }
1543 out:
1544         preempt_enable();
1545         jump_label_unlock();
1546
1547         return ret;
1548 }
1549
1550 int register_kprobe(struct kprobe *p)
1551 {
1552         int ret;
1553         struct kprobe *old_p;
1554         struct module *probed_mod;
1555         kprobe_opcode_t *addr;
1556
1557         /* Adjust probe address from symbol */
1558         addr = kprobe_addr(p);
1559         if (IS_ERR(addr))
1560                 return PTR_ERR(addr);
1561         p->addr = addr;
1562
1563         ret = check_kprobe_rereg(p);
1564         if (ret)
1565                 return ret;
1566
1567         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1568         p->flags &= KPROBE_FLAG_DISABLED;
1569         p->nmissed = 0;
1570         INIT_LIST_HEAD(&p->list);
1571
1572         ret = check_kprobe_address_safe(p, &probed_mod);
1573         if (ret)
1574                 return ret;
1575
1576         mutex_lock(&kprobe_mutex);
1577
1578         old_p = get_kprobe(p->addr);
1579         if (old_p) {
1580                 /* Since this may unoptimize old_p, locking text_mutex. */
1581                 ret = register_aggr_kprobe(old_p, p);
1582                 goto out;
1583         }
1584
1585         cpus_read_lock();
1586         /* Prevent text modification */
1587         mutex_lock(&text_mutex);
1588         ret = prepare_kprobe(p);
1589         mutex_unlock(&text_mutex);
1590         cpus_read_unlock();
1591         if (ret)
1592                 goto out;
1593
1594         INIT_HLIST_NODE(&p->hlist);
1595         hlist_add_head_rcu(&p->hlist,
1596                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1597
1598         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1599                 ret = arm_kprobe(p);
1600                 if (ret) {
1601                         hlist_del_rcu(&p->hlist);
1602                         synchronize_sched();
1603                         goto out;
1604                 }
1605         }
1606
1607         /* Try to optimize kprobe */
1608         try_to_optimize_kprobe(p);
1609 out:
1610         mutex_unlock(&kprobe_mutex);
1611
1612         if (probed_mod)
1613                 module_put(probed_mod);
1614
1615         return ret;
1616 }
1617 EXPORT_SYMBOL_GPL(register_kprobe);
1618
1619 /* Check if all probes on the aggrprobe are disabled */
1620 static int aggr_kprobe_disabled(struct kprobe *ap)
1621 {
1622         struct kprobe *kp;
1623
1624         list_for_each_entry_rcu(kp, &ap->list, list)
1625                 if (!kprobe_disabled(kp))
1626                         /*
1627                          * There is an active probe on the list.
1628                          * We can't disable this ap.
1629                          */
1630                         return 0;
1631
1632         return 1;
1633 }
1634
1635 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1636 static struct kprobe *__disable_kprobe(struct kprobe *p)
1637 {
1638         struct kprobe *orig_p;
1639         int ret;
1640
1641         /* Get an original kprobe for return */
1642         orig_p = __get_valid_kprobe(p);
1643         if (unlikely(orig_p == NULL))
1644                 return ERR_PTR(-EINVAL);
1645
1646         if (!kprobe_disabled(p)) {
1647                 /* Disable probe if it is a child probe */
1648                 if (p != orig_p)
1649                         p->flags |= KPROBE_FLAG_DISABLED;
1650
1651                 /* Try to disarm and disable this/parent probe */
1652                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1653                         /*
1654                          * If kprobes_all_disarmed is set, orig_p
1655                          * should have already been disarmed, so
1656                          * skip unneed disarming process.
1657                          */
1658                         if (!kprobes_all_disarmed) {
1659                                 ret = disarm_kprobe(orig_p, true);
1660                                 if (ret) {
1661                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1662                                         return ERR_PTR(ret);
1663                                 }
1664                         }
1665                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1666                 }
1667         }
1668
1669         return orig_p;
1670 }
1671
1672 /*
1673  * Unregister a kprobe without a scheduler synchronization.
1674  */
1675 static int __unregister_kprobe_top(struct kprobe *p)
1676 {
1677         struct kprobe *ap, *list_p;
1678
1679         /* Disable kprobe. This will disarm it if needed. */
1680         ap = __disable_kprobe(p);
1681         if (IS_ERR(ap))
1682                 return PTR_ERR(ap);
1683
1684         if (ap == p)
1685                 /*
1686                  * This probe is an independent(and non-optimized) kprobe
1687                  * (not an aggrprobe). Remove from the hash list.
1688                  */
1689                 goto disarmed;
1690
1691         /* Following process expects this probe is an aggrprobe */
1692         WARN_ON(!kprobe_aggrprobe(ap));
1693
1694         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1695                 /*
1696                  * !disarmed could be happen if the probe is under delayed
1697                  * unoptimizing.
1698                  */
1699                 goto disarmed;
1700         else {
1701                 /* If disabling probe has special handlers, update aggrprobe */
1702                 if (p->post_handler && !kprobe_gone(p)) {
1703                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1704                                 if ((list_p != p) && (list_p->post_handler))
1705                                         goto noclean;
1706                         }
1707                         ap->post_handler = NULL;
1708                 }
1709 noclean:
1710                 /*
1711                  * Remove from the aggrprobe: this path will do nothing in
1712                  * __unregister_kprobe_bottom().
1713                  */
1714                 list_del_rcu(&p->list);
1715                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1716                         /*
1717                          * Try to optimize this probe again, because post
1718                          * handler may have been changed.
1719                          */
1720                         optimize_kprobe(ap);
1721         }
1722         return 0;
1723
1724 disarmed:
1725         BUG_ON(!kprobe_disarmed(ap));
1726         hlist_del_rcu(&ap->hlist);
1727         return 0;
1728 }
1729
1730 static void __unregister_kprobe_bottom(struct kprobe *p)
1731 {
1732         struct kprobe *ap;
1733
1734         if (list_empty(&p->list))
1735                 /* This is an independent kprobe */
1736                 arch_remove_kprobe(p);
1737         else if (list_is_singular(&p->list)) {
1738                 /* This is the last child of an aggrprobe */
1739                 ap = list_entry(p->list.next, struct kprobe, list);
1740                 list_del(&p->list);
1741                 free_aggr_kprobe(ap);
1742         }
1743         /* Otherwise, do nothing. */
1744 }
1745
1746 int register_kprobes(struct kprobe **kps, int num)
1747 {
1748         int i, ret = 0;
1749
1750         if (num <= 0)
1751                 return -EINVAL;
1752         for (i = 0; i < num; i++) {
1753                 ret = register_kprobe(kps[i]);
1754                 if (ret < 0) {
1755                         if (i > 0)
1756                                 unregister_kprobes(kps, i);
1757                         break;
1758                 }
1759         }
1760         return ret;
1761 }
1762 EXPORT_SYMBOL_GPL(register_kprobes);
1763
1764 void unregister_kprobe(struct kprobe *p)
1765 {
1766         unregister_kprobes(&p, 1);
1767 }
1768 EXPORT_SYMBOL_GPL(unregister_kprobe);
1769
1770 void unregister_kprobes(struct kprobe **kps, int num)
1771 {
1772         int i;
1773
1774         if (num <= 0)
1775                 return;
1776         mutex_lock(&kprobe_mutex);
1777         for (i = 0; i < num; i++)
1778                 if (__unregister_kprobe_top(kps[i]) < 0)
1779                         kps[i]->addr = NULL;
1780         mutex_unlock(&kprobe_mutex);
1781
1782         synchronize_sched();
1783         for (i = 0; i < num; i++)
1784                 if (kps[i]->addr)
1785                         __unregister_kprobe_bottom(kps[i]);
1786 }
1787 EXPORT_SYMBOL_GPL(unregister_kprobes);
1788
1789 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1790                                         unsigned long val, void *data)
1791 {
1792         return NOTIFY_DONE;
1793 }
1794 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1795
1796 static struct notifier_block kprobe_exceptions_nb = {
1797         .notifier_call = kprobe_exceptions_notify,
1798         .priority = 0x7fffffff /* we need to be notified first */
1799 };
1800
1801 unsigned long __weak arch_deref_entry_point(void *entry)
1802 {
1803         return (unsigned long)entry;
1804 }
1805
1806 #ifdef CONFIG_KRETPROBES
1807 /*
1808  * This kprobe pre_handler is registered with every kretprobe. When probe
1809  * hits it will set up the return probe.
1810  */
1811 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1812 {
1813         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1814         unsigned long hash, flags = 0;
1815         struct kretprobe_instance *ri;
1816
1817         /*
1818          * To avoid deadlocks, prohibit return probing in NMI contexts,
1819          * just skip the probe and increase the (inexact) 'nmissed'
1820          * statistical counter, so that the user is informed that
1821          * something happened:
1822          */
1823         if (unlikely(in_nmi())) {
1824                 rp->nmissed++;
1825                 return 0;
1826         }
1827
1828         /* TODO: consider to only swap the RA after the last pre_handler fired */
1829         hash = hash_ptr(current, KPROBE_HASH_BITS);
1830         raw_spin_lock_irqsave(&rp->lock, flags);
1831         if (!hlist_empty(&rp->free_instances)) {
1832                 ri = hlist_entry(rp->free_instances.first,
1833                                 struct kretprobe_instance, hlist);
1834                 hlist_del(&ri->hlist);
1835                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1836
1837                 ri->rp = rp;
1838                 ri->task = current;
1839
1840                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1841                         raw_spin_lock_irqsave(&rp->lock, flags);
1842                         hlist_add_head(&ri->hlist, &rp->free_instances);
1843                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1844                         return 0;
1845                 }
1846
1847                 arch_prepare_kretprobe(ri, regs);
1848
1849                 /* XXX(hch): why is there no hlist_move_head? */
1850                 INIT_HLIST_NODE(&ri->hlist);
1851                 kretprobe_table_lock(hash, &flags);
1852                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1853                 kretprobe_table_unlock(hash, &flags);
1854         } else {
1855                 rp->nmissed++;
1856                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1857         }
1858         return 0;
1859 }
1860 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1861
1862 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1863 {
1864         return !offset;
1865 }
1866
1867 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1868 {
1869         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1870
1871         if (IS_ERR(kp_addr))
1872                 return false;
1873
1874         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1875                                                 !arch_kprobe_on_func_entry(offset))
1876                 return false;
1877
1878         return true;
1879 }
1880
1881 int register_kretprobe(struct kretprobe *rp)
1882 {
1883         int ret = 0;
1884         struct kretprobe_instance *inst;
1885         int i;
1886         void *addr;
1887
1888         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1889                 return -EINVAL;
1890
1891         if (kretprobe_blacklist_size) {
1892                 addr = kprobe_addr(&rp->kp);
1893                 if (IS_ERR(addr))
1894                         return PTR_ERR(addr);
1895
1896                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1897                         if (kretprobe_blacklist[i].addr == addr)
1898                                 return -EINVAL;
1899                 }
1900         }
1901
1902         rp->kp.pre_handler = pre_handler_kretprobe;
1903         rp->kp.post_handler = NULL;
1904         rp->kp.fault_handler = NULL;
1905
1906         /* Pre-allocate memory for max kretprobe instances */
1907         if (rp->maxactive <= 0) {
1908 #ifdef CONFIG_PREEMPT
1909                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1910 #else
1911                 rp->maxactive = num_possible_cpus();
1912 #endif
1913         }
1914         raw_spin_lock_init(&rp->lock);
1915         INIT_HLIST_HEAD(&rp->free_instances);
1916         for (i = 0; i < rp->maxactive; i++) {
1917                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1918                                rp->data_size, GFP_KERNEL);
1919                 if (inst == NULL) {
1920                         free_rp_inst(rp);
1921                         return -ENOMEM;
1922                 }
1923                 INIT_HLIST_NODE(&inst->hlist);
1924                 hlist_add_head(&inst->hlist, &rp->free_instances);
1925         }
1926
1927         rp->nmissed = 0;
1928         /* Establish function entry probe point */
1929         ret = register_kprobe(&rp->kp);
1930         if (ret != 0)
1931                 free_rp_inst(rp);
1932         return ret;
1933 }
1934 EXPORT_SYMBOL_GPL(register_kretprobe);
1935
1936 int register_kretprobes(struct kretprobe **rps, int num)
1937 {
1938         int ret = 0, i;
1939
1940         if (num <= 0)
1941                 return -EINVAL;
1942         for (i = 0; i < num; i++) {
1943                 ret = register_kretprobe(rps[i]);
1944                 if (ret < 0) {
1945                         if (i > 0)
1946                                 unregister_kretprobes(rps, i);
1947                         break;
1948                 }
1949         }
1950         return ret;
1951 }
1952 EXPORT_SYMBOL_GPL(register_kretprobes);
1953
1954 void unregister_kretprobe(struct kretprobe *rp)
1955 {
1956         unregister_kretprobes(&rp, 1);
1957 }
1958 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1959
1960 void unregister_kretprobes(struct kretprobe **rps, int num)
1961 {
1962         int i;
1963
1964         if (num <= 0)
1965                 return;
1966         mutex_lock(&kprobe_mutex);
1967         for (i = 0; i < num; i++)
1968                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1969                         rps[i]->kp.addr = NULL;
1970         mutex_unlock(&kprobe_mutex);
1971
1972         synchronize_sched();
1973         for (i = 0; i < num; i++) {
1974                 if (rps[i]->kp.addr) {
1975                         __unregister_kprobe_bottom(&rps[i]->kp);
1976                         cleanup_rp_inst(rps[i]);
1977                 }
1978         }
1979 }
1980 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1981
1982 #else /* CONFIG_KRETPROBES */
1983 int register_kretprobe(struct kretprobe *rp)
1984 {
1985         return -ENOSYS;
1986 }
1987 EXPORT_SYMBOL_GPL(register_kretprobe);
1988
1989 int register_kretprobes(struct kretprobe **rps, int num)
1990 {
1991         return -ENOSYS;
1992 }
1993 EXPORT_SYMBOL_GPL(register_kretprobes);
1994
1995 void unregister_kretprobe(struct kretprobe *rp)
1996 {
1997 }
1998 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1999
2000 void unregister_kretprobes(struct kretprobe **rps, int num)
2001 {
2002 }
2003 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2004
2005 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2006 {
2007         return 0;
2008 }
2009 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2010
2011 #endif /* CONFIG_KRETPROBES */
2012
2013 /* Set the kprobe gone and remove its instruction buffer. */
2014 static void kill_kprobe(struct kprobe *p)
2015 {
2016         struct kprobe *kp;
2017
2018         p->flags |= KPROBE_FLAG_GONE;
2019         if (kprobe_aggrprobe(p)) {
2020                 /*
2021                  * If this is an aggr_kprobe, we have to list all the
2022                  * chained probes and mark them GONE.
2023                  */
2024                 list_for_each_entry_rcu(kp, &p->list, list)
2025                         kp->flags |= KPROBE_FLAG_GONE;
2026                 p->post_handler = NULL;
2027                 kill_optimized_kprobe(p);
2028         }
2029         /*
2030          * Here, we can remove insn_slot safely, because no thread calls
2031          * the original probed function (which will be freed soon) any more.
2032          */
2033         arch_remove_kprobe(p);
2034 }
2035
2036 /* Disable one kprobe */
2037 int disable_kprobe(struct kprobe *kp)
2038 {
2039         int ret = 0;
2040         struct kprobe *p;
2041
2042         mutex_lock(&kprobe_mutex);
2043
2044         /* Disable this kprobe */
2045         p = __disable_kprobe(kp);
2046         if (IS_ERR(p))
2047                 ret = PTR_ERR(p);
2048
2049         mutex_unlock(&kprobe_mutex);
2050         return ret;
2051 }
2052 EXPORT_SYMBOL_GPL(disable_kprobe);
2053
2054 /* Enable one kprobe */
2055 int enable_kprobe(struct kprobe *kp)
2056 {
2057         int ret = 0;
2058         struct kprobe *p;
2059
2060         mutex_lock(&kprobe_mutex);
2061
2062         /* Check whether specified probe is valid. */
2063         p = __get_valid_kprobe(kp);
2064         if (unlikely(p == NULL)) {
2065                 ret = -EINVAL;
2066                 goto out;
2067         }
2068
2069         if (kprobe_gone(kp)) {
2070                 /* This kprobe has gone, we couldn't enable it. */
2071                 ret = -EINVAL;
2072                 goto out;
2073         }
2074
2075         if (p != kp)
2076                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2077
2078         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2079                 p->flags &= ~KPROBE_FLAG_DISABLED;
2080                 ret = arm_kprobe(p);
2081                 if (ret)
2082                         p->flags |= KPROBE_FLAG_DISABLED;
2083         }
2084 out:
2085         mutex_unlock(&kprobe_mutex);
2086         return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(enable_kprobe);
2089
2090 /* Caller must NOT call this in usual path. This is only for critical case */
2091 void dump_kprobe(struct kprobe *kp)
2092 {
2093         pr_err("Dumping kprobe:\n");
2094         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2095                kp->symbol_name, kp->offset, kp->addr);
2096 }
2097 NOKPROBE_SYMBOL(dump_kprobe);
2098
2099 /*
2100  * Lookup and populate the kprobe_blacklist.
2101  *
2102  * Unlike the kretprobe blacklist, we'll need to determine
2103  * the range of addresses that belong to the said functions,
2104  * since a kprobe need not necessarily be at the beginning
2105  * of a function.
2106  */
2107 static int __init populate_kprobe_blacklist(unsigned long *start,
2108                                              unsigned long *end)
2109 {
2110         unsigned long *iter;
2111         struct kprobe_blacklist_entry *ent;
2112         unsigned long entry, offset = 0, size = 0;
2113
2114         for (iter = start; iter < end; iter++) {
2115                 entry = arch_deref_entry_point((void *)*iter);
2116
2117                 if (!kernel_text_address(entry) ||
2118                     !kallsyms_lookup_size_offset(entry, &size, &offset))
2119                         continue;
2120
2121                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2122                 if (!ent)
2123                         return -ENOMEM;
2124                 ent->start_addr = entry;
2125                 ent->end_addr = entry + size;
2126                 INIT_LIST_HEAD(&ent->list);
2127                 list_add_tail(&ent->list, &kprobe_blacklist);
2128         }
2129         return 0;
2130 }
2131
2132 /* Module notifier call back, checking kprobes on the module */
2133 static int kprobes_module_callback(struct notifier_block *nb,
2134                                    unsigned long val, void *data)
2135 {
2136         struct module *mod = data;
2137         struct hlist_head *head;
2138         struct kprobe *p;
2139         unsigned int i;
2140         int checkcore = (val == MODULE_STATE_GOING);
2141
2142         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2143                 return NOTIFY_DONE;
2144
2145         /*
2146          * When MODULE_STATE_GOING was notified, both of module .text and
2147          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2148          * notified, only .init.text section would be freed. We need to
2149          * disable kprobes which have been inserted in the sections.
2150          */
2151         mutex_lock(&kprobe_mutex);
2152         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2153                 head = &kprobe_table[i];
2154                 hlist_for_each_entry_rcu(p, head, hlist)
2155                         if (within_module_init((unsigned long)p->addr, mod) ||
2156                             (checkcore &&
2157                              within_module_core((unsigned long)p->addr, mod))) {
2158                                 /*
2159                                  * The vaddr this probe is installed will soon
2160                                  * be vfreed buy not synced to disk. Hence,
2161                                  * disarming the breakpoint isn't needed.
2162                                  *
2163                                  * Note, this will also move any optimized probes
2164                                  * that are pending to be removed from their
2165                                  * corresponding lists to the freeing_list and
2166                                  * will not be touched by the delayed
2167                                  * kprobe_optimizer work handler.
2168                                  */
2169                                 kill_kprobe(p);
2170                         }
2171         }
2172         mutex_unlock(&kprobe_mutex);
2173         return NOTIFY_DONE;
2174 }
2175
2176 static struct notifier_block kprobe_module_nb = {
2177         .notifier_call = kprobes_module_callback,
2178         .priority = 0
2179 };
2180
2181 /* Markers of _kprobe_blacklist section */
2182 extern unsigned long __start_kprobe_blacklist[];
2183 extern unsigned long __stop_kprobe_blacklist[];
2184
2185 static int __init init_kprobes(void)
2186 {
2187         int i, err = 0;
2188
2189         /* FIXME allocate the probe table, currently defined statically */
2190         /* initialize all list heads */
2191         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2192                 INIT_HLIST_HEAD(&kprobe_table[i]);
2193                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2194                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2195         }
2196
2197         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2198                                         __stop_kprobe_blacklist);
2199         if (err) {
2200                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2201                 pr_err("Please take care of using kprobes.\n");
2202         }
2203
2204         if (kretprobe_blacklist_size) {
2205                 /* lookup the function address from its name */
2206                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2207                         kretprobe_blacklist[i].addr =
2208                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2209                         if (!kretprobe_blacklist[i].addr)
2210                                 printk("kretprobe: lookup failed: %s\n",
2211                                        kretprobe_blacklist[i].name);
2212                 }
2213         }
2214
2215 #if defined(CONFIG_OPTPROBES)
2216 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2217         /* Init kprobe_optinsn_slots */
2218         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2219 #endif
2220         /* By default, kprobes can be optimized */
2221         kprobes_allow_optimization = true;
2222 #endif
2223
2224         /* By default, kprobes are armed */
2225         kprobes_all_disarmed = false;
2226
2227         err = arch_init_kprobes();
2228         if (!err)
2229                 err = register_die_notifier(&kprobe_exceptions_nb);
2230         if (!err)
2231                 err = register_module_notifier(&kprobe_module_nb);
2232
2233         kprobes_initialized = (err == 0);
2234
2235         if (!err)
2236                 init_test_probes();
2237         return err;
2238 }
2239
2240 #ifdef CONFIG_DEBUG_FS
2241 static void report_probe(struct seq_file *pi, struct kprobe *p,
2242                 const char *sym, int offset, char *modname, struct kprobe *pp)
2243 {
2244         char *kprobe_type;
2245         void *addr = p->addr;
2246
2247         if (p->pre_handler == pre_handler_kretprobe)
2248                 kprobe_type = "r";
2249         else
2250                 kprobe_type = "k";
2251
2252         if (!kallsyms_show_value())
2253                 addr = NULL;
2254
2255         if (sym)
2256                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2257                         addr, kprobe_type, sym, offset,
2258                         (modname ? modname : " "));
2259         else    /* try to use %pS */
2260                 seq_printf(pi, "%px  %s  %pS ",
2261                         addr, kprobe_type, p->addr);
2262
2263         if (!pp)
2264                 pp = p;
2265         seq_printf(pi, "%s%s%s%s\n",
2266                 (kprobe_gone(p) ? "[GONE]" : ""),
2267                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2268                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2269                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2270 }
2271
2272 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2273 {
2274         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2275 }
2276
2277 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2278 {
2279         (*pos)++;
2280         if (*pos >= KPROBE_TABLE_SIZE)
2281                 return NULL;
2282         return pos;
2283 }
2284
2285 static void kprobe_seq_stop(struct seq_file *f, void *v)
2286 {
2287         /* Nothing to do */
2288 }
2289
2290 static int show_kprobe_addr(struct seq_file *pi, void *v)
2291 {
2292         struct hlist_head *head;
2293         struct kprobe *p, *kp;
2294         const char *sym = NULL;
2295         unsigned int i = *(loff_t *) v;
2296         unsigned long offset = 0;
2297         char *modname, namebuf[KSYM_NAME_LEN];
2298
2299         head = &kprobe_table[i];
2300         preempt_disable();
2301         hlist_for_each_entry_rcu(p, head, hlist) {
2302                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2303                                         &offset, &modname, namebuf);
2304                 if (kprobe_aggrprobe(p)) {
2305                         list_for_each_entry_rcu(kp, &p->list, list)
2306                                 report_probe(pi, kp, sym, offset, modname, p);
2307                 } else
2308                         report_probe(pi, p, sym, offset, modname, NULL);
2309         }
2310         preempt_enable();
2311         return 0;
2312 }
2313
2314 static const struct seq_operations kprobes_seq_ops = {
2315         .start = kprobe_seq_start,
2316         .next  = kprobe_seq_next,
2317         .stop  = kprobe_seq_stop,
2318         .show  = show_kprobe_addr
2319 };
2320
2321 static int kprobes_open(struct inode *inode, struct file *filp)
2322 {
2323         return seq_open(filp, &kprobes_seq_ops);
2324 }
2325
2326 static const struct file_operations debugfs_kprobes_operations = {
2327         .open           = kprobes_open,
2328         .read           = seq_read,
2329         .llseek         = seq_lseek,
2330         .release        = seq_release,
2331 };
2332
2333 /* kprobes/blacklist -- shows which functions can not be probed */
2334 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2335 {
2336         return seq_list_start(&kprobe_blacklist, *pos);
2337 }
2338
2339 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2340 {
2341         return seq_list_next(v, &kprobe_blacklist, pos);
2342 }
2343
2344 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2345 {
2346         struct kprobe_blacklist_entry *ent =
2347                 list_entry(v, struct kprobe_blacklist_entry, list);
2348
2349         /*
2350          * If /proc/kallsyms is not showing kernel address, we won't
2351          * show them here either.
2352          */
2353         if (!kallsyms_show_value())
2354                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2355                            (void *)ent->start_addr);
2356         else
2357                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2358                            (void *)ent->end_addr, (void *)ent->start_addr);
2359         return 0;
2360 }
2361
2362 static const struct seq_operations kprobe_blacklist_seq_ops = {
2363         .start = kprobe_blacklist_seq_start,
2364         .next  = kprobe_blacklist_seq_next,
2365         .stop  = kprobe_seq_stop,       /* Reuse void function */
2366         .show  = kprobe_blacklist_seq_show,
2367 };
2368
2369 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2370 {
2371         return seq_open(filp, &kprobe_blacklist_seq_ops);
2372 }
2373
2374 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2375         .open           = kprobe_blacklist_open,
2376         .read           = seq_read,
2377         .llseek         = seq_lseek,
2378         .release        = seq_release,
2379 };
2380
2381 static int arm_all_kprobes(void)
2382 {
2383         struct hlist_head *head;
2384         struct kprobe *p;
2385         unsigned int i, total = 0, errors = 0;
2386         int err, ret = 0;
2387
2388         mutex_lock(&kprobe_mutex);
2389
2390         /* If kprobes are armed, just return */
2391         if (!kprobes_all_disarmed)
2392                 goto already_enabled;
2393
2394         /*
2395          * optimize_kprobe() called by arm_kprobe() checks
2396          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2397          * arm_kprobe.
2398          */
2399         kprobes_all_disarmed = false;
2400         /* Arming kprobes doesn't optimize kprobe itself */
2401         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2402                 head = &kprobe_table[i];
2403                 /* Arm all kprobes on a best-effort basis */
2404                 hlist_for_each_entry_rcu(p, head, hlist) {
2405                         if (!kprobe_disabled(p)) {
2406                                 err = arm_kprobe(p);
2407                                 if (err)  {
2408                                         errors++;
2409                                         ret = err;
2410                                 }
2411                                 total++;
2412                         }
2413                 }
2414         }
2415
2416         if (errors)
2417                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2418                         errors, total);
2419         else
2420                 pr_info("Kprobes globally enabled\n");
2421
2422 already_enabled:
2423         mutex_unlock(&kprobe_mutex);
2424         return ret;
2425 }
2426
2427 static int disarm_all_kprobes(void)
2428 {
2429         struct hlist_head *head;
2430         struct kprobe *p;
2431         unsigned int i, total = 0, errors = 0;
2432         int err, ret = 0;
2433
2434         mutex_lock(&kprobe_mutex);
2435
2436         /* If kprobes are already disarmed, just return */
2437         if (kprobes_all_disarmed) {
2438                 mutex_unlock(&kprobe_mutex);
2439                 return 0;
2440         }
2441
2442         kprobes_all_disarmed = true;
2443
2444         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2445                 head = &kprobe_table[i];
2446                 /* Disarm all kprobes on a best-effort basis */
2447                 hlist_for_each_entry_rcu(p, head, hlist) {
2448                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2449                                 err = disarm_kprobe(p, false);
2450                                 if (err) {
2451                                         errors++;
2452                                         ret = err;
2453                                 }
2454                                 total++;
2455                         }
2456                 }
2457         }
2458
2459         if (errors)
2460                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2461                         errors, total);
2462         else
2463                 pr_info("Kprobes globally disabled\n");
2464
2465         mutex_unlock(&kprobe_mutex);
2466
2467         /* Wait for disarming all kprobes by optimizer */
2468         wait_for_kprobe_optimizer();
2469
2470         return ret;
2471 }
2472
2473 /*
2474  * XXX: The debugfs bool file interface doesn't allow for callbacks
2475  * when the bool state is switched. We can reuse that facility when
2476  * available
2477  */
2478 static ssize_t read_enabled_file_bool(struct file *file,
2479                char __user *user_buf, size_t count, loff_t *ppos)
2480 {
2481         char buf[3];
2482
2483         if (!kprobes_all_disarmed)
2484                 buf[0] = '1';
2485         else
2486                 buf[0] = '0';
2487         buf[1] = '\n';
2488         buf[2] = 0x00;
2489         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2490 }
2491
2492 static ssize_t write_enabled_file_bool(struct file *file,
2493                const char __user *user_buf, size_t count, loff_t *ppos)
2494 {
2495         char buf[32];
2496         size_t buf_size;
2497         int ret = 0;
2498
2499         buf_size = min(count, (sizeof(buf)-1));
2500         if (copy_from_user(buf, user_buf, buf_size))
2501                 return -EFAULT;
2502
2503         buf[buf_size] = '\0';
2504         switch (buf[0]) {
2505         case 'y':
2506         case 'Y':
2507         case '1':
2508                 ret = arm_all_kprobes();
2509                 break;
2510         case 'n':
2511         case 'N':
2512         case '0':
2513                 ret = disarm_all_kprobes();
2514                 break;
2515         default:
2516                 return -EINVAL;
2517         }
2518
2519         if (ret)
2520                 return ret;
2521
2522         return count;
2523 }
2524
2525 static const struct file_operations fops_kp = {
2526         .read =         read_enabled_file_bool,
2527         .write =        write_enabled_file_bool,
2528         .llseek =       default_llseek,
2529 };
2530
2531 static int __init debugfs_kprobe_init(void)
2532 {
2533         struct dentry *dir, *file;
2534         unsigned int value = 1;
2535
2536         dir = debugfs_create_dir("kprobes", NULL);
2537         if (!dir)
2538                 return -ENOMEM;
2539
2540         file = debugfs_create_file("list", 0400, dir, NULL,
2541                                 &debugfs_kprobes_operations);
2542         if (!file)
2543                 goto error;
2544
2545         file = debugfs_create_file("enabled", 0600, dir,
2546                                         &value, &fops_kp);
2547         if (!file)
2548                 goto error;
2549
2550         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2551                                 &debugfs_kprobe_blacklist_ops);
2552         if (!file)
2553                 goto error;
2554
2555         return 0;
2556
2557 error:
2558         debugfs_remove(dir);
2559         return -ENOMEM;
2560 }
2561
2562 late_initcall(debugfs_kprobe_init);
2563 #endif /* CONFIG_DEBUG_FS */
2564
2565 module_init(init_kprobes);