arm64: dts: mediatek: asurada: Add display regulators
[platform/kernel/linux-starfive.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *              Probes initial implementation (includes suggestions from
9  *              Rusty Russell).
10  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *              hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *              interface to access function arguments.
14  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *              exceptions notifier to be first on the priority list.
16  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *              <prasanna@in.ibm.com> added function-return probes.
19  */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58  * Or
59  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60  */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71                                         unsigned int __unused)
72 {
73         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75
76 /*
77  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78  * kprobes can not probe.
79  */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90         struct list_head list;
91         kprobe_opcode_t *insns;         /* Page of instruction slots */
92         struct kprobe_insn_cache *cache;
93         int nused;
94         int ngarbage;
95         char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
99         (offsetof(struct kprobe_insn_page, slot_used) + \
100          (sizeof(char) * (slots)))
101
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108         SLOT_CLEAN = 0,
109         SLOT_DIRTY = 1,
110         SLOT_USED = 2,
111 };
112
113 void __weak *alloc_insn_page(void)
114 {
115         /*
116          * Use module_alloc() so this page is within +/- 2GB of where the
117          * kernel image and loaded module images reside. This is required
118          * for most of the architectures.
119          * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120          */
121         return module_alloc(PAGE_SIZE);
122 }
123
124 static void free_insn_page(void *page)
125 {
126         module_memfree(page);
127 }
128
129 struct kprobe_insn_cache kprobe_insn_slots = {
130         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131         .alloc = alloc_insn_page,
132         .free = free_insn_page,
133         .sym = KPROBE_INSN_PAGE_SYM,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156
157                         for (i = 0; i < slots_per_page(c); i++) {
158                                 if (kip->slot_used[i] == SLOT_CLEAN) {
159                                         kip->slot_used[i] = SLOT_USED;
160                                         kip->nused++;
161                                         slot = kip->insns + (i * c->insn_size);
162                                         rcu_read_unlock();
163                                         goto out;
164                                 }
165                         }
166                         /* kip->nused is broken. Fix it. */
167                         kip->nused = slots_per_page(c);
168                         WARN_ON(1);
169                 }
170         }
171         rcu_read_unlock();
172
173         /* If there are any garbage slots, collect it and try again. */
174         if (c->nr_garbage && collect_garbage_slots(c) == 0)
175                 goto retry;
176
177         /* All out of space.  Need to allocate a new page. */
178         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179         if (!kip)
180                 goto out;
181
182         kip->insns = c->alloc();
183         if (!kip->insns) {
184                 kfree(kip);
185                 goto out;
186         }
187         INIT_LIST_HEAD(&kip->list);
188         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189         kip->slot_used[0] = SLOT_USED;
190         kip->nused = 1;
191         kip->ngarbage = 0;
192         kip->cache = c;
193         list_add_rcu(&kip->list, &c->pages);
194         slot = kip->insns;
195
196         /* Record the perf ksymbol register event after adding the page */
197         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198                            PAGE_SIZE, false, c->sym);
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         /*
218                          * Record perf ksymbol unregister event before removing
219                          * the page.
220                          */
221                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222                                            (unsigned long)kip->insns, PAGE_SIZE, true,
223                                            kip->cache->sym);
224                         list_del_rcu(&kip->list);
225                         synchronize_rcu();
226                         kip->cache->free(kip->insns);
227                         kfree(kip);
228                 }
229                 return true;
230         }
231         return false;
232 }
233
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236         struct kprobe_insn_page *kip, *next;
237
238         /* Ensure no-one is interrupted on the garbages */
239         synchronize_rcu();
240
241         list_for_each_entry_safe(kip, next, &c->pages, list) {
242                 int i;
243
244                 if (kip->ngarbage == 0)
245                         continue;
246                 kip->ngarbage = 0;      /* we will collect all garbages */
247                 for (i = 0; i < slots_per_page(c); i++) {
248                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249                                 break;
250                 }
251         }
252         c->nr_garbage = 0;
253         return 0;
254 }
255
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257                       kprobe_opcode_t *slot, int dirty)
258 {
259         struct kprobe_insn_page *kip;
260         long idx;
261
262         mutex_lock(&c->mutex);
263         rcu_read_lock();
264         list_for_each_entry_rcu(kip, &c->pages, list) {
265                 idx = ((long)slot - (long)kip->insns) /
266                         (c->insn_size * sizeof(kprobe_opcode_t));
267                 if (idx >= 0 && idx < slots_per_page(c))
268                         goto out;
269         }
270         /* Could not find this slot. */
271         WARN_ON(1);
272         kip = NULL;
273 out:
274         rcu_read_unlock();
275         /* Mark and sweep: this may sleep */
276         if (kip) {
277                 /* Check double free */
278                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279                 if (dirty) {
280                         kip->slot_used[idx] = SLOT_DIRTY;
281                         kip->ngarbage++;
282                         if (++c->nr_garbage > slots_per_page(c))
283                                 collect_garbage_slots(c);
284                 } else {
285                         collect_one_slot(kip, idx);
286                 }
287         }
288         mutex_unlock(&c->mutex);
289 }
290
291 /*
292  * Check given address is on the page of kprobe instruction slots.
293  * This will be used for checking whether the address on a stack
294  * is on a text area or not.
295  */
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298         struct kprobe_insn_page *kip;
299         bool ret = false;
300
301         rcu_read_lock();
302         list_for_each_entry_rcu(kip, &c->pages, list) {
303                 if (addr >= (unsigned long)kip->insns &&
304                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
305                         ret = true;
306                         break;
307                 }
308         }
309         rcu_read_unlock();
310
311         return ret;
312 }
313
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315                              unsigned long *value, char *type, char *sym)
316 {
317         struct kprobe_insn_page *kip;
318         int ret = -ERANGE;
319
320         rcu_read_lock();
321         list_for_each_entry_rcu(kip, &c->pages, list) {
322                 if ((*symnum)--)
323                         continue;
324                 strscpy(sym, c->sym, KSYM_NAME_LEN);
325                 *type = 't';
326                 *value = (unsigned long)kip->insns;
327                 ret = 0;
328                 break;
329         }
330         rcu_read_unlock();
331
332         return ret;
333 }
334
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
337 {
338         return alloc_insn_page();
339 }
340
341 void __weak free_optinsn_page(void *page)
342 {
343         free_insn_page(page);
344 }
345
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349         .alloc = alloc_optinsn_page,
350         .free = free_optinsn_page,
351         .sym = KPROBE_OPTINSN_PAGE_SYM,
352         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353         /* .insn_size is initialized later */
354         .nr_garbage = 0,
355 };
356 #endif
357 #endif
358
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362         __this_cpu_write(kprobe_instance, kp);
363 }
364
365 static inline void reset_kprobe_instance(void)
366 {
367         __this_cpu_write(kprobe_instance, NULL);
368 }
369
370 /*
371  * This routine is called either:
372  *      - under the 'kprobe_mutex' - during kprobe_[un]register().
373  *                              OR
374  *      - with preemption disabled - from architecture specific code.
375  */
376 struct kprobe *get_kprobe(void *addr)
377 {
378         struct hlist_head *head;
379         struct kprobe *p;
380
381         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382         hlist_for_each_entry_rcu(p, head, hlist,
383                                  lockdep_is_held(&kprobe_mutex)) {
384                 if (p->addr == addr)
385                         return p;
386         }
387
388         return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397         return p->pre_handler == aggr_pre_handler;
398 }
399
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404                list_empty(&p->list);
405 }
406
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417
418 /*
419  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420  * This must be called from arch-dep optimized caller.
421  */
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424         struct kprobe *kp;
425
426         list_for_each_entry_rcu(kp, &p->list, list) {
427                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428                         set_kprobe_instance(kp);
429                         kp->pre_handler(kp, regs);
430                 }
431                 reset_kprobe_instance();
432         }
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439         struct optimized_kprobe *op;
440
441         op = container_of(p, struct optimized_kprobe, kp);
442         arch_remove_optimized_kprobe(op);
443         arch_remove_kprobe(p);
444         kfree(op);
445 }
446
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
449 {
450         struct optimized_kprobe *op;
451
452         if (kprobe_aggrprobe(p)) {
453                 op = container_of(p, struct optimized_kprobe, kp);
454                 return arch_prepared_optinsn(&op->optinsn);
455         }
456
457         return 0;
458 }
459
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 static inline bool kprobe_disarmed(struct kprobe *p)
462 {
463         struct optimized_kprobe *op;
464
465         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466         if (!kprobe_aggrprobe(p))
467                 return kprobe_disabled(p);
468
469         op = container_of(p, struct optimized_kprobe, kp);
470
471         return kprobe_disabled(p) && list_empty(&op->list);
472 }
473
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
476 {
477         struct optimized_kprobe *op;
478
479         if (kprobe_aggrprobe(p)) {
480                 op = container_of(p, struct optimized_kprobe, kp);
481                 if (!list_empty(&op->list))
482                         return true;
483         }
484         return false;
485 }
486
487 /*
488  * Return an optimized kprobe whose optimizing code replaces
489  * instructions including 'addr' (exclude breakpoint).
490  */
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493         int i;
494         struct kprobe *p = NULL;
495         struct optimized_kprobe *op;
496
497         /* Don't check i == 0, since that is a breakpoint case. */
498         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499                 p = get_kprobe(addr - i);
500
501         if (p && kprobe_optready(p)) {
502                 op = container_of(p, struct optimized_kprobe, kp);
503                 if (arch_within_optimized_kprobe(op, addr))
504                         return p;
505         }
506
507         return NULL;
508 }
509
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518
519 /*
520  * Optimize (replace a breakpoint with a jump) kprobes listed on
521  * 'optimizing_list'.
522  */
523 static void do_optimize_kprobes(void)
524 {
525         lockdep_assert_held(&text_mutex);
526         /*
527          * The optimization/unoptimization refers 'online_cpus' via
528          * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529          * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530          * This combination can cause a deadlock (cpu-hotplug tries to lock
531          * 'text_mutex' but stop_machine() can not be done because
532          * the 'online_cpus' has been changed)
533          * To avoid this deadlock, caller must have locked cpu-hotplug
534          * for preventing cpu-hotplug outside of 'text_mutex' locking.
535          */
536         lockdep_assert_cpus_held();
537
538         /* Optimization never be done when disarmed */
539         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540             list_empty(&optimizing_list))
541                 return;
542
543         arch_optimize_kprobes(&optimizing_list);
544 }
545
546 /*
547  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548  * if need) kprobes listed on 'unoptimizing_list'.
549  */
550 static void do_unoptimize_kprobes(void)
551 {
552         struct optimized_kprobe *op, *tmp;
553
554         lockdep_assert_held(&text_mutex);
555         /* See comment in do_optimize_kprobes() */
556         lockdep_assert_cpus_held();
557
558         /* Unoptimization must be done anytime */
559         if (list_empty(&unoptimizing_list))
560                 return;
561
562         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
563         /* Loop on 'freeing_list' for disarming */
564         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
565                 /* Switching from detour code to origin */
566                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
567                 /* Disarm probes if marked disabled */
568                 if (kprobe_disabled(&op->kp))
569                         arch_disarm_kprobe(&op->kp);
570                 if (kprobe_unused(&op->kp)) {
571                         /*
572                          * Remove unused probes from hash list. After waiting
573                          * for synchronization, these probes are reclaimed.
574                          * (reclaiming is done by do_free_cleaned_kprobes().)
575                          */
576                         hlist_del_rcu(&op->kp.hlist);
577                 } else
578                         list_del_init(&op->list);
579         }
580 }
581
582 /* Reclaim all kprobes on the 'freeing_list' */
583 static void do_free_cleaned_kprobes(void)
584 {
585         struct optimized_kprobe *op, *tmp;
586
587         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
588                 list_del_init(&op->list);
589                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
590                         /*
591                          * This must not happen, but if there is a kprobe
592                          * still in use, keep it on kprobes hash list.
593                          */
594                         continue;
595                 }
596                 free_aggr_kprobe(&op->kp);
597         }
598 }
599
600 /* Start optimizer after OPTIMIZE_DELAY passed */
601 static void kick_kprobe_optimizer(void)
602 {
603         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
604 }
605
606 /* Kprobe jump optimizer */
607 static void kprobe_optimizer(struct work_struct *work)
608 {
609         mutex_lock(&kprobe_mutex);
610         cpus_read_lock();
611         mutex_lock(&text_mutex);
612
613         /*
614          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
615          * kprobes before waiting for quiesence period.
616          */
617         do_unoptimize_kprobes();
618
619         /*
620          * Step 2: Wait for quiesence period to ensure all potentially
621          * preempted tasks to have normally scheduled. Because optprobe
622          * may modify multiple instructions, there is a chance that Nth
623          * instruction is preempted. In that case, such tasks can return
624          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
625          * Note that on non-preemptive kernel, this is transparently converted
626          * to synchronoze_sched() to wait for all interrupts to have completed.
627          */
628         synchronize_rcu_tasks();
629
630         /* Step 3: Optimize kprobes after quiesence period */
631         do_optimize_kprobes();
632
633         /* Step 4: Free cleaned kprobes after quiesence period */
634         do_free_cleaned_kprobes();
635
636         mutex_unlock(&text_mutex);
637         cpus_read_unlock();
638
639         /* Step 5: Kick optimizer again if needed */
640         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
641                 kick_kprobe_optimizer();
642
643         mutex_unlock(&kprobe_mutex);
644 }
645
646 /* Wait for completing optimization and unoptimization */
647 void wait_for_kprobe_optimizer(void)
648 {
649         mutex_lock(&kprobe_mutex);
650
651         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
652                 mutex_unlock(&kprobe_mutex);
653
654                 /* This will also make 'optimizing_work' execute immmediately */
655                 flush_delayed_work(&optimizing_work);
656                 /* 'optimizing_work' might not have been queued yet, relax */
657                 cpu_relax();
658
659                 mutex_lock(&kprobe_mutex);
660         }
661
662         mutex_unlock(&kprobe_mutex);
663 }
664
665 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
666 {
667         struct optimized_kprobe *_op;
668
669         list_for_each_entry(_op, &unoptimizing_list, list) {
670                 if (op == _op)
671                         return true;
672         }
673
674         return false;
675 }
676
677 /* Optimize kprobe if p is ready to be optimized */
678 static void optimize_kprobe(struct kprobe *p)
679 {
680         struct optimized_kprobe *op;
681
682         /* Check if the kprobe is disabled or not ready for optimization. */
683         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
684             (kprobe_disabled(p) || kprobes_all_disarmed))
685                 return;
686
687         /* kprobes with 'post_handler' can not be optimized */
688         if (p->post_handler)
689                 return;
690
691         op = container_of(p, struct optimized_kprobe, kp);
692
693         /* Check there is no other kprobes at the optimized instructions */
694         if (arch_check_optimized_kprobe(op) < 0)
695                 return;
696
697         /* Check if it is already optimized. */
698         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
699                 if (optprobe_queued_unopt(op)) {
700                         /* This is under unoptimizing. Just dequeue the probe */
701                         list_del_init(&op->list);
702                 }
703                 return;
704         }
705         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
706
707         /*
708          * On the 'unoptimizing_list' and 'optimizing_list',
709          * 'op' must have OPTIMIZED flag
710          */
711         if (WARN_ON_ONCE(!list_empty(&op->list)))
712                 return;
713
714         list_add(&op->list, &optimizing_list);
715         kick_kprobe_optimizer();
716 }
717
718 /* Short cut to direct unoptimizing */
719 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
720 {
721         lockdep_assert_cpus_held();
722         arch_unoptimize_kprobe(op);
723         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
724 }
725
726 /* Unoptimize a kprobe if p is optimized */
727 static void unoptimize_kprobe(struct kprobe *p, bool force)
728 {
729         struct optimized_kprobe *op;
730
731         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
732                 return; /* This is not an optprobe nor optimized */
733
734         op = container_of(p, struct optimized_kprobe, kp);
735         if (!kprobe_optimized(p))
736                 return;
737
738         if (!list_empty(&op->list)) {
739                 if (optprobe_queued_unopt(op)) {
740                         /* Queued in unoptimizing queue */
741                         if (force) {
742                                 /*
743                                  * Forcibly unoptimize the kprobe here, and queue it
744                                  * in the freeing list for release afterwards.
745                                  */
746                                 force_unoptimize_kprobe(op);
747                                 list_move(&op->list, &freeing_list);
748                         }
749                 } else {
750                         /* Dequeue from the optimizing queue */
751                         list_del_init(&op->list);
752                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
753                 }
754                 return;
755         }
756
757         /* Optimized kprobe case */
758         if (force) {
759                 /* Forcibly update the code: this is a special case */
760                 force_unoptimize_kprobe(op);
761         } else {
762                 list_add(&op->list, &unoptimizing_list);
763                 kick_kprobe_optimizer();
764         }
765 }
766
767 /* Cancel unoptimizing for reusing */
768 static int reuse_unused_kprobe(struct kprobe *ap)
769 {
770         struct optimized_kprobe *op;
771
772         /*
773          * Unused kprobe MUST be on the way of delayed unoptimizing (means
774          * there is still a relative jump) and disabled.
775          */
776         op = container_of(ap, struct optimized_kprobe, kp);
777         WARN_ON_ONCE(list_empty(&op->list));
778         /* Enable the probe again */
779         ap->flags &= ~KPROBE_FLAG_DISABLED;
780         /* Optimize it again. (remove from 'op->list') */
781         if (!kprobe_optready(ap))
782                 return -EINVAL;
783
784         optimize_kprobe(ap);
785         return 0;
786 }
787
788 /* Remove optimized instructions */
789 static void kill_optimized_kprobe(struct kprobe *p)
790 {
791         struct optimized_kprobe *op;
792
793         op = container_of(p, struct optimized_kprobe, kp);
794         if (!list_empty(&op->list))
795                 /* Dequeue from the (un)optimization queue */
796                 list_del_init(&op->list);
797         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
798
799         if (kprobe_unused(p)) {
800                 /* Enqueue if it is unused */
801                 list_add(&op->list, &freeing_list);
802                 /*
803                  * Remove unused probes from the hash list. After waiting
804                  * for synchronization, this probe is reclaimed.
805                  * (reclaiming is done by do_free_cleaned_kprobes().)
806                  */
807                 hlist_del_rcu(&op->kp.hlist);
808         }
809
810         /* Don't touch the code, because it is already freed. */
811         arch_remove_optimized_kprobe(op);
812 }
813
814 static inline
815 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
816 {
817         if (!kprobe_ftrace(p))
818                 arch_prepare_optimized_kprobe(op, p);
819 }
820
821 /* Try to prepare optimized instructions */
822 static void prepare_optimized_kprobe(struct kprobe *p)
823 {
824         struct optimized_kprobe *op;
825
826         op = container_of(p, struct optimized_kprobe, kp);
827         __prepare_optimized_kprobe(op, p);
828 }
829
830 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
831 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
832 {
833         struct optimized_kprobe *op;
834
835         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
836         if (!op)
837                 return NULL;
838
839         INIT_LIST_HEAD(&op->list);
840         op->kp.addr = p->addr;
841         __prepare_optimized_kprobe(op, p);
842
843         return &op->kp;
844 }
845
846 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
847
848 /*
849  * Prepare an optimized_kprobe and optimize it.
850  * NOTE: 'p' must be a normal registered kprobe.
851  */
852 static void try_to_optimize_kprobe(struct kprobe *p)
853 {
854         struct kprobe *ap;
855         struct optimized_kprobe *op;
856
857         /* Impossible to optimize ftrace-based kprobe. */
858         if (kprobe_ftrace(p))
859                 return;
860
861         /* For preparing optimization, jump_label_text_reserved() is called. */
862         cpus_read_lock();
863         jump_label_lock();
864         mutex_lock(&text_mutex);
865
866         ap = alloc_aggr_kprobe(p);
867         if (!ap)
868                 goto out;
869
870         op = container_of(ap, struct optimized_kprobe, kp);
871         if (!arch_prepared_optinsn(&op->optinsn)) {
872                 /* If failed to setup optimizing, fallback to kprobe. */
873                 arch_remove_optimized_kprobe(op);
874                 kfree(op);
875                 goto out;
876         }
877
878         init_aggr_kprobe(ap, p);
879         optimize_kprobe(ap);    /* This just kicks optimizer thread. */
880
881 out:
882         mutex_unlock(&text_mutex);
883         jump_label_unlock();
884         cpus_read_unlock();
885 }
886
887 static void optimize_all_kprobes(void)
888 {
889         struct hlist_head *head;
890         struct kprobe *p;
891         unsigned int i;
892
893         mutex_lock(&kprobe_mutex);
894         /* If optimization is already allowed, just return. */
895         if (kprobes_allow_optimization)
896                 goto out;
897
898         cpus_read_lock();
899         kprobes_allow_optimization = true;
900         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
901                 head = &kprobe_table[i];
902                 hlist_for_each_entry(p, head, hlist)
903                         if (!kprobe_disabled(p))
904                                 optimize_kprobe(p);
905         }
906         cpus_read_unlock();
907         pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
908 out:
909         mutex_unlock(&kprobe_mutex);
910 }
911
912 #ifdef CONFIG_SYSCTL
913 static void unoptimize_all_kprobes(void)
914 {
915         struct hlist_head *head;
916         struct kprobe *p;
917         unsigned int i;
918
919         mutex_lock(&kprobe_mutex);
920         /* If optimization is already prohibited, just return. */
921         if (!kprobes_allow_optimization) {
922                 mutex_unlock(&kprobe_mutex);
923                 return;
924         }
925
926         cpus_read_lock();
927         kprobes_allow_optimization = false;
928         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
929                 head = &kprobe_table[i];
930                 hlist_for_each_entry(p, head, hlist) {
931                         if (!kprobe_disabled(p))
932                                 unoptimize_kprobe(p, false);
933                 }
934         }
935         cpus_read_unlock();
936         mutex_unlock(&kprobe_mutex);
937
938         /* Wait for unoptimizing completion. */
939         wait_for_kprobe_optimizer();
940         pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
941 }
942
943 static DEFINE_MUTEX(kprobe_sysctl_mutex);
944 static int sysctl_kprobes_optimization;
945 static int proc_kprobes_optimization_handler(struct ctl_table *table,
946                                              int write, void *buffer,
947                                              size_t *length, loff_t *ppos)
948 {
949         int ret;
950
951         mutex_lock(&kprobe_sysctl_mutex);
952         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
953         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
954
955         if (sysctl_kprobes_optimization)
956                 optimize_all_kprobes();
957         else
958                 unoptimize_all_kprobes();
959         mutex_unlock(&kprobe_sysctl_mutex);
960
961         return ret;
962 }
963
964 static struct ctl_table kprobe_sysctls[] = {
965         {
966                 .procname       = "kprobes-optimization",
967                 .data           = &sysctl_kprobes_optimization,
968                 .maxlen         = sizeof(int),
969                 .mode           = 0644,
970                 .proc_handler   = proc_kprobes_optimization_handler,
971                 .extra1         = SYSCTL_ZERO,
972                 .extra2         = SYSCTL_ONE,
973         },
974         {}
975 };
976
977 static void __init kprobe_sysctls_init(void)
978 {
979         register_sysctl_init("debug", kprobe_sysctls);
980 }
981 #endif /* CONFIG_SYSCTL */
982
983 /* Put a breakpoint for a probe. */
984 static void __arm_kprobe(struct kprobe *p)
985 {
986         struct kprobe *_p;
987
988         lockdep_assert_held(&text_mutex);
989
990         /* Find the overlapping optimized kprobes. */
991         _p = get_optimized_kprobe(p->addr);
992         if (unlikely(_p))
993                 /* Fallback to unoptimized kprobe */
994                 unoptimize_kprobe(_p, true);
995
996         arch_arm_kprobe(p);
997         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
998 }
999
1000 /* Remove the breakpoint of a probe. */
1001 static void __disarm_kprobe(struct kprobe *p, bool reopt)
1002 {
1003         struct kprobe *_p;
1004
1005         lockdep_assert_held(&text_mutex);
1006
1007         /* Try to unoptimize */
1008         unoptimize_kprobe(p, kprobes_all_disarmed);
1009
1010         if (!kprobe_queued(p)) {
1011                 arch_disarm_kprobe(p);
1012                 /* If another kprobe was blocked, re-optimize it. */
1013                 _p = get_optimized_kprobe(p->addr);
1014                 if (unlikely(_p) && reopt)
1015                         optimize_kprobe(_p);
1016         }
1017         /*
1018          * TODO: Since unoptimization and real disarming will be done by
1019          * the worker thread, we can not check whether another probe are
1020          * unoptimized because of this probe here. It should be re-optimized
1021          * by the worker thread.
1022          */
1023 }
1024
1025 #else /* !CONFIG_OPTPROBES */
1026
1027 #define optimize_kprobe(p)                      do {} while (0)
1028 #define unoptimize_kprobe(p, f)                 do {} while (0)
1029 #define kill_optimized_kprobe(p)                do {} while (0)
1030 #define prepare_optimized_kprobe(p)             do {} while (0)
1031 #define try_to_optimize_kprobe(p)               do {} while (0)
1032 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
1033 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
1034 #define kprobe_disarmed(p)                      kprobe_disabled(p)
1035 #define wait_for_kprobe_optimizer()             do {} while (0)
1036
1037 static int reuse_unused_kprobe(struct kprobe *ap)
1038 {
1039         /*
1040          * If the optimized kprobe is NOT supported, the aggr kprobe is
1041          * released at the same time that the last aggregated kprobe is
1042          * unregistered.
1043          * Thus there should be no chance to reuse unused kprobe.
1044          */
1045         WARN_ON_ONCE(1);
1046         return -EINVAL;
1047 }
1048
1049 static void free_aggr_kprobe(struct kprobe *p)
1050 {
1051         arch_remove_kprobe(p);
1052         kfree(p);
1053 }
1054
1055 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1056 {
1057         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1058 }
1059 #endif /* CONFIG_OPTPROBES */
1060
1061 #ifdef CONFIG_KPROBES_ON_FTRACE
1062 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063         .func = kprobe_ftrace_handler,
1064         .flags = FTRACE_OPS_FL_SAVE_REGS,
1065 };
1066
1067 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068         .func = kprobe_ftrace_handler,
1069         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1070 };
1071
1072 static int kprobe_ipmodify_enabled;
1073 static int kprobe_ftrace_enabled;
1074
1075 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1076                                int *cnt)
1077 {
1078         int ret = 0;
1079
1080         lockdep_assert_held(&kprobe_mutex);
1081
1082         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083         if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1084                 return ret;
1085
1086         if (*cnt == 0) {
1087                 ret = register_ftrace_function(ops);
1088                 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1089                         goto err_ftrace;
1090         }
1091
1092         (*cnt)++;
1093         return ret;
1094
1095 err_ftrace:
1096         /*
1097          * At this point, sinec ops is not registered, we should be sefe from
1098          * registering empty filter.
1099          */
1100         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101         return ret;
1102 }
1103
1104 static int arm_kprobe_ftrace(struct kprobe *p)
1105 {
1106         bool ipmodify = (p->post_handler != NULL);
1107
1108         return __arm_kprobe_ftrace(p,
1109                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1111 }
1112
1113 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1114                                   int *cnt)
1115 {
1116         int ret = 0;
1117
1118         lockdep_assert_held(&kprobe_mutex);
1119
1120         if (*cnt == 1) {
1121                 ret = unregister_ftrace_function(ops);
1122                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1123                         return ret;
1124         }
1125
1126         (*cnt)--;
1127
1128         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1130                   p->addr, ret);
1131         return ret;
1132 }
1133
1134 static int disarm_kprobe_ftrace(struct kprobe *p)
1135 {
1136         bool ipmodify = (p->post_handler != NULL);
1137
1138         return __disarm_kprobe_ftrace(p,
1139                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1141 }
1142 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1143 static inline int arm_kprobe_ftrace(struct kprobe *p)
1144 {
1145         return -ENODEV;
1146 }
1147
1148 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1149 {
1150         return -ENODEV;
1151 }
1152 #endif
1153
1154 static int prepare_kprobe(struct kprobe *p)
1155 {
1156         /* Must ensure p->addr is really on ftrace */
1157         if (kprobe_ftrace(p))
1158                 return arch_prepare_kprobe_ftrace(p);
1159
1160         return arch_prepare_kprobe(p);
1161 }
1162
1163 static int arm_kprobe(struct kprobe *kp)
1164 {
1165         if (unlikely(kprobe_ftrace(kp)))
1166                 return arm_kprobe_ftrace(kp);
1167
1168         cpus_read_lock();
1169         mutex_lock(&text_mutex);
1170         __arm_kprobe(kp);
1171         mutex_unlock(&text_mutex);
1172         cpus_read_unlock();
1173
1174         return 0;
1175 }
1176
1177 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1178 {
1179         if (unlikely(kprobe_ftrace(kp)))
1180                 return disarm_kprobe_ftrace(kp);
1181
1182         cpus_read_lock();
1183         mutex_lock(&text_mutex);
1184         __disarm_kprobe(kp, reopt);
1185         mutex_unlock(&text_mutex);
1186         cpus_read_unlock();
1187
1188         return 0;
1189 }
1190
1191 /*
1192  * Aggregate handlers for multiple kprobes support - these handlers
1193  * take care of invoking the individual kprobe handlers on p->list
1194  */
1195 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1196 {
1197         struct kprobe *kp;
1198
1199         list_for_each_entry_rcu(kp, &p->list, list) {
1200                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201                         set_kprobe_instance(kp);
1202                         if (kp->pre_handler(kp, regs))
1203                                 return 1;
1204                 }
1205                 reset_kprobe_instance();
1206         }
1207         return 0;
1208 }
1209 NOKPROBE_SYMBOL(aggr_pre_handler);
1210
1211 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212                               unsigned long flags)
1213 {
1214         struct kprobe *kp;
1215
1216         list_for_each_entry_rcu(kp, &p->list, list) {
1217                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218                         set_kprobe_instance(kp);
1219                         kp->post_handler(kp, regs, flags);
1220                         reset_kprobe_instance();
1221                 }
1222         }
1223 }
1224 NOKPROBE_SYMBOL(aggr_post_handler);
1225
1226 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1227 void kprobes_inc_nmissed_count(struct kprobe *p)
1228 {
1229         struct kprobe *kp;
1230
1231         if (!kprobe_aggrprobe(p)) {
1232                 p->nmissed++;
1233         } else {
1234                 list_for_each_entry_rcu(kp, &p->list, list)
1235                         kp->nmissed++;
1236         }
1237 }
1238 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1239
1240 static struct kprobe kprobe_busy = {
1241         .addr = (void *) get_kprobe,
1242 };
1243
1244 void kprobe_busy_begin(void)
1245 {
1246         struct kprobe_ctlblk *kcb;
1247
1248         preempt_disable();
1249         __this_cpu_write(current_kprobe, &kprobe_busy);
1250         kcb = get_kprobe_ctlblk();
1251         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252 }
1253
1254 void kprobe_busy_end(void)
1255 {
1256         __this_cpu_write(current_kprobe, NULL);
1257         preempt_enable();
1258 }
1259
1260 /* Add the new probe to 'ap->list'. */
1261 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1262 {
1263         if (p->post_handler)
1264                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1265
1266         list_add_rcu(&p->list, &ap->list);
1267         if (p->post_handler && !ap->post_handler)
1268                 ap->post_handler = aggr_post_handler;
1269
1270         return 0;
1271 }
1272
1273 /*
1274  * Fill in the required fields of the aggregator kprobe. Replace the
1275  * earlier kprobe in the hlist with the aggregator kprobe.
1276  */
1277 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1278 {
1279         /* Copy the insn slot of 'p' to 'ap'. */
1280         copy_kprobe(p, ap);
1281         flush_insn_slot(ap);
1282         ap->addr = p->addr;
1283         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1284         ap->pre_handler = aggr_pre_handler;
1285         /* We don't care the kprobe which has gone. */
1286         if (p->post_handler && !kprobe_gone(p))
1287                 ap->post_handler = aggr_post_handler;
1288
1289         INIT_LIST_HEAD(&ap->list);
1290         INIT_HLIST_NODE(&ap->hlist);
1291
1292         list_add_rcu(&p->list, &ap->list);
1293         hlist_replace_rcu(&p->hlist, &ap->hlist);
1294 }
1295
1296 /*
1297  * This registers the second or subsequent kprobe at the same address.
1298  */
1299 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1300 {
1301         int ret = 0;
1302         struct kprobe *ap = orig_p;
1303
1304         cpus_read_lock();
1305
1306         /* For preparing optimization, jump_label_text_reserved() is called */
1307         jump_label_lock();
1308         mutex_lock(&text_mutex);
1309
1310         if (!kprobe_aggrprobe(orig_p)) {
1311                 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1312                 ap = alloc_aggr_kprobe(orig_p);
1313                 if (!ap) {
1314                         ret = -ENOMEM;
1315                         goto out;
1316                 }
1317                 init_aggr_kprobe(ap, orig_p);
1318         } else if (kprobe_unused(ap)) {
1319                 /* This probe is going to die. Rescue it */
1320                 ret = reuse_unused_kprobe(ap);
1321                 if (ret)
1322                         goto out;
1323         }
1324
1325         if (kprobe_gone(ap)) {
1326                 /*
1327                  * Attempting to insert new probe at the same location that
1328                  * had a probe in the module vaddr area which already
1329                  * freed. So, the instruction slot has already been
1330                  * released. We need a new slot for the new probe.
1331                  */
1332                 ret = arch_prepare_kprobe(ap);
1333                 if (ret)
1334                         /*
1335                          * Even if fail to allocate new slot, don't need to
1336                          * free the 'ap'. It will be used next time, or
1337                          * freed by unregister_kprobe().
1338                          */
1339                         goto out;
1340
1341                 /* Prepare optimized instructions if possible. */
1342                 prepare_optimized_kprobe(ap);
1343
1344                 /*
1345                  * Clear gone flag to prevent allocating new slot again, and
1346                  * set disabled flag because it is not armed yet.
1347                  */
1348                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349                             | KPROBE_FLAG_DISABLED;
1350         }
1351
1352         /* Copy the insn slot of 'p' to 'ap'. */
1353         copy_kprobe(ap, p);
1354         ret = add_new_kprobe(ap, p);
1355
1356 out:
1357         mutex_unlock(&text_mutex);
1358         jump_label_unlock();
1359         cpus_read_unlock();
1360
1361         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363                 if (!kprobes_all_disarmed) {
1364                         /* Arm the breakpoint again. */
1365                         ret = arm_kprobe(ap);
1366                         if (ret) {
1367                                 ap->flags |= KPROBE_FLAG_DISABLED;
1368                                 list_del_rcu(&p->list);
1369                                 synchronize_rcu();
1370                         }
1371                 }
1372         }
1373         return ret;
1374 }
1375
1376 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1377 {
1378         /* The '__kprobes' functions and entry code must not be probed. */
1379         return addr >= (unsigned long)__kprobes_text_start &&
1380                addr < (unsigned long)__kprobes_text_end;
1381 }
1382
1383 static bool __within_kprobe_blacklist(unsigned long addr)
1384 {
1385         struct kprobe_blacklist_entry *ent;
1386
1387         if (arch_within_kprobe_blacklist(addr))
1388                 return true;
1389         /*
1390          * If 'kprobe_blacklist' is defined, check the address and
1391          * reject any probe registration in the prohibited area.
1392          */
1393         list_for_each_entry(ent, &kprobe_blacklist, list) {
1394                 if (addr >= ent->start_addr && addr < ent->end_addr)
1395                         return true;
1396         }
1397         return false;
1398 }
1399
1400 bool within_kprobe_blacklist(unsigned long addr)
1401 {
1402         char symname[KSYM_NAME_LEN], *p;
1403
1404         if (__within_kprobe_blacklist(addr))
1405                 return true;
1406
1407         /* Check if the address is on a suffixed-symbol */
1408         if (!lookup_symbol_name(addr, symname)) {
1409                 p = strchr(symname, '.');
1410                 if (!p)
1411                         return false;
1412                 *p = '\0';
1413                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1414                 if (addr)
1415                         return __within_kprobe_blacklist(addr);
1416         }
1417         return false;
1418 }
1419
1420 /*
1421  * arch_adjust_kprobe_addr - adjust the address
1422  * @addr: symbol base address
1423  * @offset: offset within the symbol
1424  * @on_func_entry: was this @addr+@offset on the function entry
1425  *
1426  * Typically returns @addr + @offset, except for special cases where the
1427  * function might be prefixed by a CFI landing pad, in that case any offset
1428  * inside the landing pad is mapped to the first 'real' instruction of the
1429  * symbol.
1430  *
1431  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1432  * instruction at +0.
1433  */
1434 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1435                                                 unsigned long offset,
1436                                                 bool *on_func_entry)
1437 {
1438         *on_func_entry = !offset;
1439         return (kprobe_opcode_t *)(addr + offset);
1440 }
1441
1442 /*
1443  * If 'symbol_name' is specified, look it up and add the 'offset'
1444  * to it. This way, we can specify a relative address to a symbol.
1445  * This returns encoded errors if it fails to look up symbol or invalid
1446  * combination of parameters.
1447  */
1448 static kprobe_opcode_t *
1449 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1450              unsigned long offset, bool *on_func_entry)
1451 {
1452         if ((symbol_name && addr) || (!symbol_name && !addr))
1453                 goto invalid;
1454
1455         if (symbol_name) {
1456                 /*
1457                  * Input: @sym + @offset
1458                  * Output: @addr + @offset
1459                  *
1460                  * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1461                  *       argument into it's output!
1462                  */
1463                 addr = kprobe_lookup_name(symbol_name, offset);
1464                 if (!addr)
1465                         return ERR_PTR(-ENOENT);
1466         }
1467
1468         /*
1469          * So here we have @addr + @offset, displace it into a new
1470          * @addr' + @offset' where @addr' is the symbol start address.
1471          */
1472         addr = (void *)addr + offset;
1473         if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1474                 return ERR_PTR(-ENOENT);
1475         addr = (void *)addr - offset;
1476
1477         /*
1478          * Then ask the architecture to re-combine them, taking care of
1479          * magical function entry details while telling us if this was indeed
1480          * at the start of the function.
1481          */
1482         addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1483         if (addr)
1484                 return addr;
1485
1486 invalid:
1487         return ERR_PTR(-EINVAL);
1488 }
1489
1490 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1491 {
1492         bool on_func_entry;
1493         return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1494 }
1495
1496 /*
1497  * Check the 'p' is valid and return the aggregator kprobe
1498  * at the same address.
1499  */
1500 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1501 {
1502         struct kprobe *ap, *list_p;
1503
1504         lockdep_assert_held(&kprobe_mutex);
1505
1506         ap = get_kprobe(p->addr);
1507         if (unlikely(!ap))
1508                 return NULL;
1509
1510         if (p != ap) {
1511                 list_for_each_entry(list_p, &ap->list, list)
1512                         if (list_p == p)
1513                         /* kprobe p is a valid probe */
1514                                 goto valid;
1515                 return NULL;
1516         }
1517 valid:
1518         return ap;
1519 }
1520
1521 /*
1522  * Warn and return error if the kprobe is being re-registered since
1523  * there must be a software bug.
1524  */
1525 static inline int warn_kprobe_rereg(struct kprobe *p)
1526 {
1527         int ret = 0;
1528
1529         mutex_lock(&kprobe_mutex);
1530         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1531                 ret = -EINVAL;
1532         mutex_unlock(&kprobe_mutex);
1533
1534         return ret;
1535 }
1536
1537 static int check_ftrace_location(struct kprobe *p)
1538 {
1539         unsigned long addr = (unsigned long)p->addr;
1540
1541         if (ftrace_location(addr) == addr) {
1542 #ifdef CONFIG_KPROBES_ON_FTRACE
1543                 p->flags |= KPROBE_FLAG_FTRACE;
1544 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1545                 return -EINVAL;
1546 #endif
1547         }
1548         return 0;
1549 }
1550
1551 static int check_kprobe_address_safe(struct kprobe *p,
1552                                      struct module **probed_mod)
1553 {
1554         int ret;
1555
1556         ret = check_ftrace_location(p);
1557         if (ret)
1558                 return ret;
1559         jump_label_lock();
1560         preempt_disable();
1561
1562         /* Ensure it is not in reserved area nor out of text */
1563         if (!(core_kernel_text((unsigned long) p->addr) ||
1564             is_module_text_address((unsigned long) p->addr)) ||
1565             in_gate_area_no_mm((unsigned long) p->addr) ||
1566             within_kprobe_blacklist((unsigned long) p->addr) ||
1567             jump_label_text_reserved(p->addr, p->addr) ||
1568             static_call_text_reserved(p->addr, p->addr) ||
1569             find_bug((unsigned long)p->addr)) {
1570                 ret = -EINVAL;
1571                 goto out;
1572         }
1573
1574         /* Check if 'p' is probing a module. */
1575         *probed_mod = __module_text_address((unsigned long) p->addr);
1576         if (*probed_mod) {
1577                 /*
1578                  * We must hold a refcount of the probed module while updating
1579                  * its code to prohibit unexpected unloading.
1580                  */
1581                 if (unlikely(!try_module_get(*probed_mod))) {
1582                         ret = -ENOENT;
1583                         goto out;
1584                 }
1585
1586                 /*
1587                  * If the module freed '.init.text', we couldn't insert
1588                  * kprobes in there.
1589                  */
1590                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591                     (*probed_mod)->state != MODULE_STATE_COMING) {
1592                         module_put(*probed_mod);
1593                         *probed_mod = NULL;
1594                         ret = -ENOENT;
1595                 }
1596         }
1597 out:
1598         preempt_enable();
1599         jump_label_unlock();
1600
1601         return ret;
1602 }
1603
1604 int register_kprobe(struct kprobe *p)
1605 {
1606         int ret;
1607         struct kprobe *old_p;
1608         struct module *probed_mod;
1609         kprobe_opcode_t *addr;
1610         bool on_func_entry;
1611
1612         /* Adjust probe address from symbol */
1613         addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1614         if (IS_ERR(addr))
1615                 return PTR_ERR(addr);
1616         p->addr = addr;
1617
1618         ret = warn_kprobe_rereg(p);
1619         if (ret)
1620                 return ret;
1621
1622         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1623         p->flags &= KPROBE_FLAG_DISABLED;
1624         p->nmissed = 0;
1625         INIT_LIST_HEAD(&p->list);
1626
1627         ret = check_kprobe_address_safe(p, &probed_mod);
1628         if (ret)
1629                 return ret;
1630
1631         mutex_lock(&kprobe_mutex);
1632
1633         if (on_func_entry)
1634                 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1635
1636         old_p = get_kprobe(p->addr);
1637         if (old_p) {
1638                 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1639                 ret = register_aggr_kprobe(old_p, p);
1640                 goto out;
1641         }
1642
1643         cpus_read_lock();
1644         /* Prevent text modification */
1645         mutex_lock(&text_mutex);
1646         ret = prepare_kprobe(p);
1647         mutex_unlock(&text_mutex);
1648         cpus_read_unlock();
1649         if (ret)
1650                 goto out;
1651
1652         INIT_HLIST_NODE(&p->hlist);
1653         hlist_add_head_rcu(&p->hlist,
1654                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1655
1656         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1657                 ret = arm_kprobe(p);
1658                 if (ret) {
1659                         hlist_del_rcu(&p->hlist);
1660                         synchronize_rcu();
1661                         goto out;
1662                 }
1663         }
1664
1665         /* Try to optimize kprobe */
1666         try_to_optimize_kprobe(p);
1667 out:
1668         mutex_unlock(&kprobe_mutex);
1669
1670         if (probed_mod)
1671                 module_put(probed_mod);
1672
1673         return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(register_kprobe);
1676
1677 /* Check if all probes on the 'ap' are disabled. */
1678 static bool aggr_kprobe_disabled(struct kprobe *ap)
1679 {
1680         struct kprobe *kp;
1681
1682         lockdep_assert_held(&kprobe_mutex);
1683
1684         list_for_each_entry(kp, &ap->list, list)
1685                 if (!kprobe_disabled(kp))
1686                         /*
1687                          * Since there is an active probe on the list,
1688                          * we can't disable this 'ap'.
1689                          */
1690                         return false;
1691
1692         return true;
1693 }
1694
1695 static struct kprobe *__disable_kprobe(struct kprobe *p)
1696 {
1697         struct kprobe *orig_p;
1698         int ret;
1699
1700         lockdep_assert_held(&kprobe_mutex);
1701
1702         /* Get an original kprobe for return */
1703         orig_p = __get_valid_kprobe(p);
1704         if (unlikely(orig_p == NULL))
1705                 return ERR_PTR(-EINVAL);
1706
1707         if (!kprobe_disabled(p)) {
1708                 /* Disable probe if it is a child probe */
1709                 if (p != orig_p)
1710                         p->flags |= KPROBE_FLAG_DISABLED;
1711
1712                 /* Try to disarm and disable this/parent probe */
1713                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1714                         /*
1715                          * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1716                          * is false, 'orig_p' might not have been armed yet.
1717                          * Note arm_all_kprobes() __tries__ to arm all kprobes
1718                          * on the best effort basis.
1719                          */
1720                         if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1721                                 ret = disarm_kprobe(orig_p, true);
1722                                 if (ret) {
1723                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1724                                         return ERR_PTR(ret);
1725                                 }
1726                         }
1727                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1728                 }
1729         }
1730
1731         return orig_p;
1732 }
1733
1734 /*
1735  * Unregister a kprobe without a scheduler synchronization.
1736  */
1737 static int __unregister_kprobe_top(struct kprobe *p)
1738 {
1739         struct kprobe *ap, *list_p;
1740
1741         /* Disable kprobe. This will disarm it if needed. */
1742         ap = __disable_kprobe(p);
1743         if (IS_ERR(ap))
1744                 return PTR_ERR(ap);
1745
1746         if (ap == p)
1747                 /*
1748                  * This probe is an independent(and non-optimized) kprobe
1749                  * (not an aggrprobe). Remove from the hash list.
1750                  */
1751                 goto disarmed;
1752
1753         /* Following process expects this probe is an aggrprobe */
1754         WARN_ON(!kprobe_aggrprobe(ap));
1755
1756         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1757                 /*
1758                  * !disarmed could be happen if the probe is under delayed
1759                  * unoptimizing.
1760                  */
1761                 goto disarmed;
1762         else {
1763                 /* If disabling probe has special handlers, update aggrprobe */
1764                 if (p->post_handler && !kprobe_gone(p)) {
1765                         list_for_each_entry(list_p, &ap->list, list) {
1766                                 if ((list_p != p) && (list_p->post_handler))
1767                                         goto noclean;
1768                         }
1769                         /*
1770                          * For the kprobe-on-ftrace case, we keep the
1771                          * post_handler setting to identify this aggrprobe
1772                          * armed with kprobe_ipmodify_ops.
1773                          */
1774                         if (!kprobe_ftrace(ap))
1775                                 ap->post_handler = NULL;
1776                 }
1777 noclean:
1778                 /*
1779                  * Remove from the aggrprobe: this path will do nothing in
1780                  * __unregister_kprobe_bottom().
1781                  */
1782                 list_del_rcu(&p->list);
1783                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1784                         /*
1785                          * Try to optimize this probe again, because post
1786                          * handler may have been changed.
1787                          */
1788                         optimize_kprobe(ap);
1789         }
1790         return 0;
1791
1792 disarmed:
1793         hlist_del_rcu(&ap->hlist);
1794         return 0;
1795 }
1796
1797 static void __unregister_kprobe_bottom(struct kprobe *p)
1798 {
1799         struct kprobe *ap;
1800
1801         if (list_empty(&p->list))
1802                 /* This is an independent kprobe */
1803                 arch_remove_kprobe(p);
1804         else if (list_is_singular(&p->list)) {
1805                 /* This is the last child of an aggrprobe */
1806                 ap = list_entry(p->list.next, struct kprobe, list);
1807                 list_del(&p->list);
1808                 free_aggr_kprobe(ap);
1809         }
1810         /* Otherwise, do nothing. */
1811 }
1812
1813 int register_kprobes(struct kprobe **kps, int num)
1814 {
1815         int i, ret = 0;
1816
1817         if (num <= 0)
1818                 return -EINVAL;
1819         for (i = 0; i < num; i++) {
1820                 ret = register_kprobe(kps[i]);
1821                 if (ret < 0) {
1822                         if (i > 0)
1823                                 unregister_kprobes(kps, i);
1824                         break;
1825                 }
1826         }
1827         return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(register_kprobes);
1830
1831 void unregister_kprobe(struct kprobe *p)
1832 {
1833         unregister_kprobes(&p, 1);
1834 }
1835 EXPORT_SYMBOL_GPL(unregister_kprobe);
1836
1837 void unregister_kprobes(struct kprobe **kps, int num)
1838 {
1839         int i;
1840
1841         if (num <= 0)
1842                 return;
1843         mutex_lock(&kprobe_mutex);
1844         for (i = 0; i < num; i++)
1845                 if (__unregister_kprobe_top(kps[i]) < 0)
1846                         kps[i]->addr = NULL;
1847         mutex_unlock(&kprobe_mutex);
1848
1849         synchronize_rcu();
1850         for (i = 0; i < num; i++)
1851                 if (kps[i]->addr)
1852                         __unregister_kprobe_bottom(kps[i]);
1853 }
1854 EXPORT_SYMBOL_GPL(unregister_kprobes);
1855
1856 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1857                                         unsigned long val, void *data)
1858 {
1859         return NOTIFY_DONE;
1860 }
1861 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1862
1863 static struct notifier_block kprobe_exceptions_nb = {
1864         .notifier_call = kprobe_exceptions_notify,
1865         .priority = 0x7fffffff /* we need to be notified first */
1866 };
1867
1868 #ifdef CONFIG_KRETPROBES
1869
1870 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1871 static void free_rp_inst_rcu(struct rcu_head *head)
1872 {
1873         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1874
1875         if (refcount_dec_and_test(&ri->rph->ref))
1876                 kfree(ri->rph);
1877         kfree(ri);
1878 }
1879 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1880
1881 static void recycle_rp_inst(struct kretprobe_instance *ri)
1882 {
1883         struct kretprobe *rp = get_kretprobe(ri);
1884
1885         if (likely(rp))
1886                 freelist_add(&ri->freelist, &rp->freelist);
1887         else
1888                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1889 }
1890 NOKPROBE_SYMBOL(recycle_rp_inst);
1891
1892 /*
1893  * This function is called from delayed_put_task_struct() when a task is
1894  * dead and cleaned up to recycle any kretprobe instances associated with
1895  * this task. These left over instances represent probed functions that
1896  * have been called but will never return.
1897  */
1898 void kprobe_flush_task(struct task_struct *tk)
1899 {
1900         struct kretprobe_instance *ri;
1901         struct llist_node *node;
1902
1903         /* Early boot, not yet initialized. */
1904         if (unlikely(!kprobes_initialized))
1905                 return;
1906
1907         kprobe_busy_begin();
1908
1909         node = __llist_del_all(&tk->kretprobe_instances);
1910         while (node) {
1911                 ri = container_of(node, struct kretprobe_instance, llist);
1912                 node = node->next;
1913
1914                 recycle_rp_inst(ri);
1915         }
1916
1917         kprobe_busy_end();
1918 }
1919 NOKPROBE_SYMBOL(kprobe_flush_task);
1920
1921 static inline void free_rp_inst(struct kretprobe *rp)
1922 {
1923         struct kretprobe_instance *ri;
1924         struct freelist_node *node;
1925         int count = 0;
1926
1927         node = rp->freelist.head;
1928         while (node) {
1929                 ri = container_of(node, struct kretprobe_instance, freelist);
1930                 node = node->next;
1931
1932                 kfree(ri);
1933                 count++;
1934         }
1935
1936         if (refcount_sub_and_test(count, &rp->rph->ref)) {
1937                 kfree(rp->rph);
1938                 rp->rph = NULL;
1939         }
1940 }
1941
1942 /* This assumes the 'tsk' is the current task or the is not running. */
1943 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1944                                                   struct llist_node **cur)
1945 {
1946         struct kretprobe_instance *ri = NULL;
1947         struct llist_node *node = *cur;
1948
1949         if (!node)
1950                 node = tsk->kretprobe_instances.first;
1951         else
1952                 node = node->next;
1953
1954         while (node) {
1955                 ri = container_of(node, struct kretprobe_instance, llist);
1956                 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1957                         *cur = node;
1958                         return ri->ret_addr;
1959                 }
1960                 node = node->next;
1961         }
1962         return NULL;
1963 }
1964 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1965
1966 /**
1967  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1968  * @tsk: Target task
1969  * @fp: A frame pointer
1970  * @cur: a storage of the loop cursor llist_node pointer for next call
1971  *
1972  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1973  * long type. If it finds the return address, this returns that address value,
1974  * or this returns 0.
1975  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1976  * to get the currect return address - which is compared with the
1977  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1978  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1979  * first call, but '@cur' itself must NOT NULL.
1980  */
1981 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1982                                       struct llist_node **cur)
1983 {
1984         struct kretprobe_instance *ri = NULL;
1985         kprobe_opcode_t *ret;
1986
1987         if (WARN_ON_ONCE(!cur))
1988                 return 0;
1989
1990         do {
1991                 ret = __kretprobe_find_ret_addr(tsk, cur);
1992                 if (!ret)
1993                         break;
1994                 ri = container_of(*cur, struct kretprobe_instance, llist);
1995         } while (ri->fp != fp);
1996
1997         return (unsigned long)ret;
1998 }
1999 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2000
2001 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2002                                         kprobe_opcode_t *correct_ret_addr)
2003 {
2004         /*
2005          * Do nothing by default. Please fill this to update the fake return
2006          * address on the stack with the correct one on each arch if possible.
2007          */
2008 }
2009
2010 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2011                                              void *frame_pointer)
2012 {
2013         kprobe_opcode_t *correct_ret_addr = NULL;
2014         struct kretprobe_instance *ri = NULL;
2015         struct llist_node *first, *node = NULL;
2016         struct kretprobe *rp;
2017
2018         /* Find correct address and all nodes for this frame. */
2019         correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2020         if (!correct_ret_addr) {
2021                 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2022                 BUG_ON(1);
2023         }
2024
2025         /*
2026          * Set the return address as the instruction pointer, because if the
2027          * user handler calls stack_trace_save_regs() with this 'regs',
2028          * the stack trace will start from the instruction pointer.
2029          */
2030         instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2031
2032         /* Run the user handler of the nodes. */
2033         first = current->kretprobe_instances.first;
2034         while (first) {
2035                 ri = container_of(first, struct kretprobe_instance, llist);
2036
2037                 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2038                         break;
2039
2040                 rp = get_kretprobe(ri);
2041                 if (rp && rp->handler) {
2042                         struct kprobe *prev = kprobe_running();
2043
2044                         __this_cpu_write(current_kprobe, &rp->kp);
2045                         ri->ret_addr = correct_ret_addr;
2046                         rp->handler(ri, regs);
2047                         __this_cpu_write(current_kprobe, prev);
2048                 }
2049                 if (first == node)
2050                         break;
2051
2052                 first = first->next;
2053         }
2054
2055         arch_kretprobe_fixup_return(regs, correct_ret_addr);
2056
2057         /* Unlink all nodes for this frame. */
2058         first = current->kretprobe_instances.first;
2059         current->kretprobe_instances.first = node->next;
2060         node->next = NULL;
2061
2062         /* Recycle free instances. */
2063         while (first) {
2064                 ri = container_of(first, struct kretprobe_instance, llist);
2065                 first = first->next;
2066
2067                 recycle_rp_inst(ri);
2068         }
2069
2070         return (unsigned long)correct_ret_addr;
2071 }
2072 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2073
2074 /*
2075  * This kprobe pre_handler is registered with every kretprobe. When probe
2076  * hits it will set up the return probe.
2077  */
2078 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2079 {
2080         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2081         struct kretprobe_instance *ri;
2082         struct freelist_node *fn;
2083
2084         fn = freelist_try_get(&rp->freelist);
2085         if (!fn) {
2086                 rp->nmissed++;
2087                 return 0;
2088         }
2089
2090         ri = container_of(fn, struct kretprobe_instance, freelist);
2091
2092         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2093                 freelist_add(&ri->freelist, &rp->freelist);
2094                 return 0;
2095         }
2096
2097         arch_prepare_kretprobe(ri, regs);
2098
2099         __llist_add(&ri->llist, &current->kretprobe_instances);
2100
2101         return 0;
2102 }
2103 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2104 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2105 /*
2106  * This kprobe pre_handler is registered with every kretprobe. When probe
2107  * hits it will set up the return probe.
2108  */
2109 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2110 {
2111         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2112         struct kretprobe_instance *ri;
2113         struct rethook_node *rhn;
2114
2115         rhn = rethook_try_get(rp->rh);
2116         if (!rhn) {
2117                 rp->nmissed++;
2118                 return 0;
2119         }
2120
2121         ri = container_of(rhn, struct kretprobe_instance, node);
2122
2123         if (rp->entry_handler && rp->entry_handler(ri, regs))
2124                 rethook_recycle(rhn);
2125         else
2126                 rethook_hook(rhn, regs, kprobe_ftrace(p));
2127
2128         return 0;
2129 }
2130 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2131
2132 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2133                                       struct pt_regs *regs)
2134 {
2135         struct kretprobe *rp = (struct kretprobe *)data;
2136         struct kretprobe_instance *ri;
2137         struct kprobe_ctlblk *kcb;
2138
2139         /* The data must NOT be null. This means rethook data structure is broken. */
2140         if (WARN_ON_ONCE(!data) || !rp->handler)
2141                 return;
2142
2143         __this_cpu_write(current_kprobe, &rp->kp);
2144         kcb = get_kprobe_ctlblk();
2145         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2146
2147         ri = container_of(rh, struct kretprobe_instance, node);
2148         rp->handler(ri, regs);
2149
2150         __this_cpu_write(current_kprobe, NULL);
2151 }
2152 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2153
2154 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2155
2156 /**
2157  * kprobe_on_func_entry() -- check whether given address is function entry
2158  * @addr: Target address
2159  * @sym:  Target symbol name
2160  * @offset: The offset from the symbol or the address
2161  *
2162  * This checks whether the given @addr+@offset or @sym+@offset is on the
2163  * function entry address or not.
2164  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2165  * And also it returns -ENOENT if it fails the symbol or address lookup.
2166  * Caller must pass @addr or @sym (either one must be NULL), or this
2167  * returns -EINVAL.
2168  */
2169 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2170 {
2171         bool on_func_entry;
2172         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2173
2174         if (IS_ERR(kp_addr))
2175                 return PTR_ERR(kp_addr);
2176
2177         if (!on_func_entry)
2178                 return -EINVAL;
2179
2180         return 0;
2181 }
2182
2183 int register_kretprobe(struct kretprobe *rp)
2184 {
2185         int ret;
2186         struct kretprobe_instance *inst;
2187         int i;
2188         void *addr;
2189
2190         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2191         if (ret)
2192                 return ret;
2193
2194         /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2195         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2196                 return -EINVAL;
2197
2198         if (kretprobe_blacklist_size) {
2199                 addr = kprobe_addr(&rp->kp);
2200                 if (IS_ERR(addr))
2201                         return PTR_ERR(addr);
2202
2203                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2204                         if (kretprobe_blacklist[i].addr == addr)
2205                                 return -EINVAL;
2206                 }
2207         }
2208
2209         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2210                 return -E2BIG;
2211
2212         rp->kp.pre_handler = pre_handler_kretprobe;
2213         rp->kp.post_handler = NULL;
2214
2215         /* Pre-allocate memory for max kretprobe instances */
2216         if (rp->maxactive <= 0)
2217                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2218
2219 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2220         rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2221         if (!rp->rh)
2222                 return -ENOMEM;
2223
2224         for (i = 0; i < rp->maxactive; i++) {
2225                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2226                                rp->data_size, GFP_KERNEL);
2227                 if (inst == NULL) {
2228                         rethook_free(rp->rh);
2229                         rp->rh = NULL;
2230                         return -ENOMEM;
2231                 }
2232                 rethook_add_node(rp->rh, &inst->node);
2233         }
2234         rp->nmissed = 0;
2235         /* Establish function entry probe point */
2236         ret = register_kprobe(&rp->kp);
2237         if (ret != 0) {
2238                 rethook_free(rp->rh);
2239                 rp->rh = NULL;
2240         }
2241 #else   /* !CONFIG_KRETPROBE_ON_RETHOOK */
2242         rp->freelist.head = NULL;
2243         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2244         if (!rp->rph)
2245                 return -ENOMEM;
2246
2247         rp->rph->rp = rp;
2248         for (i = 0; i < rp->maxactive; i++) {
2249                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2250                                rp->data_size, GFP_KERNEL);
2251                 if (inst == NULL) {
2252                         refcount_set(&rp->rph->ref, i);
2253                         free_rp_inst(rp);
2254                         return -ENOMEM;
2255                 }
2256                 inst->rph = rp->rph;
2257                 freelist_add(&inst->freelist, &rp->freelist);
2258         }
2259         refcount_set(&rp->rph->ref, i);
2260
2261         rp->nmissed = 0;
2262         /* Establish function entry probe point */
2263         ret = register_kprobe(&rp->kp);
2264         if (ret != 0)
2265                 free_rp_inst(rp);
2266 #endif
2267         return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(register_kretprobe);
2270
2271 int register_kretprobes(struct kretprobe **rps, int num)
2272 {
2273         int ret = 0, i;
2274
2275         if (num <= 0)
2276                 return -EINVAL;
2277         for (i = 0; i < num; i++) {
2278                 ret = register_kretprobe(rps[i]);
2279                 if (ret < 0) {
2280                         if (i > 0)
2281                                 unregister_kretprobes(rps, i);
2282                         break;
2283                 }
2284         }
2285         return ret;
2286 }
2287 EXPORT_SYMBOL_GPL(register_kretprobes);
2288
2289 void unregister_kretprobe(struct kretprobe *rp)
2290 {
2291         unregister_kretprobes(&rp, 1);
2292 }
2293 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2294
2295 void unregister_kretprobes(struct kretprobe **rps, int num)
2296 {
2297         int i;
2298
2299         if (num <= 0)
2300                 return;
2301         mutex_lock(&kprobe_mutex);
2302         for (i = 0; i < num; i++) {
2303                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2304                         rps[i]->kp.addr = NULL;
2305 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2306                 rethook_free(rps[i]->rh);
2307 #else
2308                 rps[i]->rph->rp = NULL;
2309 #endif
2310         }
2311         mutex_unlock(&kprobe_mutex);
2312
2313         synchronize_rcu();
2314         for (i = 0; i < num; i++) {
2315                 if (rps[i]->kp.addr) {
2316                         __unregister_kprobe_bottom(&rps[i]->kp);
2317 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2318                         free_rp_inst(rps[i]);
2319 #endif
2320                 }
2321         }
2322 }
2323 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2324
2325 #else /* CONFIG_KRETPROBES */
2326 int register_kretprobe(struct kretprobe *rp)
2327 {
2328         return -EOPNOTSUPP;
2329 }
2330 EXPORT_SYMBOL_GPL(register_kretprobe);
2331
2332 int register_kretprobes(struct kretprobe **rps, int num)
2333 {
2334         return -EOPNOTSUPP;
2335 }
2336 EXPORT_SYMBOL_GPL(register_kretprobes);
2337
2338 void unregister_kretprobe(struct kretprobe *rp)
2339 {
2340 }
2341 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2342
2343 void unregister_kretprobes(struct kretprobe **rps, int num)
2344 {
2345 }
2346 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2347
2348 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2349 {
2350         return 0;
2351 }
2352 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2353
2354 #endif /* CONFIG_KRETPROBES */
2355
2356 /* Set the kprobe gone and remove its instruction buffer. */
2357 static void kill_kprobe(struct kprobe *p)
2358 {
2359         struct kprobe *kp;
2360
2361         lockdep_assert_held(&kprobe_mutex);
2362
2363         /*
2364          * The module is going away. We should disarm the kprobe which
2365          * is using ftrace, because ftrace framework is still available at
2366          * 'MODULE_STATE_GOING' notification.
2367          */
2368         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2369                 disarm_kprobe_ftrace(p);
2370
2371         p->flags |= KPROBE_FLAG_GONE;
2372         if (kprobe_aggrprobe(p)) {
2373                 /*
2374                  * If this is an aggr_kprobe, we have to list all the
2375                  * chained probes and mark them GONE.
2376                  */
2377                 list_for_each_entry(kp, &p->list, list)
2378                         kp->flags |= KPROBE_FLAG_GONE;
2379                 p->post_handler = NULL;
2380                 kill_optimized_kprobe(p);
2381         }
2382         /*
2383          * Here, we can remove insn_slot safely, because no thread calls
2384          * the original probed function (which will be freed soon) any more.
2385          */
2386         arch_remove_kprobe(p);
2387 }
2388
2389 /* Disable one kprobe */
2390 int disable_kprobe(struct kprobe *kp)
2391 {
2392         int ret = 0;
2393         struct kprobe *p;
2394
2395         mutex_lock(&kprobe_mutex);
2396
2397         /* Disable this kprobe */
2398         p = __disable_kprobe(kp);
2399         if (IS_ERR(p))
2400                 ret = PTR_ERR(p);
2401
2402         mutex_unlock(&kprobe_mutex);
2403         return ret;
2404 }
2405 EXPORT_SYMBOL_GPL(disable_kprobe);
2406
2407 /* Enable one kprobe */
2408 int enable_kprobe(struct kprobe *kp)
2409 {
2410         int ret = 0;
2411         struct kprobe *p;
2412
2413         mutex_lock(&kprobe_mutex);
2414
2415         /* Check whether specified probe is valid. */
2416         p = __get_valid_kprobe(kp);
2417         if (unlikely(p == NULL)) {
2418                 ret = -EINVAL;
2419                 goto out;
2420         }
2421
2422         if (kprobe_gone(kp)) {
2423                 /* This kprobe has gone, we couldn't enable it. */
2424                 ret = -EINVAL;
2425                 goto out;
2426         }
2427
2428         if (p != kp)
2429                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2430
2431         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2432                 p->flags &= ~KPROBE_FLAG_DISABLED;
2433                 ret = arm_kprobe(p);
2434                 if (ret) {
2435                         p->flags |= KPROBE_FLAG_DISABLED;
2436                         if (p != kp)
2437                                 kp->flags |= KPROBE_FLAG_DISABLED;
2438                 }
2439         }
2440 out:
2441         mutex_unlock(&kprobe_mutex);
2442         return ret;
2443 }
2444 EXPORT_SYMBOL_GPL(enable_kprobe);
2445
2446 /* Caller must NOT call this in usual path. This is only for critical case */
2447 void dump_kprobe(struct kprobe *kp)
2448 {
2449         pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2450                kp->symbol_name, kp->offset, kp->addr);
2451 }
2452 NOKPROBE_SYMBOL(dump_kprobe);
2453
2454 int kprobe_add_ksym_blacklist(unsigned long entry)
2455 {
2456         struct kprobe_blacklist_entry *ent;
2457         unsigned long offset = 0, size = 0;
2458
2459         if (!kernel_text_address(entry) ||
2460             !kallsyms_lookup_size_offset(entry, &size, &offset))
2461                 return -EINVAL;
2462
2463         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2464         if (!ent)
2465                 return -ENOMEM;
2466         ent->start_addr = entry;
2467         ent->end_addr = entry + size;
2468         INIT_LIST_HEAD(&ent->list);
2469         list_add_tail(&ent->list, &kprobe_blacklist);
2470
2471         return (int)size;
2472 }
2473
2474 /* Add all symbols in given area into kprobe blacklist */
2475 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2476 {
2477         unsigned long entry;
2478         int ret = 0;
2479
2480         for (entry = start; entry < end; entry += ret) {
2481                 ret = kprobe_add_ksym_blacklist(entry);
2482                 if (ret < 0)
2483                         return ret;
2484                 if (ret == 0)   /* In case of alias symbol */
2485                         ret = 1;
2486         }
2487         return 0;
2488 }
2489
2490 /* Remove all symbols in given area from kprobe blacklist */
2491 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2492 {
2493         struct kprobe_blacklist_entry *ent, *n;
2494
2495         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2496                 if (ent->start_addr < start || ent->start_addr >= end)
2497                         continue;
2498                 list_del(&ent->list);
2499                 kfree(ent);
2500         }
2501 }
2502
2503 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2504 {
2505         kprobe_remove_area_blacklist(entry, entry + 1);
2506 }
2507
2508 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2509                                    char *type, char *sym)
2510 {
2511         return -ERANGE;
2512 }
2513
2514 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2515                        char *sym)
2516 {
2517 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2518         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2519                 return 0;
2520 #ifdef CONFIG_OPTPROBES
2521         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2522                 return 0;
2523 #endif
2524 #endif
2525         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2526                 return 0;
2527         return -ERANGE;
2528 }
2529
2530 int __init __weak arch_populate_kprobe_blacklist(void)
2531 {
2532         return 0;
2533 }
2534
2535 /*
2536  * Lookup and populate the kprobe_blacklist.
2537  *
2538  * Unlike the kretprobe blacklist, we'll need to determine
2539  * the range of addresses that belong to the said functions,
2540  * since a kprobe need not necessarily be at the beginning
2541  * of a function.
2542  */
2543 static int __init populate_kprobe_blacklist(unsigned long *start,
2544                                              unsigned long *end)
2545 {
2546         unsigned long entry;
2547         unsigned long *iter;
2548         int ret;
2549
2550         for (iter = start; iter < end; iter++) {
2551                 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2552                 ret = kprobe_add_ksym_blacklist(entry);
2553                 if (ret == -EINVAL)
2554                         continue;
2555                 if (ret < 0)
2556                         return ret;
2557         }
2558
2559         /* Symbols in '__kprobes_text' are blacklisted */
2560         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2561                                         (unsigned long)__kprobes_text_end);
2562         if (ret)
2563                 return ret;
2564
2565         /* Symbols in 'noinstr' section are blacklisted */
2566         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2567                                         (unsigned long)__noinstr_text_end);
2568
2569         return ret ? : arch_populate_kprobe_blacklist();
2570 }
2571
2572 static void add_module_kprobe_blacklist(struct module *mod)
2573 {
2574         unsigned long start, end;
2575         int i;
2576
2577         if (mod->kprobe_blacklist) {
2578                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2579                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2580         }
2581
2582         start = (unsigned long)mod->kprobes_text_start;
2583         if (start) {
2584                 end = start + mod->kprobes_text_size;
2585                 kprobe_add_area_blacklist(start, end);
2586         }
2587
2588         start = (unsigned long)mod->noinstr_text_start;
2589         if (start) {
2590                 end = start + mod->noinstr_text_size;
2591                 kprobe_add_area_blacklist(start, end);
2592         }
2593 }
2594
2595 static void remove_module_kprobe_blacklist(struct module *mod)
2596 {
2597         unsigned long start, end;
2598         int i;
2599
2600         if (mod->kprobe_blacklist) {
2601                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2602                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2603         }
2604
2605         start = (unsigned long)mod->kprobes_text_start;
2606         if (start) {
2607                 end = start + mod->kprobes_text_size;
2608                 kprobe_remove_area_blacklist(start, end);
2609         }
2610
2611         start = (unsigned long)mod->noinstr_text_start;
2612         if (start) {
2613                 end = start + mod->noinstr_text_size;
2614                 kprobe_remove_area_blacklist(start, end);
2615         }
2616 }
2617
2618 /* Module notifier call back, checking kprobes on the module */
2619 static int kprobes_module_callback(struct notifier_block *nb,
2620                                    unsigned long val, void *data)
2621 {
2622         struct module *mod = data;
2623         struct hlist_head *head;
2624         struct kprobe *p;
2625         unsigned int i;
2626         int checkcore = (val == MODULE_STATE_GOING);
2627
2628         if (val == MODULE_STATE_COMING) {
2629                 mutex_lock(&kprobe_mutex);
2630                 add_module_kprobe_blacklist(mod);
2631                 mutex_unlock(&kprobe_mutex);
2632         }
2633         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2634                 return NOTIFY_DONE;
2635
2636         /*
2637          * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2638          * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2639          * notified, only '.init.text' section would be freed. We need to
2640          * disable kprobes which have been inserted in the sections.
2641          */
2642         mutex_lock(&kprobe_mutex);
2643         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2644                 head = &kprobe_table[i];
2645                 hlist_for_each_entry(p, head, hlist)
2646                         if (within_module_init((unsigned long)p->addr, mod) ||
2647                             (checkcore &&
2648                              within_module_core((unsigned long)p->addr, mod))) {
2649                                 /*
2650                                  * The vaddr this probe is installed will soon
2651                                  * be vfreed buy not synced to disk. Hence,
2652                                  * disarming the breakpoint isn't needed.
2653                                  *
2654                                  * Note, this will also move any optimized probes
2655                                  * that are pending to be removed from their
2656                                  * corresponding lists to the 'freeing_list' and
2657                                  * will not be touched by the delayed
2658                                  * kprobe_optimizer() work handler.
2659                                  */
2660                                 kill_kprobe(p);
2661                         }
2662         }
2663         if (val == MODULE_STATE_GOING)
2664                 remove_module_kprobe_blacklist(mod);
2665         mutex_unlock(&kprobe_mutex);
2666         return NOTIFY_DONE;
2667 }
2668
2669 static struct notifier_block kprobe_module_nb = {
2670         .notifier_call = kprobes_module_callback,
2671         .priority = 0
2672 };
2673
2674 void kprobe_free_init_mem(void)
2675 {
2676         void *start = (void *)(&__init_begin);
2677         void *end = (void *)(&__init_end);
2678         struct hlist_head *head;
2679         struct kprobe *p;
2680         int i;
2681
2682         mutex_lock(&kprobe_mutex);
2683
2684         /* Kill all kprobes on initmem because the target code has been freed. */
2685         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2686                 head = &kprobe_table[i];
2687                 hlist_for_each_entry(p, head, hlist) {
2688                         if (start <= (void *)p->addr && (void *)p->addr < end)
2689                                 kill_kprobe(p);
2690                 }
2691         }
2692
2693         mutex_unlock(&kprobe_mutex);
2694 }
2695
2696 static int __init init_kprobes(void)
2697 {
2698         int i, err = 0;
2699
2700         /* FIXME allocate the probe table, currently defined statically */
2701         /* initialize all list heads */
2702         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2703                 INIT_HLIST_HEAD(&kprobe_table[i]);
2704
2705         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2706                                         __stop_kprobe_blacklist);
2707         if (err)
2708                 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2709
2710         if (kretprobe_blacklist_size) {
2711                 /* lookup the function address from its name */
2712                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2713                         kretprobe_blacklist[i].addr =
2714                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2715                         if (!kretprobe_blacklist[i].addr)
2716                                 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2717                                        kretprobe_blacklist[i].name);
2718                 }
2719         }
2720
2721         /* By default, kprobes are armed */
2722         kprobes_all_disarmed = false;
2723
2724 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2725         /* Init 'kprobe_optinsn_slots' for allocation */
2726         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2727 #endif
2728
2729         err = arch_init_kprobes();
2730         if (!err)
2731                 err = register_die_notifier(&kprobe_exceptions_nb);
2732         if (!err)
2733                 err = register_module_notifier(&kprobe_module_nb);
2734
2735         kprobes_initialized = (err == 0);
2736         kprobe_sysctls_init();
2737         return err;
2738 }
2739 early_initcall(init_kprobes);
2740
2741 #if defined(CONFIG_OPTPROBES)
2742 static int __init init_optprobes(void)
2743 {
2744         /*
2745          * Enable kprobe optimization - this kicks the optimizer which
2746          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2747          * not spawned in early initcall. So delay the optimization.
2748          */
2749         optimize_all_kprobes();
2750
2751         return 0;
2752 }
2753 subsys_initcall(init_optprobes);
2754 #endif
2755
2756 #ifdef CONFIG_DEBUG_FS
2757 static void report_probe(struct seq_file *pi, struct kprobe *p,
2758                 const char *sym, int offset, char *modname, struct kprobe *pp)
2759 {
2760         char *kprobe_type;
2761         void *addr = p->addr;
2762
2763         if (p->pre_handler == pre_handler_kretprobe)
2764                 kprobe_type = "r";
2765         else
2766                 kprobe_type = "k";
2767
2768         if (!kallsyms_show_value(pi->file->f_cred))
2769                 addr = NULL;
2770
2771         if (sym)
2772                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2773                         addr, kprobe_type, sym, offset,
2774                         (modname ? modname : " "));
2775         else    /* try to use %pS */
2776                 seq_printf(pi, "%px  %s  %pS ",
2777                         addr, kprobe_type, p->addr);
2778
2779         if (!pp)
2780                 pp = p;
2781         seq_printf(pi, "%s%s%s%s\n",
2782                 (kprobe_gone(p) ? "[GONE]" : ""),
2783                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2784                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2785                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2786 }
2787
2788 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2789 {
2790         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2791 }
2792
2793 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2794 {
2795         (*pos)++;
2796         if (*pos >= KPROBE_TABLE_SIZE)
2797                 return NULL;
2798         return pos;
2799 }
2800
2801 static void kprobe_seq_stop(struct seq_file *f, void *v)
2802 {
2803         /* Nothing to do */
2804 }
2805
2806 static int show_kprobe_addr(struct seq_file *pi, void *v)
2807 {
2808         struct hlist_head *head;
2809         struct kprobe *p, *kp;
2810         const char *sym = NULL;
2811         unsigned int i = *(loff_t *) v;
2812         unsigned long offset = 0;
2813         char *modname, namebuf[KSYM_NAME_LEN];
2814
2815         head = &kprobe_table[i];
2816         preempt_disable();
2817         hlist_for_each_entry_rcu(p, head, hlist) {
2818                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2819                                         &offset, &modname, namebuf);
2820                 if (kprobe_aggrprobe(p)) {
2821                         list_for_each_entry_rcu(kp, &p->list, list)
2822                                 report_probe(pi, kp, sym, offset, modname, p);
2823                 } else
2824                         report_probe(pi, p, sym, offset, modname, NULL);
2825         }
2826         preempt_enable();
2827         return 0;
2828 }
2829
2830 static const struct seq_operations kprobes_sops = {
2831         .start = kprobe_seq_start,
2832         .next  = kprobe_seq_next,
2833         .stop  = kprobe_seq_stop,
2834         .show  = show_kprobe_addr
2835 };
2836
2837 DEFINE_SEQ_ATTRIBUTE(kprobes);
2838
2839 /* kprobes/blacklist -- shows which functions can not be probed */
2840 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2841 {
2842         mutex_lock(&kprobe_mutex);
2843         return seq_list_start(&kprobe_blacklist, *pos);
2844 }
2845
2846 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2847 {
2848         return seq_list_next(v, &kprobe_blacklist, pos);
2849 }
2850
2851 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2852 {
2853         struct kprobe_blacklist_entry *ent =
2854                 list_entry(v, struct kprobe_blacklist_entry, list);
2855
2856         /*
2857          * If '/proc/kallsyms' is not showing kernel address, we won't
2858          * show them here either.
2859          */
2860         if (!kallsyms_show_value(m->file->f_cred))
2861                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2862                            (void *)ent->start_addr);
2863         else
2864                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2865                            (void *)ent->end_addr, (void *)ent->start_addr);
2866         return 0;
2867 }
2868
2869 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2870 {
2871         mutex_unlock(&kprobe_mutex);
2872 }
2873
2874 static const struct seq_operations kprobe_blacklist_sops = {
2875         .start = kprobe_blacklist_seq_start,
2876         .next  = kprobe_blacklist_seq_next,
2877         .stop  = kprobe_blacklist_seq_stop,
2878         .show  = kprobe_blacklist_seq_show,
2879 };
2880 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2881
2882 static int arm_all_kprobes(void)
2883 {
2884         struct hlist_head *head;
2885         struct kprobe *p;
2886         unsigned int i, total = 0, errors = 0;
2887         int err, ret = 0;
2888
2889         mutex_lock(&kprobe_mutex);
2890
2891         /* If kprobes are armed, just return */
2892         if (!kprobes_all_disarmed)
2893                 goto already_enabled;
2894
2895         /*
2896          * optimize_kprobe() called by arm_kprobe() checks
2897          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2898          * arm_kprobe.
2899          */
2900         kprobes_all_disarmed = false;
2901         /* Arming kprobes doesn't optimize kprobe itself */
2902         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2903                 head = &kprobe_table[i];
2904                 /* Arm all kprobes on a best-effort basis */
2905                 hlist_for_each_entry(p, head, hlist) {
2906                         if (!kprobe_disabled(p)) {
2907                                 err = arm_kprobe(p);
2908                                 if (err)  {
2909                                         errors++;
2910                                         ret = err;
2911                                 }
2912                                 total++;
2913                         }
2914                 }
2915         }
2916
2917         if (errors)
2918                 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2919                         errors, total);
2920         else
2921                 pr_info("Kprobes globally enabled\n");
2922
2923 already_enabled:
2924         mutex_unlock(&kprobe_mutex);
2925         return ret;
2926 }
2927
2928 static int disarm_all_kprobes(void)
2929 {
2930         struct hlist_head *head;
2931         struct kprobe *p;
2932         unsigned int i, total = 0, errors = 0;
2933         int err, ret = 0;
2934
2935         mutex_lock(&kprobe_mutex);
2936
2937         /* If kprobes are already disarmed, just return */
2938         if (kprobes_all_disarmed) {
2939                 mutex_unlock(&kprobe_mutex);
2940                 return 0;
2941         }
2942
2943         kprobes_all_disarmed = true;
2944
2945         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2946                 head = &kprobe_table[i];
2947                 /* Disarm all kprobes on a best-effort basis */
2948                 hlist_for_each_entry(p, head, hlist) {
2949                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2950                                 err = disarm_kprobe(p, false);
2951                                 if (err) {
2952                                         errors++;
2953                                         ret = err;
2954                                 }
2955                                 total++;
2956                         }
2957                 }
2958         }
2959
2960         if (errors)
2961                 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2962                         errors, total);
2963         else
2964                 pr_info("Kprobes globally disabled\n");
2965
2966         mutex_unlock(&kprobe_mutex);
2967
2968         /* Wait for disarming all kprobes by optimizer */
2969         wait_for_kprobe_optimizer();
2970
2971         return ret;
2972 }
2973
2974 /*
2975  * XXX: The debugfs bool file interface doesn't allow for callbacks
2976  * when the bool state is switched. We can reuse that facility when
2977  * available
2978  */
2979 static ssize_t read_enabled_file_bool(struct file *file,
2980                char __user *user_buf, size_t count, loff_t *ppos)
2981 {
2982         char buf[3];
2983
2984         if (!kprobes_all_disarmed)
2985                 buf[0] = '1';
2986         else
2987                 buf[0] = '0';
2988         buf[1] = '\n';
2989         buf[2] = 0x00;
2990         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2991 }
2992
2993 static ssize_t write_enabled_file_bool(struct file *file,
2994                const char __user *user_buf, size_t count, loff_t *ppos)
2995 {
2996         bool enable;
2997         int ret;
2998
2999         ret = kstrtobool_from_user(user_buf, count, &enable);
3000         if (ret)
3001                 return ret;
3002
3003         ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3004         if (ret)
3005                 return ret;
3006
3007         return count;
3008 }
3009
3010 static const struct file_operations fops_kp = {
3011         .read =         read_enabled_file_bool,
3012         .write =        write_enabled_file_bool,
3013         .llseek =       default_llseek,
3014 };
3015
3016 static int __init debugfs_kprobe_init(void)
3017 {
3018         struct dentry *dir;
3019
3020         dir = debugfs_create_dir("kprobes", NULL);
3021
3022         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3023
3024         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3025
3026         debugfs_create_file("blacklist", 0400, dir, NULL,
3027                             &kprobe_blacklist_fops);
3028
3029         return 0;
3030 }
3031
3032 late_initcall(debugfs_kprobe_init);
3033 #endif /* CONFIG_DEBUG_FS */