Merge tag 'nfsd-6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[platform/kernel/linux-rpi.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kcsan: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/minmax.h>
18 #include <linux/moduleparam.h>
19 #include <linux/percpu.h>
20 #include <linux/preempt.h>
21 #include <linux/sched.h>
22 #include <linux/string.h>
23 #include <linux/uaccess.h>
24
25 #include "encoding.h"
26 #include "kcsan.h"
27 #include "permissive.h"
28
29 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
30 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
31 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
32 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
33 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
34
35 #ifdef MODULE_PARAM_PREFIX
36 #undef MODULE_PARAM_PREFIX
37 #endif
38 #define MODULE_PARAM_PREFIX "kcsan."
39 module_param_named(early_enable, kcsan_early_enable, bool, 0);
40 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
41 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
42 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
43 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
44
45 #ifdef CONFIG_KCSAN_WEAK_MEMORY
46 static bool kcsan_weak_memory = true;
47 module_param_named(weak_memory, kcsan_weak_memory, bool, 0644);
48 #else
49 #define kcsan_weak_memory false
50 #endif
51
52 bool kcsan_enabled;
53
54 /* Per-CPU kcsan_ctx for interrupts */
55 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
56         .scoped_accesses        = {LIST_POISON1, NULL},
57 };
58
59 /*
60  * Helper macros to index into adjacent slots, starting from address slot
61  * itself, followed by the right and left slots.
62  *
63  * The purpose is 2-fold:
64  *
65  *      1. if during insertion the address slot is already occupied, check if
66  *         any adjacent slots are free;
67  *      2. accesses that straddle a slot boundary due to size that exceeds a
68  *         slot's range may check adjacent slots if any watchpoint matches.
69  *
70  * Note that accesses with very large size may still miss a watchpoint; however,
71  * given this should be rare, this is a reasonable trade-off to make, since this
72  * will avoid:
73  *
74  *      1. excessive contention between watchpoint checks and setup;
75  *      2. larger number of simultaneous watchpoints without sacrificing
76  *         performance.
77  *
78  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
79  *
80  *   slot=0:  [ 1,  2,  0]
81  *   slot=9:  [10, 11,  9]
82  *   slot=63: [64, 65, 63]
83  */
84 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
85
86 /*
87  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
88  * slot (middle) is fine if we assume that races occur rarely. The set of
89  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
90  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
91  */
92 #define SLOT_IDX_FAST(slot, i) (slot + i)
93
94 /*
95  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
96  * able to safely update and access a watchpoint without introducing locking
97  * overhead, we encode each watchpoint as a single atomic long. The initial
98  * zero-initialized state matches INVALID_WATCHPOINT.
99  *
100  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
101  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
102  */
103 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
104
105 /*
106  * Instructions to skip watching counter, used in should_watch(). We use a
107  * per-CPU counter to avoid excessive contention.
108  */
109 static DEFINE_PER_CPU(long, kcsan_skip);
110
111 /* For kcsan_prandom_u32_max(). */
112 static DEFINE_PER_CPU(u32, kcsan_rand_state);
113
114 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
115                                                       size_t size,
116                                                       bool expect_write,
117                                                       long *encoded_watchpoint)
118 {
119         const int slot = watchpoint_slot(addr);
120         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
121         atomic_long_t *watchpoint;
122         unsigned long wp_addr_masked;
123         size_t wp_size;
124         bool is_write;
125         int i;
126
127         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
128
129         for (i = 0; i < NUM_SLOTS; ++i) {
130                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
131                 *encoded_watchpoint = atomic_long_read(watchpoint);
132                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
133                                        &wp_size, &is_write))
134                         continue;
135
136                 if (expect_write && !is_write)
137                         continue;
138
139                 /* Check if the watchpoint matches the access. */
140                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
141                         return watchpoint;
142         }
143
144         return NULL;
145 }
146
147 static inline atomic_long_t *
148 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
149 {
150         const int slot = watchpoint_slot(addr);
151         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
152         atomic_long_t *watchpoint;
153         int i;
154
155         /* Check slot index logic, ensuring we stay within array bounds. */
156         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
157         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
158         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
159         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
160
161         for (i = 0; i < NUM_SLOTS; ++i) {
162                 long expect_val = INVALID_WATCHPOINT;
163
164                 /* Try to acquire this slot. */
165                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
166                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
167                         return watchpoint;
168         }
169
170         return NULL;
171 }
172
173 /*
174  * Return true if watchpoint was successfully consumed, false otherwise.
175  *
176  * This may return false if:
177  *
178  *      1. another thread already consumed the watchpoint;
179  *      2. the thread that set up the watchpoint already removed it;
180  *      3. the watchpoint was removed and then re-used.
181  */
182 static __always_inline bool
183 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
184 {
185         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
186 }
187
188 /* Return true if watchpoint was not touched, false if already consumed. */
189 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
190 {
191         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
192 }
193
194 /* Remove the watchpoint -- its slot may be reused after. */
195 static inline void remove_watchpoint(atomic_long_t *watchpoint)
196 {
197         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
198 }
199
200 static __always_inline struct kcsan_ctx *get_ctx(void)
201 {
202         /*
203          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
204          * also result in calls that generate warnings in uaccess regions.
205          */
206         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
207 }
208
209 static __always_inline void
210 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip);
211
212 /* Check scoped accesses; never inline because this is a slow-path! */
213 static noinline void kcsan_check_scoped_accesses(void)
214 {
215         struct kcsan_ctx *ctx = get_ctx();
216         struct kcsan_scoped_access *scoped_access;
217
218         if (ctx->disable_scoped)
219                 return;
220
221         ctx->disable_scoped++;
222         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) {
223                 check_access(scoped_access->ptr, scoped_access->size,
224                              scoped_access->type, scoped_access->ip);
225         }
226         ctx->disable_scoped--;
227 }
228
229 /* Rules for generic atomic accesses. Called from fast-path. */
230 static __always_inline bool
231 is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
232 {
233         if (type & KCSAN_ACCESS_ATOMIC)
234                 return true;
235
236         /*
237          * Unless explicitly declared atomic, never consider an assertion access
238          * as atomic. This allows using them also in atomic regions, such as
239          * seqlocks, without implicitly changing their semantics.
240          */
241         if (type & KCSAN_ACCESS_ASSERT)
242                 return false;
243
244         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
245             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
246             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
247                 return true; /* Assume aligned writes up to word size are atomic. */
248
249         if (ctx->atomic_next > 0) {
250                 /*
251                  * Because we do not have separate contexts for nested
252                  * interrupts, in case atomic_next is set, we simply assume that
253                  * the outer interrupt set atomic_next. In the worst case, we
254                  * will conservatively consider operations as atomic. This is a
255                  * reasonable trade-off to make, since this case should be
256                  * extremely rare; however, even if extremely rare, it could
257                  * lead to false positives otherwise.
258                  */
259                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
260                         --ctx->atomic_next; /* in task, or outer interrupt */
261                 return true;
262         }
263
264         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
265 }
266
267 static __always_inline bool
268 should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
269 {
270         /*
271          * Never set up watchpoints when memory operations are atomic.
272          *
273          * Need to check this first, before kcsan_skip check below: (1) atomics
274          * should not count towards skipped instructions, and (2) to actually
275          * decrement kcsan_atomic_next for consecutive instruction stream.
276          */
277         if (is_atomic(ctx, ptr, size, type))
278                 return false;
279
280         if (this_cpu_dec_return(kcsan_skip) >= 0)
281                 return false;
282
283         /*
284          * NOTE: If we get here, kcsan_skip must always be reset in slow path
285          * via reset_kcsan_skip() to avoid underflow.
286          */
287
288         /* this operation should be watched */
289         return true;
290 }
291
292 /*
293  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
294  * congruential generator, using constants from "Numerical Recipes".
295  */
296 static u32 kcsan_prandom_u32_max(u32 ep_ro)
297 {
298         u32 state = this_cpu_read(kcsan_rand_state);
299
300         state = 1664525 * state + 1013904223;
301         this_cpu_write(kcsan_rand_state, state);
302
303         return state % ep_ro;
304 }
305
306 static inline void reset_kcsan_skip(void)
307 {
308         long skip_count = kcsan_skip_watch -
309                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
310                                    kcsan_prandom_u32_max(kcsan_skip_watch) :
311                                    0);
312         this_cpu_write(kcsan_skip, skip_count);
313 }
314
315 static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
316 {
317         return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
318 }
319
320 /* Introduce delay depending on context and configuration. */
321 static void delay_access(int type)
322 {
323         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
324         /* For certain access types, skew the random delay to be longer. */
325         unsigned int skew_delay_order =
326                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
327
328         delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
329                                kcsan_prandom_u32_max(delay >> skew_delay_order) :
330                                0;
331         udelay(delay);
332 }
333
334 /*
335  * Reads the instrumented memory for value change detection; value change
336  * detection is currently done for accesses up to a size of 8 bytes.
337  */
338 static __always_inline u64 read_instrumented_memory(const volatile void *ptr, size_t size)
339 {
340         /*
341          * In the below we don't necessarily need the read of the location to
342          * be atomic, and we don't use READ_ONCE(), since all we need for race
343          * detection is to observe 2 different values.
344          *
345          * Furthermore, on certain architectures (such as arm64), READ_ONCE()
346          * may turn into more complex instructions than a plain load that cannot
347          * do unaligned accesses.
348          */
349         switch (size) {
350         case 1:  return *(const volatile u8 *)ptr;
351         case 2:  return *(const volatile u16 *)ptr;
352         case 4:  return *(const volatile u32 *)ptr;
353         case 8:  return *(const volatile u64 *)ptr;
354         default: return 0; /* Ignore; we do not diff the values. */
355         }
356 }
357
358 void kcsan_save_irqtrace(struct task_struct *task)
359 {
360 #ifdef CONFIG_TRACE_IRQFLAGS
361         task->kcsan_save_irqtrace = task->irqtrace;
362 #endif
363 }
364
365 void kcsan_restore_irqtrace(struct task_struct *task)
366 {
367 #ifdef CONFIG_TRACE_IRQFLAGS
368         task->irqtrace = task->kcsan_save_irqtrace;
369 #endif
370 }
371
372 static __always_inline int get_kcsan_stack_depth(void)
373 {
374 #ifdef CONFIG_KCSAN_WEAK_MEMORY
375         return current->kcsan_stack_depth;
376 #else
377         BUILD_BUG();
378         return 0;
379 #endif
380 }
381
382 static __always_inline void add_kcsan_stack_depth(int val)
383 {
384 #ifdef CONFIG_KCSAN_WEAK_MEMORY
385         current->kcsan_stack_depth += val;
386 #else
387         BUILD_BUG();
388 #endif
389 }
390
391 static __always_inline struct kcsan_scoped_access *get_reorder_access(struct kcsan_ctx *ctx)
392 {
393 #ifdef CONFIG_KCSAN_WEAK_MEMORY
394         return ctx->disable_scoped ? NULL : &ctx->reorder_access;
395 #else
396         return NULL;
397 #endif
398 }
399
400 static __always_inline bool
401 find_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
402                     int type, unsigned long ip)
403 {
404         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
405
406         if (!reorder_access)
407                 return false;
408
409         /*
410          * Note: If accesses are repeated while reorder_access is identical,
411          * never matches the new access, because !(type & KCSAN_ACCESS_SCOPED).
412          */
413         return reorder_access->ptr == ptr && reorder_access->size == size &&
414                reorder_access->type == type && reorder_access->ip == ip;
415 }
416
417 static inline void
418 set_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
419                    int type, unsigned long ip)
420 {
421         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
422
423         if (!reorder_access || !kcsan_weak_memory)
424                 return;
425
426         /*
427          * To avoid nested interrupts or scheduler (which share kcsan_ctx)
428          * reading an inconsistent reorder_access, ensure that the below has
429          * exclusive access to reorder_access by disallowing concurrent use.
430          */
431         ctx->disable_scoped++;
432         barrier();
433         reorder_access->ptr             = ptr;
434         reorder_access->size            = size;
435         reorder_access->type            = type | KCSAN_ACCESS_SCOPED;
436         reorder_access->ip              = ip;
437         reorder_access->stack_depth     = get_kcsan_stack_depth();
438         barrier();
439         ctx->disable_scoped--;
440 }
441
442 /*
443  * Pull everything together: check_access() below contains the performance
444  * critical operations; the fast-path (including check_access) functions should
445  * all be inlinable by the instrumentation functions.
446  *
447  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
448  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
449  * be filtered from the stacktrace, as well as give them unique names for the
450  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
451  * since they do not access any user memory, but instrumentation is still
452  * emitted in UACCESS regions.
453  */
454
455 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
456                                             size_t size,
457                                             int type,
458                                             unsigned long ip,
459                                             atomic_long_t *watchpoint,
460                                             long encoded_watchpoint)
461 {
462         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
463         struct kcsan_ctx *ctx = get_ctx();
464         unsigned long flags;
465         bool consumed;
466
467         /*
468          * We know a watchpoint exists. Let's try to keep the race-window
469          * between here and finally consuming the watchpoint below as small as
470          * possible -- avoid unneccessarily complex code until consumed.
471          */
472
473         if (!kcsan_is_enabled(ctx))
474                 return;
475
476         /*
477          * The access_mask check relies on value-change comparison. To avoid
478          * reporting a race where e.g. the writer set up the watchpoint, but the
479          * reader has access_mask!=0, we have to ignore the found watchpoint.
480          *
481          * reorder_access is never created from an access with access_mask set.
482          */
483         if (ctx->access_mask && !find_reorder_access(ctx, ptr, size, type, ip))
484                 return;
485
486         /*
487          * If the other thread does not want to ignore the access, and there was
488          * a value change as a result of this thread's operation, we will still
489          * generate a report of unknown origin.
490          *
491          * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
492          */
493         if (!is_assert && kcsan_ignore_address(ptr))
494                 return;
495
496         /*
497          * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
498          * avoid erroneously triggering reports if the context is disabled.
499          */
500         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
501
502         /* keep this after try_consume_watchpoint */
503         flags = user_access_save();
504
505         if (consumed) {
506                 kcsan_save_irqtrace(current);
507                 kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints);
508                 kcsan_restore_irqtrace(current);
509         } else {
510                 /*
511                  * The other thread may not print any diagnostics, as it has
512                  * already removed the watchpoint, or another thread consumed
513                  * the watchpoint before this thread.
514                  */
515                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
516         }
517
518         if (is_assert)
519                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
520         else
521                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
522
523         user_access_restore(flags);
524 }
525
526 static noinline void
527 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip)
528 {
529         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
530         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
531         atomic_long_t *watchpoint;
532         u64 old, new, diff;
533         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
534         bool interrupt_watcher = kcsan_interrupt_watcher;
535         unsigned long ua_flags = user_access_save();
536         struct kcsan_ctx *ctx = get_ctx();
537         unsigned long access_mask = ctx->access_mask;
538         unsigned long irq_flags = 0;
539         bool is_reorder_access;
540
541         /*
542          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
543          * should_watch().
544          */
545         reset_kcsan_skip();
546
547         if (!kcsan_is_enabled(ctx))
548                 goto out;
549
550         /*
551          * Check to-ignore addresses after kcsan_is_enabled(), as we may access
552          * memory that is not yet initialized during early boot.
553          */
554         if (!is_assert && kcsan_ignore_address(ptr))
555                 goto out;
556
557         if (!check_encodable((unsigned long)ptr, size)) {
558                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
559                 goto out;
560         }
561
562         /*
563          * The local CPU cannot observe reordering of its own accesses, and
564          * therefore we need to take care of 2 cases to avoid false positives:
565          *
566          *      1. Races of the reordered access with interrupts. To avoid, if
567          *         the current access is reorder_access, disable interrupts.
568          *      2. Avoid races of scoped accesses from nested interrupts (below).
569          */
570         is_reorder_access = find_reorder_access(ctx, ptr, size, type, ip);
571         if (is_reorder_access)
572                 interrupt_watcher = false;
573         /*
574          * Avoid races of scoped accesses from nested interrupts (or scheduler).
575          * Assume setting up a watchpoint for a non-scoped (normal) access that
576          * also conflicts with a current scoped access. In a nested interrupt,
577          * which shares the context, it would check a conflicting scoped access.
578          * To avoid, disable scoped access checking.
579          */
580         ctx->disable_scoped++;
581
582         /*
583          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
584          * runtime is entered for every memory access, and potentially useful
585          * information is lost if dirtied by KCSAN.
586          */
587         kcsan_save_irqtrace(current);
588         if (!interrupt_watcher)
589                 local_irq_save(irq_flags);
590
591         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
592         if (watchpoint == NULL) {
593                 /*
594                  * Out of capacity: the size of 'watchpoints', and the frequency
595                  * with which should_watch() returns true should be tweaked so
596                  * that this case happens very rarely.
597                  */
598                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
599                 goto out_unlock;
600         }
601
602         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
603         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
604
605         /*
606          * Read the current value, to later check and infer a race if the data
607          * was modified via a non-instrumented access, e.g. from a device.
608          */
609         old = is_reorder_access ? 0 : read_instrumented_memory(ptr, size);
610
611         /*
612          * Delay this thread, to increase probability of observing a racy
613          * conflicting access.
614          */
615         delay_access(type);
616
617         /*
618          * Re-read value, and check if it is as expected; if not, we infer a
619          * racy access.
620          */
621         if (!is_reorder_access) {
622                 new = read_instrumented_memory(ptr, size);
623         } else {
624                 /*
625                  * Reordered accesses cannot be used for value change detection,
626                  * because the memory location may no longer be accessible and
627                  * could result in a fault.
628                  */
629                 new = 0;
630                 access_mask = 0;
631         }
632
633         diff = old ^ new;
634         if (access_mask)
635                 diff &= access_mask;
636
637         /*
638          * Check if we observed a value change.
639          *
640          * Also check if the data race should be ignored (the rules depend on
641          * non-zero diff); if it is to be ignored, the below rules for
642          * KCSAN_VALUE_CHANGE_MAYBE apply.
643          */
644         if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
645                 value_change = KCSAN_VALUE_CHANGE_TRUE;
646
647         /* Check if this access raced with another. */
648         if (!consume_watchpoint(watchpoint)) {
649                 /*
650                  * Depending on the access type, map a value_change of MAYBE to
651                  * TRUE (always report) or FALSE (never report).
652                  */
653                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
654                         if (access_mask != 0) {
655                                 /*
656                                  * For access with access_mask, we require a
657                                  * value-change, as it is likely that races on
658                                  * ~access_mask bits are expected.
659                                  */
660                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
661                         } else if (size > 8 || is_assert) {
662                                 /* Always assume a value-change. */
663                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
664                         }
665                 }
666
667                 /*
668                  * No need to increment 'data_races' counter, as the racing
669                  * thread already did.
670                  *
671                  * Count 'assert_failures' for each failed ASSERT access,
672                  * therefore both this thread and the racing thread may
673                  * increment this counter.
674                  */
675                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
676                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
677
678                 kcsan_report_known_origin(ptr, size, type, ip,
679                                           value_change, watchpoint - watchpoints,
680                                           old, new, access_mask);
681         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
682                 /* Inferring a race, since the value should not have changed. */
683
684                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
685                 if (is_assert)
686                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
687
688                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) {
689                         kcsan_report_unknown_origin(ptr, size, type, ip,
690                                                     old, new, access_mask);
691                 }
692         }
693
694         /*
695          * Remove watchpoint; must be after reporting, since the slot may be
696          * reused after this point.
697          */
698         remove_watchpoint(watchpoint);
699         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
700
701 out_unlock:
702         if (!interrupt_watcher)
703                 local_irq_restore(irq_flags);
704         kcsan_restore_irqtrace(current);
705         ctx->disable_scoped--;
706
707         /*
708          * Reordered accesses cannot be used for value change detection,
709          * therefore never consider for reordering if access_mask is set.
710          * ASSERT_EXCLUSIVE are not real accesses, ignore them as well.
711          */
712         if (!access_mask && !is_assert)
713                 set_reorder_access(ctx, ptr, size, type, ip);
714 out:
715         user_access_restore(ua_flags);
716 }
717
718 static __always_inline void
719 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip)
720 {
721         atomic_long_t *watchpoint;
722         long encoded_watchpoint;
723
724         /*
725          * Do nothing for 0 sized check; this comparison will be optimized out
726          * for constant sized instrumentation (__tsan_{read,write}N).
727          */
728         if (unlikely(size == 0))
729                 return;
730
731 again:
732         /*
733          * Avoid user_access_save in fast-path: find_watchpoint is safe without
734          * user_access_save, as the address that ptr points to is only used to
735          * check if a watchpoint exists; ptr is never dereferenced.
736          */
737         watchpoint = find_watchpoint((unsigned long)ptr, size,
738                                      !(type & KCSAN_ACCESS_WRITE),
739                                      &encoded_watchpoint);
740         /*
741          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
742          * slow-path, as long as no state changes that cause a race to be
743          * detected and reported have occurred until kcsan_is_enabled() is
744          * checked.
745          */
746
747         if (unlikely(watchpoint != NULL))
748                 kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint);
749         else {
750                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
751
752                 if (unlikely(should_watch(ctx, ptr, size, type))) {
753                         kcsan_setup_watchpoint(ptr, size, type, ip);
754                         return;
755                 }
756
757                 if (!(type & KCSAN_ACCESS_SCOPED)) {
758                         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
759
760                         if (reorder_access) {
761                                 /*
762                                  * reorder_access check: simulates reordering of
763                                  * the access after subsequent operations.
764                                  */
765                                 ptr = reorder_access->ptr;
766                                 type = reorder_access->type;
767                                 ip = reorder_access->ip;
768                                 /*
769                                  * Upon a nested interrupt, this context's
770                                  * reorder_access can be modified (shared ctx).
771                                  * We know that upon return, reorder_access is
772                                  * always invalidated by setting size to 0 via
773                                  * __tsan_func_exit(). Therefore we must read
774                                  * and check size after the other fields.
775                                  */
776                                 barrier();
777                                 size = READ_ONCE(reorder_access->size);
778                                 if (size)
779                                         goto again;
780                         }
781                 }
782
783                 /*
784                  * Always checked last, right before returning from runtime;
785                  * if reorder_access is valid, checked after it was checked.
786                  */
787                 if (unlikely(ctx->scoped_accesses.prev))
788                         kcsan_check_scoped_accesses();
789         }
790 }
791
792 /* === Public interface ===================================================== */
793
794 void __init kcsan_init(void)
795 {
796         int cpu;
797
798         BUG_ON(!in_task());
799
800         for_each_possible_cpu(cpu)
801                 per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
802
803         /*
804          * We are in the init task, and no other tasks should be running;
805          * WRITE_ONCE without memory barrier is sufficient.
806          */
807         if (kcsan_early_enable) {
808                 pr_info("enabled early\n");
809                 WRITE_ONCE(kcsan_enabled, true);
810         }
811
812         if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
813             IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
814             IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
815             IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
816                 pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
817         } else {
818                 pr_info("strict mode configured\n");
819         }
820 }
821
822 /* === Exported interface =================================================== */
823
824 void kcsan_disable_current(void)
825 {
826         ++get_ctx()->disable_count;
827 }
828 EXPORT_SYMBOL(kcsan_disable_current);
829
830 void kcsan_enable_current(void)
831 {
832         if (get_ctx()->disable_count-- == 0) {
833                 /*
834                  * Warn if kcsan_enable_current() calls are unbalanced with
835                  * kcsan_disable_current() calls, which causes disable_count to
836                  * become negative and should not happen.
837                  */
838                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
839                 kcsan_disable_current(); /* disable to generate warning */
840                 WARN(1, "Unbalanced %s()", __func__);
841                 kcsan_enable_current();
842         }
843 }
844 EXPORT_SYMBOL(kcsan_enable_current);
845
846 void kcsan_enable_current_nowarn(void)
847 {
848         if (get_ctx()->disable_count-- == 0)
849                 kcsan_disable_current();
850 }
851 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
852
853 void kcsan_nestable_atomic_begin(void)
854 {
855         /*
856          * Do *not* check and warn if we are in a flat atomic region: nestable
857          * and flat atomic regions are independent from each other.
858          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
859          * comments.
860          */
861
862         ++get_ctx()->atomic_nest_count;
863 }
864 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
865
866 void kcsan_nestable_atomic_end(void)
867 {
868         if (get_ctx()->atomic_nest_count-- == 0) {
869                 /*
870                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
871                  * kcsan_nestable_atomic_begin() calls, which causes
872                  * atomic_nest_count to become negative and should not happen.
873                  */
874                 kcsan_nestable_atomic_begin(); /* restore to 0 */
875                 kcsan_disable_current(); /* disable to generate warning */
876                 WARN(1, "Unbalanced %s()", __func__);
877                 kcsan_enable_current();
878         }
879 }
880 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
881
882 void kcsan_flat_atomic_begin(void)
883 {
884         get_ctx()->in_flat_atomic = true;
885 }
886 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
887
888 void kcsan_flat_atomic_end(void)
889 {
890         get_ctx()->in_flat_atomic = false;
891 }
892 EXPORT_SYMBOL(kcsan_flat_atomic_end);
893
894 void kcsan_atomic_next(int n)
895 {
896         get_ctx()->atomic_next = n;
897 }
898 EXPORT_SYMBOL(kcsan_atomic_next);
899
900 void kcsan_set_access_mask(unsigned long mask)
901 {
902         get_ctx()->access_mask = mask;
903 }
904 EXPORT_SYMBOL(kcsan_set_access_mask);
905
906 struct kcsan_scoped_access *
907 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
908                           struct kcsan_scoped_access *sa)
909 {
910         struct kcsan_ctx *ctx = get_ctx();
911
912         check_access(ptr, size, type, _RET_IP_);
913
914         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
915
916         INIT_LIST_HEAD(&sa->list);
917         sa->ptr = ptr;
918         sa->size = size;
919         sa->type = type;
920         sa->ip = _RET_IP_;
921
922         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
923                 INIT_LIST_HEAD(&ctx->scoped_accesses);
924         list_add(&sa->list, &ctx->scoped_accesses);
925
926         ctx->disable_count--;
927         return sa;
928 }
929 EXPORT_SYMBOL(kcsan_begin_scoped_access);
930
931 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
932 {
933         struct kcsan_ctx *ctx = get_ctx();
934
935         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
936                 return;
937
938         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
939
940         list_del(&sa->list);
941         if (list_empty(&ctx->scoped_accesses))
942                 /*
943                  * Ensure we do not enter kcsan_check_scoped_accesses()
944                  * slow-path if unnecessary, and avoids requiring list_empty()
945                  * in the fast-path (to avoid a READ_ONCE() and potential
946                  * uaccess warning).
947                  */
948                 ctx->scoped_accesses.prev = NULL;
949
950         ctx->disable_count--;
951
952         check_access(sa->ptr, sa->size, sa->type, sa->ip);
953 }
954 EXPORT_SYMBOL(kcsan_end_scoped_access);
955
956 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
957 {
958         check_access(ptr, size, type, _RET_IP_);
959 }
960 EXPORT_SYMBOL(__kcsan_check_access);
961
962 #define DEFINE_MEMORY_BARRIER(name, order_before_cond)                          \
963         void __kcsan_##name(void)                                               \
964         {                                                                       \
965                 struct kcsan_scoped_access *sa = get_reorder_access(get_ctx()); \
966                 if (!sa)                                                        \
967                         return;                                                 \
968                 if (order_before_cond)                                          \
969                         sa->size = 0;                                           \
970         }                                                                       \
971         EXPORT_SYMBOL(__kcsan_##name)
972
973 DEFINE_MEMORY_BARRIER(mb, true);
974 DEFINE_MEMORY_BARRIER(wmb, sa->type & (KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND));
975 DEFINE_MEMORY_BARRIER(rmb, !(sa->type & KCSAN_ACCESS_WRITE) || (sa->type & KCSAN_ACCESS_COMPOUND));
976 DEFINE_MEMORY_BARRIER(release, true);
977
978 /*
979  * KCSAN uses the same instrumentation that is emitted by supported compilers
980  * for ThreadSanitizer (TSAN).
981  *
982  * When enabled, the compiler emits instrumentation calls (the functions
983  * prefixed with "__tsan" below) for all loads and stores that it generated;
984  * inline asm is not instrumented.
985  *
986  * Note that, not all supported compiler versions distinguish aligned/unaligned
987  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
988  * version to the generic version, which can handle both.
989  */
990
991 #define DEFINE_TSAN_READ_WRITE(size)                                           \
992         void __tsan_read##size(void *ptr);                                     \
993         void __tsan_read##size(void *ptr)                                      \
994         {                                                                      \
995                 check_access(ptr, size, 0, _RET_IP_);                          \
996         }                                                                      \
997         EXPORT_SYMBOL(__tsan_read##size);                                      \
998         void __tsan_unaligned_read##size(void *ptr)                            \
999                 __alias(__tsan_read##size);                                    \
1000         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
1001         void __tsan_write##size(void *ptr);                                    \
1002         void __tsan_write##size(void *ptr)                                     \
1003         {                                                                      \
1004                 check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);         \
1005         }                                                                      \
1006         EXPORT_SYMBOL(__tsan_write##size);                                     \
1007         void __tsan_unaligned_write##size(void *ptr)                           \
1008                 __alias(__tsan_write##size);                                   \
1009         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
1010         void __tsan_read_write##size(void *ptr);                               \
1011         void __tsan_read_write##size(void *ptr)                                \
1012         {                                                                      \
1013                 check_access(ptr, size,                                        \
1014                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE,       \
1015                              _RET_IP_);                                        \
1016         }                                                                      \
1017         EXPORT_SYMBOL(__tsan_read_write##size);                                \
1018         void __tsan_unaligned_read_write##size(void *ptr)                      \
1019                 __alias(__tsan_read_write##size);                              \
1020         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
1021
1022 DEFINE_TSAN_READ_WRITE(1);
1023 DEFINE_TSAN_READ_WRITE(2);
1024 DEFINE_TSAN_READ_WRITE(4);
1025 DEFINE_TSAN_READ_WRITE(8);
1026 DEFINE_TSAN_READ_WRITE(16);
1027
1028 void __tsan_read_range(void *ptr, size_t size);
1029 void __tsan_read_range(void *ptr, size_t size)
1030 {
1031         check_access(ptr, size, 0, _RET_IP_);
1032 }
1033 EXPORT_SYMBOL(__tsan_read_range);
1034
1035 void __tsan_write_range(void *ptr, size_t size);
1036 void __tsan_write_range(void *ptr, size_t size)
1037 {
1038         check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);
1039 }
1040 EXPORT_SYMBOL(__tsan_write_range);
1041
1042 /*
1043  * Use of explicit volatile is generally disallowed [1], however, volatile is
1044  * still used in various concurrent context, whether in low-level
1045  * synchronization primitives or for legacy reasons.
1046  * [1] https://lwn.net/Articles/233479/
1047  *
1048  * We only consider volatile accesses atomic if they are aligned and would pass
1049  * the size-check of compiletime_assert_rwonce_type().
1050  */
1051 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
1052         void __tsan_volatile_read##size(void *ptr);                            \
1053         void __tsan_volatile_read##size(void *ptr)                             \
1054         {                                                                      \
1055                 const bool is_atomic = size <= sizeof(long long) &&            \
1056                                        IS_ALIGNED((unsigned long)ptr, size);   \
1057                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1058                         return;                                                \
1059                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0,   \
1060                              _RET_IP_);                                        \
1061         }                                                                      \
1062         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
1063         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
1064                 __alias(__tsan_volatile_read##size);                           \
1065         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
1066         void __tsan_volatile_write##size(void *ptr);                           \
1067         void __tsan_volatile_write##size(void *ptr)                            \
1068         {                                                                      \
1069                 const bool is_atomic = size <= sizeof(long long) &&            \
1070                                        IS_ALIGNED((unsigned long)ptr, size);   \
1071                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1072                         return;                                                \
1073                 check_access(ptr, size,                                        \
1074                              KCSAN_ACCESS_WRITE |                              \
1075                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0),    \
1076                              _RET_IP_);                                        \
1077         }                                                                      \
1078         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
1079         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
1080                 __alias(__tsan_volatile_write##size);                          \
1081         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
1082
1083 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
1084 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
1085 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
1086 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
1087 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
1088
1089 /*
1090  * Function entry and exit are used to determine the validty of reorder_access.
1091  * Reordering of the access ends at the end of the function scope where the
1092  * access happened. This is done for two reasons:
1093  *
1094  *      1. Artificially limits the scope where missing barriers are detected.
1095  *         This minimizes false positives due to uninstrumented functions that
1096  *         contain the required barriers but were missed.
1097  *
1098  *      2. Simplifies generating the stack trace of the access.
1099  */
1100 void __tsan_func_entry(void *call_pc);
1101 noinline void __tsan_func_entry(void *call_pc)
1102 {
1103         if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1104                 return;
1105
1106         add_kcsan_stack_depth(1);
1107 }
1108 EXPORT_SYMBOL(__tsan_func_entry);
1109
1110 void __tsan_func_exit(void);
1111 noinline void __tsan_func_exit(void)
1112 {
1113         struct kcsan_scoped_access *reorder_access;
1114
1115         if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1116                 return;
1117
1118         reorder_access = get_reorder_access(get_ctx());
1119         if (!reorder_access)
1120                 goto out;
1121
1122         if (get_kcsan_stack_depth() <= reorder_access->stack_depth) {
1123                 /*
1124                  * Access check to catch cases where write without a barrier
1125                  * (supposed release) was last access in function: because
1126                  * instrumentation is inserted before the real access, a data
1127                  * race due to the write giving up a c-s would only be caught if
1128                  * we do the conflicting access after.
1129                  */
1130                 check_access(reorder_access->ptr, reorder_access->size,
1131                              reorder_access->type, reorder_access->ip);
1132                 reorder_access->size = 0;
1133                 reorder_access->stack_depth = INT_MIN;
1134         }
1135 out:
1136         add_kcsan_stack_depth(-1);
1137 }
1138 EXPORT_SYMBOL(__tsan_func_exit);
1139
1140 void __tsan_init(void);
1141 void __tsan_init(void)
1142 {
1143 }
1144 EXPORT_SYMBOL(__tsan_init);
1145
1146 /*
1147  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
1148  *
1149  * Normal kernel code _should not_ be using them directly, but some
1150  * architectures may implement some or all atomics using the compilers'
1151  * builtins.
1152  *
1153  * Note: If an architecture decides to fully implement atomics using the
1154  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
1155  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
1156  * atomic-instrumented) is no longer necessary.
1157  *
1158  * TSAN instrumentation replaces atomic accesses with calls to any of the below
1159  * functions, whose job is to also execute the operation itself.
1160  */
1161
1162 static __always_inline void kcsan_atomic_builtin_memorder(int memorder)
1163 {
1164         if (memorder == __ATOMIC_RELEASE ||
1165             memorder == __ATOMIC_SEQ_CST ||
1166             memorder == __ATOMIC_ACQ_REL)
1167                 __kcsan_release();
1168 }
1169
1170 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
1171         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
1172         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
1173         {                                                                                          \
1174                 kcsan_atomic_builtin_memorder(memorder);                                           \
1175                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1176                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_);    \
1177                 }                                                                                  \
1178                 return __atomic_load_n(ptr, memorder);                                             \
1179         }                                                                                          \
1180         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
1181         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
1182         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
1183         {                                                                                          \
1184                 kcsan_atomic_builtin_memorder(memorder);                                           \
1185                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1186                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1187                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_);          \
1188                 }                                                                                  \
1189                 __atomic_store_n(ptr, v, memorder);                                                \
1190         }                                                                                          \
1191         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
1192
1193 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
1194         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
1195         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
1196         {                                                                                          \
1197                 kcsan_atomic_builtin_memorder(memorder);                                           \
1198                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1199                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1200                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1201                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1202                 }                                                                                  \
1203                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
1204         }                                                                                          \
1205         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
1206
1207 /*
1208  * Note: CAS operations are always classified as write, even in case they
1209  * fail. We cannot perform check_access() after a write, as it might lead to
1210  * false positives, in cases such as:
1211  *
1212  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
1213  *
1214  *      T1: if (__atomic_load_n(&p->flag, ...)) {
1215  *              modify *p;
1216  *              p->flag = 0;
1217  *          }
1218  *
1219  * The only downside is that, if there are 3 threads, with one CAS that
1220  * succeeds, another CAS that fails, and an unmarked racing operation, we may
1221  * point at the wrong CAS as the source of the race. However, if we assume that
1222  * all CAS can succeed in some other execution, the data race is still valid.
1223  */
1224 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1225         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1226                                                               u##bits val, int mo, int fail_mo);   \
1227         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1228                                                               u##bits val, int mo, int fail_mo)    \
1229         {                                                                                          \
1230                 kcsan_atomic_builtin_memorder(mo);                                                 \
1231                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1232                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1233                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1234                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1235                 }                                                                                  \
1236                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1237         }                                                                                          \
1238         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1239
1240 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1241         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1242                                                            int mo, int fail_mo);                   \
1243         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1244                                                            int mo, int fail_mo)                    \
1245         {                                                                                          \
1246                 kcsan_atomic_builtin_memorder(mo);                                                 \
1247                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1248                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1249                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1250                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1251                 }                                                                                  \
1252                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1253                 return exp;                                                                        \
1254         }                                                                                          \
1255         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1256
1257 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1258         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1259         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1260         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1261         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1262         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1263         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1264         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1265         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1266         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1267         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1268         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1269
1270 DEFINE_TSAN_ATOMIC_OPS(8);
1271 DEFINE_TSAN_ATOMIC_OPS(16);
1272 DEFINE_TSAN_ATOMIC_OPS(32);
1273 #ifdef CONFIG_64BIT
1274 DEFINE_TSAN_ATOMIC_OPS(64);
1275 #endif
1276
1277 void __tsan_atomic_thread_fence(int memorder);
1278 void __tsan_atomic_thread_fence(int memorder)
1279 {
1280         kcsan_atomic_builtin_memorder(memorder);
1281         __atomic_thread_fence(memorder);
1282 }
1283 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1284
1285 /*
1286  * In instrumented files, we emit instrumentation for barriers by mapping the
1287  * kernel barriers to an __atomic_signal_fence(), which is interpreted specially
1288  * and otherwise has no relation to a real __atomic_signal_fence(). No known
1289  * kernel code uses __atomic_signal_fence().
1290  *
1291  * Since fsanitize=thread instrumentation handles __atomic_signal_fence(), which
1292  * are turned into calls to __tsan_atomic_signal_fence(), such instrumentation
1293  * can be disabled via the __no_kcsan function attribute (vs. an explicit call
1294  * which could not). When __no_kcsan is requested, __atomic_signal_fence()
1295  * generates no code.
1296  *
1297  * Note: The result of using __atomic_signal_fence() with KCSAN enabled is
1298  * potentially limiting the compiler's ability to reorder operations; however,
1299  * if barriers were instrumented with explicit calls (without LTO), the compiler
1300  * couldn't optimize much anyway. The result of a hypothetical architecture
1301  * using __atomic_signal_fence() in normal code would be KCSAN false negatives.
1302  */
1303 void __tsan_atomic_signal_fence(int memorder);
1304 noinline void __tsan_atomic_signal_fence(int memorder)
1305 {
1306         switch (memorder) {
1307         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb:
1308                 __kcsan_mb();
1309                 break;
1310         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb:
1311                 __kcsan_wmb();
1312                 break;
1313         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb:
1314                 __kcsan_rmb();
1315                 break;
1316         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_release:
1317                 __kcsan_release();
1318                 break;
1319         default:
1320                 break;
1321         }
1322 }
1323 EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1324
1325 #ifdef __HAVE_ARCH_MEMSET
1326 void *__tsan_memset(void *s, int c, size_t count);
1327 noinline void *__tsan_memset(void *s, int c, size_t count)
1328 {
1329         /*
1330          * Instead of not setting up watchpoints where accessed size is greater
1331          * than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE.
1332          */
1333         size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE);
1334
1335         check_access(s, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1336         return memset(s, c, count);
1337 }
1338 #else
1339 void *__tsan_memset(void *s, int c, size_t count) __alias(memset);
1340 #endif
1341 EXPORT_SYMBOL(__tsan_memset);
1342
1343 #ifdef __HAVE_ARCH_MEMMOVE
1344 void *__tsan_memmove(void *dst, const void *src, size_t len);
1345 noinline void *__tsan_memmove(void *dst, const void *src, size_t len)
1346 {
1347         size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1348
1349         check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1350         check_access(src, check_len, 0, _RET_IP_);
1351         return memmove(dst, src, len);
1352 }
1353 #else
1354 void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove);
1355 #endif
1356 EXPORT_SYMBOL(__tsan_memmove);
1357
1358 #ifdef __HAVE_ARCH_MEMCPY
1359 void *__tsan_memcpy(void *dst, const void *src, size_t len);
1360 noinline void *__tsan_memcpy(void *dst, const void *src, size_t len)
1361 {
1362         size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1363
1364         check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1365         check_access(src, check_len, 0, _RET_IP_);
1366         return memcpy(dst, src, len);
1367 }
1368 #else
1369 void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy);
1370 #endif
1371 EXPORT_SYMBOL(__tsan_memcpy);