Merge tag 'xtensa-20221213' of https://github.com/jcmvbkbc/linux-xtensa
[platform/kernel/linux-starfive.git] / kernel / kexec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec_load system call
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/security.h>
13 #include <linux/kexec.h>
14 #include <linux/mutex.h>
15 #include <linux/list.h>
16 #include <linux/syscalls.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19
20 #include "kexec_internal.h"
21
22 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
23                              unsigned long nr_segments,
24                              struct kexec_segment *segments,
25                              unsigned long flags)
26 {
27         int ret;
28         struct kimage *image;
29         bool kexec_on_panic = flags & KEXEC_ON_CRASH;
30
31         if (kexec_on_panic) {
32                 /* Verify we have a valid entry point */
33                 if ((entry < phys_to_boot_phys(crashk_res.start)) ||
34                     (entry > phys_to_boot_phys(crashk_res.end)))
35                         return -EADDRNOTAVAIL;
36         }
37
38         /* Allocate and initialize a controlling structure */
39         image = do_kimage_alloc_init();
40         if (!image)
41                 return -ENOMEM;
42
43         image->start = entry;
44         image->nr_segments = nr_segments;
45         memcpy(image->segment, segments, nr_segments * sizeof(*segments));
46
47         if (kexec_on_panic) {
48                 /* Enable special crash kernel control page alloc policy. */
49                 image->control_page = crashk_res.start;
50                 image->type = KEXEC_TYPE_CRASH;
51         }
52
53         ret = sanity_check_segment_list(image);
54         if (ret)
55                 goto out_free_image;
56
57         /*
58          * Find a location for the control code buffer, and add it
59          * the vector of segments so that it's pages will also be
60          * counted as destination pages.
61          */
62         ret = -ENOMEM;
63         image->control_code_page = kimage_alloc_control_pages(image,
64                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
65         if (!image->control_code_page) {
66                 pr_err("Could not allocate control_code_buffer\n");
67                 goto out_free_image;
68         }
69
70         if (!kexec_on_panic) {
71                 image->swap_page = kimage_alloc_control_pages(image, 0);
72                 if (!image->swap_page) {
73                         pr_err("Could not allocate swap buffer\n");
74                         goto out_free_control_pages;
75                 }
76         }
77
78         *rimage = image;
79         return 0;
80 out_free_control_pages:
81         kimage_free_page_list(&image->control_pages);
82 out_free_image:
83         kfree(image);
84         return ret;
85 }
86
87 static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
88                 struct kexec_segment *segments, unsigned long flags)
89 {
90         struct kimage **dest_image, *image;
91         unsigned long i;
92         int ret;
93
94         /*
95          * Because we write directly to the reserved memory region when loading
96          * crash kernels we need a serialization here to prevent multiple crash
97          * kernels from attempting to load simultaneously.
98          */
99         if (!kexec_trylock())
100                 return -EBUSY;
101
102         if (flags & KEXEC_ON_CRASH) {
103                 dest_image = &kexec_crash_image;
104                 if (kexec_crash_image)
105                         arch_kexec_unprotect_crashkres();
106         } else {
107                 dest_image = &kexec_image;
108         }
109
110         if (nr_segments == 0) {
111                 /* Uninstall image */
112                 kimage_free(xchg(dest_image, NULL));
113                 ret = 0;
114                 goto out_unlock;
115         }
116         if (flags & KEXEC_ON_CRASH) {
117                 /*
118                  * Loading another kernel to switch to if this one
119                  * crashes.  Free any current crash dump kernel before
120                  * we corrupt it.
121                  */
122                 kimage_free(xchg(&kexec_crash_image, NULL));
123         }
124
125         ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
126         if (ret)
127                 goto out_unlock;
128
129         if (flags & KEXEC_PRESERVE_CONTEXT)
130                 image->preserve_context = 1;
131
132         ret = machine_kexec_prepare(image);
133         if (ret)
134                 goto out;
135
136         /*
137          * Some architecture(like S390) may touch the crash memory before
138          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
139          */
140         ret = kimage_crash_copy_vmcoreinfo(image);
141         if (ret)
142                 goto out;
143
144         for (i = 0; i < nr_segments; i++) {
145                 ret = kimage_load_segment(image, &image->segment[i]);
146                 if (ret)
147                         goto out;
148         }
149
150         kimage_terminate(image);
151
152         ret = machine_kexec_post_load(image);
153         if (ret)
154                 goto out;
155
156         /* Install the new kernel and uninstall the old */
157         image = xchg(dest_image, image);
158
159 out:
160         if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
161                 arch_kexec_protect_crashkres();
162
163         kimage_free(image);
164 out_unlock:
165         kexec_unlock();
166         return ret;
167 }
168
169 /*
170  * Exec Kernel system call: for obvious reasons only root may call it.
171  *
172  * This call breaks up into three pieces.
173  * - A generic part which loads the new kernel from the current
174  *   address space, and very carefully places the data in the
175  *   allocated pages.
176  *
177  * - A generic part that interacts with the kernel and tells all of
178  *   the devices to shut down.  Preventing on-going dmas, and placing
179  *   the devices in a consistent state so a later kernel can
180  *   reinitialize them.
181  *
182  * - A machine specific part that includes the syscall number
183  *   and then copies the image to it's final destination.  And
184  *   jumps into the image at entry.
185  *
186  * kexec does not sync, or unmount filesystems so if you need
187  * that to happen you need to do that yourself.
188  */
189
190 static inline int kexec_load_check(unsigned long nr_segments,
191                                    unsigned long flags)
192 {
193         int result;
194
195         /* We only trust the superuser with rebooting the system. */
196         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
197                 return -EPERM;
198
199         /* Permit LSMs and IMA to fail the kexec */
200         result = security_kernel_load_data(LOADING_KEXEC_IMAGE, false);
201         if (result < 0)
202                 return result;
203
204         /*
205          * kexec can be used to circumvent module loading restrictions, so
206          * prevent loading in that case
207          */
208         result = security_locked_down(LOCKDOWN_KEXEC);
209         if (result)
210                 return result;
211
212         /*
213          * Verify we have a legal set of flags
214          * This leaves us room for future extensions.
215          */
216         if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
217                 return -EINVAL;
218
219         /* Put an artificial cap on the number
220          * of segments passed to kexec_load.
221          */
222         if (nr_segments > KEXEC_SEGMENT_MAX)
223                 return -EINVAL;
224
225         return 0;
226 }
227
228 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
229                 struct kexec_segment __user *, segments, unsigned long, flags)
230 {
231         struct kexec_segment *ksegments;
232         unsigned long result;
233
234         result = kexec_load_check(nr_segments, flags);
235         if (result)
236                 return result;
237
238         /* Verify we are on the appropriate architecture */
239         if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
240                 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
241                 return -EINVAL;
242
243         ksegments = memdup_user(segments, nr_segments * sizeof(ksegments[0]));
244         if (IS_ERR(ksegments))
245                 return PTR_ERR(ksegments);
246
247         result = do_kexec_load(entry, nr_segments, ksegments, flags);
248         kfree(ksegments);
249
250         return result;
251 }
252
253 #ifdef CONFIG_COMPAT
254 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
255                        compat_ulong_t, nr_segments,
256                        struct compat_kexec_segment __user *, segments,
257                        compat_ulong_t, flags)
258 {
259         struct compat_kexec_segment in;
260         struct kexec_segment *ksegments;
261         unsigned long i, result;
262
263         result = kexec_load_check(nr_segments, flags);
264         if (result)
265                 return result;
266
267         /* Don't allow clients that don't understand the native
268          * architecture to do anything.
269          */
270         if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
271                 return -EINVAL;
272
273         ksegments = kmalloc_array(nr_segments, sizeof(ksegments[0]),
274                         GFP_KERNEL);
275         if (!ksegments)
276                 return -ENOMEM;
277
278         for (i = 0; i < nr_segments; i++) {
279                 result = copy_from_user(&in, &segments[i], sizeof(in));
280                 if (result)
281                         goto fail;
282
283                 ksegments[i].buf   = compat_ptr(in.buf);
284                 ksegments[i].bufsz = in.bufsz;
285                 ksegments[i].mem   = in.mem;
286                 ksegments[i].memsz = in.memsz;
287         }
288
289         result = do_kexec_load(entry, nr_segments, ksegments, flags);
290
291 fail:
292         kfree(ksegments);
293         return result;
294 }
295 #endif