Merge tag 'interrupting_kthread_stop-for-v5.20' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         static_branch_enable(&force_irqthreads_key);
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *      @irq: interrupt number to wait for
114  *
115  *      This function waits for any pending IRQ handlers for this interrupt
116  *      to complete before returning. If you use this function while
117  *      holding a resource the IRQ handler may need you will deadlock.
118  *
119  *      Can only be called from preemptible code as it might sleep when
120  *      an interrupt thread is associated to @irq.
121  *
122  *      It optionally makes sure (when the irq chip supports that method)
123  *      that the interrupt is not pending in any CPU and waiting for
124  *      service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128         struct irq_desc *desc = irq_to_desc(irq);
129
130         if (desc) {
131                 __synchronize_hardirq(desc, true);
132                 /*
133                  * We made sure that no hardirq handler is
134                  * running. Now verify that no threaded handlers are
135                  * active.
136                  */
137                 wait_event(desc->wait_for_threads,
138                            !atomic_read(&desc->threads_active));
139         }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148         if (!desc || !irqd_can_balance(&desc->irq_data) ||
149             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150                 return false;
151         return true;
152 }
153
154 /**
155  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *      @irq:           Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161         return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:        Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173         struct irq_desc *desc = irq_to_desc(irq);
174
175         return __irq_can_set_affinity(desc) &&
176                 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *      @desc:          irq descriptor which has affinity changed
182  *
183  *      We just set IRQTF_AFFINITY and delegate the affinity setting
184  *      to the interrupt thread itself. We can not call
185  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *      code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190         struct irqaction *action;
191
192         for_each_action_of_desc(desc, action)
193                 if (action->thread)
194                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201         struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203         if (!cpumask_empty(m))
204                 return;
205         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206                      chip->name, data->irq);
207 }
208 #else
209 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
210 #endif
211
212 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
213                         bool force)
214 {
215         struct irq_desc *desc = irq_data_to_desc(data);
216         struct irq_chip *chip = irq_data_get_irq_chip(data);
217         const struct cpumask  *prog_mask;
218         int ret;
219
220         static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
221         static struct cpumask tmp_mask;
222
223         if (!chip || !chip->irq_set_affinity)
224                 return -EINVAL;
225
226         raw_spin_lock(&tmp_mask_lock);
227         /*
228          * If this is a managed interrupt and housekeeping is enabled on
229          * it check whether the requested affinity mask intersects with
230          * a housekeeping CPU. If so, then remove the isolated CPUs from
231          * the mask and just keep the housekeeping CPU(s). This prevents
232          * the affinity setter from routing the interrupt to an isolated
233          * CPU to avoid that I/O submitted from a housekeeping CPU causes
234          * interrupts on an isolated one.
235          *
236          * If the masks do not intersect or include online CPU(s) then
237          * keep the requested mask. The isolated target CPUs are only
238          * receiving interrupts when the I/O operation was submitted
239          * directly from them.
240          *
241          * If all housekeeping CPUs in the affinity mask are offline, the
242          * interrupt will be migrated by the CPU hotplug code once a
243          * housekeeping CPU which belongs to the affinity mask comes
244          * online.
245          */
246         if (irqd_affinity_is_managed(data) &&
247             housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
248                 const struct cpumask *hk_mask;
249
250                 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
251
252                 cpumask_and(&tmp_mask, mask, hk_mask);
253                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
254                         prog_mask = mask;
255                 else
256                         prog_mask = &tmp_mask;
257         } else {
258                 prog_mask = mask;
259         }
260
261         /*
262          * Make sure we only provide online CPUs to the irqchip,
263          * unless we are being asked to force the affinity (in which
264          * case we do as we are told).
265          */
266         cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
267         if (!force && !cpumask_empty(&tmp_mask))
268                 ret = chip->irq_set_affinity(data, &tmp_mask, force);
269         else if (force)
270                 ret = chip->irq_set_affinity(data, mask, force);
271         else
272                 ret = -EINVAL;
273
274         raw_spin_unlock(&tmp_mask_lock);
275
276         switch (ret) {
277         case IRQ_SET_MASK_OK:
278         case IRQ_SET_MASK_OK_DONE:
279                 cpumask_copy(desc->irq_common_data.affinity, mask);
280                 fallthrough;
281         case IRQ_SET_MASK_OK_NOCOPY:
282                 irq_validate_effective_affinity(data);
283                 irq_set_thread_affinity(desc);
284                 ret = 0;
285         }
286
287         return ret;
288 }
289
290 #ifdef CONFIG_GENERIC_PENDING_IRQ
291 static inline int irq_set_affinity_pending(struct irq_data *data,
292                                            const struct cpumask *dest)
293 {
294         struct irq_desc *desc = irq_data_to_desc(data);
295
296         irqd_set_move_pending(data);
297         irq_copy_pending(desc, dest);
298         return 0;
299 }
300 #else
301 static inline int irq_set_affinity_pending(struct irq_data *data,
302                                            const struct cpumask *dest)
303 {
304         return -EBUSY;
305 }
306 #endif
307
308 static int irq_try_set_affinity(struct irq_data *data,
309                                 const struct cpumask *dest, bool force)
310 {
311         int ret = irq_do_set_affinity(data, dest, force);
312
313         /*
314          * In case that the underlying vector management is busy and the
315          * architecture supports the generic pending mechanism then utilize
316          * this to avoid returning an error to user space.
317          */
318         if (ret == -EBUSY && !force)
319                 ret = irq_set_affinity_pending(data, dest);
320         return ret;
321 }
322
323 static bool irq_set_affinity_deactivated(struct irq_data *data,
324                                          const struct cpumask *mask, bool force)
325 {
326         struct irq_desc *desc = irq_data_to_desc(data);
327
328         /*
329          * Handle irq chips which can handle affinity only in activated
330          * state correctly
331          *
332          * If the interrupt is not yet activated, just store the affinity
333          * mask and do not call the chip driver at all. On activation the
334          * driver has to make sure anyway that the interrupt is in a
335          * usable state so startup works.
336          */
337         if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
338             irqd_is_activated(data) || !irqd_affinity_on_activate(data))
339                 return false;
340
341         cpumask_copy(desc->irq_common_data.affinity, mask);
342         irq_data_update_effective_affinity(data, mask);
343         irqd_set(data, IRQD_AFFINITY_SET);
344         return true;
345 }
346
347 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
348                             bool force)
349 {
350         struct irq_chip *chip = irq_data_get_irq_chip(data);
351         struct irq_desc *desc = irq_data_to_desc(data);
352         int ret = 0;
353
354         if (!chip || !chip->irq_set_affinity)
355                 return -EINVAL;
356
357         if (irq_set_affinity_deactivated(data, mask, force))
358                 return 0;
359
360         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
361                 ret = irq_try_set_affinity(data, mask, force);
362         } else {
363                 irqd_set_move_pending(data);
364                 irq_copy_pending(desc, mask);
365         }
366
367         if (desc->affinity_notify) {
368                 kref_get(&desc->affinity_notify->kref);
369                 if (!schedule_work(&desc->affinity_notify->work)) {
370                         /* Work was already scheduled, drop our extra ref */
371                         kref_put(&desc->affinity_notify->kref,
372                                  desc->affinity_notify->release);
373                 }
374         }
375         irqd_set(data, IRQD_AFFINITY_SET);
376
377         return ret;
378 }
379
380 /**
381  * irq_update_affinity_desc - Update affinity management for an interrupt
382  * @irq:        The interrupt number to update
383  * @affinity:   Pointer to the affinity descriptor
384  *
385  * This interface can be used to configure the affinity management of
386  * interrupts which have been allocated already.
387  *
388  * There are certain limitations on when it may be used - attempts to use it
389  * for when the kernel is configured for generic IRQ reservation mode (in
390  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
391  * managed/non-managed interrupt accounting. In addition, attempts to use it on
392  * an interrupt which is already started or which has already been configured
393  * as managed will also fail, as these mean invalid init state or double init.
394  */
395 int irq_update_affinity_desc(unsigned int irq,
396                              struct irq_affinity_desc *affinity)
397 {
398         struct irq_desc *desc;
399         unsigned long flags;
400         bool activated;
401         int ret = 0;
402
403         /*
404          * Supporting this with the reservation scheme used by x86 needs
405          * some more thought. Fail it for now.
406          */
407         if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
408                 return -EOPNOTSUPP;
409
410         desc = irq_get_desc_buslock(irq, &flags, 0);
411         if (!desc)
412                 return -EINVAL;
413
414         /* Requires the interrupt to be shut down */
415         if (irqd_is_started(&desc->irq_data)) {
416                 ret = -EBUSY;
417                 goto out_unlock;
418         }
419
420         /* Interrupts which are already managed cannot be modified */
421         if (irqd_affinity_is_managed(&desc->irq_data)) {
422                 ret = -EBUSY;
423                 goto out_unlock;
424         }
425
426         /*
427          * Deactivate the interrupt. That's required to undo
428          * anything an earlier activation has established.
429          */
430         activated = irqd_is_activated(&desc->irq_data);
431         if (activated)
432                 irq_domain_deactivate_irq(&desc->irq_data);
433
434         if (affinity->is_managed) {
435                 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
436                 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
437         }
438
439         cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
440
441         /* Restore the activation state */
442         if (activated)
443                 irq_domain_activate_irq(&desc->irq_data, false);
444
445 out_unlock:
446         irq_put_desc_busunlock(desc, flags);
447         return ret;
448 }
449
450 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
451                               bool force)
452 {
453         struct irq_desc *desc = irq_to_desc(irq);
454         unsigned long flags;
455         int ret;
456
457         if (!desc)
458                 return -EINVAL;
459
460         raw_spin_lock_irqsave(&desc->lock, flags);
461         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
462         raw_spin_unlock_irqrestore(&desc->lock, flags);
463         return ret;
464 }
465
466 /**
467  * irq_set_affinity - Set the irq affinity of a given irq
468  * @irq:        Interrupt to set affinity
469  * @cpumask:    cpumask
470  *
471  * Fails if cpumask does not contain an online CPU
472  */
473 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
474 {
475         return __irq_set_affinity(irq, cpumask, false);
476 }
477 EXPORT_SYMBOL_GPL(irq_set_affinity);
478
479 /**
480  * irq_force_affinity - Force the irq affinity of a given irq
481  * @irq:        Interrupt to set affinity
482  * @cpumask:    cpumask
483  *
484  * Same as irq_set_affinity, but without checking the mask against
485  * online cpus.
486  *
487  * Solely for low level cpu hotplug code, where we need to make per
488  * cpu interrupts affine before the cpu becomes online.
489  */
490 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
491 {
492         return __irq_set_affinity(irq, cpumask, true);
493 }
494 EXPORT_SYMBOL_GPL(irq_force_affinity);
495
496 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
497                               bool setaffinity)
498 {
499         unsigned long flags;
500         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
501
502         if (!desc)
503                 return -EINVAL;
504         desc->affinity_hint = m;
505         irq_put_desc_unlock(desc, flags);
506         if (m && setaffinity)
507                 __irq_set_affinity(irq, m, false);
508         return 0;
509 }
510 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
511
512 static void irq_affinity_notify(struct work_struct *work)
513 {
514         struct irq_affinity_notify *notify =
515                 container_of(work, struct irq_affinity_notify, work);
516         struct irq_desc *desc = irq_to_desc(notify->irq);
517         cpumask_var_t cpumask;
518         unsigned long flags;
519
520         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
521                 goto out;
522
523         raw_spin_lock_irqsave(&desc->lock, flags);
524         if (irq_move_pending(&desc->irq_data))
525                 irq_get_pending(cpumask, desc);
526         else
527                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
528         raw_spin_unlock_irqrestore(&desc->lock, flags);
529
530         notify->notify(notify, cpumask);
531
532         free_cpumask_var(cpumask);
533 out:
534         kref_put(&notify->kref, notify->release);
535 }
536
537 /**
538  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
539  *      @irq:           Interrupt for which to enable/disable notification
540  *      @notify:        Context for notification, or %NULL to disable
541  *                      notification.  Function pointers must be initialised;
542  *                      the other fields will be initialised by this function.
543  *
544  *      Must be called in process context.  Notification may only be enabled
545  *      after the IRQ is allocated and must be disabled before the IRQ is
546  *      freed using free_irq().
547  */
548 int
549 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
550 {
551         struct irq_desc *desc = irq_to_desc(irq);
552         struct irq_affinity_notify *old_notify;
553         unsigned long flags;
554
555         /* The release function is promised process context */
556         might_sleep();
557
558         if (!desc || desc->istate & IRQS_NMI)
559                 return -EINVAL;
560
561         /* Complete initialisation of *notify */
562         if (notify) {
563                 notify->irq = irq;
564                 kref_init(&notify->kref);
565                 INIT_WORK(&notify->work, irq_affinity_notify);
566         }
567
568         raw_spin_lock_irqsave(&desc->lock, flags);
569         old_notify = desc->affinity_notify;
570         desc->affinity_notify = notify;
571         raw_spin_unlock_irqrestore(&desc->lock, flags);
572
573         if (old_notify) {
574                 if (cancel_work_sync(&old_notify->work)) {
575                         /* Pending work had a ref, put that one too */
576                         kref_put(&old_notify->kref, old_notify->release);
577                 }
578                 kref_put(&old_notify->kref, old_notify->release);
579         }
580
581         return 0;
582 }
583 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
584
585 #ifndef CONFIG_AUTO_IRQ_AFFINITY
586 /*
587  * Generic version of the affinity autoselector.
588  */
589 int irq_setup_affinity(struct irq_desc *desc)
590 {
591         struct cpumask *set = irq_default_affinity;
592         int ret, node = irq_desc_get_node(desc);
593         static DEFINE_RAW_SPINLOCK(mask_lock);
594         static struct cpumask mask;
595
596         /* Excludes PER_CPU and NO_BALANCE interrupts */
597         if (!__irq_can_set_affinity(desc))
598                 return 0;
599
600         raw_spin_lock(&mask_lock);
601         /*
602          * Preserve the managed affinity setting and a userspace affinity
603          * setup, but make sure that one of the targets is online.
604          */
605         if (irqd_affinity_is_managed(&desc->irq_data) ||
606             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
607                 if (cpumask_intersects(desc->irq_common_data.affinity,
608                                        cpu_online_mask))
609                         set = desc->irq_common_data.affinity;
610                 else
611                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
612         }
613
614         cpumask_and(&mask, cpu_online_mask, set);
615         if (cpumask_empty(&mask))
616                 cpumask_copy(&mask, cpu_online_mask);
617
618         if (node != NUMA_NO_NODE) {
619                 const struct cpumask *nodemask = cpumask_of_node(node);
620
621                 /* make sure at least one of the cpus in nodemask is online */
622                 if (cpumask_intersects(&mask, nodemask))
623                         cpumask_and(&mask, &mask, nodemask);
624         }
625         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
626         raw_spin_unlock(&mask_lock);
627         return ret;
628 }
629 #else
630 /* Wrapper for ALPHA specific affinity selector magic */
631 int irq_setup_affinity(struct irq_desc *desc)
632 {
633         return irq_select_affinity(irq_desc_get_irq(desc));
634 }
635 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
636 #endif /* CONFIG_SMP */
637
638
639 /**
640  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
641  *      @irq: interrupt number to set affinity
642  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
643  *                  specific data for percpu_devid interrupts
644  *
645  *      This function uses the vCPU specific data to set the vCPU
646  *      affinity for an irq. The vCPU specific data is passed from
647  *      outside, such as KVM. One example code path is as below:
648  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
649  */
650 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
651 {
652         unsigned long flags;
653         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
654         struct irq_data *data;
655         struct irq_chip *chip;
656         int ret = -ENOSYS;
657
658         if (!desc)
659                 return -EINVAL;
660
661         data = irq_desc_get_irq_data(desc);
662         do {
663                 chip = irq_data_get_irq_chip(data);
664                 if (chip && chip->irq_set_vcpu_affinity)
665                         break;
666 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
667                 data = data->parent_data;
668 #else
669                 data = NULL;
670 #endif
671         } while (data);
672
673         if (data)
674                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
675         irq_put_desc_unlock(desc, flags);
676
677         return ret;
678 }
679 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
680
681 void __disable_irq(struct irq_desc *desc)
682 {
683         if (!desc->depth++)
684                 irq_disable(desc);
685 }
686
687 static int __disable_irq_nosync(unsigned int irq)
688 {
689         unsigned long flags;
690         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
691
692         if (!desc)
693                 return -EINVAL;
694         __disable_irq(desc);
695         irq_put_desc_busunlock(desc, flags);
696         return 0;
697 }
698
699 /**
700  *      disable_irq_nosync - disable an irq without waiting
701  *      @irq: Interrupt to disable
702  *
703  *      Disable the selected interrupt line.  Disables and Enables are
704  *      nested.
705  *      Unlike disable_irq(), this function does not ensure existing
706  *      instances of the IRQ handler have completed before returning.
707  *
708  *      This function may be called from IRQ context.
709  */
710 void disable_irq_nosync(unsigned int irq)
711 {
712         __disable_irq_nosync(irq);
713 }
714 EXPORT_SYMBOL(disable_irq_nosync);
715
716 /**
717  *      disable_irq - disable an irq and wait for completion
718  *      @irq: Interrupt to disable
719  *
720  *      Disable the selected interrupt line.  Enables and Disables are
721  *      nested.
722  *      This function waits for any pending IRQ handlers for this interrupt
723  *      to complete before returning. If you use this function while
724  *      holding a resource the IRQ handler may need you will deadlock.
725  *
726  *      This function may be called - with care - from IRQ context.
727  */
728 void disable_irq(unsigned int irq)
729 {
730         if (!__disable_irq_nosync(irq))
731                 synchronize_irq(irq);
732 }
733 EXPORT_SYMBOL(disable_irq);
734
735 /**
736  *      disable_hardirq - disables an irq and waits for hardirq completion
737  *      @irq: Interrupt to disable
738  *
739  *      Disable the selected interrupt line.  Enables and Disables are
740  *      nested.
741  *      This function waits for any pending hard IRQ handlers for this
742  *      interrupt to complete before returning. If you use this function while
743  *      holding a resource the hard IRQ handler may need you will deadlock.
744  *
745  *      When used to optimistically disable an interrupt from atomic context
746  *      the return value must be checked.
747  *
748  *      Returns: false if a threaded handler is active.
749  *
750  *      This function may be called - with care - from IRQ context.
751  */
752 bool disable_hardirq(unsigned int irq)
753 {
754         if (!__disable_irq_nosync(irq))
755                 return synchronize_hardirq(irq);
756
757         return false;
758 }
759 EXPORT_SYMBOL_GPL(disable_hardirq);
760
761 /**
762  *      disable_nmi_nosync - disable an nmi without waiting
763  *      @irq: Interrupt to disable
764  *
765  *      Disable the selected interrupt line. Disables and enables are
766  *      nested.
767  *      The interrupt to disable must have been requested through request_nmi.
768  *      Unlike disable_nmi(), this function does not ensure existing
769  *      instances of the IRQ handler have completed before returning.
770  */
771 void disable_nmi_nosync(unsigned int irq)
772 {
773         disable_irq_nosync(irq);
774 }
775
776 void __enable_irq(struct irq_desc *desc)
777 {
778         switch (desc->depth) {
779         case 0:
780  err_out:
781                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
782                      irq_desc_get_irq(desc));
783                 break;
784         case 1: {
785                 if (desc->istate & IRQS_SUSPENDED)
786                         goto err_out;
787                 /* Prevent probing on this irq: */
788                 irq_settings_set_noprobe(desc);
789                 /*
790                  * Call irq_startup() not irq_enable() here because the
791                  * interrupt might be marked NOAUTOEN. So irq_startup()
792                  * needs to be invoked when it gets enabled the first
793                  * time. If it was already started up, then irq_startup()
794                  * will invoke irq_enable() under the hood.
795                  */
796                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
797                 break;
798         }
799         default:
800                 desc->depth--;
801         }
802 }
803
804 /**
805  *      enable_irq - enable handling of an irq
806  *      @irq: Interrupt to enable
807  *
808  *      Undoes the effect of one call to disable_irq().  If this
809  *      matches the last disable, processing of interrupts on this
810  *      IRQ line is re-enabled.
811  *
812  *      This function may be called from IRQ context only when
813  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
814  */
815 void enable_irq(unsigned int irq)
816 {
817         unsigned long flags;
818         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
819
820         if (!desc)
821                 return;
822         if (WARN(!desc->irq_data.chip,
823                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
824                 goto out;
825
826         __enable_irq(desc);
827 out:
828         irq_put_desc_busunlock(desc, flags);
829 }
830 EXPORT_SYMBOL(enable_irq);
831
832 /**
833  *      enable_nmi - enable handling of an nmi
834  *      @irq: Interrupt to enable
835  *
836  *      The interrupt to enable must have been requested through request_nmi.
837  *      Undoes the effect of one call to disable_nmi(). If this
838  *      matches the last disable, processing of interrupts on this
839  *      IRQ line is re-enabled.
840  */
841 void enable_nmi(unsigned int irq)
842 {
843         enable_irq(irq);
844 }
845
846 static int set_irq_wake_real(unsigned int irq, unsigned int on)
847 {
848         struct irq_desc *desc = irq_to_desc(irq);
849         int ret = -ENXIO;
850
851         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
852                 return 0;
853
854         if (desc->irq_data.chip->irq_set_wake)
855                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
856
857         return ret;
858 }
859
860 /**
861  *      irq_set_irq_wake - control irq power management wakeup
862  *      @irq:   interrupt to control
863  *      @on:    enable/disable power management wakeup
864  *
865  *      Enable/disable power management wakeup mode, which is
866  *      disabled by default.  Enables and disables must match,
867  *      just as they match for non-wakeup mode support.
868  *
869  *      Wakeup mode lets this IRQ wake the system from sleep
870  *      states like "suspend to RAM".
871  *
872  *      Note: irq enable/disable state is completely orthogonal
873  *      to the enable/disable state of irq wake. An irq can be
874  *      disabled with disable_irq() and still wake the system as
875  *      long as the irq has wake enabled. If this does not hold,
876  *      then the underlying irq chip and the related driver need
877  *      to be investigated.
878  */
879 int irq_set_irq_wake(unsigned int irq, unsigned int on)
880 {
881         unsigned long flags;
882         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
883         int ret = 0;
884
885         if (!desc)
886                 return -EINVAL;
887
888         /* Don't use NMIs as wake up interrupts please */
889         if (desc->istate & IRQS_NMI) {
890                 ret = -EINVAL;
891                 goto out_unlock;
892         }
893
894         /* wakeup-capable irqs can be shared between drivers that
895          * don't need to have the same sleep mode behaviors.
896          */
897         if (on) {
898                 if (desc->wake_depth++ == 0) {
899                         ret = set_irq_wake_real(irq, on);
900                         if (ret)
901                                 desc->wake_depth = 0;
902                         else
903                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
904                 }
905         } else {
906                 if (desc->wake_depth == 0) {
907                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
908                 } else if (--desc->wake_depth == 0) {
909                         ret = set_irq_wake_real(irq, on);
910                         if (ret)
911                                 desc->wake_depth = 1;
912                         else
913                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
914                 }
915         }
916
917 out_unlock:
918         irq_put_desc_busunlock(desc, flags);
919         return ret;
920 }
921 EXPORT_SYMBOL(irq_set_irq_wake);
922
923 /*
924  * Internal function that tells the architecture code whether a
925  * particular irq has been exclusively allocated or is available
926  * for driver use.
927  */
928 int can_request_irq(unsigned int irq, unsigned long irqflags)
929 {
930         unsigned long flags;
931         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
932         int canrequest = 0;
933
934         if (!desc)
935                 return 0;
936
937         if (irq_settings_can_request(desc)) {
938                 if (!desc->action ||
939                     irqflags & desc->action->flags & IRQF_SHARED)
940                         canrequest = 1;
941         }
942         irq_put_desc_unlock(desc, flags);
943         return canrequest;
944 }
945
946 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
947 {
948         struct irq_chip *chip = desc->irq_data.chip;
949         int ret, unmask = 0;
950
951         if (!chip || !chip->irq_set_type) {
952                 /*
953                  * IRQF_TRIGGER_* but the PIC does not support multiple
954                  * flow-types?
955                  */
956                 pr_debug("No set_type function for IRQ %d (%s)\n",
957                          irq_desc_get_irq(desc),
958                          chip ? (chip->name ? : "unknown") : "unknown");
959                 return 0;
960         }
961
962         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
963                 if (!irqd_irq_masked(&desc->irq_data))
964                         mask_irq(desc);
965                 if (!irqd_irq_disabled(&desc->irq_data))
966                         unmask = 1;
967         }
968
969         /* Mask all flags except trigger mode */
970         flags &= IRQ_TYPE_SENSE_MASK;
971         ret = chip->irq_set_type(&desc->irq_data, flags);
972
973         switch (ret) {
974         case IRQ_SET_MASK_OK:
975         case IRQ_SET_MASK_OK_DONE:
976                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
977                 irqd_set(&desc->irq_data, flags);
978                 fallthrough;
979
980         case IRQ_SET_MASK_OK_NOCOPY:
981                 flags = irqd_get_trigger_type(&desc->irq_data);
982                 irq_settings_set_trigger_mask(desc, flags);
983                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
984                 irq_settings_clr_level(desc);
985                 if (flags & IRQ_TYPE_LEVEL_MASK) {
986                         irq_settings_set_level(desc);
987                         irqd_set(&desc->irq_data, IRQD_LEVEL);
988                 }
989
990                 ret = 0;
991                 break;
992         default:
993                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
994                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
995         }
996         if (unmask)
997                 unmask_irq(desc);
998         return ret;
999 }
1000
1001 #ifdef CONFIG_HARDIRQS_SW_RESEND
1002 int irq_set_parent(int irq, int parent_irq)
1003 {
1004         unsigned long flags;
1005         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1006
1007         if (!desc)
1008                 return -EINVAL;
1009
1010         desc->parent_irq = parent_irq;
1011
1012         irq_put_desc_unlock(desc, flags);
1013         return 0;
1014 }
1015 EXPORT_SYMBOL_GPL(irq_set_parent);
1016 #endif
1017
1018 /*
1019  * Default primary interrupt handler for threaded interrupts. Is
1020  * assigned as primary handler when request_threaded_irq is called
1021  * with handler == NULL. Useful for oneshot interrupts.
1022  */
1023 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1024 {
1025         return IRQ_WAKE_THREAD;
1026 }
1027
1028 /*
1029  * Primary handler for nested threaded interrupts. Should never be
1030  * called.
1031  */
1032 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1033 {
1034         WARN(1, "Primary handler called for nested irq %d\n", irq);
1035         return IRQ_NONE;
1036 }
1037
1038 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1039 {
1040         WARN(1, "Secondary action handler called for irq %d\n", irq);
1041         return IRQ_NONE;
1042 }
1043
1044 static int irq_wait_for_interrupt(struct irqaction *action)
1045 {
1046         for (;;) {
1047                 set_current_state(TASK_INTERRUPTIBLE);
1048
1049                 if (kthread_should_stop()) {
1050                         /* may need to run one last time */
1051                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
1052                                                &action->thread_flags)) {
1053                                 __set_current_state(TASK_RUNNING);
1054                                 return 0;
1055                         }
1056                         __set_current_state(TASK_RUNNING);
1057                         return -1;
1058                 }
1059
1060                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1061                                        &action->thread_flags)) {
1062                         __set_current_state(TASK_RUNNING);
1063                         return 0;
1064                 }
1065                 schedule();
1066         }
1067 }
1068
1069 /*
1070  * Oneshot interrupts keep the irq line masked until the threaded
1071  * handler finished. unmask if the interrupt has not been disabled and
1072  * is marked MASKED.
1073  */
1074 static void irq_finalize_oneshot(struct irq_desc *desc,
1075                                  struct irqaction *action)
1076 {
1077         if (!(desc->istate & IRQS_ONESHOT) ||
1078             action->handler == irq_forced_secondary_handler)
1079                 return;
1080 again:
1081         chip_bus_lock(desc);
1082         raw_spin_lock_irq(&desc->lock);
1083
1084         /*
1085          * Implausible though it may be we need to protect us against
1086          * the following scenario:
1087          *
1088          * The thread is faster done than the hard interrupt handler
1089          * on the other CPU. If we unmask the irq line then the
1090          * interrupt can come in again and masks the line, leaves due
1091          * to IRQS_INPROGRESS and the irq line is masked forever.
1092          *
1093          * This also serializes the state of shared oneshot handlers
1094          * versus "desc->threads_oneshot |= action->thread_mask;" in
1095          * irq_wake_thread(). See the comment there which explains the
1096          * serialization.
1097          */
1098         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1099                 raw_spin_unlock_irq(&desc->lock);
1100                 chip_bus_sync_unlock(desc);
1101                 cpu_relax();
1102                 goto again;
1103         }
1104
1105         /*
1106          * Now check again, whether the thread should run. Otherwise
1107          * we would clear the threads_oneshot bit of this thread which
1108          * was just set.
1109          */
1110         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1111                 goto out_unlock;
1112
1113         desc->threads_oneshot &= ~action->thread_mask;
1114
1115         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1116             irqd_irq_masked(&desc->irq_data))
1117                 unmask_threaded_irq(desc);
1118
1119 out_unlock:
1120         raw_spin_unlock_irq(&desc->lock);
1121         chip_bus_sync_unlock(desc);
1122 }
1123
1124 #ifdef CONFIG_SMP
1125 /*
1126  * Check whether we need to change the affinity of the interrupt thread.
1127  */
1128 static void
1129 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1130 {
1131         cpumask_var_t mask;
1132         bool valid = true;
1133
1134         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1135                 return;
1136
1137         /*
1138          * In case we are out of memory we set IRQTF_AFFINITY again and
1139          * try again next time
1140          */
1141         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1142                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1143                 return;
1144         }
1145
1146         raw_spin_lock_irq(&desc->lock);
1147         /*
1148          * This code is triggered unconditionally. Check the affinity
1149          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1150          */
1151         if (cpumask_available(desc->irq_common_data.affinity)) {
1152                 const struct cpumask *m;
1153
1154                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1155                 cpumask_copy(mask, m);
1156         } else {
1157                 valid = false;
1158         }
1159         raw_spin_unlock_irq(&desc->lock);
1160
1161         if (valid)
1162                 set_cpus_allowed_ptr(current, mask);
1163         free_cpumask_var(mask);
1164 }
1165 #else
1166 static inline void
1167 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1168 #endif
1169
1170 /*
1171  * Interrupts which are not explicitly requested as threaded
1172  * interrupts rely on the implicit bh/preempt disable of the hard irq
1173  * context. So we need to disable bh here to avoid deadlocks and other
1174  * side effects.
1175  */
1176 static irqreturn_t
1177 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1178 {
1179         irqreturn_t ret;
1180
1181         local_bh_disable();
1182         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1183                 local_irq_disable();
1184         ret = action->thread_fn(action->irq, action->dev_id);
1185         if (ret == IRQ_HANDLED)
1186                 atomic_inc(&desc->threads_handled);
1187
1188         irq_finalize_oneshot(desc, action);
1189         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1190                 local_irq_enable();
1191         local_bh_enable();
1192         return ret;
1193 }
1194
1195 /*
1196  * Interrupts explicitly requested as threaded interrupts want to be
1197  * preemptible - many of them need to sleep and wait for slow busses to
1198  * complete.
1199  */
1200 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1201                 struct irqaction *action)
1202 {
1203         irqreturn_t ret;
1204
1205         ret = action->thread_fn(action->irq, action->dev_id);
1206         if (ret == IRQ_HANDLED)
1207                 atomic_inc(&desc->threads_handled);
1208
1209         irq_finalize_oneshot(desc, action);
1210         return ret;
1211 }
1212
1213 static void wake_threads_waitq(struct irq_desc *desc)
1214 {
1215         if (atomic_dec_and_test(&desc->threads_active))
1216                 wake_up(&desc->wait_for_threads);
1217 }
1218
1219 static void irq_thread_dtor(struct callback_head *unused)
1220 {
1221         struct task_struct *tsk = current;
1222         struct irq_desc *desc;
1223         struct irqaction *action;
1224
1225         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1226                 return;
1227
1228         action = kthread_data(tsk);
1229
1230         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1231                tsk->comm, tsk->pid, action->irq);
1232
1233
1234         desc = irq_to_desc(action->irq);
1235         /*
1236          * If IRQTF_RUNTHREAD is set, we need to decrement
1237          * desc->threads_active and wake possible waiters.
1238          */
1239         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1240                 wake_threads_waitq(desc);
1241
1242         /* Prevent a stale desc->threads_oneshot */
1243         irq_finalize_oneshot(desc, action);
1244 }
1245
1246 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1247 {
1248         struct irqaction *secondary = action->secondary;
1249
1250         if (WARN_ON_ONCE(!secondary))
1251                 return;
1252
1253         raw_spin_lock_irq(&desc->lock);
1254         __irq_wake_thread(desc, secondary);
1255         raw_spin_unlock_irq(&desc->lock);
1256 }
1257
1258 /*
1259  * Internal function to notify that a interrupt thread is ready.
1260  */
1261 static void irq_thread_set_ready(struct irq_desc *desc,
1262                                  struct irqaction *action)
1263 {
1264         set_bit(IRQTF_READY, &action->thread_flags);
1265         wake_up(&desc->wait_for_threads);
1266 }
1267
1268 /*
1269  * Internal function to wake up a interrupt thread and wait until it is
1270  * ready.
1271  */
1272 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1273                                                   struct irqaction *action)
1274 {
1275         if (!action || !action->thread)
1276                 return;
1277
1278         wake_up_process(action->thread);
1279         wait_event(desc->wait_for_threads,
1280                    test_bit(IRQTF_READY, &action->thread_flags));
1281 }
1282
1283 /*
1284  * Interrupt handler thread
1285  */
1286 static int irq_thread(void *data)
1287 {
1288         struct callback_head on_exit_work;
1289         struct irqaction *action = data;
1290         struct irq_desc *desc = irq_to_desc(action->irq);
1291         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1292                         struct irqaction *action);
1293
1294         irq_thread_set_ready(desc, action);
1295
1296         sched_set_fifo(current);
1297
1298         if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1299                                            &action->thread_flags))
1300                 handler_fn = irq_forced_thread_fn;
1301         else
1302                 handler_fn = irq_thread_fn;
1303
1304         init_task_work(&on_exit_work, irq_thread_dtor);
1305         task_work_add(current, &on_exit_work, TWA_NONE);
1306
1307         irq_thread_check_affinity(desc, action);
1308
1309         while (!irq_wait_for_interrupt(action)) {
1310                 irqreturn_t action_ret;
1311
1312                 irq_thread_check_affinity(desc, action);
1313
1314                 action_ret = handler_fn(desc, action);
1315                 if (action_ret == IRQ_WAKE_THREAD)
1316                         irq_wake_secondary(desc, action);
1317
1318                 wake_threads_waitq(desc);
1319         }
1320
1321         /*
1322          * This is the regular exit path. __free_irq() is stopping the
1323          * thread via kthread_stop() after calling
1324          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1325          * oneshot mask bit can be set.
1326          */
1327         task_work_cancel(current, irq_thread_dtor);
1328         return 0;
1329 }
1330
1331 /**
1332  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1333  *      @irq:           Interrupt line
1334  *      @dev_id:        Device identity for which the thread should be woken
1335  *
1336  */
1337 void irq_wake_thread(unsigned int irq, void *dev_id)
1338 {
1339         struct irq_desc *desc = irq_to_desc(irq);
1340         struct irqaction *action;
1341         unsigned long flags;
1342
1343         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1344                 return;
1345
1346         raw_spin_lock_irqsave(&desc->lock, flags);
1347         for_each_action_of_desc(desc, action) {
1348                 if (action->dev_id == dev_id) {
1349                         if (action->thread)
1350                                 __irq_wake_thread(desc, action);
1351                         break;
1352                 }
1353         }
1354         raw_spin_unlock_irqrestore(&desc->lock, flags);
1355 }
1356 EXPORT_SYMBOL_GPL(irq_wake_thread);
1357
1358 static int irq_setup_forced_threading(struct irqaction *new)
1359 {
1360         if (!force_irqthreads())
1361                 return 0;
1362         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1363                 return 0;
1364
1365         /*
1366          * No further action required for interrupts which are requested as
1367          * threaded interrupts already
1368          */
1369         if (new->handler == irq_default_primary_handler)
1370                 return 0;
1371
1372         new->flags |= IRQF_ONESHOT;
1373
1374         /*
1375          * Handle the case where we have a real primary handler and a
1376          * thread handler. We force thread them as well by creating a
1377          * secondary action.
1378          */
1379         if (new->handler && new->thread_fn) {
1380                 /* Allocate the secondary action */
1381                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1382                 if (!new->secondary)
1383                         return -ENOMEM;
1384                 new->secondary->handler = irq_forced_secondary_handler;
1385                 new->secondary->thread_fn = new->thread_fn;
1386                 new->secondary->dev_id = new->dev_id;
1387                 new->secondary->irq = new->irq;
1388                 new->secondary->name = new->name;
1389         }
1390         /* Deal with the primary handler */
1391         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1392         new->thread_fn = new->handler;
1393         new->handler = irq_default_primary_handler;
1394         return 0;
1395 }
1396
1397 static int irq_request_resources(struct irq_desc *desc)
1398 {
1399         struct irq_data *d = &desc->irq_data;
1400         struct irq_chip *c = d->chip;
1401
1402         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1403 }
1404
1405 static void irq_release_resources(struct irq_desc *desc)
1406 {
1407         struct irq_data *d = &desc->irq_data;
1408         struct irq_chip *c = d->chip;
1409
1410         if (c->irq_release_resources)
1411                 c->irq_release_resources(d);
1412 }
1413
1414 static bool irq_supports_nmi(struct irq_desc *desc)
1415 {
1416         struct irq_data *d = irq_desc_get_irq_data(desc);
1417
1418 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1419         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1420         if (d->parent_data)
1421                 return false;
1422 #endif
1423         /* Don't support NMIs for chips behind a slow bus */
1424         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1425                 return false;
1426
1427         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1428 }
1429
1430 static int irq_nmi_setup(struct irq_desc *desc)
1431 {
1432         struct irq_data *d = irq_desc_get_irq_data(desc);
1433         struct irq_chip *c = d->chip;
1434
1435         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1436 }
1437
1438 static void irq_nmi_teardown(struct irq_desc *desc)
1439 {
1440         struct irq_data *d = irq_desc_get_irq_data(desc);
1441         struct irq_chip *c = d->chip;
1442
1443         if (c->irq_nmi_teardown)
1444                 c->irq_nmi_teardown(d);
1445 }
1446
1447 static int
1448 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1449 {
1450         struct task_struct *t;
1451
1452         if (!secondary) {
1453                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1454                                    new->name);
1455         } else {
1456                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1457                                    new->name);
1458         }
1459
1460         if (IS_ERR(t))
1461                 return PTR_ERR(t);
1462
1463         /*
1464          * We keep the reference to the task struct even if
1465          * the thread dies to avoid that the interrupt code
1466          * references an already freed task_struct.
1467          */
1468         new->thread = get_task_struct(t);
1469         /*
1470          * Tell the thread to set its affinity. This is
1471          * important for shared interrupt handlers as we do
1472          * not invoke setup_affinity() for the secondary
1473          * handlers as everything is already set up. Even for
1474          * interrupts marked with IRQF_NO_BALANCE this is
1475          * correct as we want the thread to move to the cpu(s)
1476          * on which the requesting code placed the interrupt.
1477          */
1478         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1479         return 0;
1480 }
1481
1482 /*
1483  * Internal function to register an irqaction - typically used to
1484  * allocate special interrupts that are part of the architecture.
1485  *
1486  * Locking rules:
1487  *
1488  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1489  *   chip_bus_lock      Provides serialization for slow bus operations
1490  *     desc->lock       Provides serialization against hard interrupts
1491  *
1492  * chip_bus_lock and desc->lock are sufficient for all other management and
1493  * interrupt related functions. desc->request_mutex solely serializes
1494  * request/free_irq().
1495  */
1496 static int
1497 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1498 {
1499         struct irqaction *old, **old_ptr;
1500         unsigned long flags, thread_mask = 0;
1501         int ret, nested, shared = 0;
1502
1503         if (!desc)
1504                 return -EINVAL;
1505
1506         if (desc->irq_data.chip == &no_irq_chip)
1507                 return -ENOSYS;
1508         if (!try_module_get(desc->owner))
1509                 return -ENODEV;
1510
1511         new->irq = irq;
1512
1513         /*
1514          * If the trigger type is not specified by the caller,
1515          * then use the default for this interrupt.
1516          */
1517         if (!(new->flags & IRQF_TRIGGER_MASK))
1518                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1519
1520         /*
1521          * Check whether the interrupt nests into another interrupt
1522          * thread.
1523          */
1524         nested = irq_settings_is_nested_thread(desc);
1525         if (nested) {
1526                 if (!new->thread_fn) {
1527                         ret = -EINVAL;
1528                         goto out_mput;
1529                 }
1530                 /*
1531                  * Replace the primary handler which was provided from
1532                  * the driver for non nested interrupt handling by the
1533                  * dummy function which warns when called.
1534                  */
1535                 new->handler = irq_nested_primary_handler;
1536         } else {
1537                 if (irq_settings_can_thread(desc)) {
1538                         ret = irq_setup_forced_threading(new);
1539                         if (ret)
1540                                 goto out_mput;
1541                 }
1542         }
1543
1544         /*
1545          * Create a handler thread when a thread function is supplied
1546          * and the interrupt does not nest into another interrupt
1547          * thread.
1548          */
1549         if (new->thread_fn && !nested) {
1550                 ret = setup_irq_thread(new, irq, false);
1551                 if (ret)
1552                         goto out_mput;
1553                 if (new->secondary) {
1554                         ret = setup_irq_thread(new->secondary, irq, true);
1555                         if (ret)
1556                                 goto out_thread;
1557                 }
1558         }
1559
1560         /*
1561          * Drivers are often written to work w/o knowledge about the
1562          * underlying irq chip implementation, so a request for a
1563          * threaded irq without a primary hard irq context handler
1564          * requires the ONESHOT flag to be set. Some irq chips like
1565          * MSI based interrupts are per se one shot safe. Check the
1566          * chip flags, so we can avoid the unmask dance at the end of
1567          * the threaded handler for those.
1568          */
1569         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1570                 new->flags &= ~IRQF_ONESHOT;
1571
1572         /*
1573          * Protects against a concurrent __free_irq() call which might wait
1574          * for synchronize_hardirq() to complete without holding the optional
1575          * chip bus lock and desc->lock. Also protects against handing out
1576          * a recycled oneshot thread_mask bit while it's still in use by
1577          * its previous owner.
1578          */
1579         mutex_lock(&desc->request_mutex);
1580
1581         /*
1582          * Acquire bus lock as the irq_request_resources() callback below
1583          * might rely on the serialization or the magic power management
1584          * functions which are abusing the irq_bus_lock() callback,
1585          */
1586         chip_bus_lock(desc);
1587
1588         /* First installed action requests resources. */
1589         if (!desc->action) {
1590                 ret = irq_request_resources(desc);
1591                 if (ret) {
1592                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1593                                new->name, irq, desc->irq_data.chip->name);
1594                         goto out_bus_unlock;
1595                 }
1596         }
1597
1598         /*
1599          * The following block of code has to be executed atomically
1600          * protected against a concurrent interrupt and any of the other
1601          * management calls which are not serialized via
1602          * desc->request_mutex or the optional bus lock.
1603          */
1604         raw_spin_lock_irqsave(&desc->lock, flags);
1605         old_ptr = &desc->action;
1606         old = *old_ptr;
1607         if (old) {
1608                 /*
1609                  * Can't share interrupts unless both agree to and are
1610                  * the same type (level, edge, polarity). So both flag
1611                  * fields must have IRQF_SHARED set and the bits which
1612                  * set the trigger type must match. Also all must
1613                  * agree on ONESHOT.
1614                  * Interrupt lines used for NMIs cannot be shared.
1615                  */
1616                 unsigned int oldtype;
1617
1618                 if (desc->istate & IRQS_NMI) {
1619                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1620                                 new->name, irq, desc->irq_data.chip->name);
1621                         ret = -EINVAL;
1622                         goto out_unlock;
1623                 }
1624
1625                 /*
1626                  * If nobody did set the configuration before, inherit
1627                  * the one provided by the requester.
1628                  */
1629                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1630                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1631                 } else {
1632                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1633                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1634                 }
1635
1636                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1637                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1638                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1639                         goto mismatch;
1640
1641                 /* All handlers must agree on per-cpuness */
1642                 if ((old->flags & IRQF_PERCPU) !=
1643                     (new->flags & IRQF_PERCPU))
1644                         goto mismatch;
1645
1646                 /* add new interrupt at end of irq queue */
1647                 do {
1648                         /*
1649                          * Or all existing action->thread_mask bits,
1650                          * so we can find the next zero bit for this
1651                          * new action.
1652                          */
1653                         thread_mask |= old->thread_mask;
1654                         old_ptr = &old->next;
1655                         old = *old_ptr;
1656                 } while (old);
1657                 shared = 1;
1658         }
1659
1660         /*
1661          * Setup the thread mask for this irqaction for ONESHOT. For
1662          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1663          * conditional in irq_wake_thread().
1664          */
1665         if (new->flags & IRQF_ONESHOT) {
1666                 /*
1667                  * Unlikely to have 32 resp 64 irqs sharing one line,
1668                  * but who knows.
1669                  */
1670                 if (thread_mask == ~0UL) {
1671                         ret = -EBUSY;
1672                         goto out_unlock;
1673                 }
1674                 /*
1675                  * The thread_mask for the action is or'ed to
1676                  * desc->thread_active to indicate that the
1677                  * IRQF_ONESHOT thread handler has been woken, but not
1678                  * yet finished. The bit is cleared when a thread
1679                  * completes. When all threads of a shared interrupt
1680                  * line have completed desc->threads_active becomes
1681                  * zero and the interrupt line is unmasked. See
1682                  * handle.c:irq_wake_thread() for further information.
1683                  *
1684                  * If no thread is woken by primary (hard irq context)
1685                  * interrupt handlers, then desc->threads_active is
1686                  * also checked for zero to unmask the irq line in the
1687                  * affected hard irq flow handlers
1688                  * (handle_[fasteoi|level]_irq).
1689                  *
1690                  * The new action gets the first zero bit of
1691                  * thread_mask assigned. See the loop above which or's
1692                  * all existing action->thread_mask bits.
1693                  */
1694                 new->thread_mask = 1UL << ffz(thread_mask);
1695
1696         } else if (new->handler == irq_default_primary_handler &&
1697                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1698                 /*
1699                  * The interrupt was requested with handler = NULL, so
1700                  * we use the default primary handler for it. But it
1701                  * does not have the oneshot flag set. In combination
1702                  * with level interrupts this is deadly, because the
1703                  * default primary handler just wakes the thread, then
1704                  * the irq lines is reenabled, but the device still
1705                  * has the level irq asserted. Rinse and repeat....
1706                  *
1707                  * While this works for edge type interrupts, we play
1708                  * it safe and reject unconditionally because we can't
1709                  * say for sure which type this interrupt really
1710                  * has. The type flags are unreliable as the
1711                  * underlying chip implementation can override them.
1712                  */
1713                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1714                        new->name, irq);
1715                 ret = -EINVAL;
1716                 goto out_unlock;
1717         }
1718
1719         if (!shared) {
1720                 /* Setup the type (level, edge polarity) if configured: */
1721                 if (new->flags & IRQF_TRIGGER_MASK) {
1722                         ret = __irq_set_trigger(desc,
1723                                                 new->flags & IRQF_TRIGGER_MASK);
1724
1725                         if (ret)
1726                                 goto out_unlock;
1727                 }
1728
1729                 /*
1730                  * Activate the interrupt. That activation must happen
1731                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1732                  * and the callers are supposed to handle
1733                  * that. enable_irq() of an interrupt requested with
1734                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1735                  * keeps it in shutdown mode, it merily associates
1736                  * resources if necessary and if that's not possible it
1737                  * fails. Interrupts which are in managed shutdown mode
1738                  * will simply ignore that activation request.
1739                  */
1740                 ret = irq_activate(desc);
1741                 if (ret)
1742                         goto out_unlock;
1743
1744                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1745                                   IRQS_ONESHOT | IRQS_WAITING);
1746                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1747
1748                 if (new->flags & IRQF_PERCPU) {
1749                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1750                         irq_settings_set_per_cpu(desc);
1751                         if (new->flags & IRQF_NO_DEBUG)
1752                                 irq_settings_set_no_debug(desc);
1753                 }
1754
1755                 if (noirqdebug)
1756                         irq_settings_set_no_debug(desc);
1757
1758                 if (new->flags & IRQF_ONESHOT)
1759                         desc->istate |= IRQS_ONESHOT;
1760
1761                 /* Exclude IRQ from balancing if requested */
1762                 if (new->flags & IRQF_NOBALANCING) {
1763                         irq_settings_set_no_balancing(desc);
1764                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1765                 }
1766
1767                 if (!(new->flags & IRQF_NO_AUTOEN) &&
1768                     irq_settings_can_autoenable(desc)) {
1769                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1770                 } else {
1771                         /*
1772                          * Shared interrupts do not go well with disabling
1773                          * auto enable. The sharing interrupt might request
1774                          * it while it's still disabled and then wait for
1775                          * interrupts forever.
1776                          */
1777                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1778                         /* Undo nested disables: */
1779                         desc->depth = 1;
1780                 }
1781
1782         } else if (new->flags & IRQF_TRIGGER_MASK) {
1783                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1784                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1785
1786                 if (nmsk != omsk)
1787                         /* hope the handler works with current  trigger mode */
1788                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1789                                 irq, omsk, nmsk);
1790         }
1791
1792         *old_ptr = new;
1793
1794         irq_pm_install_action(desc, new);
1795
1796         /* Reset broken irq detection when installing new handler */
1797         desc->irq_count = 0;
1798         desc->irqs_unhandled = 0;
1799
1800         /*
1801          * Check whether we disabled the irq via the spurious handler
1802          * before. Reenable it and give it another chance.
1803          */
1804         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1805                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1806                 __enable_irq(desc);
1807         }
1808
1809         raw_spin_unlock_irqrestore(&desc->lock, flags);
1810         chip_bus_sync_unlock(desc);
1811         mutex_unlock(&desc->request_mutex);
1812
1813         irq_setup_timings(desc, new);
1814
1815         wake_up_and_wait_for_irq_thread_ready(desc, new);
1816         wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1817
1818         register_irq_proc(irq, desc);
1819         new->dir = NULL;
1820         register_handler_proc(irq, new);
1821         return 0;
1822
1823 mismatch:
1824         if (!(new->flags & IRQF_PROBE_SHARED)) {
1825                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1826                        irq, new->flags, new->name, old->flags, old->name);
1827 #ifdef CONFIG_DEBUG_SHIRQ
1828                 dump_stack();
1829 #endif
1830         }
1831         ret = -EBUSY;
1832
1833 out_unlock:
1834         raw_spin_unlock_irqrestore(&desc->lock, flags);
1835
1836         if (!desc->action)
1837                 irq_release_resources(desc);
1838 out_bus_unlock:
1839         chip_bus_sync_unlock(desc);
1840         mutex_unlock(&desc->request_mutex);
1841
1842 out_thread:
1843         if (new->thread) {
1844                 struct task_struct *t = new->thread;
1845
1846                 new->thread = NULL;
1847                 kthread_stop(t);
1848                 put_task_struct(t);
1849         }
1850         if (new->secondary && new->secondary->thread) {
1851                 struct task_struct *t = new->secondary->thread;
1852
1853                 new->secondary->thread = NULL;
1854                 kthread_stop(t);
1855                 put_task_struct(t);
1856         }
1857 out_mput:
1858         module_put(desc->owner);
1859         return ret;
1860 }
1861
1862 /*
1863  * Internal function to unregister an irqaction - used to free
1864  * regular and special interrupts that are part of the architecture.
1865  */
1866 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1867 {
1868         unsigned irq = desc->irq_data.irq;
1869         struct irqaction *action, **action_ptr;
1870         unsigned long flags;
1871
1872         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1873
1874         mutex_lock(&desc->request_mutex);
1875         chip_bus_lock(desc);
1876         raw_spin_lock_irqsave(&desc->lock, flags);
1877
1878         /*
1879          * There can be multiple actions per IRQ descriptor, find the right
1880          * one based on the dev_id:
1881          */
1882         action_ptr = &desc->action;
1883         for (;;) {
1884                 action = *action_ptr;
1885
1886                 if (!action) {
1887                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1888                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1889                         chip_bus_sync_unlock(desc);
1890                         mutex_unlock(&desc->request_mutex);
1891                         return NULL;
1892                 }
1893
1894                 if (action->dev_id == dev_id)
1895                         break;
1896                 action_ptr = &action->next;
1897         }
1898
1899         /* Found it - now remove it from the list of entries: */
1900         *action_ptr = action->next;
1901
1902         irq_pm_remove_action(desc, action);
1903
1904         /* If this was the last handler, shut down the IRQ line: */
1905         if (!desc->action) {
1906                 irq_settings_clr_disable_unlazy(desc);
1907                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1908                 irq_shutdown(desc);
1909         }
1910
1911 #ifdef CONFIG_SMP
1912         /* make sure affinity_hint is cleaned up */
1913         if (WARN_ON_ONCE(desc->affinity_hint))
1914                 desc->affinity_hint = NULL;
1915 #endif
1916
1917         raw_spin_unlock_irqrestore(&desc->lock, flags);
1918         /*
1919          * Drop bus_lock here so the changes which were done in the chip
1920          * callbacks above are synced out to the irq chips which hang
1921          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1922          *
1923          * Aside of that the bus_lock can also be taken from the threaded
1924          * handler in irq_finalize_oneshot() which results in a deadlock
1925          * because kthread_stop() would wait forever for the thread to
1926          * complete, which is blocked on the bus lock.
1927          *
1928          * The still held desc->request_mutex() protects against a
1929          * concurrent request_irq() of this irq so the release of resources
1930          * and timing data is properly serialized.
1931          */
1932         chip_bus_sync_unlock(desc);
1933
1934         unregister_handler_proc(irq, action);
1935
1936         /*
1937          * Make sure it's not being used on another CPU and if the chip
1938          * supports it also make sure that there is no (not yet serviced)
1939          * interrupt in flight at the hardware level.
1940          */
1941         __synchronize_hardirq(desc, true);
1942
1943 #ifdef CONFIG_DEBUG_SHIRQ
1944         /*
1945          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1946          * event to happen even now it's being freed, so let's make sure that
1947          * is so by doing an extra call to the handler ....
1948          *
1949          * ( We do this after actually deregistering it, to make sure that a
1950          *   'real' IRQ doesn't run in parallel with our fake. )
1951          */
1952         if (action->flags & IRQF_SHARED) {
1953                 local_irq_save(flags);
1954                 action->handler(irq, dev_id);
1955                 local_irq_restore(flags);
1956         }
1957 #endif
1958
1959         /*
1960          * The action has already been removed above, but the thread writes
1961          * its oneshot mask bit when it completes. Though request_mutex is
1962          * held across this which prevents __setup_irq() from handing out
1963          * the same bit to a newly requested action.
1964          */
1965         if (action->thread) {
1966                 kthread_stop(action->thread);
1967                 put_task_struct(action->thread);
1968                 if (action->secondary && action->secondary->thread) {
1969                         kthread_stop(action->secondary->thread);
1970                         put_task_struct(action->secondary->thread);
1971                 }
1972         }
1973
1974         /* Last action releases resources */
1975         if (!desc->action) {
1976                 /*
1977                  * Reacquire bus lock as irq_release_resources() might
1978                  * require it to deallocate resources over the slow bus.
1979                  */
1980                 chip_bus_lock(desc);
1981                 /*
1982                  * There is no interrupt on the fly anymore. Deactivate it
1983                  * completely.
1984                  */
1985                 raw_spin_lock_irqsave(&desc->lock, flags);
1986                 irq_domain_deactivate_irq(&desc->irq_data);
1987                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1988
1989                 irq_release_resources(desc);
1990                 chip_bus_sync_unlock(desc);
1991                 irq_remove_timings(desc);
1992         }
1993
1994         mutex_unlock(&desc->request_mutex);
1995
1996         irq_chip_pm_put(&desc->irq_data);
1997         module_put(desc->owner);
1998         kfree(action->secondary);
1999         return action;
2000 }
2001
2002 /**
2003  *      free_irq - free an interrupt allocated with request_irq
2004  *      @irq: Interrupt line to free
2005  *      @dev_id: Device identity to free
2006  *
2007  *      Remove an interrupt handler. The handler is removed and if the
2008  *      interrupt line is no longer in use by any driver it is disabled.
2009  *      On a shared IRQ the caller must ensure the interrupt is disabled
2010  *      on the card it drives before calling this function. The function
2011  *      does not return until any executing interrupts for this IRQ
2012  *      have completed.
2013  *
2014  *      This function must not be called from interrupt context.
2015  *
2016  *      Returns the devname argument passed to request_irq.
2017  */
2018 const void *free_irq(unsigned int irq, void *dev_id)
2019 {
2020         struct irq_desc *desc = irq_to_desc(irq);
2021         struct irqaction *action;
2022         const char *devname;
2023
2024         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2025                 return NULL;
2026
2027 #ifdef CONFIG_SMP
2028         if (WARN_ON(desc->affinity_notify))
2029                 desc->affinity_notify = NULL;
2030 #endif
2031
2032         action = __free_irq(desc, dev_id);
2033
2034         if (!action)
2035                 return NULL;
2036
2037         devname = action->name;
2038         kfree(action);
2039         return devname;
2040 }
2041 EXPORT_SYMBOL(free_irq);
2042
2043 /* This function must be called with desc->lock held */
2044 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2045 {
2046         const char *devname = NULL;
2047
2048         desc->istate &= ~IRQS_NMI;
2049
2050         if (!WARN_ON(desc->action == NULL)) {
2051                 irq_pm_remove_action(desc, desc->action);
2052                 devname = desc->action->name;
2053                 unregister_handler_proc(irq, desc->action);
2054
2055                 kfree(desc->action);
2056                 desc->action = NULL;
2057         }
2058
2059         irq_settings_clr_disable_unlazy(desc);
2060         irq_shutdown_and_deactivate(desc);
2061
2062         irq_release_resources(desc);
2063
2064         irq_chip_pm_put(&desc->irq_data);
2065         module_put(desc->owner);
2066
2067         return devname;
2068 }
2069
2070 const void *free_nmi(unsigned int irq, void *dev_id)
2071 {
2072         struct irq_desc *desc = irq_to_desc(irq);
2073         unsigned long flags;
2074         const void *devname;
2075
2076         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2077                 return NULL;
2078
2079         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2080                 return NULL;
2081
2082         /* NMI still enabled */
2083         if (WARN_ON(desc->depth == 0))
2084                 disable_nmi_nosync(irq);
2085
2086         raw_spin_lock_irqsave(&desc->lock, flags);
2087
2088         irq_nmi_teardown(desc);
2089         devname = __cleanup_nmi(irq, desc);
2090
2091         raw_spin_unlock_irqrestore(&desc->lock, flags);
2092
2093         return devname;
2094 }
2095
2096 /**
2097  *      request_threaded_irq - allocate an interrupt line
2098  *      @irq: Interrupt line to allocate
2099  *      @handler: Function to be called when the IRQ occurs.
2100  *                Primary handler for threaded interrupts.
2101  *                If handler is NULL and thread_fn != NULL
2102  *                the default primary handler is installed.
2103  *      @thread_fn: Function called from the irq handler thread
2104  *                  If NULL, no irq thread is created
2105  *      @irqflags: Interrupt type flags
2106  *      @devname: An ascii name for the claiming device
2107  *      @dev_id: A cookie passed back to the handler function
2108  *
2109  *      This call allocates interrupt resources and enables the
2110  *      interrupt line and IRQ handling. From the point this
2111  *      call is made your handler function may be invoked. Since
2112  *      your handler function must clear any interrupt the board
2113  *      raises, you must take care both to initialise your hardware
2114  *      and to set up the interrupt handler in the right order.
2115  *
2116  *      If you want to set up a threaded irq handler for your device
2117  *      then you need to supply @handler and @thread_fn. @handler is
2118  *      still called in hard interrupt context and has to check
2119  *      whether the interrupt originates from the device. If yes it
2120  *      needs to disable the interrupt on the device and return
2121  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2122  *      @thread_fn. This split handler design is necessary to support
2123  *      shared interrupts.
2124  *
2125  *      Dev_id must be globally unique. Normally the address of the
2126  *      device data structure is used as the cookie. Since the handler
2127  *      receives this value it makes sense to use it.
2128  *
2129  *      If your interrupt is shared you must pass a non NULL dev_id
2130  *      as this is required when freeing the interrupt.
2131  *
2132  *      Flags:
2133  *
2134  *      IRQF_SHARED             Interrupt is shared
2135  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2136  *      IRQF_ONESHOT            Run thread_fn with interrupt line masked
2137  */
2138 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2139                          irq_handler_t thread_fn, unsigned long irqflags,
2140                          const char *devname, void *dev_id)
2141 {
2142         struct irqaction *action;
2143         struct irq_desc *desc;
2144         int retval;
2145
2146         if (irq == IRQ_NOTCONNECTED)
2147                 return -ENOTCONN;
2148
2149         /*
2150          * Sanity-check: shared interrupts must pass in a real dev-ID,
2151          * otherwise we'll have trouble later trying to figure out
2152          * which interrupt is which (messes up the interrupt freeing
2153          * logic etc).
2154          *
2155          * Also shared interrupts do not go well with disabling auto enable.
2156          * The sharing interrupt might request it while it's still disabled
2157          * and then wait for interrupts forever.
2158          *
2159          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2160          * it cannot be set along with IRQF_NO_SUSPEND.
2161          */
2162         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2163             ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2164             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2165             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2166                 return -EINVAL;
2167
2168         desc = irq_to_desc(irq);
2169         if (!desc)
2170                 return -EINVAL;
2171
2172         if (!irq_settings_can_request(desc) ||
2173             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2174                 return -EINVAL;
2175
2176         if (!handler) {
2177                 if (!thread_fn)
2178                         return -EINVAL;
2179                 handler = irq_default_primary_handler;
2180         }
2181
2182         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2183         if (!action)
2184                 return -ENOMEM;
2185
2186         action->handler = handler;
2187         action->thread_fn = thread_fn;
2188         action->flags = irqflags;
2189         action->name = devname;
2190         action->dev_id = dev_id;
2191
2192         retval = irq_chip_pm_get(&desc->irq_data);
2193         if (retval < 0) {
2194                 kfree(action);
2195                 return retval;
2196         }
2197
2198         retval = __setup_irq(irq, desc, action);
2199
2200         if (retval) {
2201                 irq_chip_pm_put(&desc->irq_data);
2202                 kfree(action->secondary);
2203                 kfree(action);
2204         }
2205
2206 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2207         if (!retval && (irqflags & IRQF_SHARED)) {
2208                 /*
2209                  * It's a shared IRQ -- the driver ought to be prepared for it
2210                  * to happen immediately, so let's make sure....
2211                  * We disable the irq to make sure that a 'real' IRQ doesn't
2212                  * run in parallel with our fake.
2213                  */
2214                 unsigned long flags;
2215
2216                 disable_irq(irq);
2217                 local_irq_save(flags);
2218
2219                 handler(irq, dev_id);
2220
2221                 local_irq_restore(flags);
2222                 enable_irq(irq);
2223         }
2224 #endif
2225         return retval;
2226 }
2227 EXPORT_SYMBOL(request_threaded_irq);
2228
2229 /**
2230  *      request_any_context_irq - allocate an interrupt line
2231  *      @irq: Interrupt line to allocate
2232  *      @handler: Function to be called when the IRQ occurs.
2233  *                Threaded handler for threaded interrupts.
2234  *      @flags: Interrupt type flags
2235  *      @name: An ascii name for the claiming device
2236  *      @dev_id: A cookie passed back to the handler function
2237  *
2238  *      This call allocates interrupt resources and enables the
2239  *      interrupt line and IRQ handling. It selects either a
2240  *      hardirq or threaded handling method depending on the
2241  *      context.
2242  *
2243  *      On failure, it returns a negative value. On success,
2244  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2245  */
2246 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2247                             unsigned long flags, const char *name, void *dev_id)
2248 {
2249         struct irq_desc *desc;
2250         int ret;
2251
2252         if (irq == IRQ_NOTCONNECTED)
2253                 return -ENOTCONN;
2254
2255         desc = irq_to_desc(irq);
2256         if (!desc)
2257                 return -EINVAL;
2258
2259         if (irq_settings_is_nested_thread(desc)) {
2260                 ret = request_threaded_irq(irq, NULL, handler,
2261                                            flags, name, dev_id);
2262                 return !ret ? IRQC_IS_NESTED : ret;
2263         }
2264
2265         ret = request_irq(irq, handler, flags, name, dev_id);
2266         return !ret ? IRQC_IS_HARDIRQ : ret;
2267 }
2268 EXPORT_SYMBOL_GPL(request_any_context_irq);
2269
2270 /**
2271  *      request_nmi - allocate an interrupt line for NMI delivery
2272  *      @irq: Interrupt line to allocate
2273  *      @handler: Function to be called when the IRQ occurs.
2274  *                Threaded handler for threaded interrupts.
2275  *      @irqflags: Interrupt type flags
2276  *      @name: An ascii name for the claiming device
2277  *      @dev_id: A cookie passed back to the handler function
2278  *
2279  *      This call allocates interrupt resources and enables the
2280  *      interrupt line and IRQ handling. It sets up the IRQ line
2281  *      to be handled as an NMI.
2282  *
2283  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2284  *      cannot be threaded.
2285  *
2286  *      Interrupt lines requested for NMI delivering must produce per cpu
2287  *      interrupts and have auto enabling setting disabled.
2288  *
2289  *      Dev_id must be globally unique. Normally the address of the
2290  *      device data structure is used as the cookie. Since the handler
2291  *      receives this value it makes sense to use it.
2292  *
2293  *      If the interrupt line cannot be used to deliver NMIs, function
2294  *      will fail and return a negative value.
2295  */
2296 int request_nmi(unsigned int irq, irq_handler_t handler,
2297                 unsigned long irqflags, const char *name, void *dev_id)
2298 {
2299         struct irqaction *action;
2300         struct irq_desc *desc;
2301         unsigned long flags;
2302         int retval;
2303
2304         if (irq == IRQ_NOTCONNECTED)
2305                 return -ENOTCONN;
2306
2307         /* NMI cannot be shared, used for Polling */
2308         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2309                 return -EINVAL;
2310
2311         if (!(irqflags & IRQF_PERCPU))
2312                 return -EINVAL;
2313
2314         if (!handler)
2315                 return -EINVAL;
2316
2317         desc = irq_to_desc(irq);
2318
2319         if (!desc || (irq_settings_can_autoenable(desc) &&
2320             !(irqflags & IRQF_NO_AUTOEN)) ||
2321             !irq_settings_can_request(desc) ||
2322             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2323             !irq_supports_nmi(desc))
2324                 return -EINVAL;
2325
2326         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2327         if (!action)
2328                 return -ENOMEM;
2329
2330         action->handler = handler;
2331         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2332         action->name = name;
2333         action->dev_id = dev_id;
2334
2335         retval = irq_chip_pm_get(&desc->irq_data);
2336         if (retval < 0)
2337                 goto err_out;
2338
2339         retval = __setup_irq(irq, desc, action);
2340         if (retval)
2341                 goto err_irq_setup;
2342
2343         raw_spin_lock_irqsave(&desc->lock, flags);
2344
2345         /* Setup NMI state */
2346         desc->istate |= IRQS_NMI;
2347         retval = irq_nmi_setup(desc);
2348         if (retval) {
2349                 __cleanup_nmi(irq, desc);
2350                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2351                 return -EINVAL;
2352         }
2353
2354         raw_spin_unlock_irqrestore(&desc->lock, flags);
2355
2356         return 0;
2357
2358 err_irq_setup:
2359         irq_chip_pm_put(&desc->irq_data);
2360 err_out:
2361         kfree(action);
2362
2363         return retval;
2364 }
2365
2366 void enable_percpu_irq(unsigned int irq, unsigned int type)
2367 {
2368         unsigned int cpu = smp_processor_id();
2369         unsigned long flags;
2370         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2371
2372         if (!desc)
2373                 return;
2374
2375         /*
2376          * If the trigger type is not specified by the caller, then
2377          * use the default for this interrupt.
2378          */
2379         type &= IRQ_TYPE_SENSE_MASK;
2380         if (type == IRQ_TYPE_NONE)
2381                 type = irqd_get_trigger_type(&desc->irq_data);
2382
2383         if (type != IRQ_TYPE_NONE) {
2384                 int ret;
2385
2386                 ret = __irq_set_trigger(desc, type);
2387
2388                 if (ret) {
2389                         WARN(1, "failed to set type for IRQ%d\n", irq);
2390                         goto out;
2391                 }
2392         }
2393
2394         irq_percpu_enable(desc, cpu);
2395 out:
2396         irq_put_desc_unlock(desc, flags);
2397 }
2398 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2399
2400 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2401 {
2402         enable_percpu_irq(irq, type);
2403 }
2404
2405 /**
2406  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2407  * @irq:        Linux irq number to check for
2408  *
2409  * Must be called from a non migratable context. Returns the enable
2410  * state of a per cpu interrupt on the current cpu.
2411  */
2412 bool irq_percpu_is_enabled(unsigned int irq)
2413 {
2414         unsigned int cpu = smp_processor_id();
2415         struct irq_desc *desc;
2416         unsigned long flags;
2417         bool is_enabled;
2418
2419         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2420         if (!desc)
2421                 return false;
2422
2423         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2424         irq_put_desc_unlock(desc, flags);
2425
2426         return is_enabled;
2427 }
2428 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2429
2430 void disable_percpu_irq(unsigned int irq)
2431 {
2432         unsigned int cpu = smp_processor_id();
2433         unsigned long flags;
2434         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2435
2436         if (!desc)
2437                 return;
2438
2439         irq_percpu_disable(desc, cpu);
2440         irq_put_desc_unlock(desc, flags);
2441 }
2442 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2443
2444 void disable_percpu_nmi(unsigned int irq)
2445 {
2446         disable_percpu_irq(irq);
2447 }
2448
2449 /*
2450  * Internal function to unregister a percpu irqaction.
2451  */
2452 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2453 {
2454         struct irq_desc *desc = irq_to_desc(irq);
2455         struct irqaction *action;
2456         unsigned long flags;
2457
2458         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2459
2460         if (!desc)
2461                 return NULL;
2462
2463         raw_spin_lock_irqsave(&desc->lock, flags);
2464
2465         action = desc->action;
2466         if (!action || action->percpu_dev_id != dev_id) {
2467                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2468                 goto bad;
2469         }
2470
2471         if (!cpumask_empty(desc->percpu_enabled)) {
2472                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2473                      irq, cpumask_first(desc->percpu_enabled));
2474                 goto bad;
2475         }
2476
2477         /* Found it - now remove it from the list of entries: */
2478         desc->action = NULL;
2479
2480         desc->istate &= ~IRQS_NMI;
2481
2482         raw_spin_unlock_irqrestore(&desc->lock, flags);
2483
2484         unregister_handler_proc(irq, action);
2485
2486         irq_chip_pm_put(&desc->irq_data);
2487         module_put(desc->owner);
2488         return action;
2489
2490 bad:
2491         raw_spin_unlock_irqrestore(&desc->lock, flags);
2492         return NULL;
2493 }
2494
2495 /**
2496  *      remove_percpu_irq - free a per-cpu interrupt
2497  *      @irq: Interrupt line to free
2498  *      @act: irqaction for the interrupt
2499  *
2500  * Used to remove interrupts statically setup by the early boot process.
2501  */
2502 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2503 {
2504         struct irq_desc *desc = irq_to_desc(irq);
2505
2506         if (desc && irq_settings_is_per_cpu_devid(desc))
2507             __free_percpu_irq(irq, act->percpu_dev_id);
2508 }
2509
2510 /**
2511  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2512  *      @irq: Interrupt line to free
2513  *      @dev_id: Device identity to free
2514  *
2515  *      Remove a percpu interrupt handler. The handler is removed, but
2516  *      the interrupt line is not disabled. This must be done on each
2517  *      CPU before calling this function. The function does not return
2518  *      until any executing interrupts for this IRQ have completed.
2519  *
2520  *      This function must not be called from interrupt context.
2521  */
2522 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2523 {
2524         struct irq_desc *desc = irq_to_desc(irq);
2525
2526         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2527                 return;
2528
2529         chip_bus_lock(desc);
2530         kfree(__free_percpu_irq(irq, dev_id));
2531         chip_bus_sync_unlock(desc);
2532 }
2533 EXPORT_SYMBOL_GPL(free_percpu_irq);
2534
2535 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2536 {
2537         struct irq_desc *desc = irq_to_desc(irq);
2538
2539         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2540                 return;
2541
2542         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2543                 return;
2544
2545         kfree(__free_percpu_irq(irq, dev_id));
2546 }
2547
2548 /**
2549  *      setup_percpu_irq - setup a per-cpu interrupt
2550  *      @irq: Interrupt line to setup
2551  *      @act: irqaction for the interrupt
2552  *
2553  * Used to statically setup per-cpu interrupts in the early boot process.
2554  */
2555 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2556 {
2557         struct irq_desc *desc = irq_to_desc(irq);
2558         int retval;
2559
2560         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2561                 return -EINVAL;
2562
2563         retval = irq_chip_pm_get(&desc->irq_data);
2564         if (retval < 0)
2565                 return retval;
2566
2567         retval = __setup_irq(irq, desc, act);
2568
2569         if (retval)
2570                 irq_chip_pm_put(&desc->irq_data);
2571
2572         return retval;
2573 }
2574
2575 /**
2576  *      __request_percpu_irq - allocate a percpu interrupt line
2577  *      @irq: Interrupt line to allocate
2578  *      @handler: Function to be called when the IRQ occurs.
2579  *      @flags: Interrupt type flags (IRQF_TIMER only)
2580  *      @devname: An ascii name for the claiming device
2581  *      @dev_id: A percpu cookie passed back to the handler function
2582  *
2583  *      This call allocates interrupt resources and enables the
2584  *      interrupt on the local CPU. If the interrupt is supposed to be
2585  *      enabled on other CPUs, it has to be done on each CPU using
2586  *      enable_percpu_irq().
2587  *
2588  *      Dev_id must be globally unique. It is a per-cpu variable, and
2589  *      the handler gets called with the interrupted CPU's instance of
2590  *      that variable.
2591  */
2592 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2593                          unsigned long flags, const char *devname,
2594                          void __percpu *dev_id)
2595 {
2596         struct irqaction *action;
2597         struct irq_desc *desc;
2598         int retval;
2599
2600         if (!dev_id)
2601                 return -EINVAL;
2602
2603         desc = irq_to_desc(irq);
2604         if (!desc || !irq_settings_can_request(desc) ||
2605             !irq_settings_is_per_cpu_devid(desc))
2606                 return -EINVAL;
2607
2608         if (flags && flags != IRQF_TIMER)
2609                 return -EINVAL;
2610
2611         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2612         if (!action)
2613                 return -ENOMEM;
2614
2615         action->handler = handler;
2616         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2617         action->name = devname;
2618         action->percpu_dev_id = dev_id;
2619
2620         retval = irq_chip_pm_get(&desc->irq_data);
2621         if (retval < 0) {
2622                 kfree(action);
2623                 return retval;
2624         }
2625
2626         retval = __setup_irq(irq, desc, action);
2627
2628         if (retval) {
2629                 irq_chip_pm_put(&desc->irq_data);
2630                 kfree(action);
2631         }
2632
2633         return retval;
2634 }
2635 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2636
2637 /**
2638  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2639  *      @irq: Interrupt line to allocate
2640  *      @handler: Function to be called when the IRQ occurs.
2641  *      @name: An ascii name for the claiming device
2642  *      @dev_id: A percpu cookie passed back to the handler function
2643  *
2644  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2645  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2646  *      being enabled on the same CPU by using enable_percpu_nmi().
2647  *
2648  *      Dev_id must be globally unique. It is a per-cpu variable, and
2649  *      the handler gets called with the interrupted CPU's instance of
2650  *      that variable.
2651  *
2652  *      Interrupt lines requested for NMI delivering should have auto enabling
2653  *      setting disabled.
2654  *
2655  *      If the interrupt line cannot be used to deliver NMIs, function
2656  *      will fail returning a negative value.
2657  */
2658 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2659                        const char *name, void __percpu *dev_id)
2660 {
2661         struct irqaction *action;
2662         struct irq_desc *desc;
2663         unsigned long flags;
2664         int retval;
2665
2666         if (!handler)
2667                 return -EINVAL;
2668
2669         desc = irq_to_desc(irq);
2670
2671         if (!desc || !irq_settings_can_request(desc) ||
2672             !irq_settings_is_per_cpu_devid(desc) ||
2673             irq_settings_can_autoenable(desc) ||
2674             !irq_supports_nmi(desc))
2675                 return -EINVAL;
2676
2677         /* The line cannot already be NMI */
2678         if (desc->istate & IRQS_NMI)
2679                 return -EINVAL;
2680
2681         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2682         if (!action)
2683                 return -ENOMEM;
2684
2685         action->handler = handler;
2686         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2687                 | IRQF_NOBALANCING;
2688         action->name = name;
2689         action->percpu_dev_id = dev_id;
2690
2691         retval = irq_chip_pm_get(&desc->irq_data);
2692         if (retval < 0)
2693                 goto err_out;
2694
2695         retval = __setup_irq(irq, desc, action);
2696         if (retval)
2697                 goto err_irq_setup;
2698
2699         raw_spin_lock_irqsave(&desc->lock, flags);
2700         desc->istate |= IRQS_NMI;
2701         raw_spin_unlock_irqrestore(&desc->lock, flags);
2702
2703         return 0;
2704
2705 err_irq_setup:
2706         irq_chip_pm_put(&desc->irq_data);
2707 err_out:
2708         kfree(action);
2709
2710         return retval;
2711 }
2712
2713 /**
2714  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2715  *      @irq: Interrupt line to prepare for NMI delivery
2716  *
2717  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2718  *      before that interrupt line gets enabled with enable_percpu_nmi().
2719  *
2720  *      As a CPU local operation, this should be called from non-preemptible
2721  *      context.
2722  *
2723  *      If the interrupt line cannot be used to deliver NMIs, function
2724  *      will fail returning a negative value.
2725  */
2726 int prepare_percpu_nmi(unsigned int irq)
2727 {
2728         unsigned long flags;
2729         struct irq_desc *desc;
2730         int ret = 0;
2731
2732         WARN_ON(preemptible());
2733
2734         desc = irq_get_desc_lock(irq, &flags,
2735                                  IRQ_GET_DESC_CHECK_PERCPU);
2736         if (!desc)
2737                 return -EINVAL;
2738
2739         if (WARN(!(desc->istate & IRQS_NMI),
2740                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2741                  irq)) {
2742                 ret = -EINVAL;
2743                 goto out;
2744         }
2745
2746         ret = irq_nmi_setup(desc);
2747         if (ret) {
2748                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2749                 goto out;
2750         }
2751
2752 out:
2753         irq_put_desc_unlock(desc, flags);
2754         return ret;
2755 }
2756
2757 /**
2758  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2759  *      @irq: Interrupt line from which CPU local NMI configuration should be
2760  *            removed
2761  *
2762  *      This call undoes the setup done by prepare_percpu_nmi().
2763  *
2764  *      IRQ line should not be enabled for the current CPU.
2765  *
2766  *      As a CPU local operation, this should be called from non-preemptible
2767  *      context.
2768  */
2769 void teardown_percpu_nmi(unsigned int irq)
2770 {
2771         unsigned long flags;
2772         struct irq_desc *desc;
2773
2774         WARN_ON(preemptible());
2775
2776         desc = irq_get_desc_lock(irq, &flags,
2777                                  IRQ_GET_DESC_CHECK_PERCPU);
2778         if (!desc)
2779                 return;
2780
2781         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2782                 goto out;
2783
2784         irq_nmi_teardown(desc);
2785 out:
2786         irq_put_desc_unlock(desc, flags);
2787 }
2788
2789 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2790                             bool *state)
2791 {
2792         struct irq_chip *chip;
2793         int err = -EINVAL;
2794
2795         do {
2796                 chip = irq_data_get_irq_chip(data);
2797                 if (WARN_ON_ONCE(!chip))
2798                         return -ENODEV;
2799                 if (chip->irq_get_irqchip_state)
2800                         break;
2801 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2802                 data = data->parent_data;
2803 #else
2804                 data = NULL;
2805 #endif
2806         } while (data);
2807
2808         if (data)
2809                 err = chip->irq_get_irqchip_state(data, which, state);
2810         return err;
2811 }
2812
2813 /**
2814  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2815  *      @irq: Interrupt line that is forwarded to a VM
2816  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2817  *      @state: a pointer to a boolean where the state is to be stored
2818  *
2819  *      This call snapshots the internal irqchip state of an
2820  *      interrupt, returning into @state the bit corresponding to
2821  *      stage @which
2822  *
2823  *      This function should be called with preemption disabled if the
2824  *      interrupt controller has per-cpu registers.
2825  */
2826 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2827                           bool *state)
2828 {
2829         struct irq_desc *desc;
2830         struct irq_data *data;
2831         unsigned long flags;
2832         int err = -EINVAL;
2833
2834         desc = irq_get_desc_buslock(irq, &flags, 0);
2835         if (!desc)
2836                 return err;
2837
2838         data = irq_desc_get_irq_data(desc);
2839
2840         err = __irq_get_irqchip_state(data, which, state);
2841
2842         irq_put_desc_busunlock(desc, flags);
2843         return err;
2844 }
2845 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2846
2847 /**
2848  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2849  *      @irq: Interrupt line that is forwarded to a VM
2850  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2851  *      @val: Value corresponding to @which
2852  *
2853  *      This call sets the internal irqchip state of an interrupt,
2854  *      depending on the value of @which.
2855  *
2856  *      This function should be called with migration disabled if the
2857  *      interrupt controller has per-cpu registers.
2858  */
2859 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2860                           bool val)
2861 {
2862         struct irq_desc *desc;
2863         struct irq_data *data;
2864         struct irq_chip *chip;
2865         unsigned long flags;
2866         int err = -EINVAL;
2867
2868         desc = irq_get_desc_buslock(irq, &flags, 0);
2869         if (!desc)
2870                 return err;
2871
2872         data = irq_desc_get_irq_data(desc);
2873
2874         do {
2875                 chip = irq_data_get_irq_chip(data);
2876                 if (WARN_ON_ONCE(!chip)) {
2877                         err = -ENODEV;
2878                         goto out_unlock;
2879                 }
2880                 if (chip->irq_set_irqchip_state)
2881                         break;
2882 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2883                 data = data->parent_data;
2884 #else
2885                 data = NULL;
2886 #endif
2887         } while (data);
2888
2889         if (data)
2890                 err = chip->irq_set_irqchip_state(data, which, val);
2891
2892 out_unlock:
2893         irq_put_desc_busunlock(desc, flags);
2894         return err;
2895 }
2896 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2897
2898 /**
2899  * irq_has_action - Check whether an interrupt is requested
2900  * @irq:        The linux irq number
2901  *
2902  * Returns: A snapshot of the current state
2903  */
2904 bool irq_has_action(unsigned int irq)
2905 {
2906         bool res;
2907
2908         rcu_read_lock();
2909         res = irq_desc_has_action(irq_to_desc(irq));
2910         rcu_read_unlock();
2911         return res;
2912 }
2913 EXPORT_SYMBOL_GPL(irq_has_action);
2914
2915 /**
2916  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2917  * @irq:        The linux irq number
2918  * @bitmask:    The bitmask to evaluate
2919  *
2920  * Returns: True if one of the bits in @bitmask is set
2921  */
2922 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2923 {
2924         struct irq_desc *desc;
2925         bool res = false;
2926
2927         rcu_read_lock();
2928         desc = irq_to_desc(irq);
2929         if (desc)
2930                 res = !!(desc->status_use_accessors & bitmask);
2931         rcu_read_unlock();
2932         return res;
2933 }
2934 EXPORT_SYMBOL_GPL(irq_check_status_bit);