Merge tag 'dmaengine-5.7-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[platform/kernel/linux-rpi.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59         raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63                                         unsigned int __unused)
64 {
65         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70         return &(kretprobe_table_locks[hash].lock);
71 }
72
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84         struct list_head list;
85         kprobe_opcode_t *insns;         /* Page of instruction slots */
86         struct kprobe_insn_cache *cache;
87         int nused;
88         int ngarbage;
89         char slot_used[];
90 };
91
92 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
93         (offsetof(struct kprobe_insn_page, slot_used) + \
94          (sizeof(char) * (slots)))
95
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100
101 enum kprobe_slot_state {
102         SLOT_CLEAN = 0,
103         SLOT_DIRTY = 1,
104         SLOT_USED = 2,
105 };
106
107 void __weak *alloc_insn_page(void)
108 {
109         return module_alloc(PAGE_SIZE);
110 }
111
112 void __weak free_insn_page(void *page)
113 {
114         module_memfree(page);
115 }
116
117 struct kprobe_insn_cache kprobe_insn_slots = {
118         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119         .alloc = alloc_insn_page,
120         .free = free_insn_page,
121         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122         .insn_size = MAX_INSN_SIZE,
123         .nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133         struct kprobe_insn_page *kip;
134         kprobe_opcode_t *slot = NULL;
135
136         /* Since the slot array is not protected by rcu, we need a mutex */
137         mutex_lock(&c->mutex);
138  retry:
139         rcu_read_lock();
140         list_for_each_entry_rcu(kip, &c->pages, list) {
141                 if (kip->nused < slots_per_page(c)) {
142                         int i;
143                         for (i = 0; i < slots_per_page(c); i++) {
144                                 if (kip->slot_used[i] == SLOT_CLEAN) {
145                                         kip->slot_used[i] = SLOT_USED;
146                                         kip->nused++;
147                                         slot = kip->insns + (i * c->insn_size);
148                                         rcu_read_unlock();
149                                         goto out;
150                                 }
151                         }
152                         /* kip->nused is broken. Fix it. */
153                         kip->nused = slots_per_page(c);
154                         WARN_ON(1);
155                 }
156         }
157         rcu_read_unlock();
158
159         /* If there are any garbage slots, collect it and try again. */
160         if (c->nr_garbage && collect_garbage_slots(c) == 0)
161                 goto retry;
162
163         /* All out of space.  Need to allocate a new page. */
164         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165         if (!kip)
166                 goto out;
167
168         /*
169          * Use module_alloc so this page is within +/- 2GB of where the
170          * kernel image and loaded module images reside. This is required
171          * so x86_64 can correctly handle the %rip-relative fixups.
172          */
173         kip->insns = c->alloc();
174         if (!kip->insns) {
175                 kfree(kip);
176                 goto out;
177         }
178         INIT_LIST_HEAD(&kip->list);
179         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180         kip->slot_used[0] = SLOT_USED;
181         kip->nused = 1;
182         kip->ngarbage = 0;
183         kip->cache = c;
184         list_add_rcu(&kip->list, &c->pages);
185         slot = kip->insns;
186 out:
187         mutex_unlock(&c->mutex);
188         return slot;
189 }
190
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194         kip->slot_used[idx] = SLOT_CLEAN;
195         kip->nused--;
196         if (kip->nused == 0) {
197                 /*
198                  * Page is no longer in use.  Free it unless
199                  * it's the last one.  We keep the last one
200                  * so as not to have to set it up again the
201                  * next time somebody inserts a probe.
202                  */
203                 if (!list_is_singular(&kip->list)) {
204                         list_del_rcu(&kip->list);
205                         synchronize_rcu();
206                         kip->cache->free(kip->insns);
207                         kfree(kip);
208                 }
209                 return 1;
210         }
211         return 0;
212 }
213
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216         struct kprobe_insn_page *kip, *next;
217
218         /* Ensure no-one is interrupted on the garbages */
219         synchronize_rcu();
220
221         list_for_each_entry_safe(kip, next, &c->pages, list) {
222                 int i;
223                 if (kip->ngarbage == 0)
224                         continue;
225                 kip->ngarbage = 0;      /* we will collect all garbages */
226                 for (i = 0; i < slots_per_page(c); i++) {
227                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228                                 break;
229                 }
230         }
231         c->nr_garbage = 0;
232         return 0;
233 }
234
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236                       kprobe_opcode_t *slot, int dirty)
237 {
238         struct kprobe_insn_page *kip;
239         long idx;
240
241         mutex_lock(&c->mutex);
242         rcu_read_lock();
243         list_for_each_entry_rcu(kip, &c->pages, list) {
244                 idx = ((long)slot - (long)kip->insns) /
245                         (c->insn_size * sizeof(kprobe_opcode_t));
246                 if (idx >= 0 && idx < slots_per_page(c))
247                         goto out;
248         }
249         /* Could not find this slot. */
250         WARN_ON(1);
251         kip = NULL;
252 out:
253         rcu_read_unlock();
254         /* Mark and sweep: this may sleep */
255         if (kip) {
256                 /* Check double free */
257                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258                 if (dirty) {
259                         kip->slot_used[idx] = SLOT_DIRTY;
260                         kip->ngarbage++;
261                         if (++c->nr_garbage > slots_per_page(c))
262                                 collect_garbage_slots(c);
263                 } else {
264                         collect_one_slot(kip, idx);
265                 }
266         }
267         mutex_unlock(&c->mutex);
268 }
269
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277         struct kprobe_insn_page *kip;
278         bool ret = false;
279
280         rcu_read_lock();
281         list_for_each_entry_rcu(kip, &c->pages, list) {
282                 if (addr >= (unsigned long)kip->insns &&
283                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
284                         ret = true;
285                         break;
286                 }
287         }
288         rcu_read_unlock();
289
290         return ret;
291 }
292
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297         .alloc = alloc_insn_page,
298         .free = free_insn_page,
299         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300         /* .insn_size is initialized later */
301         .nr_garbage = 0,
302 };
303 #endif
304 #endif
305
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309         __this_cpu_write(kprobe_instance, kp);
310 }
311
312 static inline void reset_kprobe_instance(void)
313 {
314         __this_cpu_write(kprobe_instance, NULL);
315 }
316
317 /*
318  * This routine is called either:
319  *      - under the kprobe_mutex - during kprobe_[un]register()
320  *                              OR
321  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
323 struct kprobe *get_kprobe(void *addr)
324 {
325         struct hlist_head *head;
326         struct kprobe *p;
327
328         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329         hlist_for_each_entry_rcu(p, head, hlist) {
330                 if (p->addr == addr)
331                         return p;
332         }
333
334         return NULL;
335 }
336 NOKPROBE_SYMBOL(get_kprobe);
337
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
342 {
343         return p->pre_handler == aggr_pre_handler;
344 }
345
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
348 {
349         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350                list_empty(&p->list);
351 }
352
353 /*
354  * Keep all fields in the kprobe consistent
355  */
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357 {
358         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360 }
361
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
365
366 /*
367  * Call all pre_handler on the list, but ignores its return value.
368  * This must be called from arch-dep optimized caller.
369  */
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372         struct kprobe *kp;
373
374         list_for_each_entry_rcu(kp, &p->list, list) {
375                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376                         set_kprobe_instance(kp);
377                         kp->pre_handler(kp, regs);
378                 }
379                 reset_kprobe_instance();
380         }
381 }
382 NOKPROBE_SYMBOL(opt_pre_handler);
383
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
386 {
387         struct optimized_kprobe *op;
388
389         op = container_of(p, struct optimized_kprobe, kp);
390         arch_remove_optimized_kprobe(op);
391         arch_remove_kprobe(p);
392         kfree(op);
393 }
394
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
397 {
398         struct optimized_kprobe *op;
399
400         if (kprobe_aggrprobe(p)) {
401                 op = container_of(p, struct optimized_kprobe, kp);
402                 return arch_prepared_optinsn(&op->optinsn);
403         }
404
405         return 0;
406 }
407
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414         if (!kprobe_aggrprobe(p))
415                 return kprobe_disabled(p);
416
417         op = container_of(p, struct optimized_kprobe, kp);
418
419         return kprobe_disabled(p) && list_empty(&op->list);
420 }
421
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
424 {
425         struct optimized_kprobe *op;
426
427         if (kprobe_aggrprobe(p)) {
428                 op = container_of(p, struct optimized_kprobe, kp);
429                 if (!list_empty(&op->list))
430                         return 1;
431         }
432         return 0;
433 }
434
435 /*
436  * Return an optimized kprobe whose optimizing code replaces
437  * instructions including addr (exclude breakpoint).
438  */
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
440 {
441         int i;
442         struct kprobe *p = NULL;
443         struct optimized_kprobe *op;
444
445         /* Don't check i == 0, since that is a breakpoint case. */
446         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447                 p = get_kprobe((void *)(addr - i));
448
449         if (p && kprobe_optready(p)) {
450                 op = container_of(p, struct optimized_kprobe, kp);
451                 if (arch_within_optimized_kprobe(op, addr))
452                         return p;
453         }
454
455         return NULL;
456 }
457
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
462
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
466
467 /*
468  * Optimize (replace a breakpoint with a jump) kprobes listed on
469  * optimizing_list.
470  */
471 static void do_optimize_kprobes(void)
472 {
473         lockdep_assert_held(&text_mutex);
474         /*
475          * The optimization/unoptimization refers online_cpus via
476          * stop_machine() and cpu-hotplug modifies online_cpus.
477          * And same time, text_mutex will be held in cpu-hotplug and here.
478          * This combination can cause a deadlock (cpu-hotplug try to lock
479          * text_mutex but stop_machine can not be done because online_cpus
480          * has been changed)
481          * To avoid this deadlock, caller must have locked cpu hotplug
482          * for preventing cpu-hotplug outside of text_mutex locking.
483          */
484         lockdep_assert_cpus_held();
485
486         /* Optimization never be done when disarmed */
487         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488             list_empty(&optimizing_list))
489                 return;
490
491         arch_optimize_kprobes(&optimizing_list);
492 }
493
494 /*
495  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496  * if need) kprobes listed on unoptimizing_list.
497  */
498 static void do_unoptimize_kprobes(void)
499 {
500         struct optimized_kprobe *op, *tmp;
501
502         lockdep_assert_held(&text_mutex);
503         /* See comment in do_optimize_kprobes() */
504         lockdep_assert_cpus_held();
505
506         /* Unoptimization must be done anytime */
507         if (list_empty(&unoptimizing_list))
508                 return;
509
510         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511         /* Loop free_list for disarming */
512         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513                 /* Switching from detour code to origin */
514                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
515                 /* Disarm probes if marked disabled */
516                 if (kprobe_disabled(&op->kp))
517                         arch_disarm_kprobe(&op->kp);
518                 if (kprobe_unused(&op->kp)) {
519                         /*
520                          * Remove unused probes from hash list. After waiting
521                          * for synchronization, these probes are reclaimed.
522                          * (reclaiming is done by do_free_cleaned_kprobes.)
523                          */
524                         hlist_del_rcu(&op->kp.hlist);
525                 } else
526                         list_del_init(&op->list);
527         }
528 }
529
530 /* Reclaim all kprobes on the free_list */
531 static void do_free_cleaned_kprobes(void)
532 {
533         struct optimized_kprobe *op, *tmp;
534
535         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
536                 list_del_init(&op->list);
537                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
538                         /*
539                          * This must not happen, but if there is a kprobe
540                          * still in use, keep it on kprobes hash list.
541                          */
542                         continue;
543                 }
544                 free_aggr_kprobe(&op->kp);
545         }
546 }
547
548 /* Start optimizer after OPTIMIZE_DELAY passed */
549 static void kick_kprobe_optimizer(void)
550 {
551         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
552 }
553
554 /* Kprobe jump optimizer */
555 static void kprobe_optimizer(struct work_struct *work)
556 {
557         mutex_lock(&kprobe_mutex);
558         cpus_read_lock();
559         mutex_lock(&text_mutex);
560         /* Lock modules while optimizing kprobes */
561         mutex_lock(&module_mutex);
562
563         /*
564          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
565          * kprobes before waiting for quiesence period.
566          */
567         do_unoptimize_kprobes();
568
569         /*
570          * Step 2: Wait for quiesence period to ensure all potentially
571          * preempted tasks to have normally scheduled. Because optprobe
572          * may modify multiple instructions, there is a chance that Nth
573          * instruction is preempted. In that case, such tasks can return
574          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
575          * Note that on non-preemptive kernel, this is transparently converted
576          * to synchronoze_sched() to wait for all interrupts to have completed.
577          */
578         synchronize_rcu_tasks();
579
580         /* Step 3: Optimize kprobes after quiesence period */
581         do_optimize_kprobes();
582
583         /* Step 4: Free cleaned kprobes after quiesence period */
584         do_free_cleaned_kprobes();
585
586         mutex_unlock(&module_mutex);
587         mutex_unlock(&text_mutex);
588         cpus_read_unlock();
589         mutex_unlock(&kprobe_mutex);
590
591         /* Step 5: Kick optimizer again if needed */
592         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593                 kick_kprobe_optimizer();
594 }
595
596 /* Wait for completing optimization and unoptimization */
597 void wait_for_kprobe_optimizer(void)
598 {
599         mutex_lock(&kprobe_mutex);
600
601         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
602                 mutex_unlock(&kprobe_mutex);
603
604                 /* this will also make optimizing_work execute immmediately */
605                 flush_delayed_work(&optimizing_work);
606                 /* @optimizing_work might not have been queued yet, relax */
607                 cpu_relax();
608
609                 mutex_lock(&kprobe_mutex);
610         }
611
612         mutex_unlock(&kprobe_mutex);
613 }
614
615 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
616 {
617         struct optimized_kprobe *_op;
618
619         list_for_each_entry(_op, &unoptimizing_list, list) {
620                 if (op == _op)
621                         return true;
622         }
623
624         return false;
625 }
626
627 /* Optimize kprobe if p is ready to be optimized */
628 static void optimize_kprobe(struct kprobe *p)
629 {
630         struct optimized_kprobe *op;
631
632         /* Check if the kprobe is disabled or not ready for optimization. */
633         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
634             (kprobe_disabled(p) || kprobes_all_disarmed))
635                 return;
636
637         /* kprobes with post_handler can not be optimized */
638         if (p->post_handler)
639                 return;
640
641         op = container_of(p, struct optimized_kprobe, kp);
642
643         /* Check there is no other kprobes at the optimized instructions */
644         if (arch_check_optimized_kprobe(op) < 0)
645                 return;
646
647         /* Check if it is already optimized. */
648         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
649                 if (optprobe_queued_unopt(op)) {
650                         /* This is under unoptimizing. Just dequeue the probe */
651                         list_del_init(&op->list);
652                 }
653                 return;
654         }
655         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
656
657         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
658         if (WARN_ON_ONCE(!list_empty(&op->list)))
659                 return;
660
661         list_add(&op->list, &optimizing_list);
662         kick_kprobe_optimizer();
663 }
664
665 /* Short cut to direct unoptimizing */
666 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
667 {
668         lockdep_assert_cpus_held();
669         arch_unoptimize_kprobe(op);
670         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
671         if (kprobe_disabled(&op->kp))
672                 arch_disarm_kprobe(&op->kp);
673 }
674
675 /* Unoptimize a kprobe if p is optimized */
676 static void unoptimize_kprobe(struct kprobe *p, bool force)
677 {
678         struct optimized_kprobe *op;
679
680         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
681                 return; /* This is not an optprobe nor optimized */
682
683         op = container_of(p, struct optimized_kprobe, kp);
684         if (!kprobe_optimized(p))
685                 return;
686
687         if (!list_empty(&op->list)) {
688                 if (optprobe_queued_unopt(op)) {
689                         /* Queued in unoptimizing queue */
690                         if (force) {
691                                 /*
692                                  * Forcibly unoptimize the kprobe here, and queue it
693                                  * in the freeing list for release afterwards.
694                                  */
695                                 force_unoptimize_kprobe(op);
696                                 list_move(&op->list, &freeing_list);
697                         }
698                 } else {
699                         /* Dequeue from the optimizing queue */
700                         list_del_init(&op->list);
701                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
702                 }
703                 return;
704         }
705
706         /* Optimized kprobe case */
707         if (force) {
708                 /* Forcibly update the code: this is a special case */
709                 force_unoptimize_kprobe(op);
710         } else {
711                 list_add(&op->list, &unoptimizing_list);
712                 kick_kprobe_optimizer();
713         }
714 }
715
716 /* Cancel unoptimizing for reusing */
717 static int reuse_unused_kprobe(struct kprobe *ap)
718 {
719         struct optimized_kprobe *op;
720
721         /*
722          * Unused kprobe MUST be on the way of delayed unoptimizing (means
723          * there is still a relative jump) and disabled.
724          */
725         op = container_of(ap, struct optimized_kprobe, kp);
726         WARN_ON_ONCE(list_empty(&op->list));
727         /* Enable the probe again */
728         ap->flags &= ~KPROBE_FLAG_DISABLED;
729         /* Optimize it again (remove from op->list) */
730         if (!kprobe_optready(ap))
731                 return -EINVAL;
732
733         optimize_kprobe(ap);
734         return 0;
735 }
736
737 /* Remove optimized instructions */
738 static void kill_optimized_kprobe(struct kprobe *p)
739 {
740         struct optimized_kprobe *op;
741
742         op = container_of(p, struct optimized_kprobe, kp);
743         if (!list_empty(&op->list))
744                 /* Dequeue from the (un)optimization queue */
745                 list_del_init(&op->list);
746         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
747
748         if (kprobe_unused(p)) {
749                 /* Enqueue if it is unused */
750                 list_add(&op->list, &freeing_list);
751                 /*
752                  * Remove unused probes from the hash list. After waiting
753                  * for synchronization, this probe is reclaimed.
754                  * (reclaiming is done by do_free_cleaned_kprobes().)
755                  */
756                 hlist_del_rcu(&op->kp.hlist);
757         }
758
759         /* Don't touch the code, because it is already freed. */
760         arch_remove_optimized_kprobe(op);
761 }
762
763 static inline
764 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
765 {
766         if (!kprobe_ftrace(p))
767                 arch_prepare_optimized_kprobe(op, p);
768 }
769
770 /* Try to prepare optimized instructions */
771 static void prepare_optimized_kprobe(struct kprobe *p)
772 {
773         struct optimized_kprobe *op;
774
775         op = container_of(p, struct optimized_kprobe, kp);
776         __prepare_optimized_kprobe(op, p);
777 }
778
779 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
780 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
781 {
782         struct optimized_kprobe *op;
783
784         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
785         if (!op)
786                 return NULL;
787
788         INIT_LIST_HEAD(&op->list);
789         op->kp.addr = p->addr;
790         __prepare_optimized_kprobe(op, p);
791
792         return &op->kp;
793 }
794
795 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
796
797 /*
798  * Prepare an optimized_kprobe and optimize it
799  * NOTE: p must be a normal registered kprobe
800  */
801 static void try_to_optimize_kprobe(struct kprobe *p)
802 {
803         struct kprobe *ap;
804         struct optimized_kprobe *op;
805
806         /* Impossible to optimize ftrace-based kprobe */
807         if (kprobe_ftrace(p))
808                 return;
809
810         /* For preparing optimization, jump_label_text_reserved() is called */
811         cpus_read_lock();
812         jump_label_lock();
813         mutex_lock(&text_mutex);
814
815         ap = alloc_aggr_kprobe(p);
816         if (!ap)
817                 goto out;
818
819         op = container_of(ap, struct optimized_kprobe, kp);
820         if (!arch_prepared_optinsn(&op->optinsn)) {
821                 /* If failed to setup optimizing, fallback to kprobe */
822                 arch_remove_optimized_kprobe(op);
823                 kfree(op);
824                 goto out;
825         }
826
827         init_aggr_kprobe(ap, p);
828         optimize_kprobe(ap);    /* This just kicks optimizer thread */
829
830 out:
831         mutex_unlock(&text_mutex);
832         jump_label_unlock();
833         cpus_read_unlock();
834 }
835
836 #ifdef CONFIG_SYSCTL
837 static void optimize_all_kprobes(void)
838 {
839         struct hlist_head *head;
840         struct kprobe *p;
841         unsigned int i;
842
843         mutex_lock(&kprobe_mutex);
844         /* If optimization is already allowed, just return */
845         if (kprobes_allow_optimization)
846                 goto out;
847
848         cpus_read_lock();
849         kprobes_allow_optimization = true;
850         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
851                 head = &kprobe_table[i];
852                 hlist_for_each_entry_rcu(p, head, hlist)
853                         if (!kprobe_disabled(p))
854                                 optimize_kprobe(p);
855         }
856         cpus_read_unlock();
857         printk(KERN_INFO "Kprobes globally optimized\n");
858 out:
859         mutex_unlock(&kprobe_mutex);
860 }
861
862 static void unoptimize_all_kprobes(void)
863 {
864         struct hlist_head *head;
865         struct kprobe *p;
866         unsigned int i;
867
868         mutex_lock(&kprobe_mutex);
869         /* If optimization is already prohibited, just return */
870         if (!kprobes_allow_optimization) {
871                 mutex_unlock(&kprobe_mutex);
872                 return;
873         }
874
875         cpus_read_lock();
876         kprobes_allow_optimization = false;
877         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
878                 head = &kprobe_table[i];
879                 hlist_for_each_entry_rcu(p, head, hlist) {
880                         if (!kprobe_disabled(p))
881                                 unoptimize_kprobe(p, false);
882                 }
883         }
884         cpus_read_unlock();
885         mutex_unlock(&kprobe_mutex);
886
887         /* Wait for unoptimizing completion */
888         wait_for_kprobe_optimizer();
889         printk(KERN_INFO "Kprobes globally unoptimized\n");
890 }
891
892 static DEFINE_MUTEX(kprobe_sysctl_mutex);
893 int sysctl_kprobes_optimization;
894 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
895                                       void __user *buffer, size_t *length,
896                                       loff_t *ppos)
897 {
898         int ret;
899
900         mutex_lock(&kprobe_sysctl_mutex);
901         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
902         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
903
904         if (sysctl_kprobes_optimization)
905                 optimize_all_kprobes();
906         else
907                 unoptimize_all_kprobes();
908         mutex_unlock(&kprobe_sysctl_mutex);
909
910         return ret;
911 }
912 #endif /* CONFIG_SYSCTL */
913
914 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
915 static void __arm_kprobe(struct kprobe *p)
916 {
917         struct kprobe *_p;
918
919         /* Check collision with other optimized kprobes */
920         _p = get_optimized_kprobe((unsigned long)p->addr);
921         if (unlikely(_p))
922                 /* Fallback to unoptimized kprobe */
923                 unoptimize_kprobe(_p, true);
924
925         arch_arm_kprobe(p);
926         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
927 }
928
929 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
930 static void __disarm_kprobe(struct kprobe *p, bool reopt)
931 {
932         struct kprobe *_p;
933
934         /* Try to unoptimize */
935         unoptimize_kprobe(p, kprobes_all_disarmed);
936
937         if (!kprobe_queued(p)) {
938                 arch_disarm_kprobe(p);
939                 /* If another kprobe was blocked, optimize it. */
940                 _p = get_optimized_kprobe((unsigned long)p->addr);
941                 if (unlikely(_p) && reopt)
942                         optimize_kprobe(_p);
943         }
944         /* TODO: reoptimize others after unoptimized this probe */
945 }
946
947 #else /* !CONFIG_OPTPROBES */
948
949 #define optimize_kprobe(p)                      do {} while (0)
950 #define unoptimize_kprobe(p, f)                 do {} while (0)
951 #define kill_optimized_kprobe(p)                do {} while (0)
952 #define prepare_optimized_kprobe(p)             do {} while (0)
953 #define try_to_optimize_kprobe(p)               do {} while (0)
954 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
955 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
956 #define kprobe_disarmed(p)                      kprobe_disabled(p)
957 #define wait_for_kprobe_optimizer()             do {} while (0)
958
959 static int reuse_unused_kprobe(struct kprobe *ap)
960 {
961         /*
962          * If the optimized kprobe is NOT supported, the aggr kprobe is
963          * released at the same time that the last aggregated kprobe is
964          * unregistered.
965          * Thus there should be no chance to reuse unused kprobe.
966          */
967         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
968         return -EINVAL;
969 }
970
971 static void free_aggr_kprobe(struct kprobe *p)
972 {
973         arch_remove_kprobe(p);
974         kfree(p);
975 }
976
977 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
978 {
979         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
980 }
981 #endif /* CONFIG_OPTPROBES */
982
983 #ifdef CONFIG_KPROBES_ON_FTRACE
984 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
985         .func = kprobe_ftrace_handler,
986         .flags = FTRACE_OPS_FL_SAVE_REGS,
987 };
988
989 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
990         .func = kprobe_ftrace_handler,
991         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
992 };
993
994 static int kprobe_ipmodify_enabled;
995 static int kprobe_ftrace_enabled;
996
997 /* Must ensure p->addr is really on ftrace */
998 static int prepare_kprobe(struct kprobe *p)
999 {
1000         if (!kprobe_ftrace(p))
1001                 return arch_prepare_kprobe(p);
1002
1003         return arch_prepare_kprobe_ftrace(p);
1004 }
1005
1006 /* Caller must lock kprobe_mutex */
1007 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1008                                int *cnt)
1009 {
1010         int ret = 0;
1011
1012         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1013         if (ret) {
1014                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1015                          p->addr, ret);
1016                 return ret;
1017         }
1018
1019         if (*cnt == 0) {
1020                 ret = register_ftrace_function(ops);
1021                 if (ret) {
1022                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1023                         goto err_ftrace;
1024                 }
1025         }
1026
1027         (*cnt)++;
1028         return ret;
1029
1030 err_ftrace:
1031         /*
1032          * At this point, sinec ops is not registered, we should be sefe from
1033          * registering empty filter.
1034          */
1035         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1036         return ret;
1037 }
1038
1039 static int arm_kprobe_ftrace(struct kprobe *p)
1040 {
1041         bool ipmodify = (p->post_handler != NULL);
1042
1043         return __arm_kprobe_ftrace(p,
1044                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1045                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1046 }
1047
1048 /* Caller must lock kprobe_mutex */
1049 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1050                                   int *cnt)
1051 {
1052         int ret = 0;
1053
1054         if (*cnt == 1) {
1055                 ret = unregister_ftrace_function(ops);
1056                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1057                         return ret;
1058         }
1059
1060         (*cnt)--;
1061
1062         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1063         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1064                   p->addr, ret);
1065         return ret;
1066 }
1067
1068 static int disarm_kprobe_ftrace(struct kprobe *p)
1069 {
1070         bool ipmodify = (p->post_handler != NULL);
1071
1072         return __disarm_kprobe_ftrace(p,
1073                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1074                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1075 }
1076 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1077 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1078 #define arm_kprobe_ftrace(p)    (-ENODEV)
1079 #define disarm_kprobe_ftrace(p) (-ENODEV)
1080 #endif
1081
1082 /* Arm a kprobe with text_mutex */
1083 static int arm_kprobe(struct kprobe *kp)
1084 {
1085         if (unlikely(kprobe_ftrace(kp)))
1086                 return arm_kprobe_ftrace(kp);
1087
1088         cpus_read_lock();
1089         mutex_lock(&text_mutex);
1090         __arm_kprobe(kp);
1091         mutex_unlock(&text_mutex);
1092         cpus_read_unlock();
1093
1094         return 0;
1095 }
1096
1097 /* Disarm a kprobe with text_mutex */
1098 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1099 {
1100         if (unlikely(kprobe_ftrace(kp)))
1101                 return disarm_kprobe_ftrace(kp);
1102
1103         cpus_read_lock();
1104         mutex_lock(&text_mutex);
1105         __disarm_kprobe(kp, reopt);
1106         mutex_unlock(&text_mutex);
1107         cpus_read_unlock();
1108
1109         return 0;
1110 }
1111
1112 /*
1113  * Aggregate handlers for multiple kprobes support - these handlers
1114  * take care of invoking the individual kprobe handlers on p->list
1115  */
1116 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1117 {
1118         struct kprobe *kp;
1119
1120         list_for_each_entry_rcu(kp, &p->list, list) {
1121                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1122                         set_kprobe_instance(kp);
1123                         if (kp->pre_handler(kp, regs))
1124                                 return 1;
1125                 }
1126                 reset_kprobe_instance();
1127         }
1128         return 0;
1129 }
1130 NOKPROBE_SYMBOL(aggr_pre_handler);
1131
1132 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1133                               unsigned long flags)
1134 {
1135         struct kprobe *kp;
1136
1137         list_for_each_entry_rcu(kp, &p->list, list) {
1138                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1139                         set_kprobe_instance(kp);
1140                         kp->post_handler(kp, regs, flags);
1141                         reset_kprobe_instance();
1142                 }
1143         }
1144 }
1145 NOKPROBE_SYMBOL(aggr_post_handler);
1146
1147 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1148                               int trapnr)
1149 {
1150         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1151
1152         /*
1153          * if we faulted "during" the execution of a user specified
1154          * probe handler, invoke just that probe's fault handler
1155          */
1156         if (cur && cur->fault_handler) {
1157                 if (cur->fault_handler(cur, regs, trapnr))
1158                         return 1;
1159         }
1160         return 0;
1161 }
1162 NOKPROBE_SYMBOL(aggr_fault_handler);
1163
1164 /* Walks the list and increments nmissed count for multiprobe case */
1165 void kprobes_inc_nmissed_count(struct kprobe *p)
1166 {
1167         struct kprobe *kp;
1168         if (!kprobe_aggrprobe(p)) {
1169                 p->nmissed++;
1170         } else {
1171                 list_for_each_entry_rcu(kp, &p->list, list)
1172                         kp->nmissed++;
1173         }
1174         return;
1175 }
1176 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1177
1178 void recycle_rp_inst(struct kretprobe_instance *ri,
1179                      struct hlist_head *head)
1180 {
1181         struct kretprobe *rp = ri->rp;
1182
1183         /* remove rp inst off the rprobe_inst_table */
1184         hlist_del(&ri->hlist);
1185         INIT_HLIST_NODE(&ri->hlist);
1186         if (likely(rp)) {
1187                 raw_spin_lock(&rp->lock);
1188                 hlist_add_head(&ri->hlist, &rp->free_instances);
1189                 raw_spin_unlock(&rp->lock);
1190         } else
1191                 /* Unregistering */
1192                 hlist_add_head(&ri->hlist, head);
1193 }
1194 NOKPROBE_SYMBOL(recycle_rp_inst);
1195
1196 void kretprobe_hash_lock(struct task_struct *tsk,
1197                          struct hlist_head **head, unsigned long *flags)
1198 __acquires(hlist_lock)
1199 {
1200         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1201         raw_spinlock_t *hlist_lock;
1202
1203         *head = &kretprobe_inst_table[hash];
1204         hlist_lock = kretprobe_table_lock_ptr(hash);
1205         raw_spin_lock_irqsave(hlist_lock, *flags);
1206 }
1207 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1208
1209 static void kretprobe_table_lock(unsigned long hash,
1210                                  unsigned long *flags)
1211 __acquires(hlist_lock)
1212 {
1213         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214         raw_spin_lock_irqsave(hlist_lock, *flags);
1215 }
1216 NOKPROBE_SYMBOL(kretprobe_table_lock);
1217
1218 void kretprobe_hash_unlock(struct task_struct *tsk,
1219                            unsigned long *flags)
1220 __releases(hlist_lock)
1221 {
1222         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1223         raw_spinlock_t *hlist_lock;
1224
1225         hlist_lock = kretprobe_table_lock_ptr(hash);
1226         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1227 }
1228 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1229
1230 static void kretprobe_table_unlock(unsigned long hash,
1231                                    unsigned long *flags)
1232 __releases(hlist_lock)
1233 {
1234         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1235         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1236 }
1237 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1238
1239 /*
1240  * This function is called from finish_task_switch when task tk becomes dead,
1241  * so that we can recycle any function-return probe instances associated
1242  * with this task. These left over instances represent probed functions
1243  * that have been called but will never return.
1244  */
1245 void kprobe_flush_task(struct task_struct *tk)
1246 {
1247         struct kretprobe_instance *ri;
1248         struct hlist_head *head, empty_rp;
1249         struct hlist_node *tmp;
1250         unsigned long hash, flags = 0;
1251
1252         if (unlikely(!kprobes_initialized))
1253                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1254                 return;
1255
1256         INIT_HLIST_HEAD(&empty_rp);
1257         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1258         head = &kretprobe_inst_table[hash];
1259         kretprobe_table_lock(hash, &flags);
1260         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1261                 if (ri->task == tk)
1262                         recycle_rp_inst(ri, &empty_rp);
1263         }
1264         kretprobe_table_unlock(hash, &flags);
1265         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1266                 hlist_del(&ri->hlist);
1267                 kfree(ri);
1268         }
1269 }
1270 NOKPROBE_SYMBOL(kprobe_flush_task);
1271
1272 static inline void free_rp_inst(struct kretprobe *rp)
1273 {
1274         struct kretprobe_instance *ri;
1275         struct hlist_node *next;
1276
1277         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1278                 hlist_del(&ri->hlist);
1279                 kfree(ri);
1280         }
1281 }
1282
1283 static void cleanup_rp_inst(struct kretprobe *rp)
1284 {
1285         unsigned long flags, hash;
1286         struct kretprobe_instance *ri;
1287         struct hlist_node *next;
1288         struct hlist_head *head;
1289
1290         /* No race here */
1291         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1292                 kretprobe_table_lock(hash, &flags);
1293                 head = &kretprobe_inst_table[hash];
1294                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1295                         if (ri->rp == rp)
1296                                 ri->rp = NULL;
1297                 }
1298                 kretprobe_table_unlock(hash, &flags);
1299         }
1300         free_rp_inst(rp);
1301 }
1302 NOKPROBE_SYMBOL(cleanup_rp_inst);
1303
1304 /* Add the new probe to ap->list */
1305 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1306 {
1307         if (p->post_handler)
1308                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1309
1310         list_add_rcu(&p->list, &ap->list);
1311         if (p->post_handler && !ap->post_handler)
1312                 ap->post_handler = aggr_post_handler;
1313
1314         return 0;
1315 }
1316
1317 /*
1318  * Fill in the required fields of the "manager kprobe". Replace the
1319  * earlier kprobe in the hlist with the manager kprobe
1320  */
1321 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1322 {
1323         /* Copy p's insn slot to ap */
1324         copy_kprobe(p, ap);
1325         flush_insn_slot(ap);
1326         ap->addr = p->addr;
1327         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1328         ap->pre_handler = aggr_pre_handler;
1329         ap->fault_handler = aggr_fault_handler;
1330         /* We don't care the kprobe which has gone. */
1331         if (p->post_handler && !kprobe_gone(p))
1332                 ap->post_handler = aggr_post_handler;
1333
1334         INIT_LIST_HEAD(&ap->list);
1335         INIT_HLIST_NODE(&ap->hlist);
1336
1337         list_add_rcu(&p->list, &ap->list);
1338         hlist_replace_rcu(&p->hlist, &ap->hlist);
1339 }
1340
1341 /*
1342  * This is the second or subsequent kprobe at the address - handle
1343  * the intricacies
1344  */
1345 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1346 {
1347         int ret = 0;
1348         struct kprobe *ap = orig_p;
1349
1350         cpus_read_lock();
1351
1352         /* For preparing optimization, jump_label_text_reserved() is called */
1353         jump_label_lock();
1354         mutex_lock(&text_mutex);
1355
1356         if (!kprobe_aggrprobe(orig_p)) {
1357                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1358                 ap = alloc_aggr_kprobe(orig_p);
1359                 if (!ap) {
1360                         ret = -ENOMEM;
1361                         goto out;
1362                 }
1363                 init_aggr_kprobe(ap, orig_p);
1364         } else if (kprobe_unused(ap)) {
1365                 /* This probe is going to die. Rescue it */
1366                 ret = reuse_unused_kprobe(ap);
1367                 if (ret)
1368                         goto out;
1369         }
1370
1371         if (kprobe_gone(ap)) {
1372                 /*
1373                  * Attempting to insert new probe at the same location that
1374                  * had a probe in the module vaddr area which already
1375                  * freed. So, the instruction slot has already been
1376                  * released. We need a new slot for the new probe.
1377                  */
1378                 ret = arch_prepare_kprobe(ap);
1379                 if (ret)
1380                         /*
1381                          * Even if fail to allocate new slot, don't need to
1382                          * free aggr_probe. It will be used next time, or
1383                          * freed by unregister_kprobe.
1384                          */
1385                         goto out;
1386
1387                 /* Prepare optimized instructions if possible. */
1388                 prepare_optimized_kprobe(ap);
1389
1390                 /*
1391                  * Clear gone flag to prevent allocating new slot again, and
1392                  * set disabled flag because it is not armed yet.
1393                  */
1394                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1395                             | KPROBE_FLAG_DISABLED;
1396         }
1397
1398         /* Copy ap's insn slot to p */
1399         copy_kprobe(ap, p);
1400         ret = add_new_kprobe(ap, p);
1401
1402 out:
1403         mutex_unlock(&text_mutex);
1404         jump_label_unlock();
1405         cpus_read_unlock();
1406
1407         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1408                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1409                 if (!kprobes_all_disarmed) {
1410                         /* Arm the breakpoint again. */
1411                         ret = arm_kprobe(ap);
1412                         if (ret) {
1413                                 ap->flags |= KPROBE_FLAG_DISABLED;
1414                                 list_del_rcu(&p->list);
1415                                 synchronize_rcu();
1416                         }
1417                 }
1418         }
1419         return ret;
1420 }
1421
1422 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1423 {
1424         /* The __kprobes marked functions and entry code must not be probed */
1425         return addr >= (unsigned long)__kprobes_text_start &&
1426                addr < (unsigned long)__kprobes_text_end;
1427 }
1428
1429 static bool __within_kprobe_blacklist(unsigned long addr)
1430 {
1431         struct kprobe_blacklist_entry *ent;
1432
1433         if (arch_within_kprobe_blacklist(addr))
1434                 return true;
1435         /*
1436          * If there exists a kprobe_blacklist, verify and
1437          * fail any probe registration in the prohibited area
1438          */
1439         list_for_each_entry(ent, &kprobe_blacklist, list) {
1440                 if (addr >= ent->start_addr && addr < ent->end_addr)
1441                         return true;
1442         }
1443         return false;
1444 }
1445
1446 bool within_kprobe_blacklist(unsigned long addr)
1447 {
1448         char symname[KSYM_NAME_LEN], *p;
1449
1450         if (__within_kprobe_blacklist(addr))
1451                 return true;
1452
1453         /* Check if the address is on a suffixed-symbol */
1454         if (!lookup_symbol_name(addr, symname)) {
1455                 p = strchr(symname, '.');
1456                 if (!p)
1457                         return false;
1458                 *p = '\0';
1459                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1460                 if (addr)
1461                         return __within_kprobe_blacklist(addr);
1462         }
1463         return false;
1464 }
1465
1466 /*
1467  * If we have a symbol_name argument, look it up and add the offset field
1468  * to it. This way, we can specify a relative address to a symbol.
1469  * This returns encoded errors if it fails to look up symbol or invalid
1470  * combination of parameters.
1471  */
1472 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1473                         const char *symbol_name, unsigned int offset)
1474 {
1475         if ((symbol_name && addr) || (!symbol_name && !addr))
1476                 goto invalid;
1477
1478         if (symbol_name) {
1479                 addr = kprobe_lookup_name(symbol_name, offset);
1480                 if (!addr)
1481                         return ERR_PTR(-ENOENT);
1482         }
1483
1484         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1485         if (addr)
1486                 return addr;
1487
1488 invalid:
1489         return ERR_PTR(-EINVAL);
1490 }
1491
1492 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1493 {
1494         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1495 }
1496
1497 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1498 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1499 {
1500         struct kprobe *ap, *list_p;
1501
1502         ap = get_kprobe(p->addr);
1503         if (unlikely(!ap))
1504                 return NULL;
1505
1506         if (p != ap) {
1507                 list_for_each_entry_rcu(list_p, &ap->list, list)
1508                         if (list_p == p)
1509                         /* kprobe p is a valid probe */
1510                                 goto valid;
1511                 return NULL;
1512         }
1513 valid:
1514         return ap;
1515 }
1516
1517 /* Return error if the kprobe is being re-registered */
1518 static inline int check_kprobe_rereg(struct kprobe *p)
1519 {
1520         int ret = 0;
1521
1522         mutex_lock(&kprobe_mutex);
1523         if (__get_valid_kprobe(p))
1524                 ret = -EINVAL;
1525         mutex_unlock(&kprobe_mutex);
1526
1527         return ret;
1528 }
1529
1530 int __weak arch_check_ftrace_location(struct kprobe *p)
1531 {
1532         unsigned long ftrace_addr;
1533
1534         ftrace_addr = ftrace_location((unsigned long)p->addr);
1535         if (ftrace_addr) {
1536 #ifdef CONFIG_KPROBES_ON_FTRACE
1537                 /* Given address is not on the instruction boundary */
1538                 if ((unsigned long)p->addr != ftrace_addr)
1539                         return -EILSEQ;
1540                 p->flags |= KPROBE_FLAG_FTRACE;
1541 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1542                 return -EINVAL;
1543 #endif
1544         }
1545         return 0;
1546 }
1547
1548 static int check_kprobe_address_safe(struct kprobe *p,
1549                                      struct module **probed_mod)
1550 {
1551         int ret;
1552
1553         ret = arch_check_ftrace_location(p);
1554         if (ret)
1555                 return ret;
1556         jump_label_lock();
1557         preempt_disable();
1558
1559         /* Ensure it is not in reserved area nor out of text */
1560         if (!kernel_text_address((unsigned long) p->addr) ||
1561             within_kprobe_blacklist((unsigned long) p->addr) ||
1562             jump_label_text_reserved(p->addr, p->addr) ||
1563             find_bug((unsigned long)p->addr)) {
1564                 ret = -EINVAL;
1565                 goto out;
1566         }
1567
1568         /* Check if are we probing a module */
1569         *probed_mod = __module_text_address((unsigned long) p->addr);
1570         if (*probed_mod) {
1571                 /*
1572                  * We must hold a refcount of the probed module while updating
1573                  * its code to prohibit unexpected unloading.
1574                  */
1575                 if (unlikely(!try_module_get(*probed_mod))) {
1576                         ret = -ENOENT;
1577                         goto out;
1578                 }
1579
1580                 /*
1581                  * If the module freed .init.text, we couldn't insert
1582                  * kprobes in there.
1583                  */
1584                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1585                     (*probed_mod)->state != MODULE_STATE_COMING) {
1586                         module_put(*probed_mod);
1587                         *probed_mod = NULL;
1588                         ret = -ENOENT;
1589                 }
1590         }
1591 out:
1592         preempt_enable();
1593         jump_label_unlock();
1594
1595         return ret;
1596 }
1597
1598 int register_kprobe(struct kprobe *p)
1599 {
1600         int ret;
1601         struct kprobe *old_p;
1602         struct module *probed_mod;
1603         kprobe_opcode_t *addr;
1604
1605         /* Adjust probe address from symbol */
1606         addr = kprobe_addr(p);
1607         if (IS_ERR(addr))
1608                 return PTR_ERR(addr);
1609         p->addr = addr;
1610
1611         ret = check_kprobe_rereg(p);
1612         if (ret)
1613                 return ret;
1614
1615         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1616         p->flags &= KPROBE_FLAG_DISABLED;
1617         p->nmissed = 0;
1618         INIT_LIST_HEAD(&p->list);
1619
1620         ret = check_kprobe_address_safe(p, &probed_mod);
1621         if (ret)
1622                 return ret;
1623
1624         mutex_lock(&kprobe_mutex);
1625
1626         old_p = get_kprobe(p->addr);
1627         if (old_p) {
1628                 /* Since this may unoptimize old_p, locking text_mutex. */
1629                 ret = register_aggr_kprobe(old_p, p);
1630                 goto out;
1631         }
1632
1633         cpus_read_lock();
1634         /* Prevent text modification */
1635         mutex_lock(&text_mutex);
1636         ret = prepare_kprobe(p);
1637         mutex_unlock(&text_mutex);
1638         cpus_read_unlock();
1639         if (ret)
1640                 goto out;
1641
1642         INIT_HLIST_NODE(&p->hlist);
1643         hlist_add_head_rcu(&p->hlist,
1644                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1645
1646         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1647                 ret = arm_kprobe(p);
1648                 if (ret) {
1649                         hlist_del_rcu(&p->hlist);
1650                         synchronize_rcu();
1651                         goto out;
1652                 }
1653         }
1654
1655         /* Try to optimize kprobe */
1656         try_to_optimize_kprobe(p);
1657 out:
1658         mutex_unlock(&kprobe_mutex);
1659
1660         if (probed_mod)
1661                 module_put(probed_mod);
1662
1663         return ret;
1664 }
1665 EXPORT_SYMBOL_GPL(register_kprobe);
1666
1667 /* Check if all probes on the aggrprobe are disabled */
1668 static int aggr_kprobe_disabled(struct kprobe *ap)
1669 {
1670         struct kprobe *kp;
1671
1672         list_for_each_entry_rcu(kp, &ap->list, list)
1673                 if (!kprobe_disabled(kp))
1674                         /*
1675                          * There is an active probe on the list.
1676                          * We can't disable this ap.
1677                          */
1678                         return 0;
1679
1680         return 1;
1681 }
1682
1683 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1684 static struct kprobe *__disable_kprobe(struct kprobe *p)
1685 {
1686         struct kprobe *orig_p;
1687         int ret;
1688
1689         /* Get an original kprobe for return */
1690         orig_p = __get_valid_kprobe(p);
1691         if (unlikely(orig_p == NULL))
1692                 return ERR_PTR(-EINVAL);
1693
1694         if (!kprobe_disabled(p)) {
1695                 /* Disable probe if it is a child probe */
1696                 if (p != orig_p)
1697                         p->flags |= KPROBE_FLAG_DISABLED;
1698
1699                 /* Try to disarm and disable this/parent probe */
1700                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1701                         /*
1702                          * If kprobes_all_disarmed is set, orig_p
1703                          * should have already been disarmed, so
1704                          * skip unneed disarming process.
1705                          */
1706                         if (!kprobes_all_disarmed) {
1707                                 ret = disarm_kprobe(orig_p, true);
1708                                 if (ret) {
1709                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1710                                         return ERR_PTR(ret);
1711                                 }
1712                         }
1713                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1714                 }
1715         }
1716
1717         return orig_p;
1718 }
1719
1720 /*
1721  * Unregister a kprobe without a scheduler synchronization.
1722  */
1723 static int __unregister_kprobe_top(struct kprobe *p)
1724 {
1725         struct kprobe *ap, *list_p;
1726
1727         /* Disable kprobe. This will disarm it if needed. */
1728         ap = __disable_kprobe(p);
1729         if (IS_ERR(ap))
1730                 return PTR_ERR(ap);
1731
1732         if (ap == p)
1733                 /*
1734                  * This probe is an independent(and non-optimized) kprobe
1735                  * (not an aggrprobe). Remove from the hash list.
1736                  */
1737                 goto disarmed;
1738
1739         /* Following process expects this probe is an aggrprobe */
1740         WARN_ON(!kprobe_aggrprobe(ap));
1741
1742         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1743                 /*
1744                  * !disarmed could be happen if the probe is under delayed
1745                  * unoptimizing.
1746                  */
1747                 goto disarmed;
1748         else {
1749                 /* If disabling probe has special handlers, update aggrprobe */
1750                 if (p->post_handler && !kprobe_gone(p)) {
1751                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1752                                 if ((list_p != p) && (list_p->post_handler))
1753                                         goto noclean;
1754                         }
1755                         ap->post_handler = NULL;
1756                 }
1757 noclean:
1758                 /*
1759                  * Remove from the aggrprobe: this path will do nothing in
1760                  * __unregister_kprobe_bottom().
1761                  */
1762                 list_del_rcu(&p->list);
1763                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1764                         /*
1765                          * Try to optimize this probe again, because post
1766                          * handler may have been changed.
1767                          */
1768                         optimize_kprobe(ap);
1769         }
1770         return 0;
1771
1772 disarmed:
1773         hlist_del_rcu(&ap->hlist);
1774         return 0;
1775 }
1776
1777 static void __unregister_kprobe_bottom(struct kprobe *p)
1778 {
1779         struct kprobe *ap;
1780
1781         if (list_empty(&p->list))
1782                 /* This is an independent kprobe */
1783                 arch_remove_kprobe(p);
1784         else if (list_is_singular(&p->list)) {
1785                 /* This is the last child of an aggrprobe */
1786                 ap = list_entry(p->list.next, struct kprobe, list);
1787                 list_del(&p->list);
1788                 free_aggr_kprobe(ap);
1789         }
1790         /* Otherwise, do nothing. */
1791 }
1792
1793 int register_kprobes(struct kprobe **kps, int num)
1794 {
1795         int i, ret = 0;
1796
1797         if (num <= 0)
1798                 return -EINVAL;
1799         for (i = 0; i < num; i++) {
1800                 ret = register_kprobe(kps[i]);
1801                 if (ret < 0) {
1802                         if (i > 0)
1803                                 unregister_kprobes(kps, i);
1804                         break;
1805                 }
1806         }
1807         return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(register_kprobes);
1810
1811 void unregister_kprobe(struct kprobe *p)
1812 {
1813         unregister_kprobes(&p, 1);
1814 }
1815 EXPORT_SYMBOL_GPL(unregister_kprobe);
1816
1817 void unregister_kprobes(struct kprobe **kps, int num)
1818 {
1819         int i;
1820
1821         if (num <= 0)
1822                 return;
1823         mutex_lock(&kprobe_mutex);
1824         for (i = 0; i < num; i++)
1825                 if (__unregister_kprobe_top(kps[i]) < 0)
1826                         kps[i]->addr = NULL;
1827         mutex_unlock(&kprobe_mutex);
1828
1829         synchronize_rcu();
1830         for (i = 0; i < num; i++)
1831                 if (kps[i]->addr)
1832                         __unregister_kprobe_bottom(kps[i]);
1833 }
1834 EXPORT_SYMBOL_GPL(unregister_kprobes);
1835
1836 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1837                                         unsigned long val, void *data)
1838 {
1839         return NOTIFY_DONE;
1840 }
1841 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1842
1843 static struct notifier_block kprobe_exceptions_nb = {
1844         .notifier_call = kprobe_exceptions_notify,
1845         .priority = 0x7fffffff /* we need to be notified first */
1846 };
1847
1848 unsigned long __weak arch_deref_entry_point(void *entry)
1849 {
1850         return (unsigned long)entry;
1851 }
1852
1853 #ifdef CONFIG_KRETPROBES
1854 /*
1855  * This kprobe pre_handler is registered with every kretprobe. When probe
1856  * hits it will set up the return probe.
1857  */
1858 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1859 {
1860         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1861         unsigned long hash, flags = 0;
1862         struct kretprobe_instance *ri;
1863
1864         /*
1865          * To avoid deadlocks, prohibit return probing in NMI contexts,
1866          * just skip the probe and increase the (inexact) 'nmissed'
1867          * statistical counter, so that the user is informed that
1868          * something happened:
1869          */
1870         if (unlikely(in_nmi())) {
1871                 rp->nmissed++;
1872                 return 0;
1873         }
1874
1875         /* TODO: consider to only swap the RA after the last pre_handler fired */
1876         hash = hash_ptr(current, KPROBE_HASH_BITS);
1877         raw_spin_lock_irqsave(&rp->lock, flags);
1878         if (!hlist_empty(&rp->free_instances)) {
1879                 ri = hlist_entry(rp->free_instances.first,
1880                                 struct kretprobe_instance, hlist);
1881                 hlist_del(&ri->hlist);
1882                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1883
1884                 ri->rp = rp;
1885                 ri->task = current;
1886
1887                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1888                         raw_spin_lock_irqsave(&rp->lock, flags);
1889                         hlist_add_head(&ri->hlist, &rp->free_instances);
1890                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1891                         return 0;
1892                 }
1893
1894                 arch_prepare_kretprobe(ri, regs);
1895
1896                 /* XXX(hch): why is there no hlist_move_head? */
1897                 INIT_HLIST_NODE(&ri->hlist);
1898                 kretprobe_table_lock(hash, &flags);
1899                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1900                 kretprobe_table_unlock(hash, &flags);
1901         } else {
1902                 rp->nmissed++;
1903                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1904         }
1905         return 0;
1906 }
1907 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1908
1909 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1910 {
1911         return !offset;
1912 }
1913
1914 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1915 {
1916         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1917
1918         if (IS_ERR(kp_addr))
1919                 return false;
1920
1921         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1922                                                 !arch_kprobe_on_func_entry(offset))
1923                 return false;
1924
1925         return true;
1926 }
1927
1928 int register_kretprobe(struct kretprobe *rp)
1929 {
1930         int ret = 0;
1931         struct kretprobe_instance *inst;
1932         int i;
1933         void *addr;
1934
1935         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1936                 return -EINVAL;
1937
1938         if (kretprobe_blacklist_size) {
1939                 addr = kprobe_addr(&rp->kp);
1940                 if (IS_ERR(addr))
1941                         return PTR_ERR(addr);
1942
1943                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1944                         if (kretprobe_blacklist[i].addr == addr)
1945                                 return -EINVAL;
1946                 }
1947         }
1948
1949         rp->kp.pre_handler = pre_handler_kretprobe;
1950         rp->kp.post_handler = NULL;
1951         rp->kp.fault_handler = NULL;
1952
1953         /* Pre-allocate memory for max kretprobe instances */
1954         if (rp->maxactive <= 0) {
1955 #ifdef CONFIG_PREEMPTION
1956                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1957 #else
1958                 rp->maxactive = num_possible_cpus();
1959 #endif
1960         }
1961         raw_spin_lock_init(&rp->lock);
1962         INIT_HLIST_HEAD(&rp->free_instances);
1963         for (i = 0; i < rp->maxactive; i++) {
1964                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1965                                rp->data_size, GFP_KERNEL);
1966                 if (inst == NULL) {
1967                         free_rp_inst(rp);
1968                         return -ENOMEM;
1969                 }
1970                 INIT_HLIST_NODE(&inst->hlist);
1971                 hlist_add_head(&inst->hlist, &rp->free_instances);
1972         }
1973
1974         rp->nmissed = 0;
1975         /* Establish function entry probe point */
1976         ret = register_kprobe(&rp->kp);
1977         if (ret != 0)
1978                 free_rp_inst(rp);
1979         return ret;
1980 }
1981 EXPORT_SYMBOL_GPL(register_kretprobe);
1982
1983 int register_kretprobes(struct kretprobe **rps, int num)
1984 {
1985         int ret = 0, i;
1986
1987         if (num <= 0)
1988                 return -EINVAL;
1989         for (i = 0; i < num; i++) {
1990                 ret = register_kretprobe(rps[i]);
1991                 if (ret < 0) {
1992                         if (i > 0)
1993                                 unregister_kretprobes(rps, i);
1994                         break;
1995                 }
1996         }
1997         return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(register_kretprobes);
2000
2001 void unregister_kretprobe(struct kretprobe *rp)
2002 {
2003         unregister_kretprobes(&rp, 1);
2004 }
2005 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2006
2007 void unregister_kretprobes(struct kretprobe **rps, int num)
2008 {
2009         int i;
2010
2011         if (num <= 0)
2012                 return;
2013         mutex_lock(&kprobe_mutex);
2014         for (i = 0; i < num; i++)
2015                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2016                         rps[i]->kp.addr = NULL;
2017         mutex_unlock(&kprobe_mutex);
2018
2019         synchronize_rcu();
2020         for (i = 0; i < num; i++) {
2021                 if (rps[i]->kp.addr) {
2022                         __unregister_kprobe_bottom(&rps[i]->kp);
2023                         cleanup_rp_inst(rps[i]);
2024                 }
2025         }
2026 }
2027 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2028
2029 #else /* CONFIG_KRETPROBES */
2030 int register_kretprobe(struct kretprobe *rp)
2031 {
2032         return -ENOSYS;
2033 }
2034 EXPORT_SYMBOL_GPL(register_kretprobe);
2035
2036 int register_kretprobes(struct kretprobe **rps, int num)
2037 {
2038         return -ENOSYS;
2039 }
2040 EXPORT_SYMBOL_GPL(register_kretprobes);
2041
2042 void unregister_kretprobe(struct kretprobe *rp)
2043 {
2044 }
2045 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2046
2047 void unregister_kretprobes(struct kretprobe **rps, int num)
2048 {
2049 }
2050 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2051
2052 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2053 {
2054         return 0;
2055 }
2056 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2057
2058 #endif /* CONFIG_KRETPROBES */
2059
2060 /* Set the kprobe gone and remove its instruction buffer. */
2061 static void kill_kprobe(struct kprobe *p)
2062 {
2063         struct kprobe *kp;
2064
2065         p->flags |= KPROBE_FLAG_GONE;
2066         if (kprobe_aggrprobe(p)) {
2067                 /*
2068                  * If this is an aggr_kprobe, we have to list all the
2069                  * chained probes and mark them GONE.
2070                  */
2071                 list_for_each_entry_rcu(kp, &p->list, list)
2072                         kp->flags |= KPROBE_FLAG_GONE;
2073                 p->post_handler = NULL;
2074                 kill_optimized_kprobe(p);
2075         }
2076         /*
2077          * Here, we can remove insn_slot safely, because no thread calls
2078          * the original probed function (which will be freed soon) any more.
2079          */
2080         arch_remove_kprobe(p);
2081 }
2082
2083 /* Disable one kprobe */
2084 int disable_kprobe(struct kprobe *kp)
2085 {
2086         int ret = 0;
2087         struct kprobe *p;
2088
2089         mutex_lock(&kprobe_mutex);
2090
2091         /* Disable this kprobe */
2092         p = __disable_kprobe(kp);
2093         if (IS_ERR(p))
2094                 ret = PTR_ERR(p);
2095
2096         mutex_unlock(&kprobe_mutex);
2097         return ret;
2098 }
2099 EXPORT_SYMBOL_GPL(disable_kprobe);
2100
2101 /* Enable one kprobe */
2102 int enable_kprobe(struct kprobe *kp)
2103 {
2104         int ret = 0;
2105         struct kprobe *p;
2106
2107         mutex_lock(&kprobe_mutex);
2108
2109         /* Check whether specified probe is valid. */
2110         p = __get_valid_kprobe(kp);
2111         if (unlikely(p == NULL)) {
2112                 ret = -EINVAL;
2113                 goto out;
2114         }
2115
2116         if (kprobe_gone(kp)) {
2117                 /* This kprobe has gone, we couldn't enable it. */
2118                 ret = -EINVAL;
2119                 goto out;
2120         }
2121
2122         if (p != kp)
2123                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2124
2125         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2126                 p->flags &= ~KPROBE_FLAG_DISABLED;
2127                 ret = arm_kprobe(p);
2128                 if (ret)
2129                         p->flags |= KPROBE_FLAG_DISABLED;
2130         }
2131 out:
2132         mutex_unlock(&kprobe_mutex);
2133         return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(enable_kprobe);
2136
2137 /* Caller must NOT call this in usual path. This is only for critical case */
2138 void dump_kprobe(struct kprobe *kp)
2139 {
2140         pr_err("Dumping kprobe:\n");
2141         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2142                kp->symbol_name, kp->offset, kp->addr);
2143 }
2144 NOKPROBE_SYMBOL(dump_kprobe);
2145
2146 int kprobe_add_ksym_blacklist(unsigned long entry)
2147 {
2148         struct kprobe_blacklist_entry *ent;
2149         unsigned long offset = 0, size = 0;
2150
2151         if (!kernel_text_address(entry) ||
2152             !kallsyms_lookup_size_offset(entry, &size, &offset))
2153                 return -EINVAL;
2154
2155         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2156         if (!ent)
2157                 return -ENOMEM;
2158         ent->start_addr = entry;
2159         ent->end_addr = entry + size;
2160         INIT_LIST_HEAD(&ent->list);
2161         list_add_tail(&ent->list, &kprobe_blacklist);
2162
2163         return (int)size;
2164 }
2165
2166 /* Add all symbols in given area into kprobe blacklist */
2167 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2168 {
2169         unsigned long entry;
2170         int ret = 0;
2171
2172         for (entry = start; entry < end; entry += ret) {
2173                 ret = kprobe_add_ksym_blacklist(entry);
2174                 if (ret < 0)
2175                         return ret;
2176                 if (ret == 0)   /* In case of alias symbol */
2177                         ret = 1;
2178         }
2179         return 0;
2180 }
2181
2182 int __init __weak arch_populate_kprobe_blacklist(void)
2183 {
2184         return 0;
2185 }
2186
2187 /*
2188  * Lookup and populate the kprobe_blacklist.
2189  *
2190  * Unlike the kretprobe blacklist, we'll need to determine
2191  * the range of addresses that belong to the said functions,
2192  * since a kprobe need not necessarily be at the beginning
2193  * of a function.
2194  */
2195 static int __init populate_kprobe_blacklist(unsigned long *start,
2196                                              unsigned long *end)
2197 {
2198         unsigned long entry;
2199         unsigned long *iter;
2200         int ret;
2201
2202         for (iter = start; iter < end; iter++) {
2203                 entry = arch_deref_entry_point((void *)*iter);
2204                 ret = kprobe_add_ksym_blacklist(entry);
2205                 if (ret == -EINVAL)
2206                         continue;
2207                 if (ret < 0)
2208                         return ret;
2209         }
2210
2211         /* Symbols in __kprobes_text are blacklisted */
2212         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2213                                         (unsigned long)__kprobes_text_end);
2214
2215         return ret ? : arch_populate_kprobe_blacklist();
2216 }
2217
2218 /* Module notifier call back, checking kprobes on the module */
2219 static int kprobes_module_callback(struct notifier_block *nb,
2220                                    unsigned long val, void *data)
2221 {
2222         struct module *mod = data;
2223         struct hlist_head *head;
2224         struct kprobe *p;
2225         unsigned int i;
2226         int checkcore = (val == MODULE_STATE_GOING);
2227
2228         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2229                 return NOTIFY_DONE;
2230
2231         /*
2232          * When MODULE_STATE_GOING was notified, both of module .text and
2233          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2234          * notified, only .init.text section would be freed. We need to
2235          * disable kprobes which have been inserted in the sections.
2236          */
2237         mutex_lock(&kprobe_mutex);
2238         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2239                 head = &kprobe_table[i];
2240                 hlist_for_each_entry_rcu(p, head, hlist)
2241                         if (within_module_init((unsigned long)p->addr, mod) ||
2242                             (checkcore &&
2243                              within_module_core((unsigned long)p->addr, mod))) {
2244                                 /*
2245                                  * The vaddr this probe is installed will soon
2246                                  * be vfreed buy not synced to disk. Hence,
2247                                  * disarming the breakpoint isn't needed.
2248                                  *
2249                                  * Note, this will also move any optimized probes
2250                                  * that are pending to be removed from their
2251                                  * corresponding lists to the freeing_list and
2252                                  * will not be touched by the delayed
2253                                  * kprobe_optimizer work handler.
2254                                  */
2255                                 kill_kprobe(p);
2256                         }
2257         }
2258         mutex_unlock(&kprobe_mutex);
2259         return NOTIFY_DONE;
2260 }
2261
2262 static struct notifier_block kprobe_module_nb = {
2263         .notifier_call = kprobes_module_callback,
2264         .priority = 0
2265 };
2266
2267 /* Markers of _kprobe_blacklist section */
2268 extern unsigned long __start_kprobe_blacklist[];
2269 extern unsigned long __stop_kprobe_blacklist[];
2270
2271 static int __init init_kprobes(void)
2272 {
2273         int i, err = 0;
2274
2275         /* FIXME allocate the probe table, currently defined statically */
2276         /* initialize all list heads */
2277         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2278                 INIT_HLIST_HEAD(&kprobe_table[i]);
2279                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2280                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2281         }
2282
2283         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2284                                         __stop_kprobe_blacklist);
2285         if (err) {
2286                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2287                 pr_err("Please take care of using kprobes.\n");
2288         }
2289
2290         if (kretprobe_blacklist_size) {
2291                 /* lookup the function address from its name */
2292                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2293                         kretprobe_blacklist[i].addr =
2294                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2295                         if (!kretprobe_blacklist[i].addr)
2296                                 printk("kretprobe: lookup failed: %s\n",
2297                                        kretprobe_blacklist[i].name);
2298                 }
2299         }
2300
2301 #if defined(CONFIG_OPTPROBES)
2302 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2303         /* Init kprobe_optinsn_slots */
2304         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2305 #endif
2306         /* By default, kprobes can be optimized */
2307         kprobes_allow_optimization = true;
2308 #endif
2309
2310         /* By default, kprobes are armed */
2311         kprobes_all_disarmed = false;
2312
2313         err = arch_init_kprobes();
2314         if (!err)
2315                 err = register_die_notifier(&kprobe_exceptions_nb);
2316         if (!err)
2317                 err = register_module_notifier(&kprobe_module_nb);
2318
2319         kprobes_initialized = (err == 0);
2320
2321         if (!err)
2322                 init_test_probes();
2323         return err;
2324 }
2325 subsys_initcall(init_kprobes);
2326
2327 #ifdef CONFIG_DEBUG_FS
2328 static void report_probe(struct seq_file *pi, struct kprobe *p,
2329                 const char *sym, int offset, char *modname, struct kprobe *pp)
2330 {
2331         char *kprobe_type;
2332         void *addr = p->addr;
2333
2334         if (p->pre_handler == pre_handler_kretprobe)
2335                 kprobe_type = "r";
2336         else
2337                 kprobe_type = "k";
2338
2339         if (!kallsyms_show_value())
2340                 addr = NULL;
2341
2342         if (sym)
2343                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2344                         addr, kprobe_type, sym, offset,
2345                         (modname ? modname : " "));
2346         else    /* try to use %pS */
2347                 seq_printf(pi, "%px  %s  %pS ",
2348                         addr, kprobe_type, p->addr);
2349
2350         if (!pp)
2351                 pp = p;
2352         seq_printf(pi, "%s%s%s%s\n",
2353                 (kprobe_gone(p) ? "[GONE]" : ""),
2354                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2355                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2356                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2357 }
2358
2359 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2360 {
2361         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2362 }
2363
2364 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2365 {
2366         (*pos)++;
2367         if (*pos >= KPROBE_TABLE_SIZE)
2368                 return NULL;
2369         return pos;
2370 }
2371
2372 static void kprobe_seq_stop(struct seq_file *f, void *v)
2373 {
2374         /* Nothing to do */
2375 }
2376
2377 static int show_kprobe_addr(struct seq_file *pi, void *v)
2378 {
2379         struct hlist_head *head;
2380         struct kprobe *p, *kp;
2381         const char *sym = NULL;
2382         unsigned int i = *(loff_t *) v;
2383         unsigned long offset = 0;
2384         char *modname, namebuf[KSYM_NAME_LEN];
2385
2386         head = &kprobe_table[i];
2387         preempt_disable();
2388         hlist_for_each_entry_rcu(p, head, hlist) {
2389                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2390                                         &offset, &modname, namebuf);
2391                 if (kprobe_aggrprobe(p)) {
2392                         list_for_each_entry_rcu(kp, &p->list, list)
2393                                 report_probe(pi, kp, sym, offset, modname, p);
2394                 } else
2395                         report_probe(pi, p, sym, offset, modname, NULL);
2396         }
2397         preempt_enable();
2398         return 0;
2399 }
2400
2401 static const struct seq_operations kprobes_seq_ops = {
2402         .start = kprobe_seq_start,
2403         .next  = kprobe_seq_next,
2404         .stop  = kprobe_seq_stop,
2405         .show  = show_kprobe_addr
2406 };
2407
2408 static int kprobes_open(struct inode *inode, struct file *filp)
2409 {
2410         return seq_open(filp, &kprobes_seq_ops);
2411 }
2412
2413 static const struct file_operations debugfs_kprobes_operations = {
2414         .open           = kprobes_open,
2415         .read           = seq_read,
2416         .llseek         = seq_lseek,
2417         .release        = seq_release,
2418 };
2419
2420 /* kprobes/blacklist -- shows which functions can not be probed */
2421 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2422 {
2423         return seq_list_start(&kprobe_blacklist, *pos);
2424 }
2425
2426 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2427 {
2428         return seq_list_next(v, &kprobe_blacklist, pos);
2429 }
2430
2431 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2432 {
2433         struct kprobe_blacklist_entry *ent =
2434                 list_entry(v, struct kprobe_blacklist_entry, list);
2435
2436         /*
2437          * If /proc/kallsyms is not showing kernel address, we won't
2438          * show them here either.
2439          */
2440         if (!kallsyms_show_value())
2441                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2442                            (void *)ent->start_addr);
2443         else
2444                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2445                            (void *)ent->end_addr, (void *)ent->start_addr);
2446         return 0;
2447 }
2448
2449 static const struct seq_operations kprobe_blacklist_seq_ops = {
2450         .start = kprobe_blacklist_seq_start,
2451         .next  = kprobe_blacklist_seq_next,
2452         .stop  = kprobe_seq_stop,       /* Reuse void function */
2453         .show  = kprobe_blacklist_seq_show,
2454 };
2455
2456 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2457 {
2458         return seq_open(filp, &kprobe_blacklist_seq_ops);
2459 }
2460
2461 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2462         .open           = kprobe_blacklist_open,
2463         .read           = seq_read,
2464         .llseek         = seq_lseek,
2465         .release        = seq_release,
2466 };
2467
2468 static int arm_all_kprobes(void)
2469 {
2470         struct hlist_head *head;
2471         struct kprobe *p;
2472         unsigned int i, total = 0, errors = 0;
2473         int err, ret = 0;
2474
2475         mutex_lock(&kprobe_mutex);
2476
2477         /* If kprobes are armed, just return */
2478         if (!kprobes_all_disarmed)
2479                 goto already_enabled;
2480
2481         /*
2482          * optimize_kprobe() called by arm_kprobe() checks
2483          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2484          * arm_kprobe.
2485          */
2486         kprobes_all_disarmed = false;
2487         /* Arming kprobes doesn't optimize kprobe itself */
2488         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2489                 head = &kprobe_table[i];
2490                 /* Arm all kprobes on a best-effort basis */
2491                 hlist_for_each_entry_rcu(p, head, hlist) {
2492                         if (!kprobe_disabled(p)) {
2493                                 err = arm_kprobe(p);
2494                                 if (err)  {
2495                                         errors++;
2496                                         ret = err;
2497                                 }
2498                                 total++;
2499                         }
2500                 }
2501         }
2502
2503         if (errors)
2504                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2505                         errors, total);
2506         else
2507                 pr_info("Kprobes globally enabled\n");
2508
2509 already_enabled:
2510         mutex_unlock(&kprobe_mutex);
2511         return ret;
2512 }
2513
2514 static int disarm_all_kprobes(void)
2515 {
2516         struct hlist_head *head;
2517         struct kprobe *p;
2518         unsigned int i, total = 0, errors = 0;
2519         int err, ret = 0;
2520
2521         mutex_lock(&kprobe_mutex);
2522
2523         /* If kprobes are already disarmed, just return */
2524         if (kprobes_all_disarmed) {
2525                 mutex_unlock(&kprobe_mutex);
2526                 return 0;
2527         }
2528
2529         kprobes_all_disarmed = true;
2530
2531         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2532                 head = &kprobe_table[i];
2533                 /* Disarm all kprobes on a best-effort basis */
2534                 hlist_for_each_entry_rcu(p, head, hlist) {
2535                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2536                                 err = disarm_kprobe(p, false);
2537                                 if (err) {
2538                                         errors++;
2539                                         ret = err;
2540                                 }
2541                                 total++;
2542                         }
2543                 }
2544         }
2545
2546         if (errors)
2547                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2548                         errors, total);
2549         else
2550                 pr_info("Kprobes globally disabled\n");
2551
2552         mutex_unlock(&kprobe_mutex);
2553
2554         /* Wait for disarming all kprobes by optimizer */
2555         wait_for_kprobe_optimizer();
2556
2557         return ret;
2558 }
2559
2560 /*
2561  * XXX: The debugfs bool file interface doesn't allow for callbacks
2562  * when the bool state is switched. We can reuse that facility when
2563  * available
2564  */
2565 static ssize_t read_enabled_file_bool(struct file *file,
2566                char __user *user_buf, size_t count, loff_t *ppos)
2567 {
2568         char buf[3];
2569
2570         if (!kprobes_all_disarmed)
2571                 buf[0] = '1';
2572         else
2573                 buf[0] = '0';
2574         buf[1] = '\n';
2575         buf[2] = 0x00;
2576         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2577 }
2578
2579 static ssize_t write_enabled_file_bool(struct file *file,
2580                const char __user *user_buf, size_t count, loff_t *ppos)
2581 {
2582         char buf[32];
2583         size_t buf_size;
2584         int ret = 0;
2585
2586         buf_size = min(count, (sizeof(buf)-1));
2587         if (copy_from_user(buf, user_buf, buf_size))
2588                 return -EFAULT;
2589
2590         buf[buf_size] = '\0';
2591         switch (buf[0]) {
2592         case 'y':
2593         case 'Y':
2594         case '1':
2595                 ret = arm_all_kprobes();
2596                 break;
2597         case 'n':
2598         case 'N':
2599         case '0':
2600                 ret = disarm_all_kprobes();
2601                 break;
2602         default:
2603                 return -EINVAL;
2604         }
2605
2606         if (ret)
2607                 return ret;
2608
2609         return count;
2610 }
2611
2612 static const struct file_operations fops_kp = {
2613         .read =         read_enabled_file_bool,
2614         .write =        write_enabled_file_bool,
2615         .llseek =       default_llseek,
2616 };
2617
2618 static int __init debugfs_kprobe_init(void)
2619 {
2620         struct dentry *dir;
2621         unsigned int value = 1;
2622
2623         dir = debugfs_create_dir("kprobes", NULL);
2624
2625         debugfs_create_file("list", 0400, dir, NULL,
2626                             &debugfs_kprobes_operations);
2627
2628         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2629
2630         debugfs_create_file("blacklist", 0400, dir, NULL,
2631                             &debugfs_kprobe_blacklist_ops);
2632
2633         return 0;
2634 }
2635
2636 late_initcall(debugfs_kprobe_init);
2637 #endif /* CONFIG_DEBUG_FS */