Merge branch 'rework/fast-next-seq' into for-linus
[platform/kernel/linux-rpi.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kcsan: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include "encoding.h"
24 #include "kcsan.h"
25 #include "permissive.h"
26
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42
43 bool kcsan_enabled;
44
45 /* Per-CPU kcsan_ctx for interrupts */
46 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
47         .disable_count          = 0,
48         .atomic_next            = 0,
49         .atomic_nest_count      = 0,
50         .in_flat_atomic         = false,
51         .access_mask            = 0,
52         .scoped_accesses        = {LIST_POISON1, NULL},
53 };
54
55 /*
56  * Helper macros to index into adjacent slots, starting from address slot
57  * itself, followed by the right and left slots.
58  *
59  * The purpose is 2-fold:
60  *
61  *      1. if during insertion the address slot is already occupied, check if
62  *         any adjacent slots are free;
63  *      2. accesses that straddle a slot boundary due to size that exceeds a
64  *         slot's range may check adjacent slots if any watchpoint matches.
65  *
66  * Note that accesses with very large size may still miss a watchpoint; however,
67  * given this should be rare, this is a reasonable trade-off to make, since this
68  * will avoid:
69  *
70  *      1. excessive contention between watchpoint checks and setup;
71  *      2. larger number of simultaneous watchpoints without sacrificing
72  *         performance.
73  *
74  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
75  *
76  *   slot=0:  [ 1,  2,  0]
77  *   slot=9:  [10, 11,  9]
78  *   slot=63: [64, 65, 63]
79  */
80 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
81
82 /*
83  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
84  * slot (middle) is fine if we assume that races occur rarely. The set of
85  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
86  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
87  */
88 #define SLOT_IDX_FAST(slot, i) (slot + i)
89
90 /*
91  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
92  * able to safely update and access a watchpoint without introducing locking
93  * overhead, we encode each watchpoint as a single atomic long. The initial
94  * zero-initialized state matches INVALID_WATCHPOINT.
95  *
96  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
97  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
98  */
99 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
100
101 /*
102  * Instructions to skip watching counter, used in should_watch(). We use a
103  * per-CPU counter to avoid excessive contention.
104  */
105 static DEFINE_PER_CPU(long, kcsan_skip);
106
107 /* For kcsan_prandom_u32_max(). */
108 static DEFINE_PER_CPU(u32, kcsan_rand_state);
109
110 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
111                                                       size_t size,
112                                                       bool expect_write,
113                                                       long *encoded_watchpoint)
114 {
115         const int slot = watchpoint_slot(addr);
116         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
117         atomic_long_t *watchpoint;
118         unsigned long wp_addr_masked;
119         size_t wp_size;
120         bool is_write;
121         int i;
122
123         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
124
125         for (i = 0; i < NUM_SLOTS; ++i) {
126                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
127                 *encoded_watchpoint = atomic_long_read(watchpoint);
128                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
129                                        &wp_size, &is_write))
130                         continue;
131
132                 if (expect_write && !is_write)
133                         continue;
134
135                 /* Check if the watchpoint matches the access. */
136                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
137                         return watchpoint;
138         }
139
140         return NULL;
141 }
142
143 static inline atomic_long_t *
144 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
145 {
146         const int slot = watchpoint_slot(addr);
147         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
148         atomic_long_t *watchpoint;
149         int i;
150
151         /* Check slot index logic, ensuring we stay within array bounds. */
152         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
153         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
154         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
155         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
156
157         for (i = 0; i < NUM_SLOTS; ++i) {
158                 long expect_val = INVALID_WATCHPOINT;
159
160                 /* Try to acquire this slot. */
161                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
162                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
163                         return watchpoint;
164         }
165
166         return NULL;
167 }
168
169 /*
170  * Return true if watchpoint was successfully consumed, false otherwise.
171  *
172  * This may return false if:
173  *
174  *      1. another thread already consumed the watchpoint;
175  *      2. the thread that set up the watchpoint already removed it;
176  *      3. the watchpoint was removed and then re-used.
177  */
178 static __always_inline bool
179 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
180 {
181         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
182 }
183
184 /* Return true if watchpoint was not touched, false if already consumed. */
185 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
186 {
187         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
188 }
189
190 /* Remove the watchpoint -- its slot may be reused after. */
191 static inline void remove_watchpoint(atomic_long_t *watchpoint)
192 {
193         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
194 }
195
196 static __always_inline struct kcsan_ctx *get_ctx(void)
197 {
198         /*
199          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
200          * also result in calls that generate warnings in uaccess regions.
201          */
202         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
203 }
204
205 static __always_inline void
206 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip);
207
208 /* Check scoped accesses; never inline because this is a slow-path! */
209 static noinline void kcsan_check_scoped_accesses(void)
210 {
211         struct kcsan_ctx *ctx = get_ctx();
212         struct list_head *prev_save = ctx->scoped_accesses.prev;
213         struct kcsan_scoped_access *scoped_access;
214
215         ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
216         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) {
217                 check_access(scoped_access->ptr, scoped_access->size,
218                              scoped_access->type, scoped_access->ip);
219         }
220         ctx->scoped_accesses.prev = prev_save;
221 }
222
223 /* Rules for generic atomic accesses. Called from fast-path. */
224 static __always_inline bool
225 is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
226 {
227         if (type & KCSAN_ACCESS_ATOMIC)
228                 return true;
229
230         /*
231          * Unless explicitly declared atomic, never consider an assertion access
232          * as atomic. This allows using them also in atomic regions, such as
233          * seqlocks, without implicitly changing their semantics.
234          */
235         if (type & KCSAN_ACCESS_ASSERT)
236                 return false;
237
238         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
239             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
240             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
241                 return true; /* Assume aligned writes up to word size are atomic. */
242
243         if (ctx->atomic_next > 0) {
244                 /*
245                  * Because we do not have separate contexts for nested
246                  * interrupts, in case atomic_next is set, we simply assume that
247                  * the outer interrupt set atomic_next. In the worst case, we
248                  * will conservatively consider operations as atomic. This is a
249                  * reasonable trade-off to make, since this case should be
250                  * extremely rare; however, even if extremely rare, it could
251                  * lead to false positives otherwise.
252                  */
253                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
254                         --ctx->atomic_next; /* in task, or outer interrupt */
255                 return true;
256         }
257
258         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
259 }
260
261 static __always_inline bool
262 should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
263 {
264         /*
265          * Never set up watchpoints when memory operations are atomic.
266          *
267          * Need to check this first, before kcsan_skip check below: (1) atomics
268          * should not count towards skipped instructions, and (2) to actually
269          * decrement kcsan_atomic_next for consecutive instruction stream.
270          */
271         if (is_atomic(ctx, ptr, size, type))
272                 return false;
273
274         if (this_cpu_dec_return(kcsan_skip) >= 0)
275                 return false;
276
277         /*
278          * NOTE: If we get here, kcsan_skip must always be reset in slow path
279          * via reset_kcsan_skip() to avoid underflow.
280          */
281
282         /* this operation should be watched */
283         return true;
284 }
285
286 /*
287  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
288  * congruential generator, using constants from "Numerical Recipes".
289  */
290 static u32 kcsan_prandom_u32_max(u32 ep_ro)
291 {
292         u32 state = this_cpu_read(kcsan_rand_state);
293
294         state = 1664525 * state + 1013904223;
295         this_cpu_write(kcsan_rand_state, state);
296
297         return state % ep_ro;
298 }
299
300 static inline void reset_kcsan_skip(void)
301 {
302         long skip_count = kcsan_skip_watch -
303                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
304                                    kcsan_prandom_u32_max(kcsan_skip_watch) :
305                                    0);
306         this_cpu_write(kcsan_skip, skip_count);
307 }
308
309 static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
310 {
311         return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
312 }
313
314 /* Introduce delay depending on context and configuration. */
315 static void delay_access(int type)
316 {
317         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
318         /* For certain access types, skew the random delay to be longer. */
319         unsigned int skew_delay_order =
320                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
321
322         delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
323                                kcsan_prandom_u32_max(delay >> skew_delay_order) :
324                                0;
325         udelay(delay);
326 }
327
328 void kcsan_save_irqtrace(struct task_struct *task)
329 {
330 #ifdef CONFIG_TRACE_IRQFLAGS
331         task->kcsan_save_irqtrace = task->irqtrace;
332 #endif
333 }
334
335 void kcsan_restore_irqtrace(struct task_struct *task)
336 {
337 #ifdef CONFIG_TRACE_IRQFLAGS
338         task->irqtrace = task->kcsan_save_irqtrace;
339 #endif
340 }
341
342 /*
343  * Pull everything together: check_access() below contains the performance
344  * critical operations; the fast-path (including check_access) functions should
345  * all be inlinable by the instrumentation functions.
346  *
347  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
348  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
349  * be filtered from the stacktrace, as well as give them unique names for the
350  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
351  * since they do not access any user memory, but instrumentation is still
352  * emitted in UACCESS regions.
353  */
354
355 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
356                                             size_t size,
357                                             int type,
358                                             unsigned long ip,
359                                             atomic_long_t *watchpoint,
360                                             long encoded_watchpoint)
361 {
362         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
363         struct kcsan_ctx *ctx = get_ctx();
364         unsigned long flags;
365         bool consumed;
366
367         /*
368          * We know a watchpoint exists. Let's try to keep the race-window
369          * between here and finally consuming the watchpoint below as small as
370          * possible -- avoid unneccessarily complex code until consumed.
371          */
372
373         if (!kcsan_is_enabled(ctx))
374                 return;
375
376         /*
377          * The access_mask check relies on value-change comparison. To avoid
378          * reporting a race where e.g. the writer set up the watchpoint, but the
379          * reader has access_mask!=0, we have to ignore the found watchpoint.
380          */
381         if (ctx->access_mask)
382                 return;
383
384         /*
385          * If the other thread does not want to ignore the access, and there was
386          * a value change as a result of this thread's operation, we will still
387          * generate a report of unknown origin.
388          *
389          * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
390          */
391         if (!is_assert && kcsan_ignore_address(ptr))
392                 return;
393
394         /*
395          * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
396          * avoid erroneously triggering reports if the context is disabled.
397          */
398         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
399
400         /* keep this after try_consume_watchpoint */
401         flags = user_access_save();
402
403         if (consumed) {
404                 kcsan_save_irqtrace(current);
405                 kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints);
406                 kcsan_restore_irqtrace(current);
407         } else {
408                 /*
409                  * The other thread may not print any diagnostics, as it has
410                  * already removed the watchpoint, or another thread consumed
411                  * the watchpoint before this thread.
412                  */
413                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
414         }
415
416         if (is_assert)
417                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
418         else
419                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
420
421         user_access_restore(flags);
422 }
423
424 static noinline void
425 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip)
426 {
427         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
428         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
429         atomic_long_t *watchpoint;
430         u64 old, new, diff;
431         unsigned long access_mask;
432         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
433         unsigned long ua_flags = user_access_save();
434         struct kcsan_ctx *ctx = get_ctx();
435         unsigned long irq_flags = 0;
436
437         /*
438          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
439          * should_watch().
440          */
441         reset_kcsan_skip();
442
443         if (!kcsan_is_enabled(ctx))
444                 goto out;
445
446         /*
447          * Check to-ignore addresses after kcsan_is_enabled(), as we may access
448          * memory that is not yet initialized during early boot.
449          */
450         if (!is_assert && kcsan_ignore_address(ptr))
451                 goto out;
452
453         if (!check_encodable((unsigned long)ptr, size)) {
454                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
455                 goto out;
456         }
457
458         /*
459          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
460          * runtime is entered for every memory access, and potentially useful
461          * information is lost if dirtied by KCSAN.
462          */
463         kcsan_save_irqtrace(current);
464         if (!kcsan_interrupt_watcher)
465                 local_irq_save(irq_flags);
466
467         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
468         if (watchpoint == NULL) {
469                 /*
470                  * Out of capacity: the size of 'watchpoints', and the frequency
471                  * with which should_watch() returns true should be tweaked so
472                  * that this case happens very rarely.
473                  */
474                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
475                 goto out_unlock;
476         }
477
478         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
479         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
480
481         /*
482          * Read the current value, to later check and infer a race if the data
483          * was modified via a non-instrumented access, e.g. from a device.
484          */
485         old = 0;
486         switch (size) {
487         case 1:
488                 old = READ_ONCE(*(const u8 *)ptr);
489                 break;
490         case 2:
491                 old = READ_ONCE(*(const u16 *)ptr);
492                 break;
493         case 4:
494                 old = READ_ONCE(*(const u32 *)ptr);
495                 break;
496         case 8:
497                 old = READ_ONCE(*(const u64 *)ptr);
498                 break;
499         default:
500                 break; /* ignore; we do not diff the values */
501         }
502
503         /*
504          * Delay this thread, to increase probability of observing a racy
505          * conflicting access.
506          */
507         delay_access(type);
508
509         /*
510          * Re-read value, and check if it is as expected; if not, we infer a
511          * racy access.
512          */
513         access_mask = ctx->access_mask;
514         new = 0;
515         switch (size) {
516         case 1:
517                 new = READ_ONCE(*(const u8 *)ptr);
518                 break;
519         case 2:
520                 new = READ_ONCE(*(const u16 *)ptr);
521                 break;
522         case 4:
523                 new = READ_ONCE(*(const u32 *)ptr);
524                 break;
525         case 8:
526                 new = READ_ONCE(*(const u64 *)ptr);
527                 break;
528         default:
529                 break; /* ignore; we do not diff the values */
530         }
531
532         diff = old ^ new;
533         if (access_mask)
534                 diff &= access_mask;
535
536         /*
537          * Check if we observed a value change.
538          *
539          * Also check if the data race should be ignored (the rules depend on
540          * non-zero diff); if it is to be ignored, the below rules for
541          * KCSAN_VALUE_CHANGE_MAYBE apply.
542          */
543         if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
544                 value_change = KCSAN_VALUE_CHANGE_TRUE;
545
546         /* Check if this access raced with another. */
547         if (!consume_watchpoint(watchpoint)) {
548                 /*
549                  * Depending on the access type, map a value_change of MAYBE to
550                  * TRUE (always report) or FALSE (never report).
551                  */
552                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
553                         if (access_mask != 0) {
554                                 /*
555                                  * For access with access_mask, we require a
556                                  * value-change, as it is likely that races on
557                                  * ~access_mask bits are expected.
558                                  */
559                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
560                         } else if (size > 8 || is_assert) {
561                                 /* Always assume a value-change. */
562                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
563                         }
564                 }
565
566                 /*
567                  * No need to increment 'data_races' counter, as the racing
568                  * thread already did.
569                  *
570                  * Count 'assert_failures' for each failed ASSERT access,
571                  * therefore both this thread and the racing thread may
572                  * increment this counter.
573                  */
574                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
575                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
576
577                 kcsan_report_known_origin(ptr, size, type, ip,
578                                           value_change, watchpoint - watchpoints,
579                                           old, new, access_mask);
580         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
581                 /* Inferring a race, since the value should not have changed. */
582
583                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
584                 if (is_assert)
585                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
586
587                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) {
588                         kcsan_report_unknown_origin(ptr, size, type, ip,
589                                                     old, new, access_mask);
590                 }
591         }
592
593         /*
594          * Remove watchpoint; must be after reporting, since the slot may be
595          * reused after this point.
596          */
597         remove_watchpoint(watchpoint);
598         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
599 out_unlock:
600         if (!kcsan_interrupt_watcher)
601                 local_irq_restore(irq_flags);
602         kcsan_restore_irqtrace(current);
603 out:
604         user_access_restore(ua_flags);
605 }
606
607 static __always_inline void
608 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip)
609 {
610         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
611         atomic_long_t *watchpoint;
612         long encoded_watchpoint;
613
614         /*
615          * Do nothing for 0 sized check; this comparison will be optimized out
616          * for constant sized instrumentation (__tsan_{read,write}N).
617          */
618         if (unlikely(size == 0))
619                 return;
620
621         /*
622          * Avoid user_access_save in fast-path: find_watchpoint is safe without
623          * user_access_save, as the address that ptr points to is only used to
624          * check if a watchpoint exists; ptr is never dereferenced.
625          */
626         watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
627                                      &encoded_watchpoint);
628         /*
629          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
630          * slow-path, as long as no state changes that cause a race to be
631          * detected and reported have occurred until kcsan_is_enabled() is
632          * checked.
633          */
634
635         if (unlikely(watchpoint != NULL))
636                 kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint);
637         else {
638                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
639
640                 if (unlikely(should_watch(ctx, ptr, size, type)))
641                         kcsan_setup_watchpoint(ptr, size, type, ip);
642                 else if (unlikely(ctx->scoped_accesses.prev))
643                         kcsan_check_scoped_accesses();
644         }
645 }
646
647 /* === Public interface ===================================================== */
648
649 void __init kcsan_init(void)
650 {
651         int cpu;
652
653         BUG_ON(!in_task());
654
655         for_each_possible_cpu(cpu)
656                 per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
657
658         /*
659          * We are in the init task, and no other tasks should be running;
660          * WRITE_ONCE without memory barrier is sufficient.
661          */
662         if (kcsan_early_enable) {
663                 pr_info("enabled early\n");
664                 WRITE_ONCE(kcsan_enabled, true);
665         }
666
667         if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
668             IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
669             IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
670             IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
671                 pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
672         } else {
673                 pr_info("strict mode configured\n");
674         }
675 }
676
677 /* === Exported interface =================================================== */
678
679 void kcsan_disable_current(void)
680 {
681         ++get_ctx()->disable_count;
682 }
683 EXPORT_SYMBOL(kcsan_disable_current);
684
685 void kcsan_enable_current(void)
686 {
687         if (get_ctx()->disable_count-- == 0) {
688                 /*
689                  * Warn if kcsan_enable_current() calls are unbalanced with
690                  * kcsan_disable_current() calls, which causes disable_count to
691                  * become negative and should not happen.
692                  */
693                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
694                 kcsan_disable_current(); /* disable to generate warning */
695                 WARN(1, "Unbalanced %s()", __func__);
696                 kcsan_enable_current();
697         }
698 }
699 EXPORT_SYMBOL(kcsan_enable_current);
700
701 void kcsan_enable_current_nowarn(void)
702 {
703         if (get_ctx()->disable_count-- == 0)
704                 kcsan_disable_current();
705 }
706 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
707
708 void kcsan_nestable_atomic_begin(void)
709 {
710         /*
711          * Do *not* check and warn if we are in a flat atomic region: nestable
712          * and flat atomic regions are independent from each other.
713          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
714          * comments.
715          */
716
717         ++get_ctx()->atomic_nest_count;
718 }
719 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
720
721 void kcsan_nestable_atomic_end(void)
722 {
723         if (get_ctx()->atomic_nest_count-- == 0) {
724                 /*
725                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
726                  * kcsan_nestable_atomic_begin() calls, which causes
727                  * atomic_nest_count to become negative and should not happen.
728                  */
729                 kcsan_nestable_atomic_begin(); /* restore to 0 */
730                 kcsan_disable_current(); /* disable to generate warning */
731                 WARN(1, "Unbalanced %s()", __func__);
732                 kcsan_enable_current();
733         }
734 }
735 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
736
737 void kcsan_flat_atomic_begin(void)
738 {
739         get_ctx()->in_flat_atomic = true;
740 }
741 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
742
743 void kcsan_flat_atomic_end(void)
744 {
745         get_ctx()->in_flat_atomic = false;
746 }
747 EXPORT_SYMBOL(kcsan_flat_atomic_end);
748
749 void kcsan_atomic_next(int n)
750 {
751         get_ctx()->atomic_next = n;
752 }
753 EXPORT_SYMBOL(kcsan_atomic_next);
754
755 void kcsan_set_access_mask(unsigned long mask)
756 {
757         get_ctx()->access_mask = mask;
758 }
759 EXPORT_SYMBOL(kcsan_set_access_mask);
760
761 struct kcsan_scoped_access *
762 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
763                           struct kcsan_scoped_access *sa)
764 {
765         struct kcsan_ctx *ctx = get_ctx();
766
767         check_access(ptr, size, type, _RET_IP_);
768
769         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
770
771         INIT_LIST_HEAD(&sa->list);
772         sa->ptr = ptr;
773         sa->size = size;
774         sa->type = type;
775         sa->ip = _RET_IP_;
776
777         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
778                 INIT_LIST_HEAD(&ctx->scoped_accesses);
779         list_add(&sa->list, &ctx->scoped_accesses);
780
781         ctx->disable_count--;
782         return sa;
783 }
784 EXPORT_SYMBOL(kcsan_begin_scoped_access);
785
786 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
787 {
788         struct kcsan_ctx *ctx = get_ctx();
789
790         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
791                 return;
792
793         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
794
795         list_del(&sa->list);
796         if (list_empty(&ctx->scoped_accesses))
797                 /*
798                  * Ensure we do not enter kcsan_check_scoped_accesses()
799                  * slow-path if unnecessary, and avoids requiring list_empty()
800                  * in the fast-path (to avoid a READ_ONCE() and potential
801                  * uaccess warning).
802                  */
803                 ctx->scoped_accesses.prev = NULL;
804
805         ctx->disable_count--;
806
807         check_access(sa->ptr, sa->size, sa->type, sa->ip);
808 }
809 EXPORT_SYMBOL(kcsan_end_scoped_access);
810
811 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
812 {
813         check_access(ptr, size, type, _RET_IP_);
814 }
815 EXPORT_SYMBOL(__kcsan_check_access);
816
817 /*
818  * KCSAN uses the same instrumentation that is emitted by supported compilers
819  * for ThreadSanitizer (TSAN).
820  *
821  * When enabled, the compiler emits instrumentation calls (the functions
822  * prefixed with "__tsan" below) for all loads and stores that it generated;
823  * inline asm is not instrumented.
824  *
825  * Note that, not all supported compiler versions distinguish aligned/unaligned
826  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
827  * version to the generic version, which can handle both.
828  */
829
830 #define DEFINE_TSAN_READ_WRITE(size)                                           \
831         void __tsan_read##size(void *ptr);                                     \
832         void __tsan_read##size(void *ptr)                                      \
833         {                                                                      \
834                 check_access(ptr, size, 0, _RET_IP_);                          \
835         }                                                                      \
836         EXPORT_SYMBOL(__tsan_read##size);                                      \
837         void __tsan_unaligned_read##size(void *ptr)                            \
838                 __alias(__tsan_read##size);                                    \
839         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
840         void __tsan_write##size(void *ptr);                                    \
841         void __tsan_write##size(void *ptr)                                     \
842         {                                                                      \
843                 check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);         \
844         }                                                                      \
845         EXPORT_SYMBOL(__tsan_write##size);                                     \
846         void __tsan_unaligned_write##size(void *ptr)                           \
847                 __alias(__tsan_write##size);                                   \
848         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
849         void __tsan_read_write##size(void *ptr);                               \
850         void __tsan_read_write##size(void *ptr)                                \
851         {                                                                      \
852                 check_access(ptr, size,                                        \
853                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE,       \
854                              _RET_IP_);                                        \
855         }                                                                      \
856         EXPORT_SYMBOL(__tsan_read_write##size);                                \
857         void __tsan_unaligned_read_write##size(void *ptr)                      \
858                 __alias(__tsan_read_write##size);                              \
859         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
860
861 DEFINE_TSAN_READ_WRITE(1);
862 DEFINE_TSAN_READ_WRITE(2);
863 DEFINE_TSAN_READ_WRITE(4);
864 DEFINE_TSAN_READ_WRITE(8);
865 DEFINE_TSAN_READ_WRITE(16);
866
867 void __tsan_read_range(void *ptr, size_t size);
868 void __tsan_read_range(void *ptr, size_t size)
869 {
870         check_access(ptr, size, 0, _RET_IP_);
871 }
872 EXPORT_SYMBOL(__tsan_read_range);
873
874 void __tsan_write_range(void *ptr, size_t size);
875 void __tsan_write_range(void *ptr, size_t size)
876 {
877         check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);
878 }
879 EXPORT_SYMBOL(__tsan_write_range);
880
881 /*
882  * Use of explicit volatile is generally disallowed [1], however, volatile is
883  * still used in various concurrent context, whether in low-level
884  * synchronization primitives or for legacy reasons.
885  * [1] https://lwn.net/Articles/233479/
886  *
887  * We only consider volatile accesses atomic if they are aligned and would pass
888  * the size-check of compiletime_assert_rwonce_type().
889  */
890 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
891         void __tsan_volatile_read##size(void *ptr);                            \
892         void __tsan_volatile_read##size(void *ptr)                             \
893         {                                                                      \
894                 const bool is_atomic = size <= sizeof(long long) &&            \
895                                        IS_ALIGNED((unsigned long)ptr, size);   \
896                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
897                         return;                                                \
898                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0,   \
899                              _RET_IP_);                                        \
900         }                                                                      \
901         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
902         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
903                 __alias(__tsan_volatile_read##size);                           \
904         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
905         void __tsan_volatile_write##size(void *ptr);                           \
906         void __tsan_volatile_write##size(void *ptr)                            \
907         {                                                                      \
908                 const bool is_atomic = size <= sizeof(long long) &&            \
909                                        IS_ALIGNED((unsigned long)ptr, size);   \
910                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
911                         return;                                                \
912                 check_access(ptr, size,                                        \
913                              KCSAN_ACCESS_WRITE |                              \
914                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0),    \
915                              _RET_IP_);                                        \
916         }                                                                      \
917         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
918         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
919                 __alias(__tsan_volatile_write##size);                          \
920         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
921
922 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
923 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
924 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
925 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
926 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
927
928 /*
929  * The below are not required by KCSAN, but can still be emitted by the
930  * compiler.
931  */
932 void __tsan_func_entry(void *call_pc);
933 void __tsan_func_entry(void *call_pc)
934 {
935 }
936 EXPORT_SYMBOL(__tsan_func_entry);
937 void __tsan_func_exit(void);
938 void __tsan_func_exit(void)
939 {
940 }
941 EXPORT_SYMBOL(__tsan_func_exit);
942 void __tsan_init(void);
943 void __tsan_init(void)
944 {
945 }
946 EXPORT_SYMBOL(__tsan_init);
947
948 /*
949  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
950  *
951  * Normal kernel code _should not_ be using them directly, but some
952  * architectures may implement some or all atomics using the compilers'
953  * builtins.
954  *
955  * Note: If an architecture decides to fully implement atomics using the
956  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
957  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
958  * atomic-instrumented) is no longer necessary.
959  *
960  * TSAN instrumentation replaces atomic accesses with calls to any of the below
961  * functions, whose job is to also execute the operation itself.
962  */
963
964 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
965         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
966         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
967         {                                                                                          \
968                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
969                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_);    \
970                 }                                                                                  \
971                 return __atomic_load_n(ptr, memorder);                                             \
972         }                                                                                          \
973         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
974         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
975         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
976         {                                                                                          \
977                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
978                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
979                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_);          \
980                 }                                                                                  \
981                 __atomic_store_n(ptr, v, memorder);                                                \
982         }                                                                                          \
983         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
984
985 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
986         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
987         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
988         {                                                                                          \
989                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
990                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
991                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
992                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
993                 }                                                                                  \
994                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
995         }                                                                                          \
996         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
997
998 /*
999  * Note: CAS operations are always classified as write, even in case they
1000  * fail. We cannot perform check_access() after a write, as it might lead to
1001  * false positives, in cases such as:
1002  *
1003  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
1004  *
1005  *      T1: if (__atomic_load_n(&p->flag, ...)) {
1006  *              modify *p;
1007  *              p->flag = 0;
1008  *          }
1009  *
1010  * The only downside is that, if there are 3 threads, with one CAS that
1011  * succeeds, another CAS that fails, and an unmarked racing operation, we may
1012  * point at the wrong CAS as the source of the race. However, if we assume that
1013  * all CAS can succeed in some other execution, the data race is still valid.
1014  */
1015 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1016         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1017                                                               u##bits val, int mo, int fail_mo);   \
1018         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1019                                                               u##bits val, int mo, int fail_mo)    \
1020         {                                                                                          \
1021                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1022                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1023                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1024                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1025                 }                                                                                  \
1026                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1027         }                                                                                          \
1028         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1029
1030 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1031         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1032                                                            int mo, int fail_mo);                   \
1033         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1034                                                            int mo, int fail_mo)                    \
1035         {                                                                                          \
1036                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1037                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1038                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1039                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1040                 }                                                                                  \
1041                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1042                 return exp;                                                                        \
1043         }                                                                                          \
1044         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1045
1046 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1047         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1048         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1049         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1050         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1051         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1052         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1053         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1054         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1055         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1056         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1057         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1058
1059 DEFINE_TSAN_ATOMIC_OPS(8);
1060 DEFINE_TSAN_ATOMIC_OPS(16);
1061 DEFINE_TSAN_ATOMIC_OPS(32);
1062 DEFINE_TSAN_ATOMIC_OPS(64);
1063
1064 void __tsan_atomic_thread_fence(int memorder);
1065 void __tsan_atomic_thread_fence(int memorder)
1066 {
1067         __atomic_thread_fence(memorder);
1068 }
1069 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1070
1071 void __tsan_atomic_signal_fence(int memorder);
1072 void __tsan_atomic_signal_fence(int memorder) { }
1073 EXPORT_SYMBOL(__tsan_atomic_signal_fence);