kprobes: unify insn caches
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81         raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86         return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97         {"preempt_schedule",},
98         {"native_get_debugreg",},
99         {"irq_entries_start",},
100         {"common_interrupt",},
101         {"mcount",},    /* mcount can be called from everywhere */
102         {NULL}    /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113         struct list_head list;
114         kprobe_opcode_t *insns;         /* Page of instruction slots */
115         int nused;
116         int ngarbage;
117         char slot_used[];
118 };
119
120 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
121         (offsetof(struct kprobe_insn_page, slot_used) + \
122          (sizeof(char) * (slots)))
123
124 static int slots_per_page(struct kprobe_insn_cache *c)
125 {
126         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
127 }
128
129 enum kprobe_slot_state {
130         SLOT_CLEAN = 0,
131         SLOT_DIRTY = 1,
132         SLOT_USED = 2,
133 };
134
135 struct kprobe_insn_cache kprobe_insn_slots = {
136         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
137         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138         .insn_size = MAX_INSN_SIZE,
139         .nr_garbage = 0,
140 };
141 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
142
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
147 kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149         struct kprobe_insn_page *kip;
150         kprobe_opcode_t *slot = NULL;
151
152         mutex_lock(&c->mutex);
153  retry:
154         list_for_each_entry(kip, &c->pages, list) {
155                 if (kip->nused < slots_per_page(c)) {
156                         int i;
157                         for (i = 0; i < slots_per_page(c); i++) {
158                                 if (kip->slot_used[i] == SLOT_CLEAN) {
159                                         kip->slot_used[i] = SLOT_USED;
160                                         kip->nused++;
161                                         slot = kip->insns + (i * c->insn_size);
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170
171         /* If there are any garbage slots, collect it and try again. */
172         if (c->nr_garbage && collect_garbage_slots(c) == 0)
173                 goto retry;
174
175         /* All out of space.  Need to allocate a new page. */
176         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177         if (!kip)
178                 goto out;
179
180         /*
181          * Use module_alloc so this page is within +/- 2GB of where the
182          * kernel image and loaded module images reside. This is required
183          * so x86_64 can correctly handle the %rip-relative fixups.
184          */
185         kip->insns = module_alloc(PAGE_SIZE);
186         if (!kip->insns) {
187                 kfree(kip);
188                 goto out;
189         }
190         INIT_LIST_HEAD(&kip->list);
191         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192         kip->slot_used[0] = SLOT_USED;
193         kip->nused = 1;
194         kip->ngarbage = 0;
195         list_add(&kip->list, &c->pages);
196         slot = kip->insns;
197 out:
198         mutex_unlock(&c->mutex);
199         return slot;
200 }
201
202 /* Return 1 if all garbages are collected, otherwise 0. */
203 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
204 {
205         kip->slot_used[idx] = SLOT_CLEAN;
206         kip->nused--;
207         if (kip->nused == 0) {
208                 /*
209                  * Page is no longer in use.  Free it unless
210                  * it's the last one.  We keep the last one
211                  * so as not to have to set it up again the
212                  * next time somebody inserts a probe.
213                  */
214                 if (!list_is_singular(&kip->list)) {
215                         list_del(&kip->list);
216                         module_free(NULL, kip->insns);
217                         kfree(kip);
218                 }
219                 return 1;
220         }
221         return 0;
222 }
223
224 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
225 {
226         struct kprobe_insn_page *kip, *next;
227
228         /* Ensure no-one is interrupted on the garbages */
229         synchronize_sched();
230
231         list_for_each_entry_safe(kip, next, &c->pages, list) {
232                 int i;
233                 if (kip->ngarbage == 0)
234                         continue;
235                 kip->ngarbage = 0;      /* we will collect all garbages */
236                 for (i = 0; i < slots_per_page(c); i++) {
237                         if (kip->slot_used[i] == SLOT_DIRTY &&
238                             collect_one_slot(kip, i))
239                                 break;
240                 }
241         }
242         c->nr_garbage = 0;
243         return 0;
244 }
245
246 void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
247                                 kprobe_opcode_t *slot, int dirty)
248 {
249         struct kprobe_insn_page *kip;
250
251         mutex_lock(&c->mutex);
252         list_for_each_entry(kip, &c->pages, list) {
253                 long idx = ((long)slot - (long)kip->insns) /
254                                 (c->insn_size * sizeof(kprobe_opcode_t));
255                 if (idx >= 0 && idx < slots_per_page(c)) {
256                         WARN_ON(kip->slot_used[idx] != SLOT_USED);
257                         if (dirty) {
258                                 kip->slot_used[idx] = SLOT_DIRTY;
259                                 kip->ngarbage++;
260                                 if (++c->nr_garbage > slots_per_page(c))
261                                         collect_garbage_slots(c);
262                         } else
263                                 collect_one_slot(kip, idx);
264                         goto out;
265                 }
266         }
267         /* Could not free this slot. */
268         WARN_ON(1);
269 out:
270         mutex_unlock(&c->mutex);
271 }
272
273 #ifdef CONFIG_OPTPROBES
274 /* For optimized_kprobe buffer */
275 struct kprobe_insn_cache kprobe_optinsn_slots = {
276         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
277         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
278         /* .insn_size is initialized later */
279         .nr_garbage = 0,
280 };
281 #endif
282 #endif
283
284 /* We have preemption disabled.. so it is safe to use __ versions */
285 static inline void set_kprobe_instance(struct kprobe *kp)
286 {
287         __this_cpu_write(kprobe_instance, kp);
288 }
289
290 static inline void reset_kprobe_instance(void)
291 {
292         __this_cpu_write(kprobe_instance, NULL);
293 }
294
295 /*
296  * This routine is called either:
297  *      - under the kprobe_mutex - during kprobe_[un]register()
298  *                              OR
299  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
300  */
301 struct kprobe __kprobes *get_kprobe(void *addr)
302 {
303         struct hlist_head *head;
304         struct kprobe *p;
305
306         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
307         hlist_for_each_entry_rcu(p, head, hlist) {
308                 if (p->addr == addr)
309                         return p;
310         }
311
312         return NULL;
313 }
314
315 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
316
317 /* Return true if the kprobe is an aggregator */
318 static inline int kprobe_aggrprobe(struct kprobe *p)
319 {
320         return p->pre_handler == aggr_pre_handler;
321 }
322
323 /* Return true(!0) if the kprobe is unused */
324 static inline int kprobe_unused(struct kprobe *p)
325 {
326         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
327                list_empty(&p->list);
328 }
329
330 /*
331  * Keep all fields in the kprobe consistent
332  */
333 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
334 {
335         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
336         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
337 }
338
339 #ifdef CONFIG_OPTPROBES
340 /* NOTE: change this value only with kprobe_mutex held */
341 static bool kprobes_allow_optimization;
342
343 /*
344  * Call all pre_handler on the list, but ignores its return value.
345  * This must be called from arch-dep optimized caller.
346  */
347 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
348 {
349         struct kprobe *kp;
350
351         list_for_each_entry_rcu(kp, &p->list, list) {
352                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
353                         set_kprobe_instance(kp);
354                         kp->pre_handler(kp, regs);
355                 }
356                 reset_kprobe_instance();
357         }
358 }
359
360 /* Free optimized instructions and optimized_kprobe */
361 static __kprobes void free_aggr_kprobe(struct kprobe *p)
362 {
363         struct optimized_kprobe *op;
364
365         op = container_of(p, struct optimized_kprobe, kp);
366         arch_remove_optimized_kprobe(op);
367         arch_remove_kprobe(p);
368         kfree(op);
369 }
370
371 /* Return true(!0) if the kprobe is ready for optimization. */
372 static inline int kprobe_optready(struct kprobe *p)
373 {
374         struct optimized_kprobe *op;
375
376         if (kprobe_aggrprobe(p)) {
377                 op = container_of(p, struct optimized_kprobe, kp);
378                 return arch_prepared_optinsn(&op->optinsn);
379         }
380
381         return 0;
382 }
383
384 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
385 static inline int kprobe_disarmed(struct kprobe *p)
386 {
387         struct optimized_kprobe *op;
388
389         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
390         if (!kprobe_aggrprobe(p))
391                 return kprobe_disabled(p);
392
393         op = container_of(p, struct optimized_kprobe, kp);
394
395         return kprobe_disabled(p) && list_empty(&op->list);
396 }
397
398 /* Return true(!0) if the probe is queued on (un)optimizing lists */
399 static int __kprobes kprobe_queued(struct kprobe *p)
400 {
401         struct optimized_kprobe *op;
402
403         if (kprobe_aggrprobe(p)) {
404                 op = container_of(p, struct optimized_kprobe, kp);
405                 if (!list_empty(&op->list))
406                         return 1;
407         }
408         return 0;
409 }
410
411 /*
412  * Return an optimized kprobe whose optimizing code replaces
413  * instructions including addr (exclude breakpoint).
414  */
415 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
416 {
417         int i;
418         struct kprobe *p = NULL;
419         struct optimized_kprobe *op;
420
421         /* Don't check i == 0, since that is a breakpoint case. */
422         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
423                 p = get_kprobe((void *)(addr - i));
424
425         if (p && kprobe_optready(p)) {
426                 op = container_of(p, struct optimized_kprobe, kp);
427                 if (arch_within_optimized_kprobe(op, addr))
428                         return p;
429         }
430
431         return NULL;
432 }
433
434 /* Optimization staging list, protected by kprobe_mutex */
435 static LIST_HEAD(optimizing_list);
436 static LIST_HEAD(unoptimizing_list);
437 static LIST_HEAD(freeing_list);
438
439 static void kprobe_optimizer(struct work_struct *work);
440 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
441 #define OPTIMIZE_DELAY 5
442
443 /*
444  * Optimize (replace a breakpoint with a jump) kprobes listed on
445  * optimizing_list.
446  */
447 static __kprobes void do_optimize_kprobes(void)
448 {
449         /* Optimization never be done when disarmed */
450         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
451             list_empty(&optimizing_list))
452                 return;
453
454         /*
455          * The optimization/unoptimization refers online_cpus via
456          * stop_machine() and cpu-hotplug modifies online_cpus.
457          * And same time, text_mutex will be held in cpu-hotplug and here.
458          * This combination can cause a deadlock (cpu-hotplug try to lock
459          * text_mutex but stop_machine can not be done because online_cpus
460          * has been changed)
461          * To avoid this deadlock, we need to call get_online_cpus()
462          * for preventing cpu-hotplug outside of text_mutex locking.
463          */
464         get_online_cpus();
465         mutex_lock(&text_mutex);
466         arch_optimize_kprobes(&optimizing_list);
467         mutex_unlock(&text_mutex);
468         put_online_cpus();
469 }
470
471 /*
472  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
473  * if need) kprobes listed on unoptimizing_list.
474  */
475 static __kprobes void do_unoptimize_kprobes(void)
476 {
477         struct optimized_kprobe *op, *tmp;
478
479         /* Unoptimization must be done anytime */
480         if (list_empty(&unoptimizing_list))
481                 return;
482
483         /* Ditto to do_optimize_kprobes */
484         get_online_cpus();
485         mutex_lock(&text_mutex);
486         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
487         /* Loop free_list for disarming */
488         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
489                 /* Disarm probes if marked disabled */
490                 if (kprobe_disabled(&op->kp))
491                         arch_disarm_kprobe(&op->kp);
492                 if (kprobe_unused(&op->kp)) {
493                         /*
494                          * Remove unused probes from hash list. After waiting
495                          * for synchronization, these probes are reclaimed.
496                          * (reclaiming is done by do_free_cleaned_kprobes.)
497                          */
498                         hlist_del_rcu(&op->kp.hlist);
499                 } else
500                         list_del_init(&op->list);
501         }
502         mutex_unlock(&text_mutex);
503         put_online_cpus();
504 }
505
506 /* Reclaim all kprobes on the free_list */
507 static __kprobes void do_free_cleaned_kprobes(void)
508 {
509         struct optimized_kprobe *op, *tmp;
510
511         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
512                 BUG_ON(!kprobe_unused(&op->kp));
513                 list_del_init(&op->list);
514                 free_aggr_kprobe(&op->kp);
515         }
516 }
517
518 /* Start optimizer after OPTIMIZE_DELAY passed */
519 static __kprobes void kick_kprobe_optimizer(void)
520 {
521         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
522 }
523
524 /* Kprobe jump optimizer */
525 static __kprobes void kprobe_optimizer(struct work_struct *work)
526 {
527         mutex_lock(&kprobe_mutex);
528         /* Lock modules while optimizing kprobes */
529         mutex_lock(&module_mutex);
530
531         /*
532          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
533          * kprobes before waiting for quiesence period.
534          */
535         do_unoptimize_kprobes();
536
537         /*
538          * Step 2: Wait for quiesence period to ensure all running interrupts
539          * are done. Because optprobe may modify multiple instructions
540          * there is a chance that Nth instruction is interrupted. In that
541          * case, running interrupt can return to 2nd-Nth byte of jump
542          * instruction. This wait is for avoiding it.
543          */
544         synchronize_sched();
545
546         /* Step 3: Optimize kprobes after quiesence period */
547         do_optimize_kprobes();
548
549         /* Step 4: Free cleaned kprobes after quiesence period */
550         do_free_cleaned_kprobes();
551
552         mutex_unlock(&module_mutex);
553         mutex_unlock(&kprobe_mutex);
554
555         /* Step 5: Kick optimizer again if needed */
556         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
557                 kick_kprobe_optimizer();
558 }
559
560 /* Wait for completing optimization and unoptimization */
561 static __kprobes void wait_for_kprobe_optimizer(void)
562 {
563         mutex_lock(&kprobe_mutex);
564
565         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
566                 mutex_unlock(&kprobe_mutex);
567
568                 /* this will also make optimizing_work execute immmediately */
569                 flush_delayed_work(&optimizing_work);
570                 /* @optimizing_work might not have been queued yet, relax */
571                 cpu_relax();
572
573                 mutex_lock(&kprobe_mutex);
574         }
575
576         mutex_unlock(&kprobe_mutex);
577 }
578
579 /* Optimize kprobe if p is ready to be optimized */
580 static __kprobes void optimize_kprobe(struct kprobe *p)
581 {
582         struct optimized_kprobe *op;
583
584         /* Check if the kprobe is disabled or not ready for optimization. */
585         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
586             (kprobe_disabled(p) || kprobes_all_disarmed))
587                 return;
588
589         /* Both of break_handler and post_handler are not supported. */
590         if (p->break_handler || p->post_handler)
591                 return;
592
593         op = container_of(p, struct optimized_kprobe, kp);
594
595         /* Check there is no other kprobes at the optimized instructions */
596         if (arch_check_optimized_kprobe(op) < 0)
597                 return;
598
599         /* Check if it is already optimized. */
600         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
601                 return;
602         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
603
604         if (!list_empty(&op->list))
605                 /* This is under unoptimizing. Just dequeue the probe */
606                 list_del_init(&op->list);
607         else {
608                 list_add(&op->list, &optimizing_list);
609                 kick_kprobe_optimizer();
610         }
611 }
612
613 /* Short cut to direct unoptimizing */
614 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
615 {
616         get_online_cpus();
617         arch_unoptimize_kprobe(op);
618         put_online_cpus();
619         if (kprobe_disabled(&op->kp))
620                 arch_disarm_kprobe(&op->kp);
621 }
622
623 /* Unoptimize a kprobe if p is optimized */
624 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
625 {
626         struct optimized_kprobe *op;
627
628         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
629                 return; /* This is not an optprobe nor optimized */
630
631         op = container_of(p, struct optimized_kprobe, kp);
632         if (!kprobe_optimized(p)) {
633                 /* Unoptimized or unoptimizing case */
634                 if (force && !list_empty(&op->list)) {
635                         /*
636                          * Only if this is unoptimizing kprobe and forced,
637                          * forcibly unoptimize it. (No need to unoptimize
638                          * unoptimized kprobe again :)
639                          */
640                         list_del_init(&op->list);
641                         force_unoptimize_kprobe(op);
642                 }
643                 return;
644         }
645
646         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
647         if (!list_empty(&op->list)) {
648                 /* Dequeue from the optimization queue */
649                 list_del_init(&op->list);
650                 return;
651         }
652         /* Optimized kprobe case */
653         if (force)
654                 /* Forcibly update the code: this is a special case */
655                 force_unoptimize_kprobe(op);
656         else {
657                 list_add(&op->list, &unoptimizing_list);
658                 kick_kprobe_optimizer();
659         }
660 }
661
662 /* Cancel unoptimizing for reusing */
663 static void reuse_unused_kprobe(struct kprobe *ap)
664 {
665         struct optimized_kprobe *op;
666
667         BUG_ON(!kprobe_unused(ap));
668         /*
669          * Unused kprobe MUST be on the way of delayed unoptimizing (means
670          * there is still a relative jump) and disabled.
671          */
672         op = container_of(ap, struct optimized_kprobe, kp);
673         if (unlikely(list_empty(&op->list)))
674                 printk(KERN_WARNING "Warning: found a stray unused "
675                         "aggrprobe@%p\n", ap->addr);
676         /* Enable the probe again */
677         ap->flags &= ~KPROBE_FLAG_DISABLED;
678         /* Optimize it again (remove from op->list) */
679         BUG_ON(!kprobe_optready(ap));
680         optimize_kprobe(ap);
681 }
682
683 /* Remove optimized instructions */
684 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
685 {
686         struct optimized_kprobe *op;
687
688         op = container_of(p, struct optimized_kprobe, kp);
689         if (!list_empty(&op->list))
690                 /* Dequeue from the (un)optimization queue */
691                 list_del_init(&op->list);
692         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693
694         if (kprobe_unused(p)) {
695                 /* Enqueue if it is unused */
696                 list_add(&op->list, &freeing_list);
697                 /*
698                  * Remove unused probes from the hash list. After waiting
699                  * for synchronization, this probe is reclaimed.
700                  * (reclaiming is done by do_free_cleaned_kprobes().)
701                  */
702                 hlist_del_rcu(&op->kp.hlist);
703         }
704
705         /* Don't touch the code, because it is already freed. */
706         arch_remove_optimized_kprobe(op);
707 }
708
709 /* Try to prepare optimized instructions */
710 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
711 {
712         struct optimized_kprobe *op;
713
714         op = container_of(p, struct optimized_kprobe, kp);
715         arch_prepare_optimized_kprobe(op);
716 }
717
718 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
719 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
720 {
721         struct optimized_kprobe *op;
722
723         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
724         if (!op)
725                 return NULL;
726
727         INIT_LIST_HEAD(&op->list);
728         op->kp.addr = p->addr;
729         arch_prepare_optimized_kprobe(op);
730
731         return &op->kp;
732 }
733
734 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
735
736 /*
737  * Prepare an optimized_kprobe and optimize it
738  * NOTE: p must be a normal registered kprobe
739  */
740 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
741 {
742         struct kprobe *ap;
743         struct optimized_kprobe *op;
744
745         /* Impossible to optimize ftrace-based kprobe */
746         if (kprobe_ftrace(p))
747                 return;
748
749         /* For preparing optimization, jump_label_text_reserved() is called */
750         jump_label_lock();
751         mutex_lock(&text_mutex);
752
753         ap = alloc_aggr_kprobe(p);
754         if (!ap)
755                 goto out;
756
757         op = container_of(ap, struct optimized_kprobe, kp);
758         if (!arch_prepared_optinsn(&op->optinsn)) {
759                 /* If failed to setup optimizing, fallback to kprobe */
760                 arch_remove_optimized_kprobe(op);
761                 kfree(op);
762                 goto out;
763         }
764
765         init_aggr_kprobe(ap, p);
766         optimize_kprobe(ap);    /* This just kicks optimizer thread */
767
768 out:
769         mutex_unlock(&text_mutex);
770         jump_label_unlock();
771 }
772
773 #ifdef CONFIG_SYSCTL
774 static void __kprobes optimize_all_kprobes(void)
775 {
776         struct hlist_head *head;
777         struct kprobe *p;
778         unsigned int i;
779
780         mutex_lock(&kprobe_mutex);
781         /* If optimization is already allowed, just return */
782         if (kprobes_allow_optimization)
783                 goto out;
784
785         kprobes_allow_optimization = true;
786         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
787                 head = &kprobe_table[i];
788                 hlist_for_each_entry_rcu(p, head, hlist)
789                         if (!kprobe_disabled(p))
790                                 optimize_kprobe(p);
791         }
792         printk(KERN_INFO "Kprobes globally optimized\n");
793 out:
794         mutex_unlock(&kprobe_mutex);
795 }
796
797 static void __kprobes unoptimize_all_kprobes(void)
798 {
799         struct hlist_head *head;
800         struct kprobe *p;
801         unsigned int i;
802
803         mutex_lock(&kprobe_mutex);
804         /* If optimization is already prohibited, just return */
805         if (!kprobes_allow_optimization) {
806                 mutex_unlock(&kprobe_mutex);
807                 return;
808         }
809
810         kprobes_allow_optimization = false;
811         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
812                 head = &kprobe_table[i];
813                 hlist_for_each_entry_rcu(p, head, hlist) {
814                         if (!kprobe_disabled(p))
815                                 unoptimize_kprobe(p, false);
816                 }
817         }
818         mutex_unlock(&kprobe_mutex);
819
820         /* Wait for unoptimizing completion */
821         wait_for_kprobe_optimizer();
822         printk(KERN_INFO "Kprobes globally unoptimized\n");
823 }
824
825 static DEFINE_MUTEX(kprobe_sysctl_mutex);
826 int sysctl_kprobes_optimization;
827 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
828                                       void __user *buffer, size_t *length,
829                                       loff_t *ppos)
830 {
831         int ret;
832
833         mutex_lock(&kprobe_sysctl_mutex);
834         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
835         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
836
837         if (sysctl_kprobes_optimization)
838                 optimize_all_kprobes();
839         else
840                 unoptimize_all_kprobes();
841         mutex_unlock(&kprobe_sysctl_mutex);
842
843         return ret;
844 }
845 #endif /* CONFIG_SYSCTL */
846
847 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
848 static void __kprobes __arm_kprobe(struct kprobe *p)
849 {
850         struct kprobe *_p;
851
852         /* Check collision with other optimized kprobes */
853         _p = get_optimized_kprobe((unsigned long)p->addr);
854         if (unlikely(_p))
855                 /* Fallback to unoptimized kprobe */
856                 unoptimize_kprobe(_p, true);
857
858         arch_arm_kprobe(p);
859         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
860 }
861
862 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
863 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
864 {
865         struct kprobe *_p;
866
867         unoptimize_kprobe(p, false);    /* Try to unoptimize */
868
869         if (!kprobe_queued(p)) {
870                 arch_disarm_kprobe(p);
871                 /* If another kprobe was blocked, optimize it. */
872                 _p = get_optimized_kprobe((unsigned long)p->addr);
873                 if (unlikely(_p) && reopt)
874                         optimize_kprobe(_p);
875         }
876         /* TODO: reoptimize others after unoptimized this probe */
877 }
878
879 #else /* !CONFIG_OPTPROBES */
880
881 #define optimize_kprobe(p)                      do {} while (0)
882 #define unoptimize_kprobe(p, f)                 do {} while (0)
883 #define kill_optimized_kprobe(p)                do {} while (0)
884 #define prepare_optimized_kprobe(p)             do {} while (0)
885 #define try_to_optimize_kprobe(p)               do {} while (0)
886 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
887 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
888 #define kprobe_disarmed(p)                      kprobe_disabled(p)
889 #define wait_for_kprobe_optimizer()             do {} while (0)
890
891 /* There should be no unused kprobes can be reused without optimization */
892 static void reuse_unused_kprobe(struct kprobe *ap)
893 {
894         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
895         BUG_ON(kprobe_unused(ap));
896 }
897
898 static __kprobes void free_aggr_kprobe(struct kprobe *p)
899 {
900         arch_remove_kprobe(p);
901         kfree(p);
902 }
903
904 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
905 {
906         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
907 }
908 #endif /* CONFIG_OPTPROBES */
909
910 #ifdef CONFIG_KPROBES_ON_FTRACE
911 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
912         .func = kprobe_ftrace_handler,
913         .flags = FTRACE_OPS_FL_SAVE_REGS,
914 };
915 static int kprobe_ftrace_enabled;
916
917 /* Must ensure p->addr is really on ftrace */
918 static int __kprobes prepare_kprobe(struct kprobe *p)
919 {
920         if (!kprobe_ftrace(p))
921                 return arch_prepare_kprobe(p);
922
923         return arch_prepare_kprobe_ftrace(p);
924 }
925
926 /* Caller must lock kprobe_mutex */
927 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
928 {
929         int ret;
930
931         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
932                                    (unsigned long)p->addr, 0, 0);
933         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
934         kprobe_ftrace_enabled++;
935         if (kprobe_ftrace_enabled == 1) {
936                 ret = register_ftrace_function(&kprobe_ftrace_ops);
937                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
938         }
939 }
940
941 /* Caller must lock kprobe_mutex */
942 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
943 {
944         int ret;
945
946         kprobe_ftrace_enabled--;
947         if (kprobe_ftrace_enabled == 0) {
948                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
949                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
950         }
951         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
952                            (unsigned long)p->addr, 1, 0);
953         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
954 }
955 #else   /* !CONFIG_KPROBES_ON_FTRACE */
956 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
957 #define arm_kprobe_ftrace(p)    do {} while (0)
958 #define disarm_kprobe_ftrace(p) do {} while (0)
959 #endif
960
961 /* Arm a kprobe with text_mutex */
962 static void __kprobes arm_kprobe(struct kprobe *kp)
963 {
964         if (unlikely(kprobe_ftrace(kp))) {
965                 arm_kprobe_ftrace(kp);
966                 return;
967         }
968         /*
969          * Here, since __arm_kprobe() doesn't use stop_machine(),
970          * this doesn't cause deadlock on text_mutex. So, we don't
971          * need get_online_cpus().
972          */
973         mutex_lock(&text_mutex);
974         __arm_kprobe(kp);
975         mutex_unlock(&text_mutex);
976 }
977
978 /* Disarm a kprobe with text_mutex */
979 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
980 {
981         if (unlikely(kprobe_ftrace(kp))) {
982                 disarm_kprobe_ftrace(kp);
983                 return;
984         }
985         /* Ditto */
986         mutex_lock(&text_mutex);
987         __disarm_kprobe(kp, reopt);
988         mutex_unlock(&text_mutex);
989 }
990
991 /*
992  * Aggregate handlers for multiple kprobes support - these handlers
993  * take care of invoking the individual kprobe handlers on p->list
994  */
995 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
996 {
997         struct kprobe *kp;
998
999         list_for_each_entry_rcu(kp, &p->list, list) {
1000                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1001                         set_kprobe_instance(kp);
1002                         if (kp->pre_handler(kp, regs))
1003                                 return 1;
1004                 }
1005                 reset_kprobe_instance();
1006         }
1007         return 0;
1008 }
1009
1010 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1011                                         unsigned long flags)
1012 {
1013         struct kprobe *kp;
1014
1015         list_for_each_entry_rcu(kp, &p->list, list) {
1016                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1017                         set_kprobe_instance(kp);
1018                         kp->post_handler(kp, regs, flags);
1019                         reset_kprobe_instance();
1020                 }
1021         }
1022 }
1023
1024 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1025                                         int trapnr)
1026 {
1027         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1028
1029         /*
1030          * if we faulted "during" the execution of a user specified
1031          * probe handler, invoke just that probe's fault handler
1032          */
1033         if (cur && cur->fault_handler) {
1034                 if (cur->fault_handler(cur, regs, trapnr))
1035                         return 1;
1036         }
1037         return 0;
1038 }
1039
1040 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1041 {
1042         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1043         int ret = 0;
1044
1045         if (cur && cur->break_handler) {
1046                 if (cur->break_handler(cur, regs))
1047                         ret = 1;
1048         }
1049         reset_kprobe_instance();
1050         return ret;
1051 }
1052
1053 /* Walks the list and increments nmissed count for multiprobe case */
1054 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1055 {
1056         struct kprobe *kp;
1057         if (!kprobe_aggrprobe(p)) {
1058                 p->nmissed++;
1059         } else {
1060                 list_for_each_entry_rcu(kp, &p->list, list)
1061                         kp->nmissed++;
1062         }
1063         return;
1064 }
1065
1066 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1067                                 struct hlist_head *head)
1068 {
1069         struct kretprobe *rp = ri->rp;
1070
1071         /* remove rp inst off the rprobe_inst_table */
1072         hlist_del(&ri->hlist);
1073         INIT_HLIST_NODE(&ri->hlist);
1074         if (likely(rp)) {
1075                 raw_spin_lock(&rp->lock);
1076                 hlist_add_head(&ri->hlist, &rp->free_instances);
1077                 raw_spin_unlock(&rp->lock);
1078         } else
1079                 /* Unregistering */
1080                 hlist_add_head(&ri->hlist, head);
1081 }
1082
1083 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1084                          struct hlist_head **head, unsigned long *flags)
1085 __acquires(hlist_lock)
1086 {
1087         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1088         raw_spinlock_t *hlist_lock;
1089
1090         *head = &kretprobe_inst_table[hash];
1091         hlist_lock = kretprobe_table_lock_ptr(hash);
1092         raw_spin_lock_irqsave(hlist_lock, *flags);
1093 }
1094
1095 static void __kprobes kretprobe_table_lock(unsigned long hash,
1096         unsigned long *flags)
1097 __acquires(hlist_lock)
1098 {
1099         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1100         raw_spin_lock_irqsave(hlist_lock, *flags);
1101 }
1102
1103 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1104         unsigned long *flags)
1105 __releases(hlist_lock)
1106 {
1107         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1108         raw_spinlock_t *hlist_lock;
1109
1110         hlist_lock = kretprobe_table_lock_ptr(hash);
1111         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1112 }
1113
1114 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1115        unsigned long *flags)
1116 __releases(hlist_lock)
1117 {
1118         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1119         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1120 }
1121
1122 /*
1123  * This function is called from finish_task_switch when task tk becomes dead,
1124  * so that we can recycle any function-return probe instances associated
1125  * with this task. These left over instances represent probed functions
1126  * that have been called but will never return.
1127  */
1128 void __kprobes kprobe_flush_task(struct task_struct *tk)
1129 {
1130         struct kretprobe_instance *ri;
1131         struct hlist_head *head, empty_rp;
1132         struct hlist_node *tmp;
1133         unsigned long hash, flags = 0;
1134
1135         if (unlikely(!kprobes_initialized))
1136                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1137                 return;
1138
1139         INIT_HLIST_HEAD(&empty_rp);
1140         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1141         head = &kretprobe_inst_table[hash];
1142         kretprobe_table_lock(hash, &flags);
1143         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1144                 if (ri->task == tk)
1145                         recycle_rp_inst(ri, &empty_rp);
1146         }
1147         kretprobe_table_unlock(hash, &flags);
1148         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1149                 hlist_del(&ri->hlist);
1150                 kfree(ri);
1151         }
1152 }
1153
1154 static inline void free_rp_inst(struct kretprobe *rp)
1155 {
1156         struct kretprobe_instance *ri;
1157         struct hlist_node *next;
1158
1159         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1160                 hlist_del(&ri->hlist);
1161                 kfree(ri);
1162         }
1163 }
1164
1165 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1166 {
1167         unsigned long flags, hash;
1168         struct kretprobe_instance *ri;
1169         struct hlist_node *next;
1170         struct hlist_head *head;
1171
1172         /* No race here */
1173         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1174                 kretprobe_table_lock(hash, &flags);
1175                 head = &kretprobe_inst_table[hash];
1176                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1177                         if (ri->rp == rp)
1178                                 ri->rp = NULL;
1179                 }
1180                 kretprobe_table_unlock(hash, &flags);
1181         }
1182         free_rp_inst(rp);
1183 }
1184
1185 /*
1186 * Add the new probe to ap->list. Fail if this is the
1187 * second jprobe at the address - two jprobes can't coexist
1188 */
1189 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1190 {
1191         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1192
1193         if (p->break_handler || p->post_handler)
1194                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1195
1196         if (p->break_handler) {
1197                 if (ap->break_handler)
1198                         return -EEXIST;
1199                 list_add_tail_rcu(&p->list, &ap->list);
1200                 ap->break_handler = aggr_break_handler;
1201         } else
1202                 list_add_rcu(&p->list, &ap->list);
1203         if (p->post_handler && !ap->post_handler)
1204                 ap->post_handler = aggr_post_handler;
1205
1206         return 0;
1207 }
1208
1209 /*
1210  * Fill in the required fields of the "manager kprobe". Replace the
1211  * earlier kprobe in the hlist with the manager kprobe
1212  */
1213 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1214 {
1215         /* Copy p's insn slot to ap */
1216         copy_kprobe(p, ap);
1217         flush_insn_slot(ap);
1218         ap->addr = p->addr;
1219         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1220         ap->pre_handler = aggr_pre_handler;
1221         ap->fault_handler = aggr_fault_handler;
1222         /* We don't care the kprobe which has gone. */
1223         if (p->post_handler && !kprobe_gone(p))
1224                 ap->post_handler = aggr_post_handler;
1225         if (p->break_handler && !kprobe_gone(p))
1226                 ap->break_handler = aggr_break_handler;
1227
1228         INIT_LIST_HEAD(&ap->list);
1229         INIT_HLIST_NODE(&ap->hlist);
1230
1231         list_add_rcu(&p->list, &ap->list);
1232         hlist_replace_rcu(&p->hlist, &ap->hlist);
1233 }
1234
1235 /*
1236  * This is the second or subsequent kprobe at the address - handle
1237  * the intricacies
1238  */
1239 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1240                                           struct kprobe *p)
1241 {
1242         int ret = 0;
1243         struct kprobe *ap = orig_p;
1244
1245         /* For preparing optimization, jump_label_text_reserved() is called */
1246         jump_label_lock();
1247         /*
1248          * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1249          * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1250          */
1251         get_online_cpus();
1252         mutex_lock(&text_mutex);
1253
1254         if (!kprobe_aggrprobe(orig_p)) {
1255                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1256                 ap = alloc_aggr_kprobe(orig_p);
1257                 if (!ap) {
1258                         ret = -ENOMEM;
1259                         goto out;
1260                 }
1261                 init_aggr_kprobe(ap, orig_p);
1262         } else if (kprobe_unused(ap))
1263                 /* This probe is going to die. Rescue it */
1264                 reuse_unused_kprobe(ap);
1265
1266         if (kprobe_gone(ap)) {
1267                 /*
1268                  * Attempting to insert new probe at the same location that
1269                  * had a probe in the module vaddr area which already
1270                  * freed. So, the instruction slot has already been
1271                  * released. We need a new slot for the new probe.
1272                  */
1273                 ret = arch_prepare_kprobe(ap);
1274                 if (ret)
1275                         /*
1276                          * Even if fail to allocate new slot, don't need to
1277                          * free aggr_probe. It will be used next time, or
1278                          * freed by unregister_kprobe.
1279                          */
1280                         goto out;
1281
1282                 /* Prepare optimized instructions if possible. */
1283                 prepare_optimized_kprobe(ap);
1284
1285                 /*
1286                  * Clear gone flag to prevent allocating new slot again, and
1287                  * set disabled flag because it is not armed yet.
1288                  */
1289                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1290                             | KPROBE_FLAG_DISABLED;
1291         }
1292
1293         /* Copy ap's insn slot to p */
1294         copy_kprobe(ap, p);
1295         ret = add_new_kprobe(ap, p);
1296
1297 out:
1298         mutex_unlock(&text_mutex);
1299         put_online_cpus();
1300         jump_label_unlock();
1301
1302         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1303                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1304                 if (!kprobes_all_disarmed)
1305                         /* Arm the breakpoint again. */
1306                         arm_kprobe(ap);
1307         }
1308         return ret;
1309 }
1310
1311 static int __kprobes in_kprobes_functions(unsigned long addr)
1312 {
1313         struct kprobe_blackpoint *kb;
1314
1315         if (addr >= (unsigned long)__kprobes_text_start &&
1316             addr < (unsigned long)__kprobes_text_end)
1317                 return -EINVAL;
1318         /*
1319          * If there exists a kprobe_blacklist, verify and
1320          * fail any probe registration in the prohibited area
1321          */
1322         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1323                 if (kb->start_addr) {
1324                         if (addr >= kb->start_addr &&
1325                             addr < (kb->start_addr + kb->range))
1326                                 return -EINVAL;
1327                 }
1328         }
1329         return 0;
1330 }
1331
1332 /*
1333  * If we have a symbol_name argument, look it up and add the offset field
1334  * to it. This way, we can specify a relative address to a symbol.
1335  * This returns encoded errors if it fails to look up symbol or invalid
1336  * combination of parameters.
1337  */
1338 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1339 {
1340         kprobe_opcode_t *addr = p->addr;
1341
1342         if ((p->symbol_name && p->addr) ||
1343             (!p->symbol_name && !p->addr))
1344                 goto invalid;
1345
1346         if (p->symbol_name) {
1347                 kprobe_lookup_name(p->symbol_name, addr);
1348                 if (!addr)
1349                         return ERR_PTR(-ENOENT);
1350         }
1351
1352         addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1353         if (addr)
1354                 return addr;
1355
1356 invalid:
1357         return ERR_PTR(-EINVAL);
1358 }
1359
1360 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1361 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1362 {
1363         struct kprobe *ap, *list_p;
1364
1365         ap = get_kprobe(p->addr);
1366         if (unlikely(!ap))
1367                 return NULL;
1368
1369         if (p != ap) {
1370                 list_for_each_entry_rcu(list_p, &ap->list, list)
1371                         if (list_p == p)
1372                         /* kprobe p is a valid probe */
1373                                 goto valid;
1374                 return NULL;
1375         }
1376 valid:
1377         return ap;
1378 }
1379
1380 /* Return error if the kprobe is being re-registered */
1381 static inline int check_kprobe_rereg(struct kprobe *p)
1382 {
1383         int ret = 0;
1384
1385         mutex_lock(&kprobe_mutex);
1386         if (__get_valid_kprobe(p))
1387                 ret = -EINVAL;
1388         mutex_unlock(&kprobe_mutex);
1389
1390         return ret;
1391 }
1392
1393 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1394                                                struct module **probed_mod)
1395 {
1396         int ret = 0;
1397         unsigned long ftrace_addr;
1398
1399         /*
1400          * If the address is located on a ftrace nop, set the
1401          * breakpoint to the following instruction.
1402          */
1403         ftrace_addr = ftrace_location((unsigned long)p->addr);
1404         if (ftrace_addr) {
1405 #ifdef CONFIG_KPROBES_ON_FTRACE
1406                 /* Given address is not on the instruction boundary */
1407                 if ((unsigned long)p->addr != ftrace_addr)
1408                         return -EILSEQ;
1409                 p->flags |= KPROBE_FLAG_FTRACE;
1410 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1411                 return -EINVAL;
1412 #endif
1413         }
1414
1415         jump_label_lock();
1416         preempt_disable();
1417
1418         /* Ensure it is not in reserved area nor out of text */
1419         if (!kernel_text_address((unsigned long) p->addr) ||
1420             in_kprobes_functions((unsigned long) p->addr) ||
1421             jump_label_text_reserved(p->addr, p->addr)) {
1422                 ret = -EINVAL;
1423                 goto out;
1424         }
1425
1426         /* Check if are we probing a module */
1427         *probed_mod = __module_text_address((unsigned long) p->addr);
1428         if (*probed_mod) {
1429                 /*
1430                  * We must hold a refcount of the probed module while updating
1431                  * its code to prohibit unexpected unloading.
1432                  */
1433                 if (unlikely(!try_module_get(*probed_mod))) {
1434                         ret = -ENOENT;
1435                         goto out;
1436                 }
1437
1438                 /*
1439                  * If the module freed .init.text, we couldn't insert
1440                  * kprobes in there.
1441                  */
1442                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1443                     (*probed_mod)->state != MODULE_STATE_COMING) {
1444                         module_put(*probed_mod);
1445                         *probed_mod = NULL;
1446                         ret = -ENOENT;
1447                 }
1448         }
1449 out:
1450         preempt_enable();
1451         jump_label_unlock();
1452
1453         return ret;
1454 }
1455
1456 int __kprobes register_kprobe(struct kprobe *p)
1457 {
1458         int ret;
1459         struct kprobe *old_p;
1460         struct module *probed_mod;
1461         kprobe_opcode_t *addr;
1462
1463         /* Adjust probe address from symbol */
1464         addr = kprobe_addr(p);
1465         if (IS_ERR(addr))
1466                 return PTR_ERR(addr);
1467         p->addr = addr;
1468
1469         ret = check_kprobe_rereg(p);
1470         if (ret)
1471                 return ret;
1472
1473         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1474         p->flags &= KPROBE_FLAG_DISABLED;
1475         p->nmissed = 0;
1476         INIT_LIST_HEAD(&p->list);
1477
1478         ret = check_kprobe_address_safe(p, &probed_mod);
1479         if (ret)
1480                 return ret;
1481
1482         mutex_lock(&kprobe_mutex);
1483
1484         old_p = get_kprobe(p->addr);
1485         if (old_p) {
1486                 /* Since this may unoptimize old_p, locking text_mutex. */
1487                 ret = register_aggr_kprobe(old_p, p);
1488                 goto out;
1489         }
1490
1491         mutex_lock(&text_mutex);        /* Avoiding text modification */
1492         ret = prepare_kprobe(p);
1493         mutex_unlock(&text_mutex);
1494         if (ret)
1495                 goto out;
1496
1497         INIT_HLIST_NODE(&p->hlist);
1498         hlist_add_head_rcu(&p->hlist,
1499                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1500
1501         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1502                 arm_kprobe(p);
1503
1504         /* Try to optimize kprobe */
1505         try_to_optimize_kprobe(p);
1506
1507 out:
1508         mutex_unlock(&kprobe_mutex);
1509
1510         if (probed_mod)
1511                 module_put(probed_mod);
1512
1513         return ret;
1514 }
1515 EXPORT_SYMBOL_GPL(register_kprobe);
1516
1517 /* Check if all probes on the aggrprobe are disabled */
1518 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1519 {
1520         struct kprobe *kp;
1521
1522         list_for_each_entry_rcu(kp, &ap->list, list)
1523                 if (!kprobe_disabled(kp))
1524                         /*
1525                          * There is an active probe on the list.
1526                          * We can't disable this ap.
1527                          */
1528                         return 0;
1529
1530         return 1;
1531 }
1532
1533 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1534 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1535 {
1536         struct kprobe *orig_p;
1537
1538         /* Get an original kprobe for return */
1539         orig_p = __get_valid_kprobe(p);
1540         if (unlikely(orig_p == NULL))
1541                 return NULL;
1542
1543         if (!kprobe_disabled(p)) {
1544                 /* Disable probe if it is a child probe */
1545                 if (p != orig_p)
1546                         p->flags |= KPROBE_FLAG_DISABLED;
1547
1548                 /* Try to disarm and disable this/parent probe */
1549                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1550                         disarm_kprobe(orig_p, true);
1551                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1552                 }
1553         }
1554
1555         return orig_p;
1556 }
1557
1558 /*
1559  * Unregister a kprobe without a scheduler synchronization.
1560  */
1561 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1562 {
1563         struct kprobe *ap, *list_p;
1564
1565         /* Disable kprobe. This will disarm it if needed. */
1566         ap = __disable_kprobe(p);
1567         if (ap == NULL)
1568                 return -EINVAL;
1569
1570         if (ap == p)
1571                 /*
1572                  * This probe is an independent(and non-optimized) kprobe
1573                  * (not an aggrprobe). Remove from the hash list.
1574                  */
1575                 goto disarmed;
1576
1577         /* Following process expects this probe is an aggrprobe */
1578         WARN_ON(!kprobe_aggrprobe(ap));
1579
1580         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1581                 /*
1582                  * !disarmed could be happen if the probe is under delayed
1583                  * unoptimizing.
1584                  */
1585                 goto disarmed;
1586         else {
1587                 /* If disabling probe has special handlers, update aggrprobe */
1588                 if (p->break_handler && !kprobe_gone(p))
1589                         ap->break_handler = NULL;
1590                 if (p->post_handler && !kprobe_gone(p)) {
1591                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1592                                 if ((list_p != p) && (list_p->post_handler))
1593                                         goto noclean;
1594                         }
1595                         ap->post_handler = NULL;
1596                 }
1597 noclean:
1598                 /*
1599                  * Remove from the aggrprobe: this path will do nothing in
1600                  * __unregister_kprobe_bottom().
1601                  */
1602                 list_del_rcu(&p->list);
1603                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1604                         /*
1605                          * Try to optimize this probe again, because post
1606                          * handler may have been changed.
1607                          */
1608                         optimize_kprobe(ap);
1609         }
1610         return 0;
1611
1612 disarmed:
1613         BUG_ON(!kprobe_disarmed(ap));
1614         hlist_del_rcu(&ap->hlist);
1615         return 0;
1616 }
1617
1618 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1619 {
1620         struct kprobe *ap;
1621
1622         if (list_empty(&p->list))
1623                 /* This is an independent kprobe */
1624                 arch_remove_kprobe(p);
1625         else if (list_is_singular(&p->list)) {
1626                 /* This is the last child of an aggrprobe */
1627                 ap = list_entry(p->list.next, struct kprobe, list);
1628                 list_del(&p->list);
1629                 free_aggr_kprobe(ap);
1630         }
1631         /* Otherwise, do nothing. */
1632 }
1633
1634 int __kprobes register_kprobes(struct kprobe **kps, int num)
1635 {
1636         int i, ret = 0;
1637
1638         if (num <= 0)
1639                 return -EINVAL;
1640         for (i = 0; i < num; i++) {
1641                 ret = register_kprobe(kps[i]);
1642                 if (ret < 0) {
1643                         if (i > 0)
1644                                 unregister_kprobes(kps, i);
1645                         break;
1646                 }
1647         }
1648         return ret;
1649 }
1650 EXPORT_SYMBOL_GPL(register_kprobes);
1651
1652 void __kprobes unregister_kprobe(struct kprobe *p)
1653 {
1654         unregister_kprobes(&p, 1);
1655 }
1656 EXPORT_SYMBOL_GPL(unregister_kprobe);
1657
1658 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1659 {
1660         int i;
1661
1662         if (num <= 0)
1663                 return;
1664         mutex_lock(&kprobe_mutex);
1665         for (i = 0; i < num; i++)
1666                 if (__unregister_kprobe_top(kps[i]) < 0)
1667                         kps[i]->addr = NULL;
1668         mutex_unlock(&kprobe_mutex);
1669
1670         synchronize_sched();
1671         for (i = 0; i < num; i++)
1672                 if (kps[i]->addr)
1673                         __unregister_kprobe_bottom(kps[i]);
1674 }
1675 EXPORT_SYMBOL_GPL(unregister_kprobes);
1676
1677 static struct notifier_block kprobe_exceptions_nb = {
1678         .notifier_call = kprobe_exceptions_notify,
1679         .priority = 0x7fffffff /* we need to be notified first */
1680 };
1681
1682 unsigned long __weak arch_deref_entry_point(void *entry)
1683 {
1684         return (unsigned long)entry;
1685 }
1686
1687 int __kprobes register_jprobes(struct jprobe **jps, int num)
1688 {
1689         struct jprobe *jp;
1690         int ret = 0, i;
1691
1692         if (num <= 0)
1693                 return -EINVAL;
1694         for (i = 0; i < num; i++) {
1695                 unsigned long addr, offset;
1696                 jp = jps[i];
1697                 addr = arch_deref_entry_point(jp->entry);
1698
1699                 /* Verify probepoint is a function entry point */
1700                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1701                     offset == 0) {
1702                         jp->kp.pre_handler = setjmp_pre_handler;
1703                         jp->kp.break_handler = longjmp_break_handler;
1704                         ret = register_kprobe(&jp->kp);
1705                 } else
1706                         ret = -EINVAL;
1707
1708                 if (ret < 0) {
1709                         if (i > 0)
1710                                 unregister_jprobes(jps, i);
1711                         break;
1712                 }
1713         }
1714         return ret;
1715 }
1716 EXPORT_SYMBOL_GPL(register_jprobes);
1717
1718 int __kprobes register_jprobe(struct jprobe *jp)
1719 {
1720         return register_jprobes(&jp, 1);
1721 }
1722 EXPORT_SYMBOL_GPL(register_jprobe);
1723
1724 void __kprobes unregister_jprobe(struct jprobe *jp)
1725 {
1726         unregister_jprobes(&jp, 1);
1727 }
1728 EXPORT_SYMBOL_GPL(unregister_jprobe);
1729
1730 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1731 {
1732         int i;
1733
1734         if (num <= 0)
1735                 return;
1736         mutex_lock(&kprobe_mutex);
1737         for (i = 0; i < num; i++)
1738                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1739                         jps[i]->kp.addr = NULL;
1740         mutex_unlock(&kprobe_mutex);
1741
1742         synchronize_sched();
1743         for (i = 0; i < num; i++) {
1744                 if (jps[i]->kp.addr)
1745                         __unregister_kprobe_bottom(&jps[i]->kp);
1746         }
1747 }
1748 EXPORT_SYMBOL_GPL(unregister_jprobes);
1749
1750 #ifdef CONFIG_KRETPROBES
1751 /*
1752  * This kprobe pre_handler is registered with every kretprobe. When probe
1753  * hits it will set up the return probe.
1754  */
1755 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1756                                            struct pt_regs *regs)
1757 {
1758         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1759         unsigned long hash, flags = 0;
1760         struct kretprobe_instance *ri;
1761
1762         /*TODO: consider to only swap the RA after the last pre_handler fired */
1763         hash = hash_ptr(current, KPROBE_HASH_BITS);
1764         raw_spin_lock_irqsave(&rp->lock, flags);
1765         if (!hlist_empty(&rp->free_instances)) {
1766                 ri = hlist_entry(rp->free_instances.first,
1767                                 struct kretprobe_instance, hlist);
1768                 hlist_del(&ri->hlist);
1769                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1770
1771                 ri->rp = rp;
1772                 ri->task = current;
1773
1774                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1775                         raw_spin_lock_irqsave(&rp->lock, flags);
1776                         hlist_add_head(&ri->hlist, &rp->free_instances);
1777                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1778                         return 0;
1779                 }
1780
1781                 arch_prepare_kretprobe(ri, regs);
1782
1783                 /* XXX(hch): why is there no hlist_move_head? */
1784                 INIT_HLIST_NODE(&ri->hlist);
1785                 kretprobe_table_lock(hash, &flags);
1786                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1787                 kretprobe_table_unlock(hash, &flags);
1788         } else {
1789                 rp->nmissed++;
1790                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1791         }
1792         return 0;
1793 }
1794
1795 int __kprobes register_kretprobe(struct kretprobe *rp)
1796 {
1797         int ret = 0;
1798         struct kretprobe_instance *inst;
1799         int i;
1800         void *addr;
1801
1802         if (kretprobe_blacklist_size) {
1803                 addr = kprobe_addr(&rp->kp);
1804                 if (IS_ERR(addr))
1805                         return PTR_ERR(addr);
1806
1807                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1808                         if (kretprobe_blacklist[i].addr == addr)
1809                                 return -EINVAL;
1810                 }
1811         }
1812
1813         rp->kp.pre_handler = pre_handler_kretprobe;
1814         rp->kp.post_handler = NULL;
1815         rp->kp.fault_handler = NULL;
1816         rp->kp.break_handler = NULL;
1817
1818         /* Pre-allocate memory for max kretprobe instances */
1819         if (rp->maxactive <= 0) {
1820 #ifdef CONFIG_PREEMPT
1821                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1822 #else
1823                 rp->maxactive = num_possible_cpus();
1824 #endif
1825         }
1826         raw_spin_lock_init(&rp->lock);
1827         INIT_HLIST_HEAD(&rp->free_instances);
1828         for (i = 0; i < rp->maxactive; i++) {
1829                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1830                                rp->data_size, GFP_KERNEL);
1831                 if (inst == NULL) {
1832                         free_rp_inst(rp);
1833                         return -ENOMEM;
1834                 }
1835                 INIT_HLIST_NODE(&inst->hlist);
1836                 hlist_add_head(&inst->hlist, &rp->free_instances);
1837         }
1838
1839         rp->nmissed = 0;
1840         /* Establish function entry probe point */
1841         ret = register_kprobe(&rp->kp);
1842         if (ret != 0)
1843                 free_rp_inst(rp);
1844         return ret;
1845 }
1846 EXPORT_SYMBOL_GPL(register_kretprobe);
1847
1848 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1849 {
1850         int ret = 0, i;
1851
1852         if (num <= 0)
1853                 return -EINVAL;
1854         for (i = 0; i < num; i++) {
1855                 ret = register_kretprobe(rps[i]);
1856                 if (ret < 0) {
1857                         if (i > 0)
1858                                 unregister_kretprobes(rps, i);
1859                         break;
1860                 }
1861         }
1862         return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(register_kretprobes);
1865
1866 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1867 {
1868         unregister_kretprobes(&rp, 1);
1869 }
1870 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1871
1872 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1873 {
1874         int i;
1875
1876         if (num <= 0)
1877                 return;
1878         mutex_lock(&kprobe_mutex);
1879         for (i = 0; i < num; i++)
1880                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1881                         rps[i]->kp.addr = NULL;
1882         mutex_unlock(&kprobe_mutex);
1883
1884         synchronize_sched();
1885         for (i = 0; i < num; i++) {
1886                 if (rps[i]->kp.addr) {
1887                         __unregister_kprobe_bottom(&rps[i]->kp);
1888                         cleanup_rp_inst(rps[i]);
1889                 }
1890         }
1891 }
1892 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1893
1894 #else /* CONFIG_KRETPROBES */
1895 int __kprobes register_kretprobe(struct kretprobe *rp)
1896 {
1897         return -ENOSYS;
1898 }
1899 EXPORT_SYMBOL_GPL(register_kretprobe);
1900
1901 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1902 {
1903         return -ENOSYS;
1904 }
1905 EXPORT_SYMBOL_GPL(register_kretprobes);
1906
1907 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1908 {
1909 }
1910 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1911
1912 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1913 {
1914 }
1915 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1916
1917 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1918                                            struct pt_regs *regs)
1919 {
1920         return 0;
1921 }
1922
1923 #endif /* CONFIG_KRETPROBES */
1924
1925 /* Set the kprobe gone and remove its instruction buffer. */
1926 static void __kprobes kill_kprobe(struct kprobe *p)
1927 {
1928         struct kprobe *kp;
1929
1930         p->flags |= KPROBE_FLAG_GONE;
1931         if (kprobe_aggrprobe(p)) {
1932                 /*
1933                  * If this is an aggr_kprobe, we have to list all the
1934                  * chained probes and mark them GONE.
1935                  */
1936                 list_for_each_entry_rcu(kp, &p->list, list)
1937                         kp->flags |= KPROBE_FLAG_GONE;
1938                 p->post_handler = NULL;
1939                 p->break_handler = NULL;
1940                 kill_optimized_kprobe(p);
1941         }
1942         /*
1943          * Here, we can remove insn_slot safely, because no thread calls
1944          * the original probed function (which will be freed soon) any more.
1945          */
1946         arch_remove_kprobe(p);
1947 }
1948
1949 /* Disable one kprobe */
1950 int __kprobes disable_kprobe(struct kprobe *kp)
1951 {
1952         int ret = 0;
1953
1954         mutex_lock(&kprobe_mutex);
1955
1956         /* Disable this kprobe */
1957         if (__disable_kprobe(kp) == NULL)
1958                 ret = -EINVAL;
1959
1960         mutex_unlock(&kprobe_mutex);
1961         return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(disable_kprobe);
1964
1965 /* Enable one kprobe */
1966 int __kprobes enable_kprobe(struct kprobe *kp)
1967 {
1968         int ret = 0;
1969         struct kprobe *p;
1970
1971         mutex_lock(&kprobe_mutex);
1972
1973         /* Check whether specified probe is valid. */
1974         p = __get_valid_kprobe(kp);
1975         if (unlikely(p == NULL)) {
1976                 ret = -EINVAL;
1977                 goto out;
1978         }
1979
1980         if (kprobe_gone(kp)) {
1981                 /* This kprobe has gone, we couldn't enable it. */
1982                 ret = -EINVAL;
1983                 goto out;
1984         }
1985
1986         if (p != kp)
1987                 kp->flags &= ~KPROBE_FLAG_DISABLED;
1988
1989         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1990                 p->flags &= ~KPROBE_FLAG_DISABLED;
1991                 arm_kprobe(p);
1992         }
1993 out:
1994         mutex_unlock(&kprobe_mutex);
1995         return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(enable_kprobe);
1998
1999 void __kprobes dump_kprobe(struct kprobe *kp)
2000 {
2001         printk(KERN_WARNING "Dumping kprobe:\n");
2002         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2003                kp->symbol_name, kp->addr, kp->offset);
2004 }
2005
2006 /* Module notifier call back, checking kprobes on the module */
2007 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2008                                              unsigned long val, void *data)
2009 {
2010         struct module *mod = data;
2011         struct hlist_head *head;
2012         struct kprobe *p;
2013         unsigned int i;
2014         int checkcore = (val == MODULE_STATE_GOING);
2015
2016         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2017                 return NOTIFY_DONE;
2018
2019         /*
2020          * When MODULE_STATE_GOING was notified, both of module .text and
2021          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2022          * notified, only .init.text section would be freed. We need to
2023          * disable kprobes which have been inserted in the sections.
2024          */
2025         mutex_lock(&kprobe_mutex);
2026         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2027                 head = &kprobe_table[i];
2028                 hlist_for_each_entry_rcu(p, head, hlist)
2029                         if (within_module_init((unsigned long)p->addr, mod) ||
2030                             (checkcore &&
2031                              within_module_core((unsigned long)p->addr, mod))) {
2032                                 /*
2033                                  * The vaddr this probe is installed will soon
2034                                  * be vfreed buy not synced to disk. Hence,
2035                                  * disarming the breakpoint isn't needed.
2036                                  */
2037                                 kill_kprobe(p);
2038                         }
2039         }
2040         mutex_unlock(&kprobe_mutex);
2041         return NOTIFY_DONE;
2042 }
2043
2044 static struct notifier_block kprobe_module_nb = {
2045         .notifier_call = kprobes_module_callback,
2046         .priority = 0
2047 };
2048
2049 static int __init init_kprobes(void)
2050 {
2051         int i, err = 0;
2052         unsigned long offset = 0, size = 0;
2053         char *modname, namebuf[128];
2054         const char *symbol_name;
2055         void *addr;
2056         struct kprobe_blackpoint *kb;
2057
2058         /* FIXME allocate the probe table, currently defined statically */
2059         /* initialize all list heads */
2060         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2061                 INIT_HLIST_HEAD(&kprobe_table[i]);
2062                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2063                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2064         }
2065
2066         /*
2067          * Lookup and populate the kprobe_blacklist.
2068          *
2069          * Unlike the kretprobe blacklist, we'll need to determine
2070          * the range of addresses that belong to the said functions,
2071          * since a kprobe need not necessarily be at the beginning
2072          * of a function.
2073          */
2074         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2075                 kprobe_lookup_name(kb->name, addr);
2076                 if (!addr)
2077                         continue;
2078
2079                 kb->start_addr = (unsigned long)addr;
2080                 symbol_name = kallsyms_lookup(kb->start_addr,
2081                                 &size, &offset, &modname, namebuf);
2082                 if (!symbol_name)
2083                         kb->range = 0;
2084                 else
2085                         kb->range = size;
2086         }
2087
2088         if (kretprobe_blacklist_size) {
2089                 /* lookup the function address from its name */
2090                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2091                         kprobe_lookup_name(kretprobe_blacklist[i].name,
2092                                            kretprobe_blacklist[i].addr);
2093                         if (!kretprobe_blacklist[i].addr)
2094                                 printk("kretprobe: lookup failed: %s\n",
2095                                        kretprobe_blacklist[i].name);
2096                 }
2097         }
2098
2099 #if defined(CONFIG_OPTPROBES)
2100 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2101         /* Init kprobe_optinsn_slots */
2102         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2103 #endif
2104         /* By default, kprobes can be optimized */
2105         kprobes_allow_optimization = true;
2106 #endif
2107
2108         /* By default, kprobes are armed */
2109         kprobes_all_disarmed = false;
2110
2111         err = arch_init_kprobes();
2112         if (!err)
2113                 err = register_die_notifier(&kprobe_exceptions_nb);
2114         if (!err)
2115                 err = register_module_notifier(&kprobe_module_nb);
2116
2117         kprobes_initialized = (err == 0);
2118
2119         if (!err)
2120                 init_test_probes();
2121         return err;
2122 }
2123
2124 #ifdef CONFIG_DEBUG_FS
2125 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2126                 const char *sym, int offset, char *modname, struct kprobe *pp)
2127 {
2128         char *kprobe_type;
2129
2130         if (p->pre_handler == pre_handler_kretprobe)
2131                 kprobe_type = "r";
2132         else if (p->pre_handler == setjmp_pre_handler)
2133                 kprobe_type = "j";
2134         else
2135                 kprobe_type = "k";
2136
2137         if (sym)
2138                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2139                         p->addr, kprobe_type, sym, offset,
2140                         (modname ? modname : " "));
2141         else
2142                 seq_printf(pi, "%p  %s  %p ",
2143                         p->addr, kprobe_type, p->addr);
2144
2145         if (!pp)
2146                 pp = p;
2147         seq_printf(pi, "%s%s%s%s\n",
2148                 (kprobe_gone(p) ? "[GONE]" : ""),
2149                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2150                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2151                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2152 }
2153
2154 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2155 {
2156         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2157 }
2158
2159 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2160 {
2161         (*pos)++;
2162         if (*pos >= KPROBE_TABLE_SIZE)
2163                 return NULL;
2164         return pos;
2165 }
2166
2167 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2168 {
2169         /* Nothing to do */
2170 }
2171
2172 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2173 {
2174         struct hlist_head *head;
2175         struct kprobe *p, *kp;
2176         const char *sym = NULL;
2177         unsigned int i = *(loff_t *) v;
2178         unsigned long offset = 0;
2179         char *modname, namebuf[128];
2180
2181         head = &kprobe_table[i];
2182         preempt_disable();
2183         hlist_for_each_entry_rcu(p, head, hlist) {
2184                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2185                                         &offset, &modname, namebuf);
2186                 if (kprobe_aggrprobe(p)) {
2187                         list_for_each_entry_rcu(kp, &p->list, list)
2188                                 report_probe(pi, kp, sym, offset, modname, p);
2189                 } else
2190                         report_probe(pi, p, sym, offset, modname, NULL);
2191         }
2192         preempt_enable();
2193         return 0;
2194 }
2195
2196 static const struct seq_operations kprobes_seq_ops = {
2197         .start = kprobe_seq_start,
2198         .next  = kprobe_seq_next,
2199         .stop  = kprobe_seq_stop,
2200         .show  = show_kprobe_addr
2201 };
2202
2203 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2204 {
2205         return seq_open(filp, &kprobes_seq_ops);
2206 }
2207
2208 static const struct file_operations debugfs_kprobes_operations = {
2209         .open           = kprobes_open,
2210         .read           = seq_read,
2211         .llseek         = seq_lseek,
2212         .release        = seq_release,
2213 };
2214
2215 static void __kprobes arm_all_kprobes(void)
2216 {
2217         struct hlist_head *head;
2218         struct kprobe *p;
2219         unsigned int i;
2220
2221         mutex_lock(&kprobe_mutex);
2222
2223         /* If kprobes are armed, just return */
2224         if (!kprobes_all_disarmed)
2225                 goto already_enabled;
2226
2227         /* Arming kprobes doesn't optimize kprobe itself */
2228         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2229                 head = &kprobe_table[i];
2230                 hlist_for_each_entry_rcu(p, head, hlist)
2231                         if (!kprobe_disabled(p))
2232                                 arm_kprobe(p);
2233         }
2234
2235         kprobes_all_disarmed = false;
2236         printk(KERN_INFO "Kprobes globally enabled\n");
2237
2238 already_enabled:
2239         mutex_unlock(&kprobe_mutex);
2240         return;
2241 }
2242
2243 static void __kprobes disarm_all_kprobes(void)
2244 {
2245         struct hlist_head *head;
2246         struct kprobe *p;
2247         unsigned int i;
2248
2249         mutex_lock(&kprobe_mutex);
2250
2251         /* If kprobes are already disarmed, just return */
2252         if (kprobes_all_disarmed) {
2253                 mutex_unlock(&kprobe_mutex);
2254                 return;
2255         }
2256
2257         kprobes_all_disarmed = true;
2258         printk(KERN_INFO "Kprobes globally disabled\n");
2259
2260         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2261                 head = &kprobe_table[i];
2262                 hlist_for_each_entry_rcu(p, head, hlist) {
2263                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2264                                 disarm_kprobe(p, false);
2265                 }
2266         }
2267         mutex_unlock(&kprobe_mutex);
2268
2269         /* Wait for disarming all kprobes by optimizer */
2270         wait_for_kprobe_optimizer();
2271 }
2272
2273 /*
2274  * XXX: The debugfs bool file interface doesn't allow for callbacks
2275  * when the bool state is switched. We can reuse that facility when
2276  * available
2277  */
2278 static ssize_t read_enabled_file_bool(struct file *file,
2279                char __user *user_buf, size_t count, loff_t *ppos)
2280 {
2281         char buf[3];
2282
2283         if (!kprobes_all_disarmed)
2284                 buf[0] = '1';
2285         else
2286                 buf[0] = '0';
2287         buf[1] = '\n';
2288         buf[2] = 0x00;
2289         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2290 }
2291
2292 static ssize_t write_enabled_file_bool(struct file *file,
2293                const char __user *user_buf, size_t count, loff_t *ppos)
2294 {
2295         char buf[32];
2296         size_t buf_size;
2297
2298         buf_size = min(count, (sizeof(buf)-1));
2299         if (copy_from_user(buf, user_buf, buf_size))
2300                 return -EFAULT;
2301
2302         buf[buf_size] = '\0';
2303         switch (buf[0]) {
2304         case 'y':
2305         case 'Y':
2306         case '1':
2307                 arm_all_kprobes();
2308                 break;
2309         case 'n':
2310         case 'N':
2311         case '0':
2312                 disarm_all_kprobes();
2313                 break;
2314         default:
2315                 return -EINVAL;
2316         }
2317
2318         return count;
2319 }
2320
2321 static const struct file_operations fops_kp = {
2322         .read =         read_enabled_file_bool,
2323         .write =        write_enabled_file_bool,
2324         .llseek =       default_llseek,
2325 };
2326
2327 static int __kprobes debugfs_kprobe_init(void)
2328 {
2329         struct dentry *dir, *file;
2330         unsigned int value = 1;
2331
2332         dir = debugfs_create_dir("kprobes", NULL);
2333         if (!dir)
2334                 return -ENOMEM;
2335
2336         file = debugfs_create_file("list", 0444, dir, NULL,
2337                                 &debugfs_kprobes_operations);
2338         if (!file) {
2339                 debugfs_remove(dir);
2340                 return -ENOMEM;
2341         }
2342
2343         file = debugfs_create_file("enabled", 0600, dir,
2344                                         &value, &fops_kp);
2345         if (!file) {
2346                 debugfs_remove(dir);
2347                 return -ENOMEM;
2348         }
2349
2350         return 0;
2351 }
2352
2353 late_initcall(debugfs_kprobe_init);
2354 #endif /* CONFIG_DEBUG_FS */
2355
2356 module_init(init_kprobes);
2357
2358 /* defined in arch/.../kernel/kprobes.c */
2359 EXPORT_SYMBOL_GPL(jprobe_return);