bpf: fix unconnected udp hooks
[platform/kernel/linux-rpi.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         /*
487          * The optimization/unoptimization refers online_cpus via
488          * stop_machine() and cpu-hotplug modifies online_cpus.
489          * And same time, text_mutex will be held in cpu-hotplug and here.
490          * This combination can cause a deadlock (cpu-hotplug try to lock
491          * text_mutex but stop_machine can not be done because online_cpus
492          * has been changed)
493          * To avoid this deadlock, caller must have locked cpu hotplug
494          * for preventing cpu-hotplug outside of text_mutex locking.
495          */
496         lockdep_assert_cpus_held();
497
498         /* Optimization never be done when disarmed */
499         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500             list_empty(&optimizing_list))
501                 return;
502
503         mutex_lock(&text_mutex);
504         arch_optimize_kprobes(&optimizing_list);
505         mutex_unlock(&text_mutex);
506 }
507
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         mutex_lock(&text_mutex);
524         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525         /* Loop free_list for disarming */
526         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527                 /* Disarm probes if marked disabled */
528                 if (kprobe_disabled(&op->kp))
529                         arch_disarm_kprobe(&op->kp);
530                 if (kprobe_unused(&op->kp)) {
531                         /*
532                          * Remove unused probes from hash list. After waiting
533                          * for synchronization, these probes are reclaimed.
534                          * (reclaiming is done by do_free_cleaned_kprobes.)
535                          */
536                         hlist_del_rcu(&op->kp.hlist);
537                 } else
538                         list_del_init(&op->list);
539         }
540         mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 BUG_ON(!kprobe_unused(&op->kp));
550                 list_del_init(&op->list);
551                 free_aggr_kprobe(&op->kp);
552         }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564         mutex_lock(&kprobe_mutex);
565         cpus_read_lock();
566         /* Lock modules while optimizing kprobes */
567         mutex_lock(&module_mutex);
568
569         /*
570          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571          * kprobes before waiting for quiesence period.
572          */
573         do_unoptimize_kprobes();
574
575         /*
576          * Step 2: Wait for quiesence period to ensure all potentially
577          * preempted tasks to have normally scheduled. Because optprobe
578          * may modify multiple instructions, there is a chance that Nth
579          * instruction is preempted. In that case, such tasks can return
580          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581          * Note that on non-preemptive kernel, this is transparently converted
582          * to synchronoze_sched() to wait for all interrupts to have completed.
583          */
584         synchronize_rcu_tasks();
585
586         /* Step 3: Optimize kprobes after quiesence period */
587         do_optimize_kprobes();
588
589         /* Step 4: Free cleaned kprobes after quiesence period */
590         do_free_cleaned_kprobes();
591
592         mutex_unlock(&module_mutex);
593         cpus_read_unlock();
594         mutex_unlock(&kprobe_mutex);
595
596         /* Step 5: Kick optimizer again if needed */
597         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598                 kick_kprobe_optimizer();
599 }
600
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
603 {
604         mutex_lock(&kprobe_mutex);
605
606         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607                 mutex_unlock(&kprobe_mutex);
608
609                 /* this will also make optimizing_work execute immmediately */
610                 flush_delayed_work(&optimizing_work);
611                 /* @optimizing_work might not have been queued yet, relax */
612                 cpu_relax();
613
614                 mutex_lock(&kprobe_mutex);
615         }
616
617         mutex_unlock(&kprobe_mutex);
618 }
619
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
622 {
623         struct optimized_kprobe *op;
624
625         /* Check if the kprobe is disabled or not ready for optimization. */
626         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627             (kprobe_disabled(p) || kprobes_all_disarmed))
628                 return;
629
630         /* kprobes with post_handler can not be optimized */
631         if (p->post_handler)
632                 return;
633
634         op = container_of(p, struct optimized_kprobe, kp);
635
636         /* Check there is no other kprobes at the optimized instructions */
637         if (arch_check_optimized_kprobe(op) < 0)
638                 return;
639
640         /* Check if it is already optimized. */
641         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642                 return;
643         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645         if (!list_empty(&op->list))
646                 /* This is under unoptimizing. Just dequeue the probe */
647                 list_del_init(&op->list);
648         else {
649                 list_add(&op->list, &optimizing_list);
650                 kick_kprobe_optimizer();
651         }
652 }
653
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656 {
657         lockdep_assert_cpus_held();
658         arch_unoptimize_kprobe(op);
659         if (kprobe_disabled(&op->kp))
660                 arch_disarm_kprobe(&op->kp);
661 }
662
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666         struct optimized_kprobe *op;
667
668         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669                 return; /* This is not an optprobe nor optimized */
670
671         op = container_of(p, struct optimized_kprobe, kp);
672         if (!kprobe_optimized(p)) {
673                 /* Unoptimized or unoptimizing case */
674                 if (force && !list_empty(&op->list)) {
675                         /*
676                          * Only if this is unoptimizing kprobe and forced,
677                          * forcibly unoptimize it. (No need to unoptimize
678                          * unoptimized kprobe again :)
679                          */
680                         list_del_init(&op->list);
681                         force_unoptimize_kprobe(op);
682                 }
683                 return;
684         }
685
686         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687         if (!list_empty(&op->list)) {
688                 /* Dequeue from the optimization queue */
689                 list_del_init(&op->list);
690                 return;
691         }
692         /* Optimized kprobe case */
693         if (force)
694                 /* Forcibly update the code: this is a special case */
695                 force_unoptimize_kprobe(op);
696         else {
697                 list_add(&op->list, &unoptimizing_list);
698                 kick_kprobe_optimizer();
699         }
700 }
701
702 /* Cancel unoptimizing for reusing */
703 static int reuse_unused_kprobe(struct kprobe *ap)
704 {
705         struct optimized_kprobe *op;
706
707         BUG_ON(!kprobe_unused(ap));
708         /*
709          * Unused kprobe MUST be on the way of delayed unoptimizing (means
710          * there is still a relative jump) and disabled.
711          */
712         op = container_of(ap, struct optimized_kprobe, kp);
713         WARN_ON_ONCE(list_empty(&op->list));
714         /* Enable the probe again */
715         ap->flags &= ~KPROBE_FLAG_DISABLED;
716         /* Optimize it again (remove from op->list) */
717         if (!kprobe_optready(ap))
718                 return -EINVAL;
719
720         optimize_kprobe(ap);
721         return 0;
722 }
723
724 /* Remove optimized instructions */
725 static void kill_optimized_kprobe(struct kprobe *p)
726 {
727         struct optimized_kprobe *op;
728
729         op = container_of(p, struct optimized_kprobe, kp);
730         if (!list_empty(&op->list))
731                 /* Dequeue from the (un)optimization queue */
732                 list_del_init(&op->list);
733         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
734
735         if (kprobe_unused(p)) {
736                 /* Enqueue if it is unused */
737                 list_add(&op->list, &freeing_list);
738                 /*
739                  * Remove unused probes from the hash list. After waiting
740                  * for synchronization, this probe is reclaimed.
741                  * (reclaiming is done by do_free_cleaned_kprobes().)
742                  */
743                 hlist_del_rcu(&op->kp.hlist);
744         }
745
746         /* Don't touch the code, because it is already freed. */
747         arch_remove_optimized_kprobe(op);
748 }
749
750 static inline
751 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
752 {
753         if (!kprobe_ftrace(p))
754                 arch_prepare_optimized_kprobe(op, p);
755 }
756
757 /* Try to prepare optimized instructions */
758 static void prepare_optimized_kprobe(struct kprobe *p)
759 {
760         struct optimized_kprobe *op;
761
762         op = container_of(p, struct optimized_kprobe, kp);
763         __prepare_optimized_kprobe(op, p);
764 }
765
766 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
767 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
768 {
769         struct optimized_kprobe *op;
770
771         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
772         if (!op)
773                 return NULL;
774
775         INIT_LIST_HEAD(&op->list);
776         op->kp.addr = p->addr;
777         __prepare_optimized_kprobe(op, p);
778
779         return &op->kp;
780 }
781
782 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
783
784 /*
785  * Prepare an optimized_kprobe and optimize it
786  * NOTE: p must be a normal registered kprobe
787  */
788 static void try_to_optimize_kprobe(struct kprobe *p)
789 {
790         struct kprobe *ap;
791         struct optimized_kprobe *op;
792
793         /* Impossible to optimize ftrace-based kprobe */
794         if (kprobe_ftrace(p))
795                 return;
796
797         /* For preparing optimization, jump_label_text_reserved() is called */
798         cpus_read_lock();
799         jump_label_lock();
800         mutex_lock(&text_mutex);
801
802         ap = alloc_aggr_kprobe(p);
803         if (!ap)
804                 goto out;
805
806         op = container_of(ap, struct optimized_kprobe, kp);
807         if (!arch_prepared_optinsn(&op->optinsn)) {
808                 /* If failed to setup optimizing, fallback to kprobe */
809                 arch_remove_optimized_kprobe(op);
810                 kfree(op);
811                 goto out;
812         }
813
814         init_aggr_kprobe(ap, p);
815         optimize_kprobe(ap);    /* This just kicks optimizer thread */
816
817 out:
818         mutex_unlock(&text_mutex);
819         jump_label_unlock();
820         cpus_read_unlock();
821 }
822
823 #ifdef CONFIG_SYSCTL
824 static void optimize_all_kprobes(void)
825 {
826         struct hlist_head *head;
827         struct kprobe *p;
828         unsigned int i;
829
830         mutex_lock(&kprobe_mutex);
831         /* If optimization is already allowed, just return */
832         if (kprobes_allow_optimization)
833                 goto out;
834
835         cpus_read_lock();
836         kprobes_allow_optimization = true;
837         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
838                 head = &kprobe_table[i];
839                 hlist_for_each_entry_rcu(p, head, hlist)
840                         if (!kprobe_disabled(p))
841                                 optimize_kprobe(p);
842         }
843         cpus_read_unlock();
844         printk(KERN_INFO "Kprobes globally optimized\n");
845 out:
846         mutex_unlock(&kprobe_mutex);
847 }
848
849 static void unoptimize_all_kprobes(void)
850 {
851         struct hlist_head *head;
852         struct kprobe *p;
853         unsigned int i;
854
855         mutex_lock(&kprobe_mutex);
856         /* If optimization is already prohibited, just return */
857         if (!kprobes_allow_optimization) {
858                 mutex_unlock(&kprobe_mutex);
859                 return;
860         }
861
862         cpus_read_lock();
863         kprobes_allow_optimization = false;
864         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
865                 head = &kprobe_table[i];
866                 hlist_for_each_entry_rcu(p, head, hlist) {
867                         if (!kprobe_disabled(p))
868                                 unoptimize_kprobe(p, false);
869                 }
870         }
871         cpus_read_unlock();
872         mutex_unlock(&kprobe_mutex);
873
874         /* Wait for unoptimizing completion */
875         wait_for_kprobe_optimizer();
876         printk(KERN_INFO "Kprobes globally unoptimized\n");
877 }
878
879 static DEFINE_MUTEX(kprobe_sysctl_mutex);
880 int sysctl_kprobes_optimization;
881 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
882                                       void __user *buffer, size_t *length,
883                                       loff_t *ppos)
884 {
885         int ret;
886
887         mutex_lock(&kprobe_sysctl_mutex);
888         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
889         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
890
891         if (sysctl_kprobes_optimization)
892                 optimize_all_kprobes();
893         else
894                 unoptimize_all_kprobes();
895         mutex_unlock(&kprobe_sysctl_mutex);
896
897         return ret;
898 }
899 #endif /* CONFIG_SYSCTL */
900
901 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
902 static void __arm_kprobe(struct kprobe *p)
903 {
904         struct kprobe *_p;
905
906         /* Check collision with other optimized kprobes */
907         _p = get_optimized_kprobe((unsigned long)p->addr);
908         if (unlikely(_p))
909                 /* Fallback to unoptimized kprobe */
910                 unoptimize_kprobe(_p, true);
911
912         arch_arm_kprobe(p);
913         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
914 }
915
916 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
917 static void __disarm_kprobe(struct kprobe *p, bool reopt)
918 {
919         struct kprobe *_p;
920
921         /* Try to unoptimize */
922         unoptimize_kprobe(p, kprobes_all_disarmed);
923
924         if (!kprobe_queued(p)) {
925                 arch_disarm_kprobe(p);
926                 /* If another kprobe was blocked, optimize it. */
927                 _p = get_optimized_kprobe((unsigned long)p->addr);
928                 if (unlikely(_p) && reopt)
929                         optimize_kprobe(_p);
930         }
931         /* TODO: reoptimize others after unoptimized this probe */
932 }
933
934 #else /* !CONFIG_OPTPROBES */
935
936 #define optimize_kprobe(p)                      do {} while (0)
937 #define unoptimize_kprobe(p, f)                 do {} while (0)
938 #define kill_optimized_kprobe(p)                do {} while (0)
939 #define prepare_optimized_kprobe(p)             do {} while (0)
940 #define try_to_optimize_kprobe(p)               do {} while (0)
941 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
942 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
943 #define kprobe_disarmed(p)                      kprobe_disabled(p)
944 #define wait_for_kprobe_optimizer()             do {} while (0)
945
946 static int reuse_unused_kprobe(struct kprobe *ap)
947 {
948         /*
949          * If the optimized kprobe is NOT supported, the aggr kprobe is
950          * released at the same time that the last aggregated kprobe is
951          * unregistered.
952          * Thus there should be no chance to reuse unused kprobe.
953          */
954         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
955         return -EINVAL;
956 }
957
958 static void free_aggr_kprobe(struct kprobe *p)
959 {
960         arch_remove_kprobe(p);
961         kfree(p);
962 }
963
964 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
965 {
966         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
967 }
968 #endif /* CONFIG_OPTPROBES */
969
970 #ifdef CONFIG_KPROBES_ON_FTRACE
971 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
972         .func = kprobe_ftrace_handler,
973         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
974 };
975 static int kprobe_ftrace_enabled;
976
977 /* Must ensure p->addr is really on ftrace */
978 static int prepare_kprobe(struct kprobe *p)
979 {
980         if (!kprobe_ftrace(p))
981                 return arch_prepare_kprobe(p);
982
983         return arch_prepare_kprobe_ftrace(p);
984 }
985
986 /* Caller must lock kprobe_mutex */
987 static int arm_kprobe_ftrace(struct kprobe *p)
988 {
989         int ret = 0;
990
991         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
992                                    (unsigned long)p->addr, 0, 0);
993         if (ret) {
994                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
995                          p->addr, ret);
996                 return ret;
997         }
998
999         if (kprobe_ftrace_enabled == 0) {
1000                 ret = register_ftrace_function(&kprobe_ftrace_ops);
1001                 if (ret) {
1002                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1003                         goto err_ftrace;
1004                 }
1005         }
1006
1007         kprobe_ftrace_enabled++;
1008         return ret;
1009
1010 err_ftrace:
1011         /*
1012          * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1013          * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1014          * empty filter_hash which would undesirably trace all functions.
1015          */
1016         ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1017         return ret;
1018 }
1019
1020 /* Caller must lock kprobe_mutex */
1021 static int disarm_kprobe_ftrace(struct kprobe *p)
1022 {
1023         int ret = 0;
1024
1025         if (kprobe_ftrace_enabled == 1) {
1026                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1027                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1028                         return ret;
1029         }
1030
1031         kprobe_ftrace_enabled--;
1032
1033         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1034                            (unsigned long)p->addr, 1, 0);
1035         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1036                   p->addr, ret);
1037         return ret;
1038 }
1039 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1040 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1041 #define arm_kprobe_ftrace(p)    (-ENODEV)
1042 #define disarm_kprobe_ftrace(p) (-ENODEV)
1043 #endif
1044
1045 /* Arm a kprobe with text_mutex */
1046 static int arm_kprobe(struct kprobe *kp)
1047 {
1048         if (unlikely(kprobe_ftrace(kp)))
1049                 return arm_kprobe_ftrace(kp);
1050
1051         cpus_read_lock();
1052         mutex_lock(&text_mutex);
1053         __arm_kprobe(kp);
1054         mutex_unlock(&text_mutex);
1055         cpus_read_unlock();
1056
1057         return 0;
1058 }
1059
1060 /* Disarm a kprobe with text_mutex */
1061 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1062 {
1063         if (unlikely(kprobe_ftrace(kp)))
1064                 return disarm_kprobe_ftrace(kp);
1065
1066         cpus_read_lock();
1067         mutex_lock(&text_mutex);
1068         __disarm_kprobe(kp, reopt);
1069         mutex_unlock(&text_mutex);
1070         cpus_read_unlock();
1071
1072         return 0;
1073 }
1074
1075 /*
1076  * Aggregate handlers for multiple kprobes support - these handlers
1077  * take care of invoking the individual kprobe handlers on p->list
1078  */
1079 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1080 {
1081         struct kprobe *kp;
1082
1083         list_for_each_entry_rcu(kp, &p->list, list) {
1084                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1085                         set_kprobe_instance(kp);
1086                         if (kp->pre_handler(kp, regs))
1087                                 return 1;
1088                 }
1089                 reset_kprobe_instance();
1090         }
1091         return 0;
1092 }
1093 NOKPROBE_SYMBOL(aggr_pre_handler);
1094
1095 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1096                               unsigned long flags)
1097 {
1098         struct kprobe *kp;
1099
1100         list_for_each_entry_rcu(kp, &p->list, list) {
1101                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1102                         set_kprobe_instance(kp);
1103                         kp->post_handler(kp, regs, flags);
1104                         reset_kprobe_instance();
1105                 }
1106         }
1107 }
1108 NOKPROBE_SYMBOL(aggr_post_handler);
1109
1110 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1111                               int trapnr)
1112 {
1113         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1114
1115         /*
1116          * if we faulted "during" the execution of a user specified
1117          * probe handler, invoke just that probe's fault handler
1118          */
1119         if (cur && cur->fault_handler) {
1120                 if (cur->fault_handler(cur, regs, trapnr))
1121                         return 1;
1122         }
1123         return 0;
1124 }
1125 NOKPROBE_SYMBOL(aggr_fault_handler);
1126
1127 /* Walks the list and increments nmissed count for multiprobe case */
1128 void kprobes_inc_nmissed_count(struct kprobe *p)
1129 {
1130         struct kprobe *kp;
1131         if (!kprobe_aggrprobe(p)) {
1132                 p->nmissed++;
1133         } else {
1134                 list_for_each_entry_rcu(kp, &p->list, list)
1135                         kp->nmissed++;
1136         }
1137         return;
1138 }
1139 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1140
1141 void recycle_rp_inst(struct kretprobe_instance *ri,
1142                      struct hlist_head *head)
1143 {
1144         struct kretprobe *rp = ri->rp;
1145
1146         /* remove rp inst off the rprobe_inst_table */
1147         hlist_del(&ri->hlist);
1148         INIT_HLIST_NODE(&ri->hlist);
1149         if (likely(rp)) {
1150                 raw_spin_lock(&rp->lock);
1151                 hlist_add_head(&ri->hlist, &rp->free_instances);
1152                 raw_spin_unlock(&rp->lock);
1153         } else
1154                 /* Unregistering */
1155                 hlist_add_head(&ri->hlist, head);
1156 }
1157 NOKPROBE_SYMBOL(recycle_rp_inst);
1158
1159 void kretprobe_hash_lock(struct task_struct *tsk,
1160                          struct hlist_head **head, unsigned long *flags)
1161 __acquires(hlist_lock)
1162 {
1163         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1164         raw_spinlock_t *hlist_lock;
1165
1166         *head = &kretprobe_inst_table[hash];
1167         hlist_lock = kretprobe_table_lock_ptr(hash);
1168         raw_spin_lock_irqsave(hlist_lock, *flags);
1169 }
1170 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1171
1172 static void kretprobe_table_lock(unsigned long hash,
1173                                  unsigned long *flags)
1174 __acquires(hlist_lock)
1175 {
1176         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1177         raw_spin_lock_irqsave(hlist_lock, *flags);
1178 }
1179 NOKPROBE_SYMBOL(kretprobe_table_lock);
1180
1181 void kretprobe_hash_unlock(struct task_struct *tsk,
1182                            unsigned long *flags)
1183 __releases(hlist_lock)
1184 {
1185         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1186         raw_spinlock_t *hlist_lock;
1187
1188         hlist_lock = kretprobe_table_lock_ptr(hash);
1189         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1190 }
1191 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1192
1193 static void kretprobe_table_unlock(unsigned long hash,
1194                                    unsigned long *flags)
1195 __releases(hlist_lock)
1196 {
1197         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1198         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1199 }
1200 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1201
1202 /*
1203  * This function is called from finish_task_switch when task tk becomes dead,
1204  * so that we can recycle any function-return probe instances associated
1205  * with this task. These left over instances represent probed functions
1206  * that have been called but will never return.
1207  */
1208 void kprobe_flush_task(struct task_struct *tk)
1209 {
1210         struct kretprobe_instance *ri;
1211         struct hlist_head *head, empty_rp;
1212         struct hlist_node *tmp;
1213         unsigned long hash, flags = 0;
1214
1215         if (unlikely(!kprobes_initialized))
1216                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1217                 return;
1218
1219         INIT_HLIST_HEAD(&empty_rp);
1220         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1221         head = &kretprobe_inst_table[hash];
1222         kretprobe_table_lock(hash, &flags);
1223         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1224                 if (ri->task == tk)
1225                         recycle_rp_inst(ri, &empty_rp);
1226         }
1227         kretprobe_table_unlock(hash, &flags);
1228         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1229                 hlist_del(&ri->hlist);
1230                 kfree(ri);
1231         }
1232 }
1233 NOKPROBE_SYMBOL(kprobe_flush_task);
1234
1235 static inline void free_rp_inst(struct kretprobe *rp)
1236 {
1237         struct kretprobe_instance *ri;
1238         struct hlist_node *next;
1239
1240         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1241                 hlist_del(&ri->hlist);
1242                 kfree(ri);
1243         }
1244 }
1245
1246 static void cleanup_rp_inst(struct kretprobe *rp)
1247 {
1248         unsigned long flags, hash;
1249         struct kretprobe_instance *ri;
1250         struct hlist_node *next;
1251         struct hlist_head *head;
1252
1253         /* No race here */
1254         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1255                 kretprobe_table_lock(hash, &flags);
1256                 head = &kretprobe_inst_table[hash];
1257                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1258                         if (ri->rp == rp)
1259                                 ri->rp = NULL;
1260                 }
1261                 kretprobe_table_unlock(hash, &flags);
1262         }
1263         free_rp_inst(rp);
1264 }
1265 NOKPROBE_SYMBOL(cleanup_rp_inst);
1266
1267 /* Add the new probe to ap->list */
1268 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1269 {
1270         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1271
1272         if (p->post_handler)
1273                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1274
1275         list_add_rcu(&p->list, &ap->list);
1276         if (p->post_handler && !ap->post_handler)
1277                 ap->post_handler = aggr_post_handler;
1278
1279         return 0;
1280 }
1281
1282 /*
1283  * Fill in the required fields of the "manager kprobe". Replace the
1284  * earlier kprobe in the hlist with the manager kprobe
1285  */
1286 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1287 {
1288         /* Copy p's insn slot to ap */
1289         copy_kprobe(p, ap);
1290         flush_insn_slot(ap);
1291         ap->addr = p->addr;
1292         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1293         ap->pre_handler = aggr_pre_handler;
1294         ap->fault_handler = aggr_fault_handler;
1295         /* We don't care the kprobe which has gone. */
1296         if (p->post_handler && !kprobe_gone(p))
1297                 ap->post_handler = aggr_post_handler;
1298
1299         INIT_LIST_HEAD(&ap->list);
1300         INIT_HLIST_NODE(&ap->hlist);
1301
1302         list_add_rcu(&p->list, &ap->list);
1303         hlist_replace_rcu(&p->hlist, &ap->hlist);
1304 }
1305
1306 /*
1307  * This is the second or subsequent kprobe at the address - handle
1308  * the intricacies
1309  */
1310 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1311 {
1312         int ret = 0;
1313         struct kprobe *ap = orig_p;
1314
1315         cpus_read_lock();
1316
1317         /* For preparing optimization, jump_label_text_reserved() is called */
1318         jump_label_lock();
1319         mutex_lock(&text_mutex);
1320
1321         if (!kprobe_aggrprobe(orig_p)) {
1322                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1323                 ap = alloc_aggr_kprobe(orig_p);
1324                 if (!ap) {
1325                         ret = -ENOMEM;
1326                         goto out;
1327                 }
1328                 init_aggr_kprobe(ap, orig_p);
1329         } else if (kprobe_unused(ap)) {
1330                 /* This probe is going to die. Rescue it */
1331                 ret = reuse_unused_kprobe(ap);
1332                 if (ret)
1333                         goto out;
1334         }
1335
1336         if (kprobe_gone(ap)) {
1337                 /*
1338                  * Attempting to insert new probe at the same location that
1339                  * had a probe in the module vaddr area which already
1340                  * freed. So, the instruction slot has already been
1341                  * released. We need a new slot for the new probe.
1342                  */
1343                 ret = arch_prepare_kprobe(ap);
1344                 if (ret)
1345                         /*
1346                          * Even if fail to allocate new slot, don't need to
1347                          * free aggr_probe. It will be used next time, or
1348                          * freed by unregister_kprobe.
1349                          */
1350                         goto out;
1351
1352                 /* Prepare optimized instructions if possible. */
1353                 prepare_optimized_kprobe(ap);
1354
1355                 /*
1356                  * Clear gone flag to prevent allocating new slot again, and
1357                  * set disabled flag because it is not armed yet.
1358                  */
1359                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1360                             | KPROBE_FLAG_DISABLED;
1361         }
1362
1363         /* Copy ap's insn slot to p */
1364         copy_kprobe(ap, p);
1365         ret = add_new_kprobe(ap, p);
1366
1367 out:
1368         mutex_unlock(&text_mutex);
1369         jump_label_unlock();
1370         cpus_read_unlock();
1371
1372         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1373                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1374                 if (!kprobes_all_disarmed) {
1375                         /* Arm the breakpoint again. */
1376                         ret = arm_kprobe(ap);
1377                         if (ret) {
1378                                 ap->flags |= KPROBE_FLAG_DISABLED;
1379                                 list_del_rcu(&p->list);
1380                                 synchronize_sched();
1381                         }
1382                 }
1383         }
1384         return ret;
1385 }
1386
1387 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1388 {
1389         /* The __kprobes marked functions and entry code must not be probed */
1390         return addr >= (unsigned long)__kprobes_text_start &&
1391                addr < (unsigned long)__kprobes_text_end;
1392 }
1393
1394 bool within_kprobe_blacklist(unsigned long addr)
1395 {
1396         struct kprobe_blacklist_entry *ent;
1397
1398         if (arch_within_kprobe_blacklist(addr))
1399                 return true;
1400         /*
1401          * If there exists a kprobe_blacklist, verify and
1402          * fail any probe registration in the prohibited area
1403          */
1404         list_for_each_entry(ent, &kprobe_blacklist, list) {
1405                 if (addr >= ent->start_addr && addr < ent->end_addr)
1406                         return true;
1407         }
1408
1409         return false;
1410 }
1411
1412 /*
1413  * If we have a symbol_name argument, look it up and add the offset field
1414  * to it. This way, we can specify a relative address to a symbol.
1415  * This returns encoded errors if it fails to look up symbol or invalid
1416  * combination of parameters.
1417  */
1418 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1419                         const char *symbol_name, unsigned int offset)
1420 {
1421         if ((symbol_name && addr) || (!symbol_name && !addr))
1422                 goto invalid;
1423
1424         if (symbol_name) {
1425                 addr = kprobe_lookup_name(symbol_name, offset);
1426                 if (!addr)
1427                         return ERR_PTR(-ENOENT);
1428         }
1429
1430         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1431         if (addr)
1432                 return addr;
1433
1434 invalid:
1435         return ERR_PTR(-EINVAL);
1436 }
1437
1438 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1439 {
1440         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1441 }
1442
1443 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1444 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1445 {
1446         struct kprobe *ap, *list_p;
1447
1448         ap = get_kprobe(p->addr);
1449         if (unlikely(!ap))
1450                 return NULL;
1451
1452         if (p != ap) {
1453                 list_for_each_entry_rcu(list_p, &ap->list, list)
1454                         if (list_p == p)
1455                         /* kprobe p is a valid probe */
1456                                 goto valid;
1457                 return NULL;
1458         }
1459 valid:
1460         return ap;
1461 }
1462
1463 /* Return error if the kprobe is being re-registered */
1464 static inline int check_kprobe_rereg(struct kprobe *p)
1465 {
1466         int ret = 0;
1467
1468         mutex_lock(&kprobe_mutex);
1469         if (__get_valid_kprobe(p))
1470                 ret = -EINVAL;
1471         mutex_unlock(&kprobe_mutex);
1472
1473         return ret;
1474 }
1475
1476 int __weak arch_check_ftrace_location(struct kprobe *p)
1477 {
1478         unsigned long ftrace_addr;
1479
1480         ftrace_addr = ftrace_location((unsigned long)p->addr);
1481         if (ftrace_addr) {
1482 #ifdef CONFIG_KPROBES_ON_FTRACE
1483                 /* Given address is not on the instruction boundary */
1484                 if ((unsigned long)p->addr != ftrace_addr)
1485                         return -EILSEQ;
1486                 p->flags |= KPROBE_FLAG_FTRACE;
1487 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1488                 return -EINVAL;
1489 #endif
1490         }
1491         return 0;
1492 }
1493
1494 static int check_kprobe_address_safe(struct kprobe *p,
1495                                      struct module **probed_mod)
1496 {
1497         int ret;
1498
1499         ret = arch_check_ftrace_location(p);
1500         if (ret)
1501                 return ret;
1502         jump_label_lock();
1503         preempt_disable();
1504
1505         /* Ensure it is not in reserved area nor out of text */
1506         if (!kernel_text_address((unsigned long) p->addr) ||
1507             within_kprobe_blacklist((unsigned long) p->addr) ||
1508             jump_label_text_reserved(p->addr, p->addr)) {
1509                 ret = -EINVAL;
1510                 goto out;
1511         }
1512
1513         /* Check if are we probing a module */
1514         *probed_mod = __module_text_address((unsigned long) p->addr);
1515         if (*probed_mod) {
1516                 /*
1517                  * We must hold a refcount of the probed module while updating
1518                  * its code to prohibit unexpected unloading.
1519                  */
1520                 if (unlikely(!try_module_get(*probed_mod))) {
1521                         ret = -ENOENT;
1522                         goto out;
1523                 }
1524
1525                 /*
1526                  * If the module freed .init.text, we couldn't insert
1527                  * kprobes in there.
1528                  */
1529                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1530                     (*probed_mod)->state != MODULE_STATE_COMING) {
1531                         module_put(*probed_mod);
1532                         *probed_mod = NULL;
1533                         ret = -ENOENT;
1534                 }
1535         }
1536 out:
1537         preempt_enable();
1538         jump_label_unlock();
1539
1540         return ret;
1541 }
1542
1543 int register_kprobe(struct kprobe *p)
1544 {
1545         int ret;
1546         struct kprobe *old_p;
1547         struct module *probed_mod;
1548         kprobe_opcode_t *addr;
1549
1550         /* Adjust probe address from symbol */
1551         addr = kprobe_addr(p);
1552         if (IS_ERR(addr))
1553                 return PTR_ERR(addr);
1554         p->addr = addr;
1555
1556         ret = check_kprobe_rereg(p);
1557         if (ret)
1558                 return ret;
1559
1560         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1561         p->flags &= KPROBE_FLAG_DISABLED;
1562         p->nmissed = 0;
1563         INIT_LIST_HEAD(&p->list);
1564
1565         ret = check_kprobe_address_safe(p, &probed_mod);
1566         if (ret)
1567                 return ret;
1568
1569         mutex_lock(&kprobe_mutex);
1570
1571         old_p = get_kprobe(p->addr);
1572         if (old_p) {
1573                 /* Since this may unoptimize old_p, locking text_mutex. */
1574                 ret = register_aggr_kprobe(old_p, p);
1575                 goto out;
1576         }
1577
1578         cpus_read_lock();
1579         /* Prevent text modification */
1580         mutex_lock(&text_mutex);
1581         ret = prepare_kprobe(p);
1582         mutex_unlock(&text_mutex);
1583         cpus_read_unlock();
1584         if (ret)
1585                 goto out;
1586
1587         INIT_HLIST_NODE(&p->hlist);
1588         hlist_add_head_rcu(&p->hlist,
1589                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1590
1591         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1592                 ret = arm_kprobe(p);
1593                 if (ret) {
1594                         hlist_del_rcu(&p->hlist);
1595                         synchronize_sched();
1596                         goto out;
1597                 }
1598         }
1599
1600         /* Try to optimize kprobe */
1601         try_to_optimize_kprobe(p);
1602 out:
1603         mutex_unlock(&kprobe_mutex);
1604
1605         if (probed_mod)
1606                 module_put(probed_mod);
1607
1608         return ret;
1609 }
1610 EXPORT_SYMBOL_GPL(register_kprobe);
1611
1612 /* Check if all probes on the aggrprobe are disabled */
1613 static int aggr_kprobe_disabled(struct kprobe *ap)
1614 {
1615         struct kprobe *kp;
1616
1617         list_for_each_entry_rcu(kp, &ap->list, list)
1618                 if (!kprobe_disabled(kp))
1619                         /*
1620                          * There is an active probe on the list.
1621                          * We can't disable this ap.
1622                          */
1623                         return 0;
1624
1625         return 1;
1626 }
1627
1628 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1629 static struct kprobe *__disable_kprobe(struct kprobe *p)
1630 {
1631         struct kprobe *orig_p;
1632         int ret;
1633
1634         /* Get an original kprobe for return */
1635         orig_p = __get_valid_kprobe(p);
1636         if (unlikely(orig_p == NULL))
1637                 return ERR_PTR(-EINVAL);
1638
1639         if (!kprobe_disabled(p)) {
1640                 /* Disable probe if it is a child probe */
1641                 if (p != orig_p)
1642                         p->flags |= KPROBE_FLAG_DISABLED;
1643
1644                 /* Try to disarm and disable this/parent probe */
1645                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1646                         /*
1647                          * If kprobes_all_disarmed is set, orig_p
1648                          * should have already been disarmed, so
1649                          * skip unneed disarming process.
1650                          */
1651                         if (!kprobes_all_disarmed) {
1652                                 ret = disarm_kprobe(orig_p, true);
1653                                 if (ret) {
1654                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1655                                         return ERR_PTR(ret);
1656                                 }
1657                         }
1658                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1659                 }
1660         }
1661
1662         return orig_p;
1663 }
1664
1665 /*
1666  * Unregister a kprobe without a scheduler synchronization.
1667  */
1668 static int __unregister_kprobe_top(struct kprobe *p)
1669 {
1670         struct kprobe *ap, *list_p;
1671
1672         /* Disable kprobe. This will disarm it if needed. */
1673         ap = __disable_kprobe(p);
1674         if (IS_ERR(ap))
1675                 return PTR_ERR(ap);
1676
1677         if (ap == p)
1678                 /*
1679                  * This probe is an independent(and non-optimized) kprobe
1680                  * (not an aggrprobe). Remove from the hash list.
1681                  */
1682                 goto disarmed;
1683
1684         /* Following process expects this probe is an aggrprobe */
1685         WARN_ON(!kprobe_aggrprobe(ap));
1686
1687         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1688                 /*
1689                  * !disarmed could be happen if the probe is under delayed
1690                  * unoptimizing.
1691                  */
1692                 goto disarmed;
1693         else {
1694                 /* If disabling probe has special handlers, update aggrprobe */
1695                 if (p->post_handler && !kprobe_gone(p)) {
1696                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1697                                 if ((list_p != p) && (list_p->post_handler))
1698                                         goto noclean;
1699                         }
1700                         ap->post_handler = NULL;
1701                 }
1702 noclean:
1703                 /*
1704                  * Remove from the aggrprobe: this path will do nothing in
1705                  * __unregister_kprobe_bottom().
1706                  */
1707                 list_del_rcu(&p->list);
1708                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1709                         /*
1710                          * Try to optimize this probe again, because post
1711                          * handler may have been changed.
1712                          */
1713                         optimize_kprobe(ap);
1714         }
1715         return 0;
1716
1717 disarmed:
1718         BUG_ON(!kprobe_disarmed(ap));
1719         hlist_del_rcu(&ap->hlist);
1720         return 0;
1721 }
1722
1723 static void __unregister_kprobe_bottom(struct kprobe *p)
1724 {
1725         struct kprobe *ap;
1726
1727         if (list_empty(&p->list))
1728                 /* This is an independent kprobe */
1729                 arch_remove_kprobe(p);
1730         else if (list_is_singular(&p->list)) {
1731                 /* This is the last child of an aggrprobe */
1732                 ap = list_entry(p->list.next, struct kprobe, list);
1733                 list_del(&p->list);
1734                 free_aggr_kprobe(ap);
1735         }
1736         /* Otherwise, do nothing. */
1737 }
1738
1739 int register_kprobes(struct kprobe **kps, int num)
1740 {
1741         int i, ret = 0;
1742
1743         if (num <= 0)
1744                 return -EINVAL;
1745         for (i = 0; i < num; i++) {
1746                 ret = register_kprobe(kps[i]);
1747                 if (ret < 0) {
1748                         if (i > 0)
1749                                 unregister_kprobes(kps, i);
1750                         break;
1751                 }
1752         }
1753         return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(register_kprobes);
1756
1757 void unregister_kprobe(struct kprobe *p)
1758 {
1759         unregister_kprobes(&p, 1);
1760 }
1761 EXPORT_SYMBOL_GPL(unregister_kprobe);
1762
1763 void unregister_kprobes(struct kprobe **kps, int num)
1764 {
1765         int i;
1766
1767         if (num <= 0)
1768                 return;
1769         mutex_lock(&kprobe_mutex);
1770         for (i = 0; i < num; i++)
1771                 if (__unregister_kprobe_top(kps[i]) < 0)
1772                         kps[i]->addr = NULL;
1773         mutex_unlock(&kprobe_mutex);
1774
1775         synchronize_sched();
1776         for (i = 0; i < num; i++)
1777                 if (kps[i]->addr)
1778                         __unregister_kprobe_bottom(kps[i]);
1779 }
1780 EXPORT_SYMBOL_GPL(unregister_kprobes);
1781
1782 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1783                                         unsigned long val, void *data)
1784 {
1785         return NOTIFY_DONE;
1786 }
1787 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1788
1789 static struct notifier_block kprobe_exceptions_nb = {
1790         .notifier_call = kprobe_exceptions_notify,
1791         .priority = 0x7fffffff /* we need to be notified first */
1792 };
1793
1794 unsigned long __weak arch_deref_entry_point(void *entry)
1795 {
1796         return (unsigned long)entry;
1797 }
1798
1799 #ifdef CONFIG_KRETPROBES
1800 /*
1801  * This kprobe pre_handler is registered with every kretprobe. When probe
1802  * hits it will set up the return probe.
1803  */
1804 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1805 {
1806         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1807         unsigned long hash, flags = 0;
1808         struct kretprobe_instance *ri;
1809
1810         /*
1811          * To avoid deadlocks, prohibit return probing in NMI contexts,
1812          * just skip the probe and increase the (inexact) 'nmissed'
1813          * statistical counter, so that the user is informed that
1814          * something happened:
1815          */
1816         if (unlikely(in_nmi())) {
1817                 rp->nmissed++;
1818                 return 0;
1819         }
1820
1821         /* TODO: consider to only swap the RA after the last pre_handler fired */
1822         hash = hash_ptr(current, KPROBE_HASH_BITS);
1823         raw_spin_lock_irqsave(&rp->lock, flags);
1824         if (!hlist_empty(&rp->free_instances)) {
1825                 ri = hlist_entry(rp->free_instances.first,
1826                                 struct kretprobe_instance, hlist);
1827                 hlist_del(&ri->hlist);
1828                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1829
1830                 ri->rp = rp;
1831                 ri->task = current;
1832
1833                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1834                         raw_spin_lock_irqsave(&rp->lock, flags);
1835                         hlist_add_head(&ri->hlist, &rp->free_instances);
1836                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1837                         return 0;
1838                 }
1839
1840                 arch_prepare_kretprobe(ri, regs);
1841
1842                 /* XXX(hch): why is there no hlist_move_head? */
1843                 INIT_HLIST_NODE(&ri->hlist);
1844                 kretprobe_table_lock(hash, &flags);
1845                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1846                 kretprobe_table_unlock(hash, &flags);
1847         } else {
1848                 rp->nmissed++;
1849                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1850         }
1851         return 0;
1852 }
1853 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1854
1855 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1856 {
1857         return !offset;
1858 }
1859
1860 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1861 {
1862         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1863
1864         if (IS_ERR(kp_addr))
1865                 return false;
1866
1867         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1868                                                 !arch_kprobe_on_func_entry(offset))
1869                 return false;
1870
1871         return true;
1872 }
1873
1874 int register_kretprobe(struct kretprobe *rp)
1875 {
1876         int ret = 0;
1877         struct kretprobe_instance *inst;
1878         int i;
1879         void *addr;
1880
1881         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1882                 return -EINVAL;
1883
1884         if (kretprobe_blacklist_size) {
1885                 addr = kprobe_addr(&rp->kp);
1886                 if (IS_ERR(addr))
1887                         return PTR_ERR(addr);
1888
1889                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1890                         if (kretprobe_blacklist[i].addr == addr)
1891                                 return -EINVAL;
1892                 }
1893         }
1894
1895         rp->kp.pre_handler = pre_handler_kretprobe;
1896         rp->kp.post_handler = NULL;
1897         rp->kp.fault_handler = NULL;
1898
1899         /* Pre-allocate memory for max kretprobe instances */
1900         if (rp->maxactive <= 0) {
1901 #ifdef CONFIG_PREEMPT
1902                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1903 #else
1904                 rp->maxactive = num_possible_cpus();
1905 #endif
1906         }
1907         raw_spin_lock_init(&rp->lock);
1908         INIT_HLIST_HEAD(&rp->free_instances);
1909         for (i = 0; i < rp->maxactive; i++) {
1910                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1911                                rp->data_size, GFP_KERNEL);
1912                 if (inst == NULL) {
1913                         free_rp_inst(rp);
1914                         return -ENOMEM;
1915                 }
1916                 INIT_HLIST_NODE(&inst->hlist);
1917                 hlist_add_head(&inst->hlist, &rp->free_instances);
1918         }
1919
1920         rp->nmissed = 0;
1921         /* Establish function entry probe point */
1922         ret = register_kprobe(&rp->kp);
1923         if (ret != 0)
1924                 free_rp_inst(rp);
1925         return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(register_kretprobe);
1928
1929 int register_kretprobes(struct kretprobe **rps, int num)
1930 {
1931         int ret = 0, i;
1932
1933         if (num <= 0)
1934                 return -EINVAL;
1935         for (i = 0; i < num; i++) {
1936                 ret = register_kretprobe(rps[i]);
1937                 if (ret < 0) {
1938                         if (i > 0)
1939                                 unregister_kretprobes(rps, i);
1940                         break;
1941                 }
1942         }
1943         return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(register_kretprobes);
1946
1947 void unregister_kretprobe(struct kretprobe *rp)
1948 {
1949         unregister_kretprobes(&rp, 1);
1950 }
1951 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1952
1953 void unregister_kretprobes(struct kretprobe **rps, int num)
1954 {
1955         int i;
1956
1957         if (num <= 0)
1958                 return;
1959         mutex_lock(&kprobe_mutex);
1960         for (i = 0; i < num; i++)
1961                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1962                         rps[i]->kp.addr = NULL;
1963         mutex_unlock(&kprobe_mutex);
1964
1965         synchronize_sched();
1966         for (i = 0; i < num; i++) {
1967                 if (rps[i]->kp.addr) {
1968                         __unregister_kprobe_bottom(&rps[i]->kp);
1969                         cleanup_rp_inst(rps[i]);
1970                 }
1971         }
1972 }
1973 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1974
1975 #else /* CONFIG_KRETPROBES */
1976 int register_kretprobe(struct kretprobe *rp)
1977 {
1978         return -ENOSYS;
1979 }
1980 EXPORT_SYMBOL_GPL(register_kretprobe);
1981
1982 int register_kretprobes(struct kretprobe **rps, int num)
1983 {
1984         return -ENOSYS;
1985 }
1986 EXPORT_SYMBOL_GPL(register_kretprobes);
1987
1988 void unregister_kretprobe(struct kretprobe *rp)
1989 {
1990 }
1991 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1992
1993 void unregister_kretprobes(struct kretprobe **rps, int num)
1994 {
1995 }
1996 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1997
1998 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1999 {
2000         return 0;
2001 }
2002 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2003
2004 #endif /* CONFIG_KRETPROBES */
2005
2006 /* Set the kprobe gone and remove its instruction buffer. */
2007 static void kill_kprobe(struct kprobe *p)
2008 {
2009         struct kprobe *kp;
2010
2011         p->flags |= KPROBE_FLAG_GONE;
2012         if (kprobe_aggrprobe(p)) {
2013                 /*
2014                  * If this is an aggr_kprobe, we have to list all the
2015                  * chained probes and mark them GONE.
2016                  */
2017                 list_for_each_entry_rcu(kp, &p->list, list)
2018                         kp->flags |= KPROBE_FLAG_GONE;
2019                 p->post_handler = NULL;
2020                 kill_optimized_kprobe(p);
2021         }
2022         /*
2023          * Here, we can remove insn_slot safely, because no thread calls
2024          * the original probed function (which will be freed soon) any more.
2025          */
2026         arch_remove_kprobe(p);
2027 }
2028
2029 /* Disable one kprobe */
2030 int disable_kprobe(struct kprobe *kp)
2031 {
2032         int ret = 0;
2033         struct kprobe *p;
2034
2035         mutex_lock(&kprobe_mutex);
2036
2037         /* Disable this kprobe */
2038         p = __disable_kprobe(kp);
2039         if (IS_ERR(p))
2040                 ret = PTR_ERR(p);
2041
2042         mutex_unlock(&kprobe_mutex);
2043         return ret;
2044 }
2045 EXPORT_SYMBOL_GPL(disable_kprobe);
2046
2047 /* Enable one kprobe */
2048 int enable_kprobe(struct kprobe *kp)
2049 {
2050         int ret = 0;
2051         struct kprobe *p;
2052
2053         mutex_lock(&kprobe_mutex);
2054
2055         /* Check whether specified probe is valid. */
2056         p = __get_valid_kprobe(kp);
2057         if (unlikely(p == NULL)) {
2058                 ret = -EINVAL;
2059                 goto out;
2060         }
2061
2062         if (kprobe_gone(kp)) {
2063                 /* This kprobe has gone, we couldn't enable it. */
2064                 ret = -EINVAL;
2065                 goto out;
2066         }
2067
2068         if (p != kp)
2069                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2070
2071         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2072                 p->flags &= ~KPROBE_FLAG_DISABLED;
2073                 ret = arm_kprobe(p);
2074                 if (ret)
2075                         p->flags |= KPROBE_FLAG_DISABLED;
2076         }
2077 out:
2078         mutex_unlock(&kprobe_mutex);
2079         return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(enable_kprobe);
2082
2083 /* Caller must NOT call this in usual path. This is only for critical case */
2084 void dump_kprobe(struct kprobe *kp)
2085 {
2086         pr_err("Dumping kprobe:\n");
2087         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2088                kp->symbol_name, kp->offset, kp->addr);
2089 }
2090 NOKPROBE_SYMBOL(dump_kprobe);
2091
2092 /*
2093  * Lookup and populate the kprobe_blacklist.
2094  *
2095  * Unlike the kretprobe blacklist, we'll need to determine
2096  * the range of addresses that belong to the said functions,
2097  * since a kprobe need not necessarily be at the beginning
2098  * of a function.
2099  */
2100 static int __init populate_kprobe_blacklist(unsigned long *start,
2101                                              unsigned long *end)
2102 {
2103         unsigned long *iter;
2104         struct kprobe_blacklist_entry *ent;
2105         unsigned long entry, offset = 0, size = 0;
2106
2107         for (iter = start; iter < end; iter++) {
2108                 entry = arch_deref_entry_point((void *)*iter);
2109
2110                 if (!kernel_text_address(entry) ||
2111                     !kallsyms_lookup_size_offset(entry, &size, &offset))
2112                         continue;
2113
2114                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2115                 if (!ent)
2116                         return -ENOMEM;
2117                 ent->start_addr = entry;
2118                 ent->end_addr = entry + size;
2119                 INIT_LIST_HEAD(&ent->list);
2120                 list_add_tail(&ent->list, &kprobe_blacklist);
2121         }
2122         return 0;
2123 }
2124
2125 /* Module notifier call back, checking kprobes on the module */
2126 static int kprobes_module_callback(struct notifier_block *nb,
2127                                    unsigned long val, void *data)
2128 {
2129         struct module *mod = data;
2130         struct hlist_head *head;
2131         struct kprobe *p;
2132         unsigned int i;
2133         int checkcore = (val == MODULE_STATE_GOING);
2134
2135         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2136                 return NOTIFY_DONE;
2137
2138         /*
2139          * When MODULE_STATE_GOING was notified, both of module .text and
2140          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2141          * notified, only .init.text section would be freed. We need to
2142          * disable kprobes which have been inserted in the sections.
2143          */
2144         mutex_lock(&kprobe_mutex);
2145         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2146                 head = &kprobe_table[i];
2147                 hlist_for_each_entry_rcu(p, head, hlist)
2148                         if (within_module_init((unsigned long)p->addr, mod) ||
2149                             (checkcore &&
2150                              within_module_core((unsigned long)p->addr, mod))) {
2151                                 /*
2152                                  * The vaddr this probe is installed will soon
2153                                  * be vfreed buy not synced to disk. Hence,
2154                                  * disarming the breakpoint isn't needed.
2155                                  *
2156                                  * Note, this will also move any optimized probes
2157                                  * that are pending to be removed from their
2158                                  * corresponding lists to the freeing_list and
2159                                  * will not be touched by the delayed
2160                                  * kprobe_optimizer work handler.
2161                                  */
2162                                 kill_kprobe(p);
2163                         }
2164         }
2165         mutex_unlock(&kprobe_mutex);
2166         return NOTIFY_DONE;
2167 }
2168
2169 static struct notifier_block kprobe_module_nb = {
2170         .notifier_call = kprobes_module_callback,
2171         .priority = 0
2172 };
2173
2174 /* Markers of _kprobe_blacklist section */
2175 extern unsigned long __start_kprobe_blacklist[];
2176 extern unsigned long __stop_kprobe_blacklist[];
2177
2178 static int __init init_kprobes(void)
2179 {
2180         int i, err = 0;
2181
2182         /* FIXME allocate the probe table, currently defined statically */
2183         /* initialize all list heads */
2184         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2185                 INIT_HLIST_HEAD(&kprobe_table[i]);
2186                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2187                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2188         }
2189
2190         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2191                                         __stop_kprobe_blacklist);
2192         if (err) {
2193                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2194                 pr_err("Please take care of using kprobes.\n");
2195         }
2196
2197         if (kretprobe_blacklist_size) {
2198                 /* lookup the function address from its name */
2199                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2200                         kretprobe_blacklist[i].addr =
2201                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2202                         if (!kretprobe_blacklist[i].addr)
2203                                 printk("kretprobe: lookup failed: %s\n",
2204                                        kretprobe_blacklist[i].name);
2205                 }
2206         }
2207
2208 #if defined(CONFIG_OPTPROBES)
2209 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2210         /* Init kprobe_optinsn_slots */
2211         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2212 #endif
2213         /* By default, kprobes can be optimized */
2214         kprobes_allow_optimization = true;
2215 #endif
2216
2217         /* By default, kprobes are armed */
2218         kprobes_all_disarmed = false;
2219
2220         err = arch_init_kprobes();
2221         if (!err)
2222                 err = register_die_notifier(&kprobe_exceptions_nb);
2223         if (!err)
2224                 err = register_module_notifier(&kprobe_module_nb);
2225
2226         kprobes_initialized = (err == 0);
2227
2228         if (!err)
2229                 init_test_probes();
2230         return err;
2231 }
2232
2233 #ifdef CONFIG_DEBUG_FS
2234 static void report_probe(struct seq_file *pi, struct kprobe *p,
2235                 const char *sym, int offset, char *modname, struct kprobe *pp)
2236 {
2237         char *kprobe_type;
2238         void *addr = p->addr;
2239
2240         if (p->pre_handler == pre_handler_kretprobe)
2241                 kprobe_type = "r";
2242         else
2243                 kprobe_type = "k";
2244
2245         if (!kallsyms_show_value())
2246                 addr = NULL;
2247
2248         if (sym)
2249                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2250                         addr, kprobe_type, sym, offset,
2251                         (modname ? modname : " "));
2252         else    /* try to use %pS */
2253                 seq_printf(pi, "%px  %s  %pS ",
2254                         addr, kprobe_type, p->addr);
2255
2256         if (!pp)
2257                 pp = p;
2258         seq_printf(pi, "%s%s%s%s\n",
2259                 (kprobe_gone(p) ? "[GONE]" : ""),
2260                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2261                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2262                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2263 }
2264
2265 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2266 {
2267         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2268 }
2269
2270 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2271 {
2272         (*pos)++;
2273         if (*pos >= KPROBE_TABLE_SIZE)
2274                 return NULL;
2275         return pos;
2276 }
2277
2278 static void kprobe_seq_stop(struct seq_file *f, void *v)
2279 {
2280         /* Nothing to do */
2281 }
2282
2283 static int show_kprobe_addr(struct seq_file *pi, void *v)
2284 {
2285         struct hlist_head *head;
2286         struct kprobe *p, *kp;
2287         const char *sym = NULL;
2288         unsigned int i = *(loff_t *) v;
2289         unsigned long offset = 0;
2290         char *modname, namebuf[KSYM_NAME_LEN];
2291
2292         head = &kprobe_table[i];
2293         preempt_disable();
2294         hlist_for_each_entry_rcu(p, head, hlist) {
2295                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2296                                         &offset, &modname, namebuf);
2297                 if (kprobe_aggrprobe(p)) {
2298                         list_for_each_entry_rcu(kp, &p->list, list)
2299                                 report_probe(pi, kp, sym, offset, modname, p);
2300                 } else
2301                         report_probe(pi, p, sym, offset, modname, NULL);
2302         }
2303         preempt_enable();
2304         return 0;
2305 }
2306
2307 static const struct seq_operations kprobes_seq_ops = {
2308         .start = kprobe_seq_start,
2309         .next  = kprobe_seq_next,
2310         .stop  = kprobe_seq_stop,
2311         .show  = show_kprobe_addr
2312 };
2313
2314 static int kprobes_open(struct inode *inode, struct file *filp)
2315 {
2316         return seq_open(filp, &kprobes_seq_ops);
2317 }
2318
2319 static const struct file_operations debugfs_kprobes_operations = {
2320         .open           = kprobes_open,
2321         .read           = seq_read,
2322         .llseek         = seq_lseek,
2323         .release        = seq_release,
2324 };
2325
2326 /* kprobes/blacklist -- shows which functions can not be probed */
2327 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2328 {
2329         return seq_list_start(&kprobe_blacklist, *pos);
2330 }
2331
2332 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2333 {
2334         return seq_list_next(v, &kprobe_blacklist, pos);
2335 }
2336
2337 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2338 {
2339         struct kprobe_blacklist_entry *ent =
2340                 list_entry(v, struct kprobe_blacklist_entry, list);
2341
2342         /*
2343          * If /proc/kallsyms is not showing kernel address, we won't
2344          * show them here either.
2345          */
2346         if (!kallsyms_show_value())
2347                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2348                            (void *)ent->start_addr);
2349         else
2350                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2351                            (void *)ent->end_addr, (void *)ent->start_addr);
2352         return 0;
2353 }
2354
2355 static const struct seq_operations kprobe_blacklist_seq_ops = {
2356         .start = kprobe_blacklist_seq_start,
2357         .next  = kprobe_blacklist_seq_next,
2358         .stop  = kprobe_seq_stop,       /* Reuse void function */
2359         .show  = kprobe_blacklist_seq_show,
2360 };
2361
2362 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2363 {
2364         return seq_open(filp, &kprobe_blacklist_seq_ops);
2365 }
2366
2367 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2368         .open           = kprobe_blacklist_open,
2369         .read           = seq_read,
2370         .llseek         = seq_lseek,
2371         .release        = seq_release,
2372 };
2373
2374 static int arm_all_kprobes(void)
2375 {
2376         struct hlist_head *head;
2377         struct kprobe *p;
2378         unsigned int i, total = 0, errors = 0;
2379         int err, ret = 0;
2380
2381         mutex_lock(&kprobe_mutex);
2382
2383         /* If kprobes are armed, just return */
2384         if (!kprobes_all_disarmed)
2385                 goto already_enabled;
2386
2387         /*
2388          * optimize_kprobe() called by arm_kprobe() checks
2389          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2390          * arm_kprobe.
2391          */
2392         kprobes_all_disarmed = false;
2393         /* Arming kprobes doesn't optimize kprobe itself */
2394         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2395                 head = &kprobe_table[i];
2396                 /* Arm all kprobes on a best-effort basis */
2397                 hlist_for_each_entry_rcu(p, head, hlist) {
2398                         if (!kprobe_disabled(p)) {
2399                                 err = arm_kprobe(p);
2400                                 if (err)  {
2401                                         errors++;
2402                                         ret = err;
2403                                 }
2404                                 total++;
2405                         }
2406                 }
2407         }
2408
2409         if (errors)
2410                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2411                         errors, total);
2412         else
2413                 pr_info("Kprobes globally enabled\n");
2414
2415 already_enabled:
2416         mutex_unlock(&kprobe_mutex);
2417         return ret;
2418 }
2419
2420 static int disarm_all_kprobes(void)
2421 {
2422         struct hlist_head *head;
2423         struct kprobe *p;
2424         unsigned int i, total = 0, errors = 0;
2425         int err, ret = 0;
2426
2427         mutex_lock(&kprobe_mutex);
2428
2429         /* If kprobes are already disarmed, just return */
2430         if (kprobes_all_disarmed) {
2431                 mutex_unlock(&kprobe_mutex);
2432                 return 0;
2433         }
2434
2435         kprobes_all_disarmed = true;
2436
2437         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2438                 head = &kprobe_table[i];
2439                 /* Disarm all kprobes on a best-effort basis */
2440                 hlist_for_each_entry_rcu(p, head, hlist) {
2441                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2442                                 err = disarm_kprobe(p, false);
2443                                 if (err) {
2444                                         errors++;
2445                                         ret = err;
2446                                 }
2447                                 total++;
2448                         }
2449                 }
2450         }
2451
2452         if (errors)
2453                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2454                         errors, total);
2455         else
2456                 pr_info("Kprobes globally disabled\n");
2457
2458         mutex_unlock(&kprobe_mutex);
2459
2460         /* Wait for disarming all kprobes by optimizer */
2461         wait_for_kprobe_optimizer();
2462
2463         return ret;
2464 }
2465
2466 /*
2467  * XXX: The debugfs bool file interface doesn't allow for callbacks
2468  * when the bool state is switched. We can reuse that facility when
2469  * available
2470  */
2471 static ssize_t read_enabled_file_bool(struct file *file,
2472                char __user *user_buf, size_t count, loff_t *ppos)
2473 {
2474         char buf[3];
2475
2476         if (!kprobes_all_disarmed)
2477                 buf[0] = '1';
2478         else
2479                 buf[0] = '0';
2480         buf[1] = '\n';
2481         buf[2] = 0x00;
2482         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2483 }
2484
2485 static ssize_t write_enabled_file_bool(struct file *file,
2486                const char __user *user_buf, size_t count, loff_t *ppos)
2487 {
2488         char buf[32];
2489         size_t buf_size;
2490         int ret = 0;
2491
2492         buf_size = min(count, (sizeof(buf)-1));
2493         if (copy_from_user(buf, user_buf, buf_size))
2494                 return -EFAULT;
2495
2496         buf[buf_size] = '\0';
2497         switch (buf[0]) {
2498         case 'y':
2499         case 'Y':
2500         case '1':
2501                 ret = arm_all_kprobes();
2502                 break;
2503         case 'n':
2504         case 'N':
2505         case '0':
2506                 ret = disarm_all_kprobes();
2507                 break;
2508         default:
2509                 return -EINVAL;
2510         }
2511
2512         if (ret)
2513                 return ret;
2514
2515         return count;
2516 }
2517
2518 static const struct file_operations fops_kp = {
2519         .read =         read_enabled_file_bool,
2520         .write =        write_enabled_file_bool,
2521         .llseek =       default_llseek,
2522 };
2523
2524 static int __init debugfs_kprobe_init(void)
2525 {
2526         struct dentry *dir, *file;
2527         unsigned int value = 1;
2528
2529         dir = debugfs_create_dir("kprobes", NULL);
2530         if (!dir)
2531                 return -ENOMEM;
2532
2533         file = debugfs_create_file("list", 0400, dir, NULL,
2534                                 &debugfs_kprobes_operations);
2535         if (!file)
2536                 goto error;
2537
2538         file = debugfs_create_file("enabled", 0600, dir,
2539                                         &value, &fops_kp);
2540         if (!file)
2541                 goto error;
2542
2543         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2544                                 &debugfs_kprobe_blacklist_ops);
2545         if (!file)
2546                 goto error;
2547
2548         return 0;
2549
2550 error:
2551         debugfs_remove(dir);
2552         return -ENOMEM;
2553 }
2554
2555 late_initcall(debugfs_kprobe_init);
2556 #endif /* CONFIG_DEBUG_FS */
2557
2558 module_init(init_kprobes);