exit: Use READ_ONCE() for all oops/warn limit reads
[platform/kernel/linux-starfive.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kcsan: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/minmax.h>
18 #include <linux/moduleparam.h>
19 #include <linux/percpu.h>
20 #include <linux/preempt.h>
21 #include <linux/sched.h>
22 #include <linux/string.h>
23 #include <linux/uaccess.h>
24
25 #include "encoding.h"
26 #include "kcsan.h"
27 #include "permissive.h"
28
29 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
30 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
31 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
32 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
33 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
34
35 #ifdef MODULE_PARAM_PREFIX
36 #undef MODULE_PARAM_PREFIX
37 #endif
38 #define MODULE_PARAM_PREFIX "kcsan."
39 module_param_named(early_enable, kcsan_early_enable, bool, 0);
40 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
41 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
42 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
43 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
44
45 #ifdef CONFIG_KCSAN_WEAK_MEMORY
46 static bool kcsan_weak_memory = true;
47 module_param_named(weak_memory, kcsan_weak_memory, bool, 0644);
48 #else
49 #define kcsan_weak_memory false
50 #endif
51
52 bool kcsan_enabled;
53
54 /* Per-CPU kcsan_ctx for interrupts */
55 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
56         .scoped_accesses        = {LIST_POISON1, NULL},
57 };
58
59 /*
60  * Helper macros to index into adjacent slots, starting from address slot
61  * itself, followed by the right and left slots.
62  *
63  * The purpose is 2-fold:
64  *
65  *      1. if during insertion the address slot is already occupied, check if
66  *         any adjacent slots are free;
67  *      2. accesses that straddle a slot boundary due to size that exceeds a
68  *         slot's range may check adjacent slots if any watchpoint matches.
69  *
70  * Note that accesses with very large size may still miss a watchpoint; however,
71  * given this should be rare, this is a reasonable trade-off to make, since this
72  * will avoid:
73  *
74  *      1. excessive contention between watchpoint checks and setup;
75  *      2. larger number of simultaneous watchpoints without sacrificing
76  *         performance.
77  *
78  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
79  *
80  *   slot=0:  [ 1,  2,  0]
81  *   slot=9:  [10, 11,  9]
82  *   slot=63: [64, 65, 63]
83  */
84 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
85
86 /*
87  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
88  * slot (middle) is fine if we assume that races occur rarely. The set of
89  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
90  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
91  */
92 #define SLOT_IDX_FAST(slot, i) (slot + i)
93
94 /*
95  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
96  * able to safely update and access a watchpoint without introducing locking
97  * overhead, we encode each watchpoint as a single atomic long. The initial
98  * zero-initialized state matches INVALID_WATCHPOINT.
99  *
100  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
101  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
102  */
103 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
104
105 /*
106  * Instructions to skip watching counter, used in should_watch(). We use a
107  * per-CPU counter to avoid excessive contention.
108  */
109 static DEFINE_PER_CPU(long, kcsan_skip);
110
111 /* For kcsan_prandom_u32_max(). */
112 static DEFINE_PER_CPU(u32, kcsan_rand_state);
113
114 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
115                                                       size_t size,
116                                                       bool expect_write,
117                                                       long *encoded_watchpoint)
118 {
119         const int slot = watchpoint_slot(addr);
120         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
121         atomic_long_t *watchpoint;
122         unsigned long wp_addr_masked;
123         size_t wp_size;
124         bool is_write;
125         int i;
126
127         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
128
129         for (i = 0; i < NUM_SLOTS; ++i) {
130                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
131                 *encoded_watchpoint = atomic_long_read(watchpoint);
132                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
133                                        &wp_size, &is_write))
134                         continue;
135
136                 if (expect_write && !is_write)
137                         continue;
138
139                 /* Check if the watchpoint matches the access. */
140                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
141                         return watchpoint;
142         }
143
144         return NULL;
145 }
146
147 static inline atomic_long_t *
148 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
149 {
150         const int slot = watchpoint_slot(addr);
151         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
152         atomic_long_t *watchpoint;
153         int i;
154
155         /* Check slot index logic, ensuring we stay within array bounds. */
156         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
157         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
158         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
159         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
160
161         for (i = 0; i < NUM_SLOTS; ++i) {
162                 long expect_val = INVALID_WATCHPOINT;
163
164                 /* Try to acquire this slot. */
165                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
166                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
167                         return watchpoint;
168         }
169
170         return NULL;
171 }
172
173 /*
174  * Return true if watchpoint was successfully consumed, false otherwise.
175  *
176  * This may return false if:
177  *
178  *      1. another thread already consumed the watchpoint;
179  *      2. the thread that set up the watchpoint already removed it;
180  *      3. the watchpoint was removed and then re-used.
181  */
182 static __always_inline bool
183 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
184 {
185         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
186 }
187
188 /* Return true if watchpoint was not touched, false if already consumed. */
189 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
190 {
191         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
192 }
193
194 /* Remove the watchpoint -- its slot may be reused after. */
195 static inline void remove_watchpoint(atomic_long_t *watchpoint)
196 {
197         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
198 }
199
200 static __always_inline struct kcsan_ctx *get_ctx(void)
201 {
202         /*
203          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
204          * also result in calls that generate warnings in uaccess regions.
205          */
206         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
207 }
208
209 static __always_inline void
210 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip);
211
212 /* Check scoped accesses; never inline because this is a slow-path! */
213 static noinline void kcsan_check_scoped_accesses(void)
214 {
215         struct kcsan_ctx *ctx = get_ctx();
216         struct kcsan_scoped_access *scoped_access;
217
218         if (ctx->disable_scoped)
219                 return;
220
221         ctx->disable_scoped++;
222         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) {
223                 check_access(scoped_access->ptr, scoped_access->size,
224                              scoped_access->type, scoped_access->ip);
225         }
226         ctx->disable_scoped--;
227 }
228
229 /* Rules for generic atomic accesses. Called from fast-path. */
230 static __always_inline bool
231 is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
232 {
233         if (type & KCSAN_ACCESS_ATOMIC)
234                 return true;
235
236         /*
237          * Unless explicitly declared atomic, never consider an assertion access
238          * as atomic. This allows using them also in atomic regions, such as
239          * seqlocks, without implicitly changing their semantics.
240          */
241         if (type & KCSAN_ACCESS_ASSERT)
242                 return false;
243
244         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
245             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
246             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
247                 return true; /* Assume aligned writes up to word size are atomic. */
248
249         if (ctx->atomic_next > 0) {
250                 /*
251                  * Because we do not have separate contexts for nested
252                  * interrupts, in case atomic_next is set, we simply assume that
253                  * the outer interrupt set atomic_next. In the worst case, we
254                  * will conservatively consider operations as atomic. This is a
255                  * reasonable trade-off to make, since this case should be
256                  * extremely rare; however, even if extremely rare, it could
257                  * lead to false positives otherwise.
258                  */
259                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
260                         --ctx->atomic_next; /* in task, or outer interrupt */
261                 return true;
262         }
263
264         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
265 }
266
267 static __always_inline bool
268 should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
269 {
270         /*
271          * Never set up watchpoints when memory operations are atomic.
272          *
273          * Need to check this first, before kcsan_skip check below: (1) atomics
274          * should not count towards skipped instructions, and (2) to actually
275          * decrement kcsan_atomic_next for consecutive instruction stream.
276          */
277         if (is_atomic(ctx, ptr, size, type))
278                 return false;
279
280         if (this_cpu_dec_return(kcsan_skip) >= 0)
281                 return false;
282
283         /*
284          * NOTE: If we get here, kcsan_skip must always be reset in slow path
285          * via reset_kcsan_skip() to avoid underflow.
286          */
287
288         /* this operation should be watched */
289         return true;
290 }
291
292 /*
293  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
294  * congruential generator, using constants from "Numerical Recipes".
295  */
296 static u32 kcsan_prandom_u32_max(u32 ep_ro)
297 {
298         u32 state = this_cpu_read(kcsan_rand_state);
299
300         state = 1664525 * state + 1013904223;
301         this_cpu_write(kcsan_rand_state, state);
302
303         return state % ep_ro;
304 }
305
306 static inline void reset_kcsan_skip(void)
307 {
308         long skip_count = kcsan_skip_watch -
309                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
310                                    kcsan_prandom_u32_max(kcsan_skip_watch) :
311                                    0);
312         this_cpu_write(kcsan_skip, skip_count);
313 }
314
315 static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
316 {
317         return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
318 }
319
320 /* Introduce delay depending on context and configuration. */
321 static void delay_access(int type)
322 {
323         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
324         /* For certain access types, skew the random delay to be longer. */
325         unsigned int skew_delay_order =
326                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
327
328         delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
329                                kcsan_prandom_u32_max(delay >> skew_delay_order) :
330                                0;
331         udelay(delay);
332 }
333
334 /*
335  * Reads the instrumented memory for value change detection; value change
336  * detection is currently done for accesses up to a size of 8 bytes.
337  */
338 static __always_inline u64 read_instrumented_memory(const volatile void *ptr, size_t size)
339 {
340         switch (size) {
341         case 1:  return READ_ONCE(*(const u8 *)ptr);
342         case 2:  return READ_ONCE(*(const u16 *)ptr);
343         case 4:  return READ_ONCE(*(const u32 *)ptr);
344         case 8:  return READ_ONCE(*(const u64 *)ptr);
345         default: return 0; /* Ignore; we do not diff the values. */
346         }
347 }
348
349 void kcsan_save_irqtrace(struct task_struct *task)
350 {
351 #ifdef CONFIG_TRACE_IRQFLAGS
352         task->kcsan_save_irqtrace = task->irqtrace;
353 #endif
354 }
355
356 void kcsan_restore_irqtrace(struct task_struct *task)
357 {
358 #ifdef CONFIG_TRACE_IRQFLAGS
359         task->irqtrace = task->kcsan_save_irqtrace;
360 #endif
361 }
362
363 static __always_inline int get_kcsan_stack_depth(void)
364 {
365 #ifdef CONFIG_KCSAN_WEAK_MEMORY
366         return current->kcsan_stack_depth;
367 #else
368         BUILD_BUG();
369         return 0;
370 #endif
371 }
372
373 static __always_inline void add_kcsan_stack_depth(int val)
374 {
375 #ifdef CONFIG_KCSAN_WEAK_MEMORY
376         current->kcsan_stack_depth += val;
377 #else
378         BUILD_BUG();
379 #endif
380 }
381
382 static __always_inline struct kcsan_scoped_access *get_reorder_access(struct kcsan_ctx *ctx)
383 {
384 #ifdef CONFIG_KCSAN_WEAK_MEMORY
385         return ctx->disable_scoped ? NULL : &ctx->reorder_access;
386 #else
387         return NULL;
388 #endif
389 }
390
391 static __always_inline bool
392 find_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
393                     int type, unsigned long ip)
394 {
395         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
396
397         if (!reorder_access)
398                 return false;
399
400         /*
401          * Note: If accesses are repeated while reorder_access is identical,
402          * never matches the new access, because !(type & KCSAN_ACCESS_SCOPED).
403          */
404         return reorder_access->ptr == ptr && reorder_access->size == size &&
405                reorder_access->type == type && reorder_access->ip == ip;
406 }
407
408 static inline void
409 set_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size,
410                    int type, unsigned long ip)
411 {
412         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
413
414         if (!reorder_access || !kcsan_weak_memory)
415                 return;
416
417         /*
418          * To avoid nested interrupts or scheduler (which share kcsan_ctx)
419          * reading an inconsistent reorder_access, ensure that the below has
420          * exclusive access to reorder_access by disallowing concurrent use.
421          */
422         ctx->disable_scoped++;
423         barrier();
424         reorder_access->ptr             = ptr;
425         reorder_access->size            = size;
426         reorder_access->type            = type | KCSAN_ACCESS_SCOPED;
427         reorder_access->ip              = ip;
428         reorder_access->stack_depth     = get_kcsan_stack_depth();
429         barrier();
430         ctx->disable_scoped--;
431 }
432
433 /*
434  * Pull everything together: check_access() below contains the performance
435  * critical operations; the fast-path (including check_access) functions should
436  * all be inlinable by the instrumentation functions.
437  *
438  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
439  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
440  * be filtered from the stacktrace, as well as give them unique names for the
441  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
442  * since they do not access any user memory, but instrumentation is still
443  * emitted in UACCESS regions.
444  */
445
446 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
447                                             size_t size,
448                                             int type,
449                                             unsigned long ip,
450                                             atomic_long_t *watchpoint,
451                                             long encoded_watchpoint)
452 {
453         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
454         struct kcsan_ctx *ctx = get_ctx();
455         unsigned long flags;
456         bool consumed;
457
458         /*
459          * We know a watchpoint exists. Let's try to keep the race-window
460          * between here and finally consuming the watchpoint below as small as
461          * possible -- avoid unneccessarily complex code until consumed.
462          */
463
464         if (!kcsan_is_enabled(ctx))
465                 return;
466
467         /*
468          * The access_mask check relies on value-change comparison. To avoid
469          * reporting a race where e.g. the writer set up the watchpoint, but the
470          * reader has access_mask!=0, we have to ignore the found watchpoint.
471          *
472          * reorder_access is never created from an access with access_mask set.
473          */
474         if (ctx->access_mask && !find_reorder_access(ctx, ptr, size, type, ip))
475                 return;
476
477         /*
478          * If the other thread does not want to ignore the access, and there was
479          * a value change as a result of this thread's operation, we will still
480          * generate a report of unknown origin.
481          *
482          * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
483          */
484         if (!is_assert && kcsan_ignore_address(ptr))
485                 return;
486
487         /*
488          * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
489          * avoid erroneously triggering reports if the context is disabled.
490          */
491         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
492
493         /* keep this after try_consume_watchpoint */
494         flags = user_access_save();
495
496         if (consumed) {
497                 kcsan_save_irqtrace(current);
498                 kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints);
499                 kcsan_restore_irqtrace(current);
500         } else {
501                 /*
502                  * The other thread may not print any diagnostics, as it has
503                  * already removed the watchpoint, or another thread consumed
504                  * the watchpoint before this thread.
505                  */
506                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
507         }
508
509         if (is_assert)
510                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
511         else
512                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
513
514         user_access_restore(flags);
515 }
516
517 static noinline void
518 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip)
519 {
520         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
521         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
522         atomic_long_t *watchpoint;
523         u64 old, new, diff;
524         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
525         bool interrupt_watcher = kcsan_interrupt_watcher;
526         unsigned long ua_flags = user_access_save();
527         struct kcsan_ctx *ctx = get_ctx();
528         unsigned long access_mask = ctx->access_mask;
529         unsigned long irq_flags = 0;
530         bool is_reorder_access;
531
532         /*
533          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
534          * should_watch().
535          */
536         reset_kcsan_skip();
537
538         if (!kcsan_is_enabled(ctx))
539                 goto out;
540
541         /*
542          * Check to-ignore addresses after kcsan_is_enabled(), as we may access
543          * memory that is not yet initialized during early boot.
544          */
545         if (!is_assert && kcsan_ignore_address(ptr))
546                 goto out;
547
548         if (!check_encodable((unsigned long)ptr, size)) {
549                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
550                 goto out;
551         }
552
553         /*
554          * The local CPU cannot observe reordering of its own accesses, and
555          * therefore we need to take care of 2 cases to avoid false positives:
556          *
557          *      1. Races of the reordered access with interrupts. To avoid, if
558          *         the current access is reorder_access, disable interrupts.
559          *      2. Avoid races of scoped accesses from nested interrupts (below).
560          */
561         is_reorder_access = find_reorder_access(ctx, ptr, size, type, ip);
562         if (is_reorder_access)
563                 interrupt_watcher = false;
564         /*
565          * Avoid races of scoped accesses from nested interrupts (or scheduler).
566          * Assume setting up a watchpoint for a non-scoped (normal) access that
567          * also conflicts with a current scoped access. In a nested interrupt,
568          * which shares the context, it would check a conflicting scoped access.
569          * To avoid, disable scoped access checking.
570          */
571         ctx->disable_scoped++;
572
573         /*
574          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
575          * runtime is entered for every memory access, and potentially useful
576          * information is lost if dirtied by KCSAN.
577          */
578         kcsan_save_irqtrace(current);
579         if (!interrupt_watcher)
580                 local_irq_save(irq_flags);
581
582         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
583         if (watchpoint == NULL) {
584                 /*
585                  * Out of capacity: the size of 'watchpoints', and the frequency
586                  * with which should_watch() returns true should be tweaked so
587                  * that this case happens very rarely.
588                  */
589                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
590                 goto out_unlock;
591         }
592
593         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
594         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
595
596         /*
597          * Read the current value, to later check and infer a race if the data
598          * was modified via a non-instrumented access, e.g. from a device.
599          */
600         old = is_reorder_access ? 0 : read_instrumented_memory(ptr, size);
601
602         /*
603          * Delay this thread, to increase probability of observing a racy
604          * conflicting access.
605          */
606         delay_access(type);
607
608         /*
609          * Re-read value, and check if it is as expected; if not, we infer a
610          * racy access.
611          */
612         if (!is_reorder_access) {
613                 new = read_instrumented_memory(ptr, size);
614         } else {
615                 /*
616                  * Reordered accesses cannot be used for value change detection,
617                  * because the memory location may no longer be accessible and
618                  * could result in a fault.
619                  */
620                 new = 0;
621                 access_mask = 0;
622         }
623
624         diff = old ^ new;
625         if (access_mask)
626                 diff &= access_mask;
627
628         /*
629          * Check if we observed a value change.
630          *
631          * Also check if the data race should be ignored (the rules depend on
632          * non-zero diff); if it is to be ignored, the below rules for
633          * KCSAN_VALUE_CHANGE_MAYBE apply.
634          */
635         if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
636                 value_change = KCSAN_VALUE_CHANGE_TRUE;
637
638         /* Check if this access raced with another. */
639         if (!consume_watchpoint(watchpoint)) {
640                 /*
641                  * Depending on the access type, map a value_change of MAYBE to
642                  * TRUE (always report) or FALSE (never report).
643                  */
644                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
645                         if (access_mask != 0) {
646                                 /*
647                                  * For access with access_mask, we require a
648                                  * value-change, as it is likely that races on
649                                  * ~access_mask bits are expected.
650                                  */
651                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
652                         } else if (size > 8 || is_assert) {
653                                 /* Always assume a value-change. */
654                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
655                         }
656                 }
657
658                 /*
659                  * No need to increment 'data_races' counter, as the racing
660                  * thread already did.
661                  *
662                  * Count 'assert_failures' for each failed ASSERT access,
663                  * therefore both this thread and the racing thread may
664                  * increment this counter.
665                  */
666                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
667                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
668
669                 kcsan_report_known_origin(ptr, size, type, ip,
670                                           value_change, watchpoint - watchpoints,
671                                           old, new, access_mask);
672         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
673                 /* Inferring a race, since the value should not have changed. */
674
675                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
676                 if (is_assert)
677                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
678
679                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) {
680                         kcsan_report_unknown_origin(ptr, size, type, ip,
681                                                     old, new, access_mask);
682                 }
683         }
684
685         /*
686          * Remove watchpoint; must be after reporting, since the slot may be
687          * reused after this point.
688          */
689         remove_watchpoint(watchpoint);
690         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
691
692 out_unlock:
693         if (!interrupt_watcher)
694                 local_irq_restore(irq_flags);
695         kcsan_restore_irqtrace(current);
696         ctx->disable_scoped--;
697
698         /*
699          * Reordered accesses cannot be used for value change detection,
700          * therefore never consider for reordering if access_mask is set.
701          * ASSERT_EXCLUSIVE are not real accesses, ignore them as well.
702          */
703         if (!access_mask && !is_assert)
704                 set_reorder_access(ctx, ptr, size, type, ip);
705 out:
706         user_access_restore(ua_flags);
707 }
708
709 static __always_inline void
710 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip)
711 {
712         atomic_long_t *watchpoint;
713         long encoded_watchpoint;
714
715         /*
716          * Do nothing for 0 sized check; this comparison will be optimized out
717          * for constant sized instrumentation (__tsan_{read,write}N).
718          */
719         if (unlikely(size == 0))
720                 return;
721
722 again:
723         /*
724          * Avoid user_access_save in fast-path: find_watchpoint is safe without
725          * user_access_save, as the address that ptr points to is only used to
726          * check if a watchpoint exists; ptr is never dereferenced.
727          */
728         watchpoint = find_watchpoint((unsigned long)ptr, size,
729                                      !(type & KCSAN_ACCESS_WRITE),
730                                      &encoded_watchpoint);
731         /*
732          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
733          * slow-path, as long as no state changes that cause a race to be
734          * detected and reported have occurred until kcsan_is_enabled() is
735          * checked.
736          */
737
738         if (unlikely(watchpoint != NULL))
739                 kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint);
740         else {
741                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
742
743                 if (unlikely(should_watch(ctx, ptr, size, type))) {
744                         kcsan_setup_watchpoint(ptr, size, type, ip);
745                         return;
746                 }
747
748                 if (!(type & KCSAN_ACCESS_SCOPED)) {
749                         struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx);
750
751                         if (reorder_access) {
752                                 /*
753                                  * reorder_access check: simulates reordering of
754                                  * the access after subsequent operations.
755                                  */
756                                 ptr = reorder_access->ptr;
757                                 type = reorder_access->type;
758                                 ip = reorder_access->ip;
759                                 /*
760                                  * Upon a nested interrupt, this context's
761                                  * reorder_access can be modified (shared ctx).
762                                  * We know that upon return, reorder_access is
763                                  * always invalidated by setting size to 0 via
764                                  * __tsan_func_exit(). Therefore we must read
765                                  * and check size after the other fields.
766                                  */
767                                 barrier();
768                                 size = READ_ONCE(reorder_access->size);
769                                 if (size)
770                                         goto again;
771                         }
772                 }
773
774                 /*
775                  * Always checked last, right before returning from runtime;
776                  * if reorder_access is valid, checked after it was checked.
777                  */
778                 if (unlikely(ctx->scoped_accesses.prev))
779                         kcsan_check_scoped_accesses();
780         }
781 }
782
783 /* === Public interface ===================================================== */
784
785 void __init kcsan_init(void)
786 {
787         int cpu;
788
789         BUG_ON(!in_task());
790
791         for_each_possible_cpu(cpu)
792                 per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
793
794         /*
795          * We are in the init task, and no other tasks should be running;
796          * WRITE_ONCE without memory barrier is sufficient.
797          */
798         if (kcsan_early_enable) {
799                 pr_info("enabled early\n");
800                 WRITE_ONCE(kcsan_enabled, true);
801         }
802
803         if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
804             IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
805             IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
806             IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
807                 pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
808         } else {
809                 pr_info("strict mode configured\n");
810         }
811 }
812
813 /* === Exported interface =================================================== */
814
815 void kcsan_disable_current(void)
816 {
817         ++get_ctx()->disable_count;
818 }
819 EXPORT_SYMBOL(kcsan_disable_current);
820
821 void kcsan_enable_current(void)
822 {
823         if (get_ctx()->disable_count-- == 0) {
824                 /*
825                  * Warn if kcsan_enable_current() calls are unbalanced with
826                  * kcsan_disable_current() calls, which causes disable_count to
827                  * become negative and should not happen.
828                  */
829                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
830                 kcsan_disable_current(); /* disable to generate warning */
831                 WARN(1, "Unbalanced %s()", __func__);
832                 kcsan_enable_current();
833         }
834 }
835 EXPORT_SYMBOL(kcsan_enable_current);
836
837 void kcsan_enable_current_nowarn(void)
838 {
839         if (get_ctx()->disable_count-- == 0)
840                 kcsan_disable_current();
841 }
842 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
843
844 void kcsan_nestable_atomic_begin(void)
845 {
846         /*
847          * Do *not* check and warn if we are in a flat atomic region: nestable
848          * and flat atomic regions are independent from each other.
849          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
850          * comments.
851          */
852
853         ++get_ctx()->atomic_nest_count;
854 }
855 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
856
857 void kcsan_nestable_atomic_end(void)
858 {
859         if (get_ctx()->atomic_nest_count-- == 0) {
860                 /*
861                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
862                  * kcsan_nestable_atomic_begin() calls, which causes
863                  * atomic_nest_count to become negative and should not happen.
864                  */
865                 kcsan_nestable_atomic_begin(); /* restore to 0 */
866                 kcsan_disable_current(); /* disable to generate warning */
867                 WARN(1, "Unbalanced %s()", __func__);
868                 kcsan_enable_current();
869         }
870 }
871 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
872
873 void kcsan_flat_atomic_begin(void)
874 {
875         get_ctx()->in_flat_atomic = true;
876 }
877 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
878
879 void kcsan_flat_atomic_end(void)
880 {
881         get_ctx()->in_flat_atomic = false;
882 }
883 EXPORT_SYMBOL(kcsan_flat_atomic_end);
884
885 void kcsan_atomic_next(int n)
886 {
887         get_ctx()->atomic_next = n;
888 }
889 EXPORT_SYMBOL(kcsan_atomic_next);
890
891 void kcsan_set_access_mask(unsigned long mask)
892 {
893         get_ctx()->access_mask = mask;
894 }
895 EXPORT_SYMBOL(kcsan_set_access_mask);
896
897 struct kcsan_scoped_access *
898 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
899                           struct kcsan_scoped_access *sa)
900 {
901         struct kcsan_ctx *ctx = get_ctx();
902
903         check_access(ptr, size, type, _RET_IP_);
904
905         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
906
907         INIT_LIST_HEAD(&sa->list);
908         sa->ptr = ptr;
909         sa->size = size;
910         sa->type = type;
911         sa->ip = _RET_IP_;
912
913         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
914                 INIT_LIST_HEAD(&ctx->scoped_accesses);
915         list_add(&sa->list, &ctx->scoped_accesses);
916
917         ctx->disable_count--;
918         return sa;
919 }
920 EXPORT_SYMBOL(kcsan_begin_scoped_access);
921
922 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
923 {
924         struct kcsan_ctx *ctx = get_ctx();
925
926         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
927                 return;
928
929         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
930
931         list_del(&sa->list);
932         if (list_empty(&ctx->scoped_accesses))
933                 /*
934                  * Ensure we do not enter kcsan_check_scoped_accesses()
935                  * slow-path if unnecessary, and avoids requiring list_empty()
936                  * in the fast-path (to avoid a READ_ONCE() and potential
937                  * uaccess warning).
938                  */
939                 ctx->scoped_accesses.prev = NULL;
940
941         ctx->disable_count--;
942
943         check_access(sa->ptr, sa->size, sa->type, sa->ip);
944 }
945 EXPORT_SYMBOL(kcsan_end_scoped_access);
946
947 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
948 {
949         check_access(ptr, size, type, _RET_IP_);
950 }
951 EXPORT_SYMBOL(__kcsan_check_access);
952
953 #define DEFINE_MEMORY_BARRIER(name, order_before_cond)                          \
954         void __kcsan_##name(void)                                               \
955         {                                                                       \
956                 struct kcsan_scoped_access *sa = get_reorder_access(get_ctx()); \
957                 if (!sa)                                                        \
958                         return;                                                 \
959                 if (order_before_cond)                                          \
960                         sa->size = 0;                                           \
961         }                                                                       \
962         EXPORT_SYMBOL(__kcsan_##name)
963
964 DEFINE_MEMORY_BARRIER(mb, true);
965 DEFINE_MEMORY_BARRIER(wmb, sa->type & (KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND));
966 DEFINE_MEMORY_BARRIER(rmb, !(sa->type & KCSAN_ACCESS_WRITE) || (sa->type & KCSAN_ACCESS_COMPOUND));
967 DEFINE_MEMORY_BARRIER(release, true);
968
969 /*
970  * KCSAN uses the same instrumentation that is emitted by supported compilers
971  * for ThreadSanitizer (TSAN).
972  *
973  * When enabled, the compiler emits instrumentation calls (the functions
974  * prefixed with "__tsan" below) for all loads and stores that it generated;
975  * inline asm is not instrumented.
976  *
977  * Note that, not all supported compiler versions distinguish aligned/unaligned
978  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
979  * version to the generic version, which can handle both.
980  */
981
982 #define DEFINE_TSAN_READ_WRITE(size)                                           \
983         void __tsan_read##size(void *ptr);                                     \
984         void __tsan_read##size(void *ptr)                                      \
985         {                                                                      \
986                 check_access(ptr, size, 0, _RET_IP_);                          \
987         }                                                                      \
988         EXPORT_SYMBOL(__tsan_read##size);                                      \
989         void __tsan_unaligned_read##size(void *ptr)                            \
990                 __alias(__tsan_read##size);                                    \
991         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
992         void __tsan_write##size(void *ptr);                                    \
993         void __tsan_write##size(void *ptr)                                     \
994         {                                                                      \
995                 check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);         \
996         }                                                                      \
997         EXPORT_SYMBOL(__tsan_write##size);                                     \
998         void __tsan_unaligned_write##size(void *ptr)                           \
999                 __alias(__tsan_write##size);                                   \
1000         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
1001         void __tsan_read_write##size(void *ptr);                               \
1002         void __tsan_read_write##size(void *ptr)                                \
1003         {                                                                      \
1004                 check_access(ptr, size,                                        \
1005                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE,       \
1006                              _RET_IP_);                                        \
1007         }                                                                      \
1008         EXPORT_SYMBOL(__tsan_read_write##size);                                \
1009         void __tsan_unaligned_read_write##size(void *ptr)                      \
1010                 __alias(__tsan_read_write##size);                              \
1011         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
1012
1013 DEFINE_TSAN_READ_WRITE(1);
1014 DEFINE_TSAN_READ_WRITE(2);
1015 DEFINE_TSAN_READ_WRITE(4);
1016 DEFINE_TSAN_READ_WRITE(8);
1017 DEFINE_TSAN_READ_WRITE(16);
1018
1019 void __tsan_read_range(void *ptr, size_t size);
1020 void __tsan_read_range(void *ptr, size_t size)
1021 {
1022         check_access(ptr, size, 0, _RET_IP_);
1023 }
1024 EXPORT_SYMBOL(__tsan_read_range);
1025
1026 void __tsan_write_range(void *ptr, size_t size);
1027 void __tsan_write_range(void *ptr, size_t size)
1028 {
1029         check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);
1030 }
1031 EXPORT_SYMBOL(__tsan_write_range);
1032
1033 /*
1034  * Use of explicit volatile is generally disallowed [1], however, volatile is
1035  * still used in various concurrent context, whether in low-level
1036  * synchronization primitives or for legacy reasons.
1037  * [1] https://lwn.net/Articles/233479/
1038  *
1039  * We only consider volatile accesses atomic if they are aligned and would pass
1040  * the size-check of compiletime_assert_rwonce_type().
1041  */
1042 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
1043         void __tsan_volatile_read##size(void *ptr);                            \
1044         void __tsan_volatile_read##size(void *ptr)                             \
1045         {                                                                      \
1046                 const bool is_atomic = size <= sizeof(long long) &&            \
1047                                        IS_ALIGNED((unsigned long)ptr, size);   \
1048                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1049                         return;                                                \
1050                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0,   \
1051                              _RET_IP_);                                        \
1052         }                                                                      \
1053         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
1054         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
1055                 __alias(__tsan_volatile_read##size);                           \
1056         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
1057         void __tsan_volatile_write##size(void *ptr);                           \
1058         void __tsan_volatile_write##size(void *ptr)                            \
1059         {                                                                      \
1060                 const bool is_atomic = size <= sizeof(long long) &&            \
1061                                        IS_ALIGNED((unsigned long)ptr, size);   \
1062                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
1063                         return;                                                \
1064                 check_access(ptr, size,                                        \
1065                              KCSAN_ACCESS_WRITE |                              \
1066                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0),    \
1067                              _RET_IP_);                                        \
1068         }                                                                      \
1069         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
1070         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
1071                 __alias(__tsan_volatile_write##size);                          \
1072         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
1073
1074 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
1075 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
1076 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
1077 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
1078 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
1079
1080 /*
1081  * Function entry and exit are used to determine the validty of reorder_access.
1082  * Reordering of the access ends at the end of the function scope where the
1083  * access happened. This is done for two reasons:
1084  *
1085  *      1. Artificially limits the scope where missing barriers are detected.
1086  *         This minimizes false positives due to uninstrumented functions that
1087  *         contain the required barriers but were missed.
1088  *
1089  *      2. Simplifies generating the stack trace of the access.
1090  */
1091 void __tsan_func_entry(void *call_pc);
1092 noinline void __tsan_func_entry(void *call_pc)
1093 {
1094         if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1095                 return;
1096
1097         add_kcsan_stack_depth(1);
1098 }
1099 EXPORT_SYMBOL(__tsan_func_entry);
1100
1101 void __tsan_func_exit(void);
1102 noinline void __tsan_func_exit(void)
1103 {
1104         struct kcsan_scoped_access *reorder_access;
1105
1106         if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY))
1107                 return;
1108
1109         reorder_access = get_reorder_access(get_ctx());
1110         if (!reorder_access)
1111                 goto out;
1112
1113         if (get_kcsan_stack_depth() <= reorder_access->stack_depth) {
1114                 /*
1115                  * Access check to catch cases where write without a barrier
1116                  * (supposed release) was last access in function: because
1117                  * instrumentation is inserted before the real access, a data
1118                  * race due to the write giving up a c-s would only be caught if
1119                  * we do the conflicting access after.
1120                  */
1121                 check_access(reorder_access->ptr, reorder_access->size,
1122                              reorder_access->type, reorder_access->ip);
1123                 reorder_access->size = 0;
1124                 reorder_access->stack_depth = INT_MIN;
1125         }
1126 out:
1127         add_kcsan_stack_depth(-1);
1128 }
1129 EXPORT_SYMBOL(__tsan_func_exit);
1130
1131 void __tsan_init(void);
1132 void __tsan_init(void)
1133 {
1134 }
1135 EXPORT_SYMBOL(__tsan_init);
1136
1137 /*
1138  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
1139  *
1140  * Normal kernel code _should not_ be using them directly, but some
1141  * architectures may implement some or all atomics using the compilers'
1142  * builtins.
1143  *
1144  * Note: If an architecture decides to fully implement atomics using the
1145  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
1146  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
1147  * atomic-instrumented) is no longer necessary.
1148  *
1149  * TSAN instrumentation replaces atomic accesses with calls to any of the below
1150  * functions, whose job is to also execute the operation itself.
1151  */
1152
1153 static __always_inline void kcsan_atomic_builtin_memorder(int memorder)
1154 {
1155         if (memorder == __ATOMIC_RELEASE ||
1156             memorder == __ATOMIC_SEQ_CST ||
1157             memorder == __ATOMIC_ACQ_REL)
1158                 __kcsan_release();
1159 }
1160
1161 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
1162         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
1163         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
1164         {                                                                                          \
1165                 kcsan_atomic_builtin_memorder(memorder);                                           \
1166                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1167                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_);    \
1168                 }                                                                                  \
1169                 return __atomic_load_n(ptr, memorder);                                             \
1170         }                                                                                          \
1171         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
1172         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
1173         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
1174         {                                                                                          \
1175                 kcsan_atomic_builtin_memorder(memorder);                                           \
1176                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1177                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1178                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_);          \
1179                 }                                                                                  \
1180                 __atomic_store_n(ptr, v, memorder);                                                \
1181         }                                                                                          \
1182         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
1183
1184 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
1185         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
1186         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
1187         {                                                                                          \
1188                 kcsan_atomic_builtin_memorder(memorder);                                           \
1189                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1190                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1191                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1192                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1193                 }                                                                                  \
1194                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
1195         }                                                                                          \
1196         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
1197
1198 /*
1199  * Note: CAS operations are always classified as write, even in case they
1200  * fail. We cannot perform check_access() after a write, as it might lead to
1201  * false positives, in cases such as:
1202  *
1203  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
1204  *
1205  *      T1: if (__atomic_load_n(&p->flag, ...)) {
1206  *              modify *p;
1207  *              p->flag = 0;
1208  *          }
1209  *
1210  * The only downside is that, if there are 3 threads, with one CAS that
1211  * succeeds, another CAS that fails, and an unmarked racing operation, we may
1212  * point at the wrong CAS as the source of the race. However, if we assume that
1213  * all CAS can succeed in some other execution, the data race is still valid.
1214  */
1215 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1216         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1217                                                               u##bits val, int mo, int fail_mo);   \
1218         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1219                                                               u##bits val, int mo, int fail_mo)    \
1220         {                                                                                          \
1221                 kcsan_atomic_builtin_memorder(mo);                                                 \
1222                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1223                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1224                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1225                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1226                 }                                                                                  \
1227                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1228         }                                                                                          \
1229         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1230
1231 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1232         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1233                                                            int mo, int fail_mo);                   \
1234         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1235                                                            int mo, int fail_mo)                    \
1236         {                                                                                          \
1237                 kcsan_atomic_builtin_memorder(mo);                                                 \
1238                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1239                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1240                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1241                                              KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1242                 }                                                                                  \
1243                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1244                 return exp;                                                                        \
1245         }                                                                                          \
1246         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1247
1248 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1249         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1250         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1251         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1252         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1253         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1254         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1255         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1256         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1257         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1258         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1259         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1260
1261 DEFINE_TSAN_ATOMIC_OPS(8);
1262 DEFINE_TSAN_ATOMIC_OPS(16);
1263 DEFINE_TSAN_ATOMIC_OPS(32);
1264 DEFINE_TSAN_ATOMIC_OPS(64);
1265
1266 void __tsan_atomic_thread_fence(int memorder);
1267 void __tsan_atomic_thread_fence(int memorder)
1268 {
1269         kcsan_atomic_builtin_memorder(memorder);
1270         __atomic_thread_fence(memorder);
1271 }
1272 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1273
1274 /*
1275  * In instrumented files, we emit instrumentation for barriers by mapping the
1276  * kernel barriers to an __atomic_signal_fence(), which is interpreted specially
1277  * and otherwise has no relation to a real __atomic_signal_fence(). No known
1278  * kernel code uses __atomic_signal_fence().
1279  *
1280  * Since fsanitize=thread instrumentation handles __atomic_signal_fence(), which
1281  * are turned into calls to __tsan_atomic_signal_fence(), such instrumentation
1282  * can be disabled via the __no_kcsan function attribute (vs. an explicit call
1283  * which could not). When __no_kcsan is requested, __atomic_signal_fence()
1284  * generates no code.
1285  *
1286  * Note: The result of using __atomic_signal_fence() with KCSAN enabled is
1287  * potentially limiting the compiler's ability to reorder operations; however,
1288  * if barriers were instrumented with explicit calls (without LTO), the compiler
1289  * couldn't optimize much anyway. The result of a hypothetical architecture
1290  * using __atomic_signal_fence() in normal code would be KCSAN false negatives.
1291  */
1292 void __tsan_atomic_signal_fence(int memorder);
1293 noinline void __tsan_atomic_signal_fence(int memorder)
1294 {
1295         switch (memorder) {
1296         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb:
1297                 __kcsan_mb();
1298                 break;
1299         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb:
1300                 __kcsan_wmb();
1301                 break;
1302         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb:
1303                 __kcsan_rmb();
1304                 break;
1305         case __KCSAN_BARRIER_TO_SIGNAL_FENCE_release:
1306                 __kcsan_release();
1307                 break;
1308         default:
1309                 break;
1310         }
1311 }
1312 EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1313
1314 #ifdef __HAVE_ARCH_MEMSET
1315 void *__tsan_memset(void *s, int c, size_t count);
1316 noinline void *__tsan_memset(void *s, int c, size_t count)
1317 {
1318         /*
1319          * Instead of not setting up watchpoints where accessed size is greater
1320          * than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE.
1321          */
1322         size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE);
1323
1324         check_access(s, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1325         return memset(s, c, count);
1326 }
1327 #else
1328 void *__tsan_memset(void *s, int c, size_t count) __alias(memset);
1329 #endif
1330 EXPORT_SYMBOL(__tsan_memset);
1331
1332 #ifdef __HAVE_ARCH_MEMMOVE
1333 void *__tsan_memmove(void *dst, const void *src, size_t len);
1334 noinline void *__tsan_memmove(void *dst, const void *src, size_t len)
1335 {
1336         size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1337
1338         check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1339         check_access(src, check_len, 0, _RET_IP_);
1340         return memmove(dst, src, len);
1341 }
1342 #else
1343 void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove);
1344 #endif
1345 EXPORT_SYMBOL(__tsan_memmove);
1346
1347 #ifdef __HAVE_ARCH_MEMCPY
1348 void *__tsan_memcpy(void *dst, const void *src, size_t len);
1349 noinline void *__tsan_memcpy(void *dst, const void *src, size_t len)
1350 {
1351         size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1352
1353         check_access(dst, check_len, KCSAN_ACCESS_WRITE, _RET_IP_);
1354         check_access(src, check_len, 0, _RET_IP_);
1355         return memcpy(dst, src, len);
1356 }
1357 #else
1358 void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy);
1359 #endif
1360 EXPORT_SYMBOL(__tsan_memcpy);