Merge tag 'nfs-for-5.17-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[platform/kernel/linux-rpi.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kcsan: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include "encoding.h"
24 #include "kcsan.h"
25 #include "permissive.h"
26
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42
43 #ifdef CONFIG_KCSAN_WEAK_MEMORY
44 static bool kcsan_weak_memory = true;
45 module_param_named(weak_memory, kcsan_weak_memory, bool, 0644);
46 #else
47 #define kcsan_weak_memory false
48 #endif
49
50 bool kcsan_enabled;
51
52 /* Per-CPU kcsan_ctx for interrupts */
53 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
54         .scoped_accesses        = {LIST_POISON1, NULL},
55 };
56
57 /*
58  * Helper macros to index into adjacent slots, starting from address slot
59  * itself, followed by the right and left slots.
60  *
61  * The purpose is 2-fold:
62  *
63  *      1. if during insertion the address slot is already occupied, check if
64  *         any adjacent slots are free;
65  *      2. accesses that straddle a slot boundary due to size that exceeds a
66  *         slot's range may check adjacent slots if any watchpoint matches.
67  *
68  * Note that accesses with very large size may still miss a watchpoint; however,
69  * given this should be rare, this is a reasonable trade-off to make, since this
70  * will avoid:
71  *
72  *      1. excessive contention between watchpoint checks and setup;
73  *      2. larger number of simultaneous watchpoints without sacrificing
74  *         performance.
75  *
76  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
77  *
78  *   slot=0:  [ 1,  2,  0]
79  *   slot=9:  [10, 11,  9]
80  *   slot=63: [64, 65, 63]
81  */
82 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
83
84 /*
85  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
86  * slot (middle) is fine if we assume that races occur rarely. The set of
87  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
88  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
89  */
90 #define SLOT_IDX_FAST(slot, i) (slot + i)
91
92 /*
93  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
94  * able to safely update and access a watchpoint without introducing locking
95  * overhead, we encode each watchpoint as a single atomic long. The initial
96  * zero-initialized state matches INVALID_WATCHPOINT.
97  *
98  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
99  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
100  */
101 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
102
103 /*
104  * Instructions to skip watching counter, used in should_watch(). We use a
105  * per-CPU counter to avoid excessive contention.
106  */
107 static DEFINE_PER_CPU(long, kcsan_skip);
108
109 /* For kcsan_prandom_u32_max(). */
110 static DEFINE_PER_CPU(u32, kcsan_rand_state);
111
112 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
113                                                       size_t size,
114                                                       bool expect_write,
115                                                       long *encoded_watchpoint)
116 {
117         const int slot = watchpoint_slot(addr);
118         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
119         atomic_long_t *watchpoint;
120         unsigned long wp_addr_masked;
121         size_t wp_size;
122         bool is_write;
123         int i;
124
125         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
126
127         for (i = 0; i < NUM_SLOTS; ++i) {
128                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
129                 *encoded_watchpoint = atomic_long_read(watchpoint);
130                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
131                                        &wp_size, &is_write))
132                         continue;
133
134                 if (expect_write && !is_write)
135                         continue;
136
137                 /* Check if the watchpoint matches the access. */
138                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
139                         return watchpoint;
140         }
141
142         return NULL;
143 }
144
145 static inline atomic_long_t *
146 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
147 {
148         const int slot = watchpoint_slot(addr);
149         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
150         atomic_long_t *watchpoint;
151         int i;
152
153         /* Check slot index logic, ensuring we stay within array bounds. */
154         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
155         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
156         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
157         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
158
159         for (i = 0; i < NUM_SLOTS; ++i) {
160                 long expect_val = INVALID_WATCHPOINT;
161
162                 /* Try to acquire this slot. */
163                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
164                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
165                         return watchpoint;
166         }
167
168         return NULL;
169 }
170
171 /*
172  * Return true if watchpoint was successfully consumed, false otherwise.
173  *
174  * This may return false if:
175  *
176  *      1. another thread already consumed the watchpoint;
177  *      2. the thread that set up the watchpoint already removed it;
178  *      3. the watchpoint was removed and then re-used.
179  */
180 static __always_inline bool
181 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
182 {
183         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
184 }
185
186 /* Return true if watchpoint was not touched, false if already consumed. */
187 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
188 {
189         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
190 }
191
192 /* Remove the watchpoint -- its slot may be reused after. */
193 static inline void remove_watchpoint(atomic_long_t *watchpoint)
194 {
195         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
196 }
197
198 static __always_inline struct kcsan_ctx *get_ctx(void)
199 {
200         /*
201          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
202          * also result in calls that generate warnings in uaccess regions.
203          */
204         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
205 }
206
207 static __always_inline void
208 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip);
209
210 /* Check scoped accesses; never inline because this is a slow-path! */
211 static noinline void kcsan_check_scoped_accesses(void)
212 {
213         struct kcsan_ctx *ctx = get_ctx();
214         struct kcsan_scoped_access *scoped_access;
215
216         if (ctx->disable_scoped)
217                 return;
218
219         ctx->disable_scoped++;
220         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) {
221                 check_access(scoped_access->ptr, scoped_access->size,
222                              scoped_access->type, scoped_access->ip);
223         }
224         ctx->disable_scoped--;
225 }
226
227 /* Rules for generic atomic accesses. Called from fast-path. */
228 static __always_inline bool
229 is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
230 {
231         if (type & KCSAN_ACCESS_ATOMIC)
232                 return true;
233
234         /*
235          * Unless explicitly declared atomic, never consider an assertion access
236          * as atomic. This allows using them also in atomic regions, such as
237          * seqlocks, without implicitly changing their semantics.
238          */
239         if (type & KCSAN_ACCESS_ASSERT)
240                 return false;
241
242         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
243             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
244             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
245                 return true; /* Assume aligned writes up to word size are atomic. */
246
247         if (ctx->atomic_next > 0) {
248                 /*
249                  * Because we do not have separate contexts for nested
250                  * interrupts, in case atomic_next is set, we simply assume that
251                  * the outer interrupt set atomic_next. In the worst case, we
252                  * will conservatively consider operations as atomic. This is a
253                  * reasonable trade-off to make, since this case should be
254                  * extremely rare; however, even if extremely rare, it could
255                  * lead to false positives otherwise.
256                  */
257                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
258                         --ctx->atomic_next; /* in task, or outer interrupt */
259                 return true;
260         }
261
262         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
263 }
264
265 static __always_inline bool
266 should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
267 {
268         /*
269          * Never set up watchpoints when memory operations are atomic.
270          *
271          * Need to check this first, before kcsan_skip check below: (1) atomics
272          * should not count towards skipped instructions, and (2) to actually
273          * decrement kcsan_atomic_next for consecutive instruction stream.
274          */
275         if (is_atomic(ctx, ptr, size, type))
276                 return false;
277
278         if (this_cpu_dec_return(kcsan_skip) >= 0)
279                 return false;
280
281         /*
282          * NOTE: If we get here, kcsan_skip must always be reset in slow path
283          * via reset_kcsan_skip() to avoid underflow.
284          */
285
286         /* this operation should be watched */
287         return true;
288 }
289
290 /*
291  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
292  * congruential generator, using constants from "Numerical Recipes".
293  */
294 static u32 kcsan_prandom_u32_max(u32 ep_ro)
295 {
296         u32 state = this_cpu_read(kcsan_rand_state);
297
298         state = 1664525 * state + 1013904223;
299         this_cpu_write(kcsan_rand_state, state);
300
301         return state % ep_ro;
302 }
303
304 static inline void reset_kcsan_skip(void)
305 {
306         long skip_count = kcsan_skip_watch -
307                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
308                                    kcsan_prandom_u32_max(kcsan_skip_watch) :
309                                    0);
310         this_cpu_write(kcsan_skip, skip_count);
311 }
312
313 static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
314 {
315         return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
316 }
317
318 /* Introduce delay depending on context and configuration. */
319 static void delay_access(int type)
320 {
321         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
322         /* For certain access types, skew the random delay to be longer. */
323         unsigned int skew_delay_order =
324                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
325
326         delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
327                                kcsan_prandom_u32_max(delay >> skew_delay_order) :
328                                0;
329         udelay(delay);
330 }
331
332 /*
333  * Reads the instrumented memory for value change detection; value change
334  * detection is currently done for accesses up to a size of 8 bytes.
335  */
336 static __always_inline u64 read_instrumented_memory(const volatile void *ptr, size_t size)
337 {
338         switch (size) {
339         case 1:  return READ_ONCE(*(const u8 *)ptr);
340         case 2:  return READ_ONCE(*(const u16 *)ptr);
341         case 4:  return READ_ONCE(*(const u32 *)ptr);
342         case 8:  return READ_ONCE(*(const u64 *)ptr);
343         default: return 0; /* Ignore; we do not diff the values. */
344         }
345 }
346
347 void kcsan_save_irqtrace(struct task_struct *task)
348 {
349 #ifdef CONFIG_TRACE_IRQFLAGS
350         task->kcsan_save_irqtrace = task->irqtrace;
351 #endif
352 }
353
354 void kcsan_restore_irqtrace(struct task_struct *task)
355 {
356 #ifdef CONFIG_TRACE_IRQFLAGS
357         task->irqtrace = task->kcsan_save_irqtrace;
358 #endif
359 }
360
361 static __always_inline int get_kcsan_stack_depth(void)
362 {
363 #ifdef CONFIG_KCSAN_WEAK_MEMORY
364         return current->kcsan_stack_depth;
365 #else
366         BUILD_BUG();
367         return 0;
368 #endif
369 }
370
371 static __always_inline void add_kcsan_stack_depth(int val)
372 {
373 #ifdef CONFIG_KCSAN_WEAK_MEMORY
374         current->kcsan_stack_depth += val;
375 #else
376         BUILD_BUG();
377 #endif
378 }
379
380 static __always_inline struct kcsan_scoped_access *get_reorder_access(struct kcsan_ctx *ctx)
381 {
382 #ifdef CONFIG_KCSAN_WEAK_MEMORY
383         return ctx->disable_scoped ? NULL : &ctx->reorder_access;
384 #else
385         return NULL;
386 #endif
387 }
388
389 static __always_inline bool
390 find_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
391                     int type, unsigned long ip)
392 {
393         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
394
395         if (!reorder_access)
396                 return false;
397
398         /*
399          * Note: If accesses are repeated while reorder_access is identical,
400          * never matches the new access, because !(type & KCSAN_ACCESS_SCOPED).
401          */
402         return reorder_access->ptr == ptr && reorder_access->size == size &&
403                reorder_access->type == type && reorder_access->ip == ip;
404 }
405
406 static inline void
407 set_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
408                    int type, unsigned long ip)
409 {
410         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
411
412         if (!reorder_access || !kcsan_weak_memory)
413                 return;
414
415         /*
416          * To avoid nested interrupts or scheduler (which share kcsan_ctx)
417          * reading an inconsistent reorder_access, ensure that the below has
418          * exclusive access to reorder_access by disallowing concurrent use.
419          */
420         ctx->disable_scoped++;
421         barrier();
422         reorder_access->ptr             = ptr;
423         reorder_access->size            = size;
424         reorder_access->type            = type | KCSAN_ACCESS_SCOPED;
425         reorder_access->ip              = ip;
426         reorder_access->stack_depth     = get_kcsan_stack_depth();
427         barrier();
428         ctx->disable_scoped--;
429 }
430
431 /*
432  * Pull everything together: check_access() below contains the performance
433  * critical operations; the fast-path (including check_access) functions should
434  * all be inlinable by the instrumentation functions.
435  *
436  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
437  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
438  * be filtered from the stacktrace, as well as give them unique names for the
439  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
440  * since they do not access any user memory, but instrumentation is still
441  * emitted in UACCESS regions.
442  */
443
444 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
445                                             size_t size,
446                                             int type,
447                                             unsigned long ip,
448                                             atomic_long_t *watchpoint,
449                                             long encoded_watchpoint)
450 {
451         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
452         struct kcsan_ctx *ctx = get_ctx();
453         unsigned long flags;
454         bool consumed;
455
456         /*
457          * We know a watchpoint exists. Let's try to keep the race-window
458          * between here and finally consuming the watchpoint below as small as
459          * possible -- avoid unneccessarily complex code until consumed.
460          */
461
462         if (!kcsan_is_enabled(ctx))
463                 return;
464
465         /*
466          * The access_mask check relies on value-change comparison. To avoid
467          * reporting a race where e.g. the writer set up the watchpoint, but the
468          * reader has access_mask!=0, we have to ignore the found watchpoint.
469          *
470          * reorder_access is never created from an access with access_mask set.
471          */
472         if (ctx->access_mask && !find_reorder_access(ctx, ptr, size, type, ip))
473                 return;
474
475         /*
476          * If the other thread does not want to ignore the access, and there was
477          * a value change as a result of this thread's operation, we will still
478          * generate a report of unknown origin.
479          *
480          * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
481          */
482         if (!is_assert && kcsan_ignore_address(ptr))
483                 return;
484
485         /*
486          * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
487          * avoid erroneously triggering reports if the context is disabled.
488          */
489         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
490
491         /* keep this after try_consume_watchpoint */
492         flags = user_access_save();
493
494         if (consumed) {
495                 kcsan_save_irqtrace(current);
496                 kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints);
497                 kcsan_restore_irqtrace(current);
498         } else {
499                 /*
500                  * The other thread may not print any diagnostics, as it has
501                  * already removed the watchpoint, or another thread consumed
502                  * the watchpoint before this thread.
503                  */
504                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
505         }
506
507         if (is_assert)
508                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
509         else
510                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
511
512         user_access_restore(flags);
513 }
514
515 static noinline void
516 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip)
517 {
518         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
519         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
520         atomic_long_t *watchpoint;
521         u64 old, new, diff;
522         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
523         bool interrupt_watcher = kcsan_interrupt_watcher;
524         unsigned long ua_flags = user_access_save();
525         struct kcsan_ctx *ctx = get_ctx();
526         unsigned long access_mask = ctx->access_mask;
527         unsigned long irq_flags = 0;
528         bool is_reorder_access;
529
530         /*
531          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
532          * should_watch().
533          */
534         reset_kcsan_skip();
535
536         if (!kcsan_is_enabled(ctx))
537                 goto out;
538
539         /*
540          * Check to-ignore addresses after kcsan_is_enabled(), as we may access
541          * memory that is not yet initialized during early boot.
542          */
543         if (!is_assert && kcsan_ignore_address(ptr))
544                 goto out;
545
546         if (!check_encodable((unsigned long)ptr, size)) {
547                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
548                 goto out;
549         }
550
551         /*
552          * The local CPU cannot observe reordering of its own accesses, and
553          * therefore we need to take care of 2 cases to avoid false positives:
554          *
555          *      1. Races of the reordered access with interrupts. To avoid, if
556          *         the current access is reorder_access, disable interrupts.
557          *      2. Avoid races of scoped accesses from nested interrupts (below).
558          */
559         is_reorder_access = find_reorder_access(ctx, ptr, size, type, ip);
560         if (is_reorder_access)
561                 interrupt_watcher = false;
562         /*
563          * Avoid races of scoped accesses from nested interrupts (or scheduler).
564          * Assume setting up a watchpoint for a non-scoped (normal) access that
565          * also conflicts with a current scoped access. In a nested interrupt,
566          * which shares the context, it would check a conflicting scoped access.
567          * To avoid, disable scoped access checking.
568          */
569         ctx->disable_scoped++;
570
571         /*
572          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
573          * runtime is entered for every memory access, and potentially useful
574          * information is lost if dirtied by KCSAN.
575          */
576         kcsan_save_irqtrace(current);
577         if (!interrupt_watcher)
578                 local_irq_save(irq_flags);
579
580         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
581         if (watchpoint == NULL) {
582                 /*
583                  * Out of capacity: the size of 'watchpoints', and the frequency
584                  * with which should_watch() returns true should be tweaked so
585                  * that this case happens very rarely.
586                  */
587                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
588                 goto out_unlock;
589         }
590
591         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
592         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
593
594         /*
595          * Read the current value, to later check and infer a race if the data
596          * was modified via a non-instrumented access, e.g. from a device.
597          */
598         old = is_reorder_access ? 0 : read_instrumented_memory(ptr, size);
599
600         /*
601          * Delay this thread, to increase probability of observing a racy
602          * conflicting access.
603          */
604         delay_access(type);
605
606         /*
607          * Re-read value, and check if it is as expected; if not, we infer a
608          * racy access.
609          */
610         if (!is_reorder_access) {
611                 new = read_instrumented_memory(ptr, size);
612         } else {
613                 /*
614                  * Reordered accesses cannot be used for value change detection,
615                  * because the memory location may no longer be accessible and
616                  * could result in a fault.
617                  */
618                 new = 0;
619                 access_mask = 0;
620         }
621
622         diff = old ^ new;
623         if (access_mask)
624                 diff &= access_mask;
625
626         /*
627          * Check if we observed a value change.
628          *
629          * Also check if the data race should be ignored (the rules depend on
630          * non-zero diff); if it is to be ignored, the below rules for
631          * KCSAN_VALUE_CHANGE_MAYBE apply.
632          */
633         if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
634                 value_change = KCSAN_VALUE_CHANGE_TRUE;
635
636         /* Check if this access raced with another. */
637         if (!consume_watchpoint(watchpoint)) {
638                 /*
639                  * Depending on the access type, map a value_change of MAYBE to
640                  * TRUE (always report) or FALSE (never report).
641                  */
642                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
643                         if (access_mask != 0) {
644                                 /*
645                                  * For access with access_mask, we require a
646                                  * value-change, as it is likely that races on
647                                  * ~access_mask bits are expected.
648                                  */
649                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
650                         } else if (size > 8 || is_assert) {
651                                 /* Always assume a value-change. */
652                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
653                         }
654                 }
655
656                 /*
657                  * No need to increment 'data_races' counter, as the racing
658                  * thread already did.
659                  *
660                  * Count 'assert_failures' for each failed ASSERT access,
661                  * therefore both this thread and the racing thread may
662                  * increment this counter.
663                  */
664                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
665                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
666
667                 kcsan_report_known_origin(ptr, size, type, ip,
668                                           value_change, watchpoint - watchpoints,
669                                           old, new, access_mask);
670         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
671                 /* Inferring a race, since the value should not have changed. */
672
673                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
674                 if (is_assert)
675                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
676
677                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) {
678                         kcsan_report_unknown_origin(ptr, size, type, ip,
679                                                     old, new, access_mask);
680                 }
681         }
682
683         /*
684          * Remove watchpoint; must be after reporting, since the slot may be
685          * reused after this point.
686          */
687         remove_watchpoint(watchpoint);
688         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
689
690 out_unlock:
691         if (!interrupt_watcher)
692                 local_irq_restore(irq_flags);
693         kcsan_restore_irqtrace(current);
694         ctx->disable_scoped--;
695
696         /*
697          * Reordered accesses cannot be used for value change detection,
698          * therefore never consider for reordering if access_mask is set.
699          * ASSERT_EXCLUSIVE are not real accesses, ignore them as well.
700          */
701         if (!access_mask && !is_assert)
702                 set_reorder_access(ctx, ptr, size, type, ip);
703 out:
704         user_access_restore(ua_flags);
705 }
706
707 static __always_inline void
708 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip)
709 {
710         atomic_long_t *watchpoint;
711         long encoded_watchpoint;
712
713         /*
714          * Do nothing for 0 sized check; this comparison will be optimized out
715          * for constant sized instrumentation (__tsan_{read,write}N).
716          */
717         if (unlikely(size == 0))
718                 return;
719
720 again:
721         /*
722          * Avoid user_access_save in fast-path: find_watchpoint is safe without
723          * user_access_save, as the address that ptr points to is only used to
724          * check if a watchpoint exists; ptr is never dereferenced.
725          */
726         watchpoint = find_watchpoint((unsigned long)ptr, size,
727                                      !(type & KCSAN_ACCESS_WRITE),
728                                      &encoded_watchpoint);
729         /*
730          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
731          * slow-path, as long as no state changes that cause a race to be
732          * detected and reported have occurred until kcsan_is_enabled() is
733          * checked.
734          */
735
736         if (unlikely(watchpoint != NULL))
737                 kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint);
738         else {
739                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
740
741                 if (unlikely(should_watch(ctx, ptr, size, type))) {
742                         kcsan_setup_watchpoint(ptr, size, type, ip);
743                         return;
744                 }
745
746                 if (!(type & KCSAN_ACCESS_SCOPED)) {
747                         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
748
749                         if (reorder_access) {
750                                 /*
751                                  * reorder_access check: simulates reordering of
752                                  * the access after subsequent operations.
753                                  */
754                                 ptr = reorder_access->ptr;
755                                 type = reorder_access->type;
756                                 ip = reorder_access->ip;
757                                 /*
758                                  * Upon a nested interrupt, this context's
759                                  * reorder_access can be modified (shared ctx).
760                                  * We know that upon return, reorder_access is
761                                  * always invalidated by setting size to 0 via
762                                  * __tsan_func_exit(). Therefore we must read
763                                  * and check size after the other fields.
764                                  */
765                                 barrier();
766                                 size = READ_ONCE(reorder_access->size);
767                                 if (size)
768                                         goto again;
769                         }
770                 }
771
772                 /*
773                  * Always checked last, right before returning from runtime;
774                  * if reorder_access is valid, checked after it was checked.
775                  */
776                 if (unlikely(ctx->scoped_accesses.prev))
777                         kcsan_check_scoped_accesses();
778         }
779 }
780
781 /* === Public interface ===================================================== */
782
783 void __init kcsan_init(void)
784 {
785         int cpu;
786
787         BUG_ON(!in_task());
788
789         for_each_possible_cpu(cpu)
790                 per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
791
792         /*
793          * We are in the init task, and no other tasks should be running;
794          * WRITE_ONCE without memory barrier is sufficient.
795          */
796         if (kcsan_early_enable) {
797                 pr_info("enabled early\n");
798                 WRITE_ONCE(kcsan_enabled, true);
799         }
800
801         if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
802             IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
803             IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
804             IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
805                 pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
806         } else {
807                 pr_info("strict mode configured\n");
808         }
809 }
810
811 /* === Exported interface =================================================== */
812
813 void kcsan_disable_current(void)
814 {
815         ++get_ctx()->disable_count;
816 }
817 EXPORT_SYMBOL(kcsan_disable_current);
818
819 void kcsan_enable_current(void)
820 {
821         if (get_ctx()->disable_count-- == 0) {
822                 /*
823                  * Warn if kcsan_enable_current() calls are unbalanced with
824                  * kcsan_disable_current() calls, which causes disable_count to
825                  * become negative and should not happen.
826                  */
827                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
828                 kcsan_disable_current(); /* disable to generate warning */
829                 WARN(1, "Unbalanced %s()", __func__);
830                 kcsan_enable_current();
831         }
832 }
833 EXPORT_SYMBOL(kcsan_enable_current);
834
835 void kcsan_enable_current_nowarn(void)
836 {
837         if (get_ctx()->disable_count-- == 0)
838                 kcsan_disable_current();
839 }
840 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
841
842 void kcsan_nestable_atomic_begin(void)
843 {
844         /*
845          * Do *not* check and warn if we are in a flat atomic region: nestable
846          * and flat atomic regions are independent from each other.
847          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
848          * comments.
849          */
850
851         ++get_ctx()->atomic_nest_count;
852 }
853 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
854
855 void kcsan_nestable_atomic_end(void)
856 {
857         if (get_ctx()->atomic_nest_count-- == 0) {
858                 /*
859                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
860                  * kcsan_nestable_atomic_begin() calls, which causes
861                  * atomic_nest_count to become negative and should not happen.
862                  */
863                 kcsan_nestable_atomic_begin(); /* restore to 0 */
864                 kcsan_disable_current(); /* disable to generate warning */
865                 WARN(1, "Unbalanced %s()", __func__);
866                 kcsan_enable_current();
867         }
868 }
869 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
870
871 void kcsan_flat_atomic_begin(void)
872 {
873         get_ctx()->in_flat_atomic = true;
874 }
875 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
876
877 void kcsan_flat_atomic_end(void)
878 {
879         get_ctx()->in_flat_atomic = false;
880 }
881 EXPORT_SYMBOL(kcsan_flat_atomic_end);
882
883 void kcsan_atomic_next(int n)
884 {
885         get_ctx()->atomic_next = n;
886 }
887 EXPORT_SYMBOL(kcsan_atomic_next);
888
889 void kcsan_set_access_mask(unsigned long mask)
890 {
891         get_ctx()->access_mask = mask;
892 }
893 EXPORT_SYMBOL(kcsan_set_access_mask);
894
895 struct kcsan_scoped_access *
896 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
897                           struct kcsan_scoped_access *sa)
898 {
899         struct kcsan_ctx *ctx = get_ctx();
900
901         check_access(ptr, size, type, _RET_IP_);
902
903         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
904
905         INIT_LIST_HEAD(&sa->list);
906         sa->ptr = ptr;
907         sa->size = size;
908         sa->type = type;
909         sa->ip = _RET_IP_;
910
911         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
912                 INIT_LIST_HEAD(&ctx->scoped_accesses);
913         list_add(&sa->list, &ctx->scoped_accesses);
914
915         ctx->disable_count--;
916         return sa;
917 }
918 EXPORT_SYMBOL(kcsan_begin_scoped_access);
919
920 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
921 {
922         struct kcsan_ctx *ctx = get_ctx();
923
924         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
925                 return;
926
927         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
928
929         list_del(&sa->list);
930         if (list_empty(&ctx->scoped_accesses))
931                 /*
932                  * Ensure we do not enter kcsan_check_scoped_accesses()
933                  * slow-path if unnecessary, and avoids requiring list_empty()
934                  * in the fast-path (to avoid a READ_ONCE() and potential
935                  * uaccess warning).
936                  */
937                 ctx->scoped_accesses.prev = NULL;
938
939         ctx->disable_count--;
940
941         check_access(sa->ptr, sa->size, sa->type, sa->ip);
942 }
943 EXPORT_SYMBOL(kcsan_end_scoped_access);
944
945 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
946 {
947         check_access(ptr, size, type, _RET_IP_);
948 }
949 EXPORT_SYMBOL(__kcsan_check_access);
950
951 #define DEFINE_MEMORY_BARRIER(name, order_before_cond)                          \
952         void __kcsan_##name(void)                                               \
953         {                                                                       \
954                 struct kcsan_scoped_access *sa = get_reorder_access(get_ctx()); \
955                 if (!sa)                                                        \
956                         return;                                                 \
957                 if (order_before_cond)                                          \
958                         sa->size = 0;                                           \
959         }                                                                       \
960         EXPORT_SYMBOL(__kcsan_##name)
961
962 DEFINE_MEMORY_BARRIER(mb, true);
963 DEFINE_MEMORY_BARRIER(wmb, sa->type & (KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND));
964 DEFINE_MEMORY_BARRIER(rmb, !(sa->type & KCSAN_ACCESS_WRITE) || (sa->type & KCSAN_ACCESS_COMPOUND));
965 DEFINE_MEMORY_BARRIER(release, true);
966
967 /*
968  * KCSAN uses the same instrumentation that is emitted by supported compilers
969  * for ThreadSanitizer (TSAN).
970  *
971  * When enabled, the compiler emits instrumentation calls (the functions
972  * prefixed with "__tsan" below) for all loads and stores that it generated;
973  * inline asm is not instrumented.
974  *
975  * Note that, not all supported compiler versions distinguish aligned/unaligned
976  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
977  * version to the generic version, which can handle both.
978  */
979
980 #define DEFINE_TSAN_READ_WRITE(size)                                           \
981         void __tsan_read##size(void *ptr);                                     \
982         void __tsan_read##size(void *ptr)                                      \
983         {                                                                      \
984                 check_access(ptr, size, 0, _RET_IP_);                          \
985         }                                                                      \
986         EXPORT_SYMBOL(__tsan_read##size);                                      \
987         void __tsan_unaligned_read##size(void *ptr)                            \
988                 __alias(__tsan_read##size);                                    \
989         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
990         void __tsan_write##size(void *ptr);                                    \
991         void __tsan_write##size(void *ptr)                                     \
992         {                                                                      \
993                 check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);         \
994         }                                                                      \
995         EXPORT_SYMBOL(__tsan_write##size);                                     \
996         void __tsan_unaligned_write##size(void *ptr)                           \
997                 __alias(__tsan_write##size);                                   \
998         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
999         void __tsan_read_write##size(void *ptr);                               \
1000         void __tsan_read_write##size(void *ptr)                                \
1001         {                                                                      \
1002                 check_access(ptr, size,                                        \
1003                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE,       \
1004                              _RET_IP_);                                        \
1005         }                                                                      \
1006         EXPORT_SYMBOL(__tsan_read_write##size);                                \
1007         void __tsan_unaligned_read_write##size(void *ptr)                      \
1008                 __alias(__tsan_read_write##size);                              \
1009         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
1010
1011 DEFINE_TSAN_READ_WRITE(1);
1012 DEFINE_TSAN_READ_WRITE(2);
1013 DEFINE_TSAN_READ_WRITE(4);
1014 DEFINE_TSAN_READ_WRITE(8);
1015 DEFINE_TSAN_READ_WRITE(16);
1016
1017 void __tsan_read_range(void *ptr, size_t size);
1018 void __tsan_read_range(void *ptr, size_t size)
1019 {
1020         check_access(ptr, size, 0, _RET_IP_);
1021 }
1022 EXPORT_SYMBOL(__tsan_read_range);
1023
1024 void __tsan_write_range(void *ptr, size_t size);
1025 void __tsan_write_range(void *ptr, size_t size)
1026 {
1027         check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);
1028 }
1029 EXPORT_SYMBOL(__tsan_write_range);
1030
1031 /*
1032  * Use of explicit volatile is generally disallowed [1], however, volatile is
1033  * still used in various concurrent context, whether in low-level
1034  * synchronization primitives or for legacy reasons.
1035  * [1] https://lwn.net/Articles/233479/
1036  *
1037  * We only consider volatile accesses atomic if they are aligned and would pass
1038  * the size-check of compiletime_assert_rwonce_type().
1039  */
1040 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
1041         void __tsan_volatile_read##size(void *ptr);                            \
1042         void __tsan_volatile_read##size(void *ptr)                             \
1043         {                                                                      \
1044                 const bool is_atomic = size <= sizeof(long long) &&            \
1045                                        IS_ALIGNED((unsigned long)ptr, size);   \
1046                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1047                         return;                                                \
1048                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0,   \
1049                              _RET_IP_);                                        \
1050         }                                                                      \
1051         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
1052         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
1053                 __alias(__tsan_volatile_read##size);                           \
1054         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
1055         void __tsan_volatile_write##size(void *ptr);                           \
1056         void __tsan_volatile_write##size(void *ptr)                            \
1057         {                                                                      \
1058                 const bool is_atomic = size <= sizeof(long long) &&            \
1059                                        IS_ALIGNED((unsigned long)ptr, size);   \
1060                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1061                         return;                                                \
1062                 check_access(ptr, size,                                        \
1063                              KCSAN_ACCESS_WRITE |                              \
1064                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0),    \
1065                              _RET_IP_);                                        \
1066         }                                                                      \
1067         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
1068         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
1069                 __alias(__tsan_volatile_write##size);                          \
1070         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
1071
1072 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
1073 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
1074 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
1075 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
1076 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
1077
1078 /*
1079  * Function entry and exit are used to determine the validty of reorder_access.
1080  * Reordering of the access ends at the end of the function scope where the
1081  * access happened. This is done for two reasons:
1082  *
1083  *      1. Artificially limits the scope where missing barriers are detected.
1084  *         This minimizes false positives due to uninstrumented functions that
1085  *         contain the required barriers but were missed.
1086  *
1087  *      2. Simplifies generating the stack trace of the access.
1088  */
1089 void __tsan_func_entry(void *call_pc);
1090 noinline void __tsan_func_entry(void *call_pc)
1091 {
1092         if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1093                 return;
1094
1095         add_kcsan_stack_depth(1);
1096 }
1097 EXPORT_SYMBOL(__tsan_func_entry);
1098
1099 void __tsan_func_exit(void);
1100 noinline void __tsan_func_exit(void)
1101 {
1102         struct kcsan_scoped_access *reorder_access;
1103
1104         if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1105                 return;
1106
1107         reorder_access = get_reorder_access(get_ctx());
1108         if (!reorder_access)
1109                 goto out;
1110
1111         if (get_kcsan_stack_depth() <= reorder_access->stack_depth) {
1112                 /*
1113                  * Access check to catch cases where write without a barrier
1114                  * (supposed release) was last access in function: because
1115                  * instrumentation is inserted before the real access, a data
1116                  * race due to the write giving up a c-s would only be caught if
1117                  * we do the conflicting access after.
1118                  */
1119                 check_access(reorder_access->ptr, reorder_access->size,
1120                              reorder_access->type, reorder_access->ip);
1121                 reorder_access->size = 0;
1122                 reorder_access->stack_depth = INT_MIN;
1123         }
1124 out:
1125         add_kcsan_stack_depth(-1);
1126 }
1127 EXPORT_SYMBOL(__tsan_func_exit);
1128
1129 void __tsan_init(void);
1130 void __tsan_init(void)
1131 {
1132 }
1133 EXPORT_SYMBOL(__tsan_init);
1134
1135 /*
1136  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
1137  *
1138  * Normal kernel code _should not_ be using them directly, but some
1139  * architectures may implement some or all atomics using the compilers'
1140  * builtins.
1141  *
1142  * Note: If an architecture decides to fully implement atomics using the
1143  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
1144  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
1145  * atomic-instrumented) is no longer necessary.
1146  *
1147  * TSAN instrumentation replaces atomic accesses with calls to any of the below
1148  * functions, whose job is to also execute the operation itself.
1149  */
1150
1151 static __always_inline void kcsan_atomic_builtin_memorder(int memorder)
1152 {
1153         if (memorder == __ATOMIC_RELEASE ||
1154             memorder == __ATOMIC_SEQ_CST ||
1155             memorder == __ATOMIC_ACQ_REL)
1156                 __kcsan_release();
1157 }
1158
1159 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
1160         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
1161         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
1162         {                                                                                          \
1163                 kcsan_atomic_builtin_memorder(memorder);                                           \
1164                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1165                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_);    \
1166                 }                                                                                  \
1167                 return __atomic_load_n(ptr, memorder);                                             \
1168         }                                                                                          \
1169         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
1170         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
1171         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
1172         {                                                                                          \
1173                 kcsan_atomic_builtin_memorder(memorder);                                           \
1174                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1175                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1176                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_);          \
1177                 }                                                                                  \
1178                 __atomic_store_n(ptr, v, memorder);                                                \
1179         }                                                                                          \
1180         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
1181
1182 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
1183         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
1184         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
1185         {                                                                                          \
1186                 kcsan_atomic_builtin_memorder(memorder);                                           \
1187                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1188                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1189                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1190                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1191                 }                                                                                  \
1192                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
1193         }                                                                                          \
1194         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
1195
1196 /*
1197  * Note: CAS operations are always classified as write, even in case they
1198  * fail. We cannot perform check_access() after a write, as it might lead to
1199  * false positives, in cases such as:
1200  *
1201  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
1202  *
1203  *      T1: if (__atomic_load_n(&p->flag, ...)) {
1204  *              modify *p;
1205  *              p->flag = 0;
1206  *          }
1207  *
1208  * The only downside is that, if there are 3 threads, with one CAS that
1209  * succeeds, another CAS that fails, and an unmarked racing operation, we may
1210  * point at the wrong CAS as the source of the race. However, if we assume that
1211  * all CAS can succeed in some other execution, the data race is still valid.
1212  */
1213 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1214         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1215                                                               u##bits val, int mo, int fail_mo);   \
1216         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1217                                                               u##bits val, int mo, int fail_mo)    \
1218         {                                                                                          \
1219                 kcsan_atomic_builtin_memorder(mo);                                                 \
1220                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1221                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1222                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1223                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1224                 }                                                                                  \
1225                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1226         }                                                                                          \
1227         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1228
1229 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1230         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1231                                                            int mo, int fail_mo);                   \
1232         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1233                                                            int mo, int fail_mo)                    \
1234         {                                                                                          \
1235                 kcsan_atomic_builtin_memorder(mo);                                                 \
1236                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1237                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1238                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1239                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1240                 }                                                                                  \
1241                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1242                 return exp;                                                                        \
1243         }                                                                                          \
1244         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1245
1246 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1247         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1248         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1249         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1250         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1251         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1252         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1253         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1254         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1255         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1256         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1257         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1258
1259 DEFINE_TSAN_ATOMIC_OPS(8);
1260 DEFINE_TSAN_ATOMIC_OPS(16);
1261 DEFINE_TSAN_ATOMIC_OPS(32);
1262 DEFINE_TSAN_ATOMIC_OPS(64);
1263
1264 void __tsan_atomic_thread_fence(int memorder);
1265 void __tsan_atomic_thread_fence(int memorder)
1266 {
1267         kcsan_atomic_builtin_memorder(memorder);
1268         __atomic_thread_fence(memorder);
1269 }
1270 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1271
1272 /*
1273  * In instrumented files, we emit instrumentation for barriers by mapping the
1274  * kernel barriers to an __atomic_signal_fence(), which is interpreted specially
1275  * and otherwise has no relation to a real __atomic_signal_fence(). No known
1276  * kernel code uses __atomic_signal_fence().
1277  *
1278  * Since fsanitize=thread instrumentation handles __atomic_signal_fence(), which
1279  * are turned into calls to __tsan_atomic_signal_fence(), such instrumentation
1280  * can be disabled via the __no_kcsan function attribute (vs. an explicit call
1281  * which could not). When __no_kcsan is requested, __atomic_signal_fence()
1282  * generates no code.
1283  *
1284  * Note: The result of using __atomic_signal_fence() with KCSAN enabled is
1285  * potentially limiting the compiler's ability to reorder operations; however,
1286  * if barriers were instrumented with explicit calls (without LTO), the compiler
1287  * couldn't optimize much anyway. The result of a hypothetical architecture
1288  * using __atomic_signal_fence() in normal code would be KCSAN false negatives.
1289  */
1290 void __tsan_atomic_signal_fence(int memorder);
1291 noinline void __tsan_atomic_signal_fence(int memorder)
1292 {
1293         switch (memorder) {
1294         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb:
1295                 __kcsan_mb();
1296                 break;
1297         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb:
1298                 __kcsan_wmb();
1299                 break;
1300         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb:
1301                 __kcsan_rmb();
1302                 break;
1303         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_release:
1304                 __kcsan_release();
1305                 break;
1306         default:
1307                 break;
1308         }
1309 }
1310 EXPORT_SYMBOL(__tsan_atomic_signal_fence);