kmod: introduce call_modprobe() helper
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / kmod.c
1 /*
2         kmod, the new module loader (replaces kerneld)
3         Kirk Petersen
4
5         Reorganized not to be a daemon by Adam Richter, with guidance
6         from Greg Zornetzer.
7
8         Modified to avoid chroot and file sharing problems.
9         Mikael Pettersson
10
11         Limit the concurrent number of kmod modprobes to catch loops from
12         "modprobe needs a service that is in a module".
13         Keith Owens <kaos@ocs.com.au> December 1999
14
15         Unblock all signals when we exec a usermode process.
16         Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18         call_usermodehelper wait flag, and remove exec_usermodehelper.
19         Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <asm/uaccess.h>
41
42 #include <trace/events/module.h>
43
44 extern int max_threads;
45
46 static struct workqueue_struct *khelper_wq;
47
48 #define CAP_BSET        (void *)1
49 #define CAP_PI          (void *)2
50
51 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
52 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
53 static DEFINE_SPINLOCK(umh_sysctl_lock);
54 static DECLARE_RWSEM(umhelper_sem);
55
56 #ifdef CONFIG_MODULES
57
58 /*
59         modprobe_path is set via /proc/sys.
60 */
61 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
62
63 static int call_modprobe(char *module_name, int wait)
64 {
65         static char *envp[] = {
66                 "HOME=/",
67                 "TERM=linux",
68                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
69                 NULL
70         };
71
72         char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
73
74         return call_usermodehelper_fns(modprobe_path, argv, envp,
75                                         wait, NULL, NULL, NULL);
76 }
77
78 /**
79  * __request_module - try to load a kernel module
80  * @wait: wait (or not) for the operation to complete
81  * @fmt: printf style format string for the name of the module
82  * @...: arguments as specified in the format string
83  *
84  * Load a module using the user mode module loader. The function returns
85  * zero on success or a negative errno code on failure. Note that a
86  * successful module load does not mean the module did not then unload
87  * and exit on an error of its own. Callers must check that the service
88  * they requested is now available not blindly invoke it.
89  *
90  * If module auto-loading support is disabled then this function
91  * becomes a no-operation.
92  */
93 int __request_module(bool wait, const char *fmt, ...)
94 {
95         va_list args;
96         char module_name[MODULE_NAME_LEN];
97         unsigned int max_modprobes;
98         int ret;
99         static atomic_t kmod_concurrent = ATOMIC_INIT(0);
100 #define MAX_KMOD_CONCURRENT 50  /* Completely arbitrary value - KAO */
101         static int kmod_loop_msg;
102
103         va_start(args, fmt);
104         ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
105         va_end(args);
106         if (ret >= MODULE_NAME_LEN)
107                 return -ENAMETOOLONG;
108
109         ret = security_kernel_module_request(module_name);
110         if (ret)
111                 return ret;
112
113         /* If modprobe needs a service that is in a module, we get a recursive
114          * loop.  Limit the number of running kmod threads to max_threads/2 or
115          * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
116          * would be to run the parents of this process, counting how many times
117          * kmod was invoked.  That would mean accessing the internals of the
118          * process tables to get the command line, proc_pid_cmdline is static
119          * and it is not worth changing the proc code just to handle this case. 
120          * KAO.
121          *
122          * "trace the ppid" is simple, but will fail if someone's
123          * parent exits.  I think this is as good as it gets. --RR
124          */
125         max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
126         atomic_inc(&kmod_concurrent);
127         if (atomic_read(&kmod_concurrent) > max_modprobes) {
128                 /* We may be blaming an innocent here, but unlikely */
129                 if (kmod_loop_msg < 5) {
130                         printk(KERN_ERR
131                                "request_module: runaway loop modprobe %s\n",
132                                module_name);
133                         kmod_loop_msg++;
134                 }
135                 atomic_dec(&kmod_concurrent);
136                 return -ENOMEM;
137         }
138
139         trace_module_request(module_name, wait, _RET_IP_);
140
141         ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
142
143         atomic_dec(&kmod_concurrent);
144         return ret;
145 }
146 EXPORT_SYMBOL(__request_module);
147 #endif /* CONFIG_MODULES */
148
149 /*
150  * This is the task which runs the usermode application
151  */
152 static int ____call_usermodehelper(void *data)
153 {
154         struct subprocess_info *sub_info = data;
155         struct cred *new;
156         int retval;
157
158         spin_lock_irq(&current->sighand->siglock);
159         flush_signal_handlers(current, 1);
160         spin_unlock_irq(&current->sighand->siglock);
161
162         /* We can run anywhere, unlike our parent keventd(). */
163         set_cpus_allowed_ptr(current, cpu_all_mask);
164
165         /*
166          * Our parent is keventd, which runs with elevated scheduling priority.
167          * Avoid propagating that into the userspace child.
168          */
169         set_user_nice(current, 0);
170
171         retval = -ENOMEM;
172         new = prepare_kernel_cred(current);
173         if (!new)
174                 goto fail;
175
176         spin_lock(&umh_sysctl_lock);
177         new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
178         new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
179                                              new->cap_inheritable);
180         spin_unlock(&umh_sysctl_lock);
181
182         if (sub_info->init) {
183                 retval = sub_info->init(sub_info, new);
184                 if (retval) {
185                         abort_creds(new);
186                         goto fail;
187                 }
188         }
189
190         commit_creds(new);
191
192         retval = kernel_execve(sub_info->path,
193                                (const char *const *)sub_info->argv,
194                                (const char *const *)sub_info->envp);
195
196         /* Exec failed? */
197 fail:
198         sub_info->retval = retval;
199         return 0;
200 }
201
202 void call_usermodehelper_freeinfo(struct subprocess_info *info)
203 {
204         if (info->cleanup)
205                 (*info->cleanup)(info);
206         kfree(info);
207 }
208 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
209
210 static void umh_complete(struct subprocess_info *sub_info)
211 {
212         struct completion *comp = xchg(&sub_info->complete, NULL);
213         /*
214          * See call_usermodehelper_exec(). If xchg() returns NULL
215          * we own sub_info, the UMH_KILLABLE caller has gone away.
216          */
217         if (comp)
218                 complete(comp);
219         else
220                 call_usermodehelper_freeinfo(sub_info);
221 }
222
223 /* Keventd can't block, but this (a child) can. */
224 static int wait_for_helper(void *data)
225 {
226         struct subprocess_info *sub_info = data;
227         pid_t pid;
228
229         /* If SIGCLD is ignored sys_wait4 won't populate the status. */
230         spin_lock_irq(&current->sighand->siglock);
231         current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
232         spin_unlock_irq(&current->sighand->siglock);
233
234         pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
235         if (pid < 0) {
236                 sub_info->retval = pid;
237         } else {
238                 int ret = -ECHILD;
239                 /*
240                  * Normally it is bogus to call wait4() from in-kernel because
241                  * wait4() wants to write the exit code to a userspace address.
242                  * But wait_for_helper() always runs as keventd, and put_user()
243                  * to a kernel address works OK for kernel threads, due to their
244                  * having an mm_segment_t which spans the entire address space.
245                  *
246                  * Thus the __user pointer cast is valid here.
247                  */
248                 sys_wait4(pid, (int __user *)&ret, 0, NULL);
249
250                 /*
251                  * If ret is 0, either ____call_usermodehelper failed and the
252                  * real error code is already in sub_info->retval or
253                  * sub_info->retval is 0 anyway, so don't mess with it then.
254                  */
255                 if (ret)
256                         sub_info->retval = ret;
257         }
258
259         umh_complete(sub_info);
260         return 0;
261 }
262
263 /* This is run by khelper thread  */
264 static void __call_usermodehelper(struct work_struct *work)
265 {
266         struct subprocess_info *sub_info =
267                 container_of(work, struct subprocess_info, work);
268         int wait = sub_info->wait & ~UMH_KILLABLE;
269         pid_t pid;
270
271         /* CLONE_VFORK: wait until the usermode helper has execve'd
272          * successfully We need the data structures to stay around
273          * until that is done.  */
274         if (wait == UMH_WAIT_PROC)
275                 pid = kernel_thread(wait_for_helper, sub_info,
276                                     CLONE_FS | CLONE_FILES | SIGCHLD);
277         else
278                 pid = kernel_thread(____call_usermodehelper, sub_info,
279                                     CLONE_VFORK | SIGCHLD);
280
281         switch (wait) {
282         case UMH_NO_WAIT:
283                 call_usermodehelper_freeinfo(sub_info);
284                 break;
285
286         case UMH_WAIT_PROC:
287                 if (pid > 0)
288                         break;
289                 /* FALLTHROUGH */
290         case UMH_WAIT_EXEC:
291                 if (pid < 0)
292                         sub_info->retval = pid;
293                 umh_complete(sub_info);
294         }
295 }
296
297 /*
298  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
299  * (used for preventing user land processes from being created after the user
300  * land has been frozen during a system-wide hibernation or suspend operation).
301  * Should always be manipulated under umhelper_sem acquired for write.
302  */
303 static int usermodehelper_disabled = 1;
304
305 /* Number of helpers running */
306 static atomic_t running_helpers = ATOMIC_INIT(0);
307
308 /*
309  * Wait queue head used by usermodehelper_disable() to wait for all running
310  * helpers to finish.
311  */
312 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
313
314 /*
315  * Time to wait for running_helpers to become zero before the setting of
316  * usermodehelper_disabled in usermodehelper_disable() fails
317  */
318 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
319
320 void read_lock_usermodehelper(void)
321 {
322         down_read(&umhelper_sem);
323 }
324 EXPORT_SYMBOL_GPL(read_lock_usermodehelper);
325
326 void read_unlock_usermodehelper(void)
327 {
328         up_read(&umhelper_sem);
329 }
330 EXPORT_SYMBOL_GPL(read_unlock_usermodehelper);
331
332 /**
333  * usermodehelper_disable - prevent new helpers from being started
334  */
335 int usermodehelper_disable(void)
336 {
337         long retval;
338
339         down_write(&umhelper_sem);
340         usermodehelper_disabled = 1;
341         up_write(&umhelper_sem);
342
343         /*
344          * From now on call_usermodehelper_exec() won't start any new
345          * helpers, so it is sufficient if running_helpers turns out to
346          * be zero at one point (it may be increased later, but that
347          * doesn't matter).
348          */
349         retval = wait_event_timeout(running_helpers_waitq,
350                                         atomic_read(&running_helpers) == 0,
351                                         RUNNING_HELPERS_TIMEOUT);
352         if (retval)
353                 return 0;
354
355         down_write(&umhelper_sem);
356         usermodehelper_disabled = 0;
357         up_write(&umhelper_sem);
358         return -EAGAIN;
359 }
360
361 /**
362  * usermodehelper_enable - allow new helpers to be started again
363  */
364 void usermodehelper_enable(void)
365 {
366         down_write(&umhelper_sem);
367         usermodehelper_disabled = 0;
368         up_write(&umhelper_sem);
369 }
370
371 /**
372  * usermodehelper_is_disabled - check if new helpers are allowed to be started
373  */
374 bool usermodehelper_is_disabled(void)
375 {
376         return usermodehelper_disabled;
377 }
378 EXPORT_SYMBOL_GPL(usermodehelper_is_disabled);
379
380 static void helper_lock(void)
381 {
382         atomic_inc(&running_helpers);
383         smp_mb__after_atomic_inc();
384 }
385
386 static void helper_unlock(void)
387 {
388         if (atomic_dec_and_test(&running_helpers))
389                 wake_up(&running_helpers_waitq);
390 }
391
392 /**
393  * call_usermodehelper_setup - prepare to call a usermode helper
394  * @path: path to usermode executable
395  * @argv: arg vector for process
396  * @envp: environment for process
397  * @gfp_mask: gfp mask for memory allocation
398  *
399  * Returns either %NULL on allocation failure, or a subprocess_info
400  * structure.  This should be passed to call_usermodehelper_exec to
401  * exec the process and free the structure.
402  */
403 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
404                                                   char **envp, gfp_t gfp_mask)
405 {
406         struct subprocess_info *sub_info;
407         sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
408         if (!sub_info)
409                 goto out;
410
411         INIT_WORK(&sub_info->work, __call_usermodehelper);
412         sub_info->path = path;
413         sub_info->argv = argv;
414         sub_info->envp = envp;
415   out:
416         return sub_info;
417 }
418 EXPORT_SYMBOL(call_usermodehelper_setup);
419
420 /**
421  * call_usermodehelper_setfns - set a cleanup/init function
422  * @info: a subprocess_info returned by call_usermodehelper_setup
423  * @cleanup: a cleanup function
424  * @init: an init function
425  * @data: arbitrary context sensitive data
426  *
427  * The init function is used to customize the helper process prior to
428  * exec.  A non-zero return code causes the process to error out, exit,
429  * and return the failure to the calling process
430  *
431  * The cleanup function is just before ethe subprocess_info is about to
432  * be freed.  This can be used for freeing the argv and envp.  The
433  * Function must be runnable in either a process context or the
434  * context in which call_usermodehelper_exec is called.
435  */
436 void call_usermodehelper_setfns(struct subprocess_info *info,
437                     int (*init)(struct subprocess_info *info, struct cred *new),
438                     void (*cleanup)(struct subprocess_info *info),
439                     void *data)
440 {
441         info->cleanup = cleanup;
442         info->init = init;
443         info->data = data;
444 }
445 EXPORT_SYMBOL(call_usermodehelper_setfns);
446
447 /**
448  * call_usermodehelper_exec - start a usermode application
449  * @sub_info: information about the subprocessa
450  * @wait: wait for the application to finish and return status.
451  *        when -1 don't wait at all, but you get no useful error back when
452  *        the program couldn't be exec'ed. This makes it safe to call
453  *        from interrupt context.
454  *
455  * Runs a user-space application.  The application is started
456  * asynchronously if wait is not set, and runs as a child of keventd.
457  * (ie. it runs with full root capabilities).
458  */
459 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
460 {
461         DECLARE_COMPLETION_ONSTACK(done);
462         int retval = 0;
463
464         helper_lock();
465         if (sub_info->path[0] == '\0')
466                 goto out;
467
468         if (!khelper_wq || usermodehelper_disabled) {
469                 retval = -EBUSY;
470                 goto out;
471         }
472
473         sub_info->complete = &done;
474         sub_info->wait = wait;
475
476         queue_work(khelper_wq, &sub_info->work);
477         if (wait == UMH_NO_WAIT)        /* task has freed sub_info */
478                 goto unlock;
479
480         if (wait & UMH_KILLABLE) {
481                 retval = wait_for_completion_killable(&done);
482                 if (!retval)
483                         goto wait_done;
484
485                 /* umh_complete() will see NULL and free sub_info */
486                 if (xchg(&sub_info->complete, NULL))
487                         goto unlock;
488                 /* fallthrough, umh_complete() was already called */
489         }
490
491         wait_for_completion(&done);
492 wait_done:
493         retval = sub_info->retval;
494 out:
495         call_usermodehelper_freeinfo(sub_info);
496 unlock:
497         helper_unlock();
498         return retval;
499 }
500 EXPORT_SYMBOL(call_usermodehelper_exec);
501
502 static int proc_cap_handler(struct ctl_table *table, int write,
503                          void __user *buffer, size_t *lenp, loff_t *ppos)
504 {
505         struct ctl_table t;
506         unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
507         kernel_cap_t new_cap;
508         int err, i;
509
510         if (write && (!capable(CAP_SETPCAP) ||
511                       !capable(CAP_SYS_MODULE)))
512                 return -EPERM;
513
514         /*
515          * convert from the global kernel_cap_t to the ulong array to print to
516          * userspace if this is a read.
517          */
518         spin_lock(&umh_sysctl_lock);
519         for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
520                 if (table->data == CAP_BSET)
521                         cap_array[i] = usermodehelper_bset.cap[i];
522                 else if (table->data == CAP_PI)
523                         cap_array[i] = usermodehelper_inheritable.cap[i];
524                 else
525                         BUG();
526         }
527         spin_unlock(&umh_sysctl_lock);
528
529         t = *table;
530         t.data = &cap_array;
531
532         /*
533          * actually read or write and array of ulongs from userspace.  Remember
534          * these are least significant 32 bits first
535          */
536         err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
537         if (err < 0)
538                 return err;
539
540         /*
541          * convert from the sysctl array of ulongs to the kernel_cap_t
542          * internal representation
543          */
544         for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
545                 new_cap.cap[i] = cap_array[i];
546
547         /*
548          * Drop everything not in the new_cap (but don't add things)
549          */
550         spin_lock(&umh_sysctl_lock);
551         if (write) {
552                 if (table->data == CAP_BSET)
553                         usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
554                 if (table->data == CAP_PI)
555                         usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
556         }
557         spin_unlock(&umh_sysctl_lock);
558
559         return 0;
560 }
561
562 struct ctl_table usermodehelper_table[] = {
563         {
564                 .procname       = "bset",
565                 .data           = CAP_BSET,
566                 .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
567                 .mode           = 0600,
568                 .proc_handler   = proc_cap_handler,
569         },
570         {
571                 .procname       = "inheritable",
572                 .data           = CAP_PI,
573                 .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
574                 .mode           = 0600,
575                 .proc_handler   = proc_cap_handler,
576         },
577         { }
578 };
579
580 void __init usermodehelper_init(void)
581 {
582         khelper_wq = create_singlethread_workqueue("khelper");
583         BUG_ON(!khelper_wq);
584 }