genirq/generic_chip: Make irq_remove_generic_chip() irqdomain aware
[platform/kernel/linux-starfive.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         static_branch_enable(&force_irqthreads_key);
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 static void __synchronize_irq(struct irq_desc *desc)
112 {
113         __synchronize_hardirq(desc, true);
114         /*
115          * We made sure that no hardirq handler is running. Now verify that no
116          * threaded handlers are active.
117          */
118         wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119 }
120
121 /**
122  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123  *      @irq: interrupt number to wait for
124  *
125  *      This function waits for any pending IRQ handlers for this interrupt
126  *      to complete before returning. If you use this function while
127  *      holding a resource the IRQ handler may need you will deadlock.
128  *
129  *      Can only be called from preemptible code as it might sleep when
130  *      an interrupt thread is associated to @irq.
131  *
132  *      It optionally makes sure (when the irq chip supports that method)
133  *      that the interrupt is not pending in any CPU and waiting for
134  *      service.
135  */
136 void synchronize_irq(unsigned int irq)
137 {
138         struct irq_desc *desc = irq_to_desc(irq);
139
140         if (desc)
141                 __synchronize_irq(desc);
142 }
143 EXPORT_SYMBOL(synchronize_irq);
144
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
147
148 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 {
150         if (!desc || !irqd_can_balance(&desc->irq_data) ||
151             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152                 return false;
153         return true;
154 }
155
156 /**
157  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
158  *      @irq:           Interrupt to check
159  *
160  */
161 int irq_can_set_affinity(unsigned int irq)
162 {
163         return __irq_can_set_affinity(irq_to_desc(irq));
164 }
165
166 /**
167  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168  * @irq:        Interrupt to check
169  *
170  * Like irq_can_set_affinity() above, but additionally checks for the
171  * AFFINITY_MANAGED flag.
172  */
173 bool irq_can_set_affinity_usr(unsigned int irq)
174 {
175         struct irq_desc *desc = irq_to_desc(irq);
176
177         return __irq_can_set_affinity(desc) &&
178                 !irqd_affinity_is_managed(&desc->irq_data);
179 }
180
181 /**
182  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
183  *      @desc:          irq descriptor which has affinity changed
184  *
185  *      We just set IRQTF_AFFINITY and delegate the affinity setting
186  *      to the interrupt thread itself. We can not call
187  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
188  *      code can be called from hard interrupt context.
189  */
190 void irq_set_thread_affinity(struct irq_desc *desc)
191 {
192         struct irqaction *action;
193
194         for_each_action_of_desc(desc, action) {
195                 if (action->thread)
196                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
197                 if (action->secondary && action->secondary->thread)
198                         set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
199         }
200 }
201
202 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
203 static void irq_validate_effective_affinity(struct irq_data *data)
204 {
205         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
206         struct irq_chip *chip = irq_data_get_irq_chip(data);
207
208         if (!cpumask_empty(m))
209                 return;
210         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
211                      chip->name, data->irq);
212 }
213 #else
214 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
215 #endif
216
217 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
218                         bool force)
219 {
220         struct irq_desc *desc = irq_data_to_desc(data);
221         struct irq_chip *chip = irq_data_get_irq_chip(data);
222         const struct cpumask  *prog_mask;
223         int ret;
224
225         static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
226         static struct cpumask tmp_mask;
227
228         if (!chip || !chip->irq_set_affinity)
229                 return -EINVAL;
230
231         raw_spin_lock(&tmp_mask_lock);
232         /*
233          * If this is a managed interrupt and housekeeping is enabled on
234          * it check whether the requested affinity mask intersects with
235          * a housekeeping CPU. If so, then remove the isolated CPUs from
236          * the mask and just keep the housekeeping CPU(s). This prevents
237          * the affinity setter from routing the interrupt to an isolated
238          * CPU to avoid that I/O submitted from a housekeeping CPU causes
239          * interrupts on an isolated one.
240          *
241          * If the masks do not intersect or include online CPU(s) then
242          * keep the requested mask. The isolated target CPUs are only
243          * receiving interrupts when the I/O operation was submitted
244          * directly from them.
245          *
246          * If all housekeeping CPUs in the affinity mask are offline, the
247          * interrupt will be migrated by the CPU hotplug code once a
248          * housekeeping CPU which belongs to the affinity mask comes
249          * online.
250          */
251         if (irqd_affinity_is_managed(data) &&
252             housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
253                 const struct cpumask *hk_mask;
254
255                 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
256
257                 cpumask_and(&tmp_mask, mask, hk_mask);
258                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
259                         prog_mask = mask;
260                 else
261                         prog_mask = &tmp_mask;
262         } else {
263                 prog_mask = mask;
264         }
265
266         /*
267          * Make sure we only provide online CPUs to the irqchip,
268          * unless we are being asked to force the affinity (in which
269          * case we do as we are told).
270          */
271         cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
272         if (!force && !cpumask_empty(&tmp_mask))
273                 ret = chip->irq_set_affinity(data, &tmp_mask, force);
274         else if (force)
275                 ret = chip->irq_set_affinity(data, mask, force);
276         else
277                 ret = -EINVAL;
278
279         raw_spin_unlock(&tmp_mask_lock);
280
281         switch (ret) {
282         case IRQ_SET_MASK_OK:
283         case IRQ_SET_MASK_OK_DONE:
284                 cpumask_copy(desc->irq_common_data.affinity, mask);
285                 fallthrough;
286         case IRQ_SET_MASK_OK_NOCOPY:
287                 irq_validate_effective_affinity(data);
288                 irq_set_thread_affinity(desc);
289                 ret = 0;
290         }
291
292         return ret;
293 }
294
295 #ifdef CONFIG_GENERIC_PENDING_IRQ
296 static inline int irq_set_affinity_pending(struct irq_data *data,
297                                            const struct cpumask *dest)
298 {
299         struct irq_desc *desc = irq_data_to_desc(data);
300
301         irqd_set_move_pending(data);
302         irq_copy_pending(desc, dest);
303         return 0;
304 }
305 #else
306 static inline int irq_set_affinity_pending(struct irq_data *data,
307                                            const struct cpumask *dest)
308 {
309         return -EBUSY;
310 }
311 #endif
312
313 static int irq_try_set_affinity(struct irq_data *data,
314                                 const struct cpumask *dest, bool force)
315 {
316         int ret = irq_do_set_affinity(data, dest, force);
317
318         /*
319          * In case that the underlying vector management is busy and the
320          * architecture supports the generic pending mechanism then utilize
321          * this to avoid returning an error to user space.
322          */
323         if (ret == -EBUSY && !force)
324                 ret = irq_set_affinity_pending(data, dest);
325         return ret;
326 }
327
328 static bool irq_set_affinity_deactivated(struct irq_data *data,
329                                          const struct cpumask *mask)
330 {
331         struct irq_desc *desc = irq_data_to_desc(data);
332
333         /*
334          * Handle irq chips which can handle affinity only in activated
335          * state correctly
336          *
337          * If the interrupt is not yet activated, just store the affinity
338          * mask and do not call the chip driver at all. On activation the
339          * driver has to make sure anyway that the interrupt is in a
340          * usable state so startup works.
341          */
342         if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
343             irqd_is_activated(data) || !irqd_affinity_on_activate(data))
344                 return false;
345
346         cpumask_copy(desc->irq_common_data.affinity, mask);
347         irq_data_update_effective_affinity(data, mask);
348         irqd_set(data, IRQD_AFFINITY_SET);
349         return true;
350 }
351
352 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
353                             bool force)
354 {
355         struct irq_chip *chip = irq_data_get_irq_chip(data);
356         struct irq_desc *desc = irq_data_to_desc(data);
357         int ret = 0;
358
359         if (!chip || !chip->irq_set_affinity)
360                 return -EINVAL;
361
362         if (irq_set_affinity_deactivated(data, mask))
363                 return 0;
364
365         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
366                 ret = irq_try_set_affinity(data, mask, force);
367         } else {
368                 irqd_set_move_pending(data);
369                 irq_copy_pending(desc, mask);
370         }
371
372         if (desc->affinity_notify) {
373                 kref_get(&desc->affinity_notify->kref);
374                 if (!schedule_work(&desc->affinity_notify->work)) {
375                         /* Work was already scheduled, drop our extra ref */
376                         kref_put(&desc->affinity_notify->kref,
377                                  desc->affinity_notify->release);
378                 }
379         }
380         irqd_set(data, IRQD_AFFINITY_SET);
381
382         return ret;
383 }
384
385 /**
386  * irq_update_affinity_desc - Update affinity management for an interrupt
387  * @irq:        The interrupt number to update
388  * @affinity:   Pointer to the affinity descriptor
389  *
390  * This interface can be used to configure the affinity management of
391  * interrupts which have been allocated already.
392  *
393  * There are certain limitations on when it may be used - attempts to use it
394  * for when the kernel is configured for generic IRQ reservation mode (in
395  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
396  * managed/non-managed interrupt accounting. In addition, attempts to use it on
397  * an interrupt which is already started or which has already been configured
398  * as managed will also fail, as these mean invalid init state or double init.
399  */
400 int irq_update_affinity_desc(unsigned int irq,
401                              struct irq_affinity_desc *affinity)
402 {
403         struct irq_desc *desc;
404         unsigned long flags;
405         bool activated;
406         int ret = 0;
407
408         /*
409          * Supporting this with the reservation scheme used by x86 needs
410          * some more thought. Fail it for now.
411          */
412         if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
413                 return -EOPNOTSUPP;
414
415         desc = irq_get_desc_buslock(irq, &flags, 0);
416         if (!desc)
417                 return -EINVAL;
418
419         /* Requires the interrupt to be shut down */
420         if (irqd_is_started(&desc->irq_data)) {
421                 ret = -EBUSY;
422                 goto out_unlock;
423         }
424
425         /* Interrupts which are already managed cannot be modified */
426         if (irqd_affinity_is_managed(&desc->irq_data)) {
427                 ret = -EBUSY;
428                 goto out_unlock;
429         }
430
431         /*
432          * Deactivate the interrupt. That's required to undo
433          * anything an earlier activation has established.
434          */
435         activated = irqd_is_activated(&desc->irq_data);
436         if (activated)
437                 irq_domain_deactivate_irq(&desc->irq_data);
438
439         if (affinity->is_managed) {
440                 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
441                 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
442         }
443
444         cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
445
446         /* Restore the activation state */
447         if (activated)
448                 irq_domain_activate_irq(&desc->irq_data, false);
449
450 out_unlock:
451         irq_put_desc_busunlock(desc, flags);
452         return ret;
453 }
454
455 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
456                               bool force)
457 {
458         struct irq_desc *desc = irq_to_desc(irq);
459         unsigned long flags;
460         int ret;
461
462         if (!desc)
463                 return -EINVAL;
464
465         raw_spin_lock_irqsave(&desc->lock, flags);
466         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
467         raw_spin_unlock_irqrestore(&desc->lock, flags);
468         return ret;
469 }
470
471 /**
472  * irq_set_affinity - Set the irq affinity of a given irq
473  * @irq:        Interrupt to set affinity
474  * @cpumask:    cpumask
475  *
476  * Fails if cpumask does not contain an online CPU
477  */
478 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
479 {
480         return __irq_set_affinity(irq, cpumask, false);
481 }
482 EXPORT_SYMBOL_GPL(irq_set_affinity);
483
484 /**
485  * irq_force_affinity - Force the irq affinity of a given irq
486  * @irq:        Interrupt to set affinity
487  * @cpumask:    cpumask
488  *
489  * Same as irq_set_affinity, but without checking the mask against
490  * online cpus.
491  *
492  * Solely for low level cpu hotplug code, where we need to make per
493  * cpu interrupts affine before the cpu becomes online.
494  */
495 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
496 {
497         return __irq_set_affinity(irq, cpumask, true);
498 }
499 EXPORT_SYMBOL_GPL(irq_force_affinity);
500
501 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
502                               bool setaffinity)
503 {
504         unsigned long flags;
505         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
506
507         if (!desc)
508                 return -EINVAL;
509         desc->affinity_hint = m;
510         irq_put_desc_unlock(desc, flags);
511         if (m && setaffinity)
512                 __irq_set_affinity(irq, m, false);
513         return 0;
514 }
515 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
516
517 static void irq_affinity_notify(struct work_struct *work)
518 {
519         struct irq_affinity_notify *notify =
520                 container_of(work, struct irq_affinity_notify, work);
521         struct irq_desc *desc = irq_to_desc(notify->irq);
522         cpumask_var_t cpumask;
523         unsigned long flags;
524
525         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
526                 goto out;
527
528         raw_spin_lock_irqsave(&desc->lock, flags);
529         if (irq_move_pending(&desc->irq_data))
530                 irq_get_pending(cpumask, desc);
531         else
532                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
533         raw_spin_unlock_irqrestore(&desc->lock, flags);
534
535         notify->notify(notify, cpumask);
536
537         free_cpumask_var(cpumask);
538 out:
539         kref_put(&notify->kref, notify->release);
540 }
541
542 /**
543  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
544  *      @irq:           Interrupt for which to enable/disable notification
545  *      @notify:        Context for notification, or %NULL to disable
546  *                      notification.  Function pointers must be initialised;
547  *                      the other fields will be initialised by this function.
548  *
549  *      Must be called in process context.  Notification may only be enabled
550  *      after the IRQ is allocated and must be disabled before the IRQ is
551  *      freed using free_irq().
552  */
553 int
554 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
555 {
556         struct irq_desc *desc = irq_to_desc(irq);
557         struct irq_affinity_notify *old_notify;
558         unsigned long flags;
559
560         /* The release function is promised process context */
561         might_sleep();
562
563         if (!desc || desc->istate & IRQS_NMI)
564                 return -EINVAL;
565
566         /* Complete initialisation of *notify */
567         if (notify) {
568                 notify->irq = irq;
569                 kref_init(&notify->kref);
570                 INIT_WORK(&notify->work, irq_affinity_notify);
571         }
572
573         raw_spin_lock_irqsave(&desc->lock, flags);
574         old_notify = desc->affinity_notify;
575         desc->affinity_notify = notify;
576         raw_spin_unlock_irqrestore(&desc->lock, flags);
577
578         if (old_notify) {
579                 if (cancel_work_sync(&old_notify->work)) {
580                         /* Pending work had a ref, put that one too */
581                         kref_put(&old_notify->kref, old_notify->release);
582                 }
583                 kref_put(&old_notify->kref, old_notify->release);
584         }
585
586         return 0;
587 }
588 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
589
590 #ifndef CONFIG_AUTO_IRQ_AFFINITY
591 /*
592  * Generic version of the affinity autoselector.
593  */
594 int irq_setup_affinity(struct irq_desc *desc)
595 {
596         struct cpumask *set = irq_default_affinity;
597         int ret, node = irq_desc_get_node(desc);
598         static DEFINE_RAW_SPINLOCK(mask_lock);
599         static struct cpumask mask;
600
601         /* Excludes PER_CPU and NO_BALANCE interrupts */
602         if (!__irq_can_set_affinity(desc))
603                 return 0;
604
605         raw_spin_lock(&mask_lock);
606         /*
607          * Preserve the managed affinity setting and a userspace affinity
608          * setup, but make sure that one of the targets is online.
609          */
610         if (irqd_affinity_is_managed(&desc->irq_data) ||
611             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
612                 if (cpumask_intersects(desc->irq_common_data.affinity,
613                                        cpu_online_mask))
614                         set = desc->irq_common_data.affinity;
615                 else
616                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
617         }
618
619         cpumask_and(&mask, cpu_online_mask, set);
620         if (cpumask_empty(&mask))
621                 cpumask_copy(&mask, cpu_online_mask);
622
623         if (node != NUMA_NO_NODE) {
624                 const struct cpumask *nodemask = cpumask_of_node(node);
625
626                 /* make sure at least one of the cpus in nodemask is online */
627                 if (cpumask_intersects(&mask, nodemask))
628                         cpumask_and(&mask, &mask, nodemask);
629         }
630         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
631         raw_spin_unlock(&mask_lock);
632         return ret;
633 }
634 #else
635 /* Wrapper for ALPHA specific affinity selector magic */
636 int irq_setup_affinity(struct irq_desc *desc)
637 {
638         return irq_select_affinity(irq_desc_get_irq(desc));
639 }
640 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
641 #endif /* CONFIG_SMP */
642
643
644 /**
645  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
646  *      @irq: interrupt number to set affinity
647  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
648  *                  specific data for percpu_devid interrupts
649  *
650  *      This function uses the vCPU specific data to set the vCPU
651  *      affinity for an irq. The vCPU specific data is passed from
652  *      outside, such as KVM. One example code path is as below:
653  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
654  */
655 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
656 {
657         unsigned long flags;
658         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
659         struct irq_data *data;
660         struct irq_chip *chip;
661         int ret = -ENOSYS;
662
663         if (!desc)
664                 return -EINVAL;
665
666         data = irq_desc_get_irq_data(desc);
667         do {
668                 chip = irq_data_get_irq_chip(data);
669                 if (chip && chip->irq_set_vcpu_affinity)
670                         break;
671 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
672                 data = data->parent_data;
673 #else
674                 data = NULL;
675 #endif
676         } while (data);
677
678         if (data)
679                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
680         irq_put_desc_unlock(desc, flags);
681
682         return ret;
683 }
684 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
685
686 void __disable_irq(struct irq_desc *desc)
687 {
688         if (!desc->depth++)
689                 irq_disable(desc);
690 }
691
692 static int __disable_irq_nosync(unsigned int irq)
693 {
694         unsigned long flags;
695         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
696
697         if (!desc)
698                 return -EINVAL;
699         __disable_irq(desc);
700         irq_put_desc_busunlock(desc, flags);
701         return 0;
702 }
703
704 /**
705  *      disable_irq_nosync - disable an irq without waiting
706  *      @irq: Interrupt to disable
707  *
708  *      Disable the selected interrupt line.  Disables and Enables are
709  *      nested.
710  *      Unlike disable_irq(), this function does not ensure existing
711  *      instances of the IRQ handler have completed before returning.
712  *
713  *      This function may be called from IRQ context.
714  */
715 void disable_irq_nosync(unsigned int irq)
716 {
717         __disable_irq_nosync(irq);
718 }
719 EXPORT_SYMBOL(disable_irq_nosync);
720
721 /**
722  *      disable_irq - disable an irq and wait for completion
723  *      @irq: Interrupt to disable
724  *
725  *      Disable the selected interrupt line.  Enables and Disables are
726  *      nested.
727  *      This function waits for any pending IRQ handlers for this interrupt
728  *      to complete before returning. If you use this function while
729  *      holding a resource the IRQ handler may need you will deadlock.
730  *
731  *      Can only be called from preemptible code as it might sleep when
732  *      an interrupt thread is associated to @irq.
733  *
734  */
735 void disable_irq(unsigned int irq)
736 {
737         might_sleep();
738         if (!__disable_irq_nosync(irq))
739                 synchronize_irq(irq);
740 }
741 EXPORT_SYMBOL(disable_irq);
742
743 /**
744  *      disable_hardirq - disables an irq and waits for hardirq completion
745  *      @irq: Interrupt to disable
746  *
747  *      Disable the selected interrupt line.  Enables and Disables are
748  *      nested.
749  *      This function waits for any pending hard IRQ handlers for this
750  *      interrupt to complete before returning. If you use this function while
751  *      holding a resource the hard IRQ handler may need you will deadlock.
752  *
753  *      When used to optimistically disable an interrupt from atomic context
754  *      the return value must be checked.
755  *
756  *      Returns: false if a threaded handler is active.
757  *
758  *      This function may be called - with care - from IRQ context.
759  */
760 bool disable_hardirq(unsigned int irq)
761 {
762         if (!__disable_irq_nosync(irq))
763                 return synchronize_hardirq(irq);
764
765         return false;
766 }
767 EXPORT_SYMBOL_GPL(disable_hardirq);
768
769 /**
770  *      disable_nmi_nosync - disable an nmi without waiting
771  *      @irq: Interrupt to disable
772  *
773  *      Disable the selected interrupt line. Disables and enables are
774  *      nested.
775  *      The interrupt to disable must have been requested through request_nmi.
776  *      Unlike disable_nmi(), this function does not ensure existing
777  *      instances of the IRQ handler have completed before returning.
778  */
779 void disable_nmi_nosync(unsigned int irq)
780 {
781         disable_irq_nosync(irq);
782 }
783
784 void __enable_irq(struct irq_desc *desc)
785 {
786         switch (desc->depth) {
787         case 0:
788  err_out:
789                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
790                      irq_desc_get_irq(desc));
791                 break;
792         case 1: {
793                 if (desc->istate & IRQS_SUSPENDED)
794                         goto err_out;
795                 /* Prevent probing on this irq: */
796                 irq_settings_set_noprobe(desc);
797                 /*
798                  * Call irq_startup() not irq_enable() here because the
799                  * interrupt might be marked NOAUTOEN. So irq_startup()
800                  * needs to be invoked when it gets enabled the first
801                  * time. If it was already started up, then irq_startup()
802                  * will invoke irq_enable() under the hood.
803                  */
804                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
805                 break;
806         }
807         default:
808                 desc->depth--;
809         }
810 }
811
812 /**
813  *      enable_irq - enable handling of an irq
814  *      @irq: Interrupt to enable
815  *
816  *      Undoes the effect of one call to disable_irq().  If this
817  *      matches the last disable, processing of interrupts on this
818  *      IRQ line is re-enabled.
819  *
820  *      This function may be called from IRQ context only when
821  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
822  */
823 void enable_irq(unsigned int irq)
824 {
825         unsigned long flags;
826         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
827
828         if (!desc)
829                 return;
830         if (WARN(!desc->irq_data.chip,
831                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
832                 goto out;
833
834         __enable_irq(desc);
835 out:
836         irq_put_desc_busunlock(desc, flags);
837 }
838 EXPORT_SYMBOL(enable_irq);
839
840 /**
841  *      enable_nmi - enable handling of an nmi
842  *      @irq: Interrupt to enable
843  *
844  *      The interrupt to enable must have been requested through request_nmi.
845  *      Undoes the effect of one call to disable_nmi(). If this
846  *      matches the last disable, processing of interrupts on this
847  *      IRQ line is re-enabled.
848  */
849 void enable_nmi(unsigned int irq)
850 {
851         enable_irq(irq);
852 }
853
854 static int set_irq_wake_real(unsigned int irq, unsigned int on)
855 {
856         struct irq_desc *desc = irq_to_desc(irq);
857         int ret = -ENXIO;
858
859         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
860                 return 0;
861
862         if (desc->irq_data.chip->irq_set_wake)
863                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
864
865         return ret;
866 }
867
868 /**
869  *      irq_set_irq_wake - control irq power management wakeup
870  *      @irq:   interrupt to control
871  *      @on:    enable/disable power management wakeup
872  *
873  *      Enable/disable power management wakeup mode, which is
874  *      disabled by default.  Enables and disables must match,
875  *      just as they match for non-wakeup mode support.
876  *
877  *      Wakeup mode lets this IRQ wake the system from sleep
878  *      states like "suspend to RAM".
879  *
880  *      Note: irq enable/disable state is completely orthogonal
881  *      to the enable/disable state of irq wake. An irq can be
882  *      disabled with disable_irq() and still wake the system as
883  *      long as the irq has wake enabled. If this does not hold,
884  *      then the underlying irq chip and the related driver need
885  *      to be investigated.
886  */
887 int irq_set_irq_wake(unsigned int irq, unsigned int on)
888 {
889         unsigned long flags;
890         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
891         int ret = 0;
892
893         if (!desc)
894                 return -EINVAL;
895
896         /* Don't use NMIs as wake up interrupts please */
897         if (desc->istate & IRQS_NMI) {
898                 ret = -EINVAL;
899                 goto out_unlock;
900         }
901
902         /* wakeup-capable irqs can be shared between drivers that
903          * don't need to have the same sleep mode behaviors.
904          */
905         if (on) {
906                 if (desc->wake_depth++ == 0) {
907                         ret = set_irq_wake_real(irq, on);
908                         if (ret)
909                                 desc->wake_depth = 0;
910                         else
911                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
912                 }
913         } else {
914                 if (desc->wake_depth == 0) {
915                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
916                 } else if (--desc->wake_depth == 0) {
917                         ret = set_irq_wake_real(irq, on);
918                         if (ret)
919                                 desc->wake_depth = 1;
920                         else
921                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
922                 }
923         }
924
925 out_unlock:
926         irq_put_desc_busunlock(desc, flags);
927         return ret;
928 }
929 EXPORT_SYMBOL(irq_set_irq_wake);
930
931 /*
932  * Internal function that tells the architecture code whether a
933  * particular irq has been exclusively allocated or is available
934  * for driver use.
935  */
936 int can_request_irq(unsigned int irq, unsigned long irqflags)
937 {
938         unsigned long flags;
939         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
940         int canrequest = 0;
941
942         if (!desc)
943                 return 0;
944
945         if (irq_settings_can_request(desc)) {
946                 if (!desc->action ||
947                     irqflags & desc->action->flags & IRQF_SHARED)
948                         canrequest = 1;
949         }
950         irq_put_desc_unlock(desc, flags);
951         return canrequest;
952 }
953
954 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
955 {
956         struct irq_chip *chip = desc->irq_data.chip;
957         int ret, unmask = 0;
958
959         if (!chip || !chip->irq_set_type) {
960                 /*
961                  * IRQF_TRIGGER_* but the PIC does not support multiple
962                  * flow-types?
963                  */
964                 pr_debug("No set_type function for IRQ %d (%s)\n",
965                          irq_desc_get_irq(desc),
966                          chip ? (chip->name ? : "unknown") : "unknown");
967                 return 0;
968         }
969
970         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
971                 if (!irqd_irq_masked(&desc->irq_data))
972                         mask_irq(desc);
973                 if (!irqd_irq_disabled(&desc->irq_data))
974                         unmask = 1;
975         }
976
977         /* Mask all flags except trigger mode */
978         flags &= IRQ_TYPE_SENSE_MASK;
979         ret = chip->irq_set_type(&desc->irq_data, flags);
980
981         switch (ret) {
982         case IRQ_SET_MASK_OK:
983         case IRQ_SET_MASK_OK_DONE:
984                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
985                 irqd_set(&desc->irq_data, flags);
986                 fallthrough;
987
988         case IRQ_SET_MASK_OK_NOCOPY:
989                 flags = irqd_get_trigger_type(&desc->irq_data);
990                 irq_settings_set_trigger_mask(desc, flags);
991                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
992                 irq_settings_clr_level(desc);
993                 if (flags & IRQ_TYPE_LEVEL_MASK) {
994                         irq_settings_set_level(desc);
995                         irqd_set(&desc->irq_data, IRQD_LEVEL);
996                 }
997
998                 ret = 0;
999                 break;
1000         default:
1001                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1002                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
1003         }
1004         if (unmask)
1005                 unmask_irq(desc);
1006         return ret;
1007 }
1008
1009 #ifdef CONFIG_HARDIRQS_SW_RESEND
1010 int irq_set_parent(int irq, int parent_irq)
1011 {
1012         unsigned long flags;
1013         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1014
1015         if (!desc)
1016                 return -EINVAL;
1017
1018         desc->parent_irq = parent_irq;
1019
1020         irq_put_desc_unlock(desc, flags);
1021         return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(irq_set_parent);
1024 #endif
1025
1026 /*
1027  * Default primary interrupt handler for threaded interrupts. Is
1028  * assigned as primary handler when request_threaded_irq is called
1029  * with handler == NULL. Useful for oneshot interrupts.
1030  */
1031 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1032 {
1033         return IRQ_WAKE_THREAD;
1034 }
1035
1036 /*
1037  * Primary handler for nested threaded interrupts. Should never be
1038  * called.
1039  */
1040 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1041 {
1042         WARN(1, "Primary handler called for nested irq %d\n", irq);
1043         return IRQ_NONE;
1044 }
1045
1046 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1047 {
1048         WARN(1, "Secondary action handler called for irq %d\n", irq);
1049         return IRQ_NONE;
1050 }
1051
1052 static int irq_wait_for_interrupt(struct irqaction *action)
1053 {
1054         for (;;) {
1055                 set_current_state(TASK_INTERRUPTIBLE);
1056
1057                 if (kthread_should_stop()) {
1058                         /* may need to run one last time */
1059                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
1060                                                &action->thread_flags)) {
1061                                 __set_current_state(TASK_RUNNING);
1062                                 return 0;
1063                         }
1064                         __set_current_state(TASK_RUNNING);
1065                         return -1;
1066                 }
1067
1068                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1069                                        &action->thread_flags)) {
1070                         __set_current_state(TASK_RUNNING);
1071                         return 0;
1072                 }
1073                 schedule();
1074         }
1075 }
1076
1077 /*
1078  * Oneshot interrupts keep the irq line masked until the threaded
1079  * handler finished. unmask if the interrupt has not been disabled and
1080  * is marked MASKED.
1081  */
1082 static void irq_finalize_oneshot(struct irq_desc *desc,
1083                                  struct irqaction *action)
1084 {
1085         if (!(desc->istate & IRQS_ONESHOT) ||
1086             action->handler == irq_forced_secondary_handler)
1087                 return;
1088 again:
1089         chip_bus_lock(desc);
1090         raw_spin_lock_irq(&desc->lock);
1091
1092         /*
1093          * Implausible though it may be we need to protect us against
1094          * the following scenario:
1095          *
1096          * The thread is faster done than the hard interrupt handler
1097          * on the other CPU. If we unmask the irq line then the
1098          * interrupt can come in again and masks the line, leaves due
1099          * to IRQS_INPROGRESS and the irq line is masked forever.
1100          *
1101          * This also serializes the state of shared oneshot handlers
1102          * versus "desc->threads_oneshot |= action->thread_mask;" in
1103          * irq_wake_thread(). See the comment there which explains the
1104          * serialization.
1105          */
1106         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1107                 raw_spin_unlock_irq(&desc->lock);
1108                 chip_bus_sync_unlock(desc);
1109                 cpu_relax();
1110                 goto again;
1111         }
1112
1113         /*
1114          * Now check again, whether the thread should run. Otherwise
1115          * we would clear the threads_oneshot bit of this thread which
1116          * was just set.
1117          */
1118         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1119                 goto out_unlock;
1120
1121         desc->threads_oneshot &= ~action->thread_mask;
1122
1123         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1124             irqd_irq_masked(&desc->irq_data))
1125                 unmask_threaded_irq(desc);
1126
1127 out_unlock:
1128         raw_spin_unlock_irq(&desc->lock);
1129         chip_bus_sync_unlock(desc);
1130 }
1131
1132 #ifdef CONFIG_SMP
1133 /*
1134  * Check whether we need to change the affinity of the interrupt thread.
1135  */
1136 static void
1137 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1138 {
1139         cpumask_var_t mask;
1140         bool valid = true;
1141
1142         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1143                 return;
1144
1145         /*
1146          * In case we are out of memory we set IRQTF_AFFINITY again and
1147          * try again next time
1148          */
1149         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1150                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1151                 return;
1152         }
1153
1154         raw_spin_lock_irq(&desc->lock);
1155         /*
1156          * This code is triggered unconditionally. Check the affinity
1157          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1158          */
1159         if (cpumask_available(desc->irq_common_data.affinity)) {
1160                 const struct cpumask *m;
1161
1162                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1163                 cpumask_copy(mask, m);
1164         } else {
1165                 valid = false;
1166         }
1167         raw_spin_unlock_irq(&desc->lock);
1168
1169         if (valid)
1170                 set_cpus_allowed_ptr(current, mask);
1171         free_cpumask_var(mask);
1172 }
1173 #else
1174 static inline void
1175 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1176 #endif
1177
1178 /*
1179  * Interrupts which are not explicitly requested as threaded
1180  * interrupts rely on the implicit bh/preempt disable of the hard irq
1181  * context. So we need to disable bh here to avoid deadlocks and other
1182  * side effects.
1183  */
1184 static irqreturn_t
1185 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1186 {
1187         irqreturn_t ret;
1188
1189         local_bh_disable();
1190         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1191                 local_irq_disable();
1192         ret = action->thread_fn(action->irq, action->dev_id);
1193         if (ret == IRQ_HANDLED)
1194                 atomic_inc(&desc->threads_handled);
1195
1196         irq_finalize_oneshot(desc, action);
1197         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1198                 local_irq_enable();
1199         local_bh_enable();
1200         return ret;
1201 }
1202
1203 /*
1204  * Interrupts explicitly requested as threaded interrupts want to be
1205  * preemptible - many of them need to sleep and wait for slow busses to
1206  * complete.
1207  */
1208 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1209                 struct irqaction *action)
1210 {
1211         irqreturn_t ret;
1212
1213         ret = action->thread_fn(action->irq, action->dev_id);
1214         if (ret == IRQ_HANDLED)
1215                 atomic_inc(&desc->threads_handled);
1216
1217         irq_finalize_oneshot(desc, action);
1218         return ret;
1219 }
1220
1221 void wake_threads_waitq(struct irq_desc *desc)
1222 {
1223         if (atomic_dec_and_test(&desc->threads_active))
1224                 wake_up(&desc->wait_for_threads);
1225 }
1226
1227 static void irq_thread_dtor(struct callback_head *unused)
1228 {
1229         struct task_struct *tsk = current;
1230         struct irq_desc *desc;
1231         struct irqaction *action;
1232
1233         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1234                 return;
1235
1236         action = kthread_data(tsk);
1237
1238         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1239                tsk->comm, tsk->pid, action->irq);
1240
1241
1242         desc = irq_to_desc(action->irq);
1243         /*
1244          * If IRQTF_RUNTHREAD is set, we need to decrement
1245          * desc->threads_active and wake possible waiters.
1246          */
1247         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1248                 wake_threads_waitq(desc);
1249
1250         /* Prevent a stale desc->threads_oneshot */
1251         irq_finalize_oneshot(desc, action);
1252 }
1253
1254 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1255 {
1256         struct irqaction *secondary = action->secondary;
1257
1258         if (WARN_ON_ONCE(!secondary))
1259                 return;
1260
1261         raw_spin_lock_irq(&desc->lock);
1262         __irq_wake_thread(desc, secondary);
1263         raw_spin_unlock_irq(&desc->lock);
1264 }
1265
1266 /*
1267  * Internal function to notify that a interrupt thread is ready.
1268  */
1269 static void irq_thread_set_ready(struct irq_desc *desc,
1270                                  struct irqaction *action)
1271 {
1272         set_bit(IRQTF_READY, &action->thread_flags);
1273         wake_up(&desc->wait_for_threads);
1274 }
1275
1276 /*
1277  * Internal function to wake up a interrupt thread and wait until it is
1278  * ready.
1279  */
1280 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1281                                                   struct irqaction *action)
1282 {
1283         if (!action || !action->thread)
1284                 return;
1285
1286         wake_up_process(action->thread);
1287         wait_event(desc->wait_for_threads,
1288                    test_bit(IRQTF_READY, &action->thread_flags));
1289 }
1290
1291 /*
1292  * Interrupt handler thread
1293  */
1294 static int irq_thread(void *data)
1295 {
1296         struct callback_head on_exit_work;
1297         struct irqaction *action = data;
1298         struct irq_desc *desc = irq_to_desc(action->irq);
1299         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1300                         struct irqaction *action);
1301
1302         irq_thread_set_ready(desc, action);
1303
1304         sched_set_fifo(current);
1305
1306         if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1307                                            &action->thread_flags))
1308                 handler_fn = irq_forced_thread_fn;
1309         else
1310                 handler_fn = irq_thread_fn;
1311
1312         init_task_work(&on_exit_work, irq_thread_dtor);
1313         task_work_add(current, &on_exit_work, TWA_NONE);
1314
1315         irq_thread_check_affinity(desc, action);
1316
1317         while (!irq_wait_for_interrupt(action)) {
1318                 irqreturn_t action_ret;
1319
1320                 irq_thread_check_affinity(desc, action);
1321
1322                 action_ret = handler_fn(desc, action);
1323                 if (action_ret == IRQ_WAKE_THREAD)
1324                         irq_wake_secondary(desc, action);
1325
1326                 wake_threads_waitq(desc);
1327         }
1328
1329         /*
1330          * This is the regular exit path. __free_irq() is stopping the
1331          * thread via kthread_stop() after calling
1332          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1333          * oneshot mask bit can be set.
1334          */
1335         task_work_cancel(current, irq_thread_dtor);
1336         return 0;
1337 }
1338
1339 /**
1340  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1341  *      @irq:           Interrupt line
1342  *      @dev_id:        Device identity for which the thread should be woken
1343  *
1344  */
1345 void irq_wake_thread(unsigned int irq, void *dev_id)
1346 {
1347         struct irq_desc *desc = irq_to_desc(irq);
1348         struct irqaction *action;
1349         unsigned long flags;
1350
1351         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1352                 return;
1353
1354         raw_spin_lock_irqsave(&desc->lock, flags);
1355         for_each_action_of_desc(desc, action) {
1356                 if (action->dev_id == dev_id) {
1357                         if (action->thread)
1358                                 __irq_wake_thread(desc, action);
1359                         break;
1360                 }
1361         }
1362         raw_spin_unlock_irqrestore(&desc->lock, flags);
1363 }
1364 EXPORT_SYMBOL_GPL(irq_wake_thread);
1365
1366 static int irq_setup_forced_threading(struct irqaction *new)
1367 {
1368         if (!force_irqthreads())
1369                 return 0;
1370         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1371                 return 0;
1372
1373         /*
1374          * No further action required for interrupts which are requested as
1375          * threaded interrupts already
1376          */
1377         if (new->handler == irq_default_primary_handler)
1378                 return 0;
1379
1380         new->flags |= IRQF_ONESHOT;
1381
1382         /*
1383          * Handle the case where we have a real primary handler and a
1384          * thread handler. We force thread them as well by creating a
1385          * secondary action.
1386          */
1387         if (new->handler && new->thread_fn) {
1388                 /* Allocate the secondary action */
1389                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1390                 if (!new->secondary)
1391                         return -ENOMEM;
1392                 new->secondary->handler = irq_forced_secondary_handler;
1393                 new->secondary->thread_fn = new->thread_fn;
1394                 new->secondary->dev_id = new->dev_id;
1395                 new->secondary->irq = new->irq;
1396                 new->secondary->name = new->name;
1397         }
1398         /* Deal with the primary handler */
1399         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1400         new->thread_fn = new->handler;
1401         new->handler = irq_default_primary_handler;
1402         return 0;
1403 }
1404
1405 static int irq_request_resources(struct irq_desc *desc)
1406 {
1407         struct irq_data *d = &desc->irq_data;
1408         struct irq_chip *c = d->chip;
1409
1410         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1411 }
1412
1413 static void irq_release_resources(struct irq_desc *desc)
1414 {
1415         struct irq_data *d = &desc->irq_data;
1416         struct irq_chip *c = d->chip;
1417
1418         if (c->irq_release_resources)
1419                 c->irq_release_resources(d);
1420 }
1421
1422 static bool irq_supports_nmi(struct irq_desc *desc)
1423 {
1424         struct irq_data *d = irq_desc_get_irq_data(desc);
1425
1426 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1427         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1428         if (d->parent_data)
1429                 return false;
1430 #endif
1431         /* Don't support NMIs for chips behind a slow bus */
1432         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1433                 return false;
1434
1435         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1436 }
1437
1438 static int irq_nmi_setup(struct irq_desc *desc)
1439 {
1440         struct irq_data *d = irq_desc_get_irq_data(desc);
1441         struct irq_chip *c = d->chip;
1442
1443         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1444 }
1445
1446 static void irq_nmi_teardown(struct irq_desc *desc)
1447 {
1448         struct irq_data *d = irq_desc_get_irq_data(desc);
1449         struct irq_chip *c = d->chip;
1450
1451         if (c->irq_nmi_teardown)
1452                 c->irq_nmi_teardown(d);
1453 }
1454
1455 static int
1456 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1457 {
1458         struct task_struct *t;
1459
1460         if (!secondary) {
1461                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1462                                    new->name);
1463         } else {
1464                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1465                                    new->name);
1466         }
1467
1468         if (IS_ERR(t))
1469                 return PTR_ERR(t);
1470
1471         /*
1472          * We keep the reference to the task struct even if
1473          * the thread dies to avoid that the interrupt code
1474          * references an already freed task_struct.
1475          */
1476         new->thread = get_task_struct(t);
1477         /*
1478          * Tell the thread to set its affinity. This is
1479          * important for shared interrupt handlers as we do
1480          * not invoke setup_affinity() for the secondary
1481          * handlers as everything is already set up. Even for
1482          * interrupts marked with IRQF_NO_BALANCE this is
1483          * correct as we want the thread to move to the cpu(s)
1484          * on which the requesting code placed the interrupt.
1485          */
1486         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1487         return 0;
1488 }
1489
1490 /*
1491  * Internal function to register an irqaction - typically used to
1492  * allocate special interrupts that are part of the architecture.
1493  *
1494  * Locking rules:
1495  *
1496  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1497  *   chip_bus_lock      Provides serialization for slow bus operations
1498  *     desc->lock       Provides serialization against hard interrupts
1499  *
1500  * chip_bus_lock and desc->lock are sufficient for all other management and
1501  * interrupt related functions. desc->request_mutex solely serializes
1502  * request/free_irq().
1503  */
1504 static int
1505 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1506 {
1507         struct irqaction *old, **old_ptr;
1508         unsigned long flags, thread_mask = 0;
1509         int ret, nested, shared = 0;
1510
1511         if (!desc)
1512                 return -EINVAL;
1513
1514         if (desc->irq_data.chip == &no_irq_chip)
1515                 return -ENOSYS;
1516         if (!try_module_get(desc->owner))
1517                 return -ENODEV;
1518
1519         new->irq = irq;
1520
1521         /*
1522          * If the trigger type is not specified by the caller,
1523          * then use the default for this interrupt.
1524          */
1525         if (!(new->flags & IRQF_TRIGGER_MASK))
1526                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1527
1528         /*
1529          * Check whether the interrupt nests into another interrupt
1530          * thread.
1531          */
1532         nested = irq_settings_is_nested_thread(desc);
1533         if (nested) {
1534                 if (!new->thread_fn) {
1535                         ret = -EINVAL;
1536                         goto out_mput;
1537                 }
1538                 /*
1539                  * Replace the primary handler which was provided from
1540                  * the driver for non nested interrupt handling by the
1541                  * dummy function which warns when called.
1542                  */
1543                 new->handler = irq_nested_primary_handler;
1544         } else {
1545                 if (irq_settings_can_thread(desc)) {
1546                         ret = irq_setup_forced_threading(new);
1547                         if (ret)
1548                                 goto out_mput;
1549                 }
1550         }
1551
1552         /*
1553          * Create a handler thread when a thread function is supplied
1554          * and the interrupt does not nest into another interrupt
1555          * thread.
1556          */
1557         if (new->thread_fn && !nested) {
1558                 ret = setup_irq_thread(new, irq, false);
1559                 if (ret)
1560                         goto out_mput;
1561                 if (new->secondary) {
1562                         ret = setup_irq_thread(new->secondary, irq, true);
1563                         if (ret)
1564                                 goto out_thread;
1565                 }
1566         }
1567
1568         /*
1569          * Drivers are often written to work w/o knowledge about the
1570          * underlying irq chip implementation, so a request for a
1571          * threaded irq without a primary hard irq context handler
1572          * requires the ONESHOT flag to be set. Some irq chips like
1573          * MSI based interrupts are per se one shot safe. Check the
1574          * chip flags, so we can avoid the unmask dance at the end of
1575          * the threaded handler for those.
1576          */
1577         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1578                 new->flags &= ~IRQF_ONESHOT;
1579
1580         /*
1581          * Protects against a concurrent __free_irq() call which might wait
1582          * for synchronize_hardirq() to complete without holding the optional
1583          * chip bus lock and desc->lock. Also protects against handing out
1584          * a recycled oneshot thread_mask bit while it's still in use by
1585          * its previous owner.
1586          */
1587         mutex_lock(&desc->request_mutex);
1588
1589         /*
1590          * Acquire bus lock as the irq_request_resources() callback below
1591          * might rely on the serialization or the magic power management
1592          * functions which are abusing the irq_bus_lock() callback,
1593          */
1594         chip_bus_lock(desc);
1595
1596         /* First installed action requests resources. */
1597         if (!desc->action) {
1598                 ret = irq_request_resources(desc);
1599                 if (ret) {
1600                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1601                                new->name, irq, desc->irq_data.chip->name);
1602                         goto out_bus_unlock;
1603                 }
1604         }
1605
1606         /*
1607          * The following block of code has to be executed atomically
1608          * protected against a concurrent interrupt and any of the other
1609          * management calls which are not serialized via
1610          * desc->request_mutex or the optional bus lock.
1611          */
1612         raw_spin_lock_irqsave(&desc->lock, flags);
1613         old_ptr = &desc->action;
1614         old = *old_ptr;
1615         if (old) {
1616                 /*
1617                  * Can't share interrupts unless both agree to and are
1618                  * the same type (level, edge, polarity). So both flag
1619                  * fields must have IRQF_SHARED set and the bits which
1620                  * set the trigger type must match. Also all must
1621                  * agree on ONESHOT.
1622                  * Interrupt lines used for NMIs cannot be shared.
1623                  */
1624                 unsigned int oldtype;
1625
1626                 if (desc->istate & IRQS_NMI) {
1627                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1628                                 new->name, irq, desc->irq_data.chip->name);
1629                         ret = -EINVAL;
1630                         goto out_unlock;
1631                 }
1632
1633                 /*
1634                  * If nobody did set the configuration before, inherit
1635                  * the one provided by the requester.
1636                  */
1637                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1638                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1639                 } else {
1640                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1641                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1642                 }
1643
1644                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1645                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1646                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1647                         goto mismatch;
1648
1649                 /* All handlers must agree on per-cpuness */
1650                 if ((old->flags & IRQF_PERCPU) !=
1651                     (new->flags & IRQF_PERCPU))
1652                         goto mismatch;
1653
1654                 /* add new interrupt at end of irq queue */
1655                 do {
1656                         /*
1657                          * Or all existing action->thread_mask bits,
1658                          * so we can find the next zero bit for this
1659                          * new action.
1660                          */
1661                         thread_mask |= old->thread_mask;
1662                         old_ptr = &old->next;
1663                         old = *old_ptr;
1664                 } while (old);
1665                 shared = 1;
1666         }
1667
1668         /*
1669          * Setup the thread mask for this irqaction for ONESHOT. For
1670          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1671          * conditional in irq_wake_thread().
1672          */
1673         if (new->flags & IRQF_ONESHOT) {
1674                 /*
1675                  * Unlikely to have 32 resp 64 irqs sharing one line,
1676                  * but who knows.
1677                  */
1678                 if (thread_mask == ~0UL) {
1679                         ret = -EBUSY;
1680                         goto out_unlock;
1681                 }
1682                 /*
1683                  * The thread_mask for the action is or'ed to
1684                  * desc->thread_active to indicate that the
1685                  * IRQF_ONESHOT thread handler has been woken, but not
1686                  * yet finished. The bit is cleared when a thread
1687                  * completes. When all threads of a shared interrupt
1688                  * line have completed desc->threads_active becomes
1689                  * zero and the interrupt line is unmasked. See
1690                  * handle.c:irq_wake_thread() for further information.
1691                  *
1692                  * If no thread is woken by primary (hard irq context)
1693                  * interrupt handlers, then desc->threads_active is
1694                  * also checked for zero to unmask the irq line in the
1695                  * affected hard irq flow handlers
1696                  * (handle_[fasteoi|level]_irq).
1697                  *
1698                  * The new action gets the first zero bit of
1699                  * thread_mask assigned. See the loop above which or's
1700                  * all existing action->thread_mask bits.
1701                  */
1702                 new->thread_mask = 1UL << ffz(thread_mask);
1703
1704         } else if (new->handler == irq_default_primary_handler &&
1705                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1706                 /*
1707                  * The interrupt was requested with handler = NULL, so
1708                  * we use the default primary handler for it. But it
1709                  * does not have the oneshot flag set. In combination
1710                  * with level interrupts this is deadly, because the
1711                  * default primary handler just wakes the thread, then
1712                  * the irq lines is reenabled, but the device still
1713                  * has the level irq asserted. Rinse and repeat....
1714                  *
1715                  * While this works for edge type interrupts, we play
1716                  * it safe and reject unconditionally because we can't
1717                  * say for sure which type this interrupt really
1718                  * has. The type flags are unreliable as the
1719                  * underlying chip implementation can override them.
1720                  */
1721                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1722                        new->name, irq);
1723                 ret = -EINVAL;
1724                 goto out_unlock;
1725         }
1726
1727         if (!shared) {
1728                 /* Setup the type (level, edge polarity) if configured: */
1729                 if (new->flags & IRQF_TRIGGER_MASK) {
1730                         ret = __irq_set_trigger(desc,
1731                                                 new->flags & IRQF_TRIGGER_MASK);
1732
1733                         if (ret)
1734                                 goto out_unlock;
1735                 }
1736
1737                 /*
1738                  * Activate the interrupt. That activation must happen
1739                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1740                  * and the callers are supposed to handle
1741                  * that. enable_irq() of an interrupt requested with
1742                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1743                  * keeps it in shutdown mode, it merily associates
1744                  * resources if necessary and if that's not possible it
1745                  * fails. Interrupts which are in managed shutdown mode
1746                  * will simply ignore that activation request.
1747                  */
1748                 ret = irq_activate(desc);
1749                 if (ret)
1750                         goto out_unlock;
1751
1752                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1753                                   IRQS_ONESHOT | IRQS_WAITING);
1754                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1755
1756                 if (new->flags & IRQF_PERCPU) {
1757                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1758                         irq_settings_set_per_cpu(desc);
1759                         if (new->flags & IRQF_NO_DEBUG)
1760                                 irq_settings_set_no_debug(desc);
1761                 }
1762
1763                 if (noirqdebug)
1764                         irq_settings_set_no_debug(desc);
1765
1766                 if (new->flags & IRQF_ONESHOT)
1767                         desc->istate |= IRQS_ONESHOT;
1768
1769                 /* Exclude IRQ from balancing if requested */
1770                 if (new->flags & IRQF_NOBALANCING) {
1771                         irq_settings_set_no_balancing(desc);
1772                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1773                 }
1774
1775                 if (!(new->flags & IRQF_NO_AUTOEN) &&
1776                     irq_settings_can_autoenable(desc)) {
1777                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1778                 } else {
1779                         /*
1780                          * Shared interrupts do not go well with disabling
1781                          * auto enable. The sharing interrupt might request
1782                          * it while it's still disabled and then wait for
1783                          * interrupts forever.
1784                          */
1785                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1786                         /* Undo nested disables: */
1787                         desc->depth = 1;
1788                 }
1789
1790         } else if (new->flags & IRQF_TRIGGER_MASK) {
1791                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1792                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1793
1794                 if (nmsk != omsk)
1795                         /* hope the handler works with current  trigger mode */
1796                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1797                                 irq, omsk, nmsk);
1798         }
1799
1800         *old_ptr = new;
1801
1802         irq_pm_install_action(desc, new);
1803
1804         /* Reset broken irq detection when installing new handler */
1805         desc->irq_count = 0;
1806         desc->irqs_unhandled = 0;
1807
1808         /*
1809          * Check whether we disabled the irq via the spurious handler
1810          * before. Reenable it and give it another chance.
1811          */
1812         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1813                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1814                 __enable_irq(desc);
1815         }
1816
1817         raw_spin_unlock_irqrestore(&desc->lock, flags);
1818         chip_bus_sync_unlock(desc);
1819         mutex_unlock(&desc->request_mutex);
1820
1821         irq_setup_timings(desc, new);
1822
1823         wake_up_and_wait_for_irq_thread_ready(desc, new);
1824         wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1825
1826         register_irq_proc(irq, desc);
1827         new->dir = NULL;
1828         register_handler_proc(irq, new);
1829         return 0;
1830
1831 mismatch:
1832         if (!(new->flags & IRQF_PROBE_SHARED)) {
1833                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1834                        irq, new->flags, new->name, old->flags, old->name);
1835 #ifdef CONFIG_DEBUG_SHIRQ
1836                 dump_stack();
1837 #endif
1838         }
1839         ret = -EBUSY;
1840
1841 out_unlock:
1842         raw_spin_unlock_irqrestore(&desc->lock, flags);
1843
1844         if (!desc->action)
1845                 irq_release_resources(desc);
1846 out_bus_unlock:
1847         chip_bus_sync_unlock(desc);
1848         mutex_unlock(&desc->request_mutex);
1849
1850 out_thread:
1851         if (new->thread) {
1852                 struct task_struct *t = new->thread;
1853
1854                 new->thread = NULL;
1855                 kthread_stop(t);
1856                 put_task_struct(t);
1857         }
1858         if (new->secondary && new->secondary->thread) {
1859                 struct task_struct *t = new->secondary->thread;
1860
1861                 new->secondary->thread = NULL;
1862                 kthread_stop(t);
1863                 put_task_struct(t);
1864         }
1865 out_mput:
1866         module_put(desc->owner);
1867         return ret;
1868 }
1869
1870 /*
1871  * Internal function to unregister an irqaction - used to free
1872  * regular and special interrupts that are part of the architecture.
1873  */
1874 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1875 {
1876         unsigned irq = desc->irq_data.irq;
1877         struct irqaction *action, **action_ptr;
1878         unsigned long flags;
1879
1880         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1881
1882         mutex_lock(&desc->request_mutex);
1883         chip_bus_lock(desc);
1884         raw_spin_lock_irqsave(&desc->lock, flags);
1885
1886         /*
1887          * There can be multiple actions per IRQ descriptor, find the right
1888          * one based on the dev_id:
1889          */
1890         action_ptr = &desc->action;
1891         for (;;) {
1892                 action = *action_ptr;
1893
1894                 if (!action) {
1895                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1896                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1897                         chip_bus_sync_unlock(desc);
1898                         mutex_unlock(&desc->request_mutex);
1899                         return NULL;
1900                 }
1901
1902                 if (action->dev_id == dev_id)
1903                         break;
1904                 action_ptr = &action->next;
1905         }
1906
1907         /* Found it - now remove it from the list of entries: */
1908         *action_ptr = action->next;
1909
1910         irq_pm_remove_action(desc, action);
1911
1912         /* If this was the last handler, shut down the IRQ line: */
1913         if (!desc->action) {
1914                 irq_settings_clr_disable_unlazy(desc);
1915                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1916                 irq_shutdown(desc);
1917         }
1918
1919 #ifdef CONFIG_SMP
1920         /* make sure affinity_hint is cleaned up */
1921         if (WARN_ON_ONCE(desc->affinity_hint))
1922                 desc->affinity_hint = NULL;
1923 #endif
1924
1925         raw_spin_unlock_irqrestore(&desc->lock, flags);
1926         /*
1927          * Drop bus_lock here so the changes which were done in the chip
1928          * callbacks above are synced out to the irq chips which hang
1929          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1930          *
1931          * Aside of that the bus_lock can also be taken from the threaded
1932          * handler in irq_finalize_oneshot() which results in a deadlock
1933          * because kthread_stop() would wait forever for the thread to
1934          * complete, which is blocked on the bus lock.
1935          *
1936          * The still held desc->request_mutex() protects against a
1937          * concurrent request_irq() of this irq so the release of resources
1938          * and timing data is properly serialized.
1939          */
1940         chip_bus_sync_unlock(desc);
1941
1942         unregister_handler_proc(irq, action);
1943
1944         /*
1945          * Make sure it's not being used on another CPU and if the chip
1946          * supports it also make sure that there is no (not yet serviced)
1947          * interrupt in flight at the hardware level.
1948          */
1949         __synchronize_irq(desc);
1950
1951 #ifdef CONFIG_DEBUG_SHIRQ
1952         /*
1953          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1954          * event to happen even now it's being freed, so let's make sure that
1955          * is so by doing an extra call to the handler ....
1956          *
1957          * ( We do this after actually deregistering it, to make sure that a
1958          *   'real' IRQ doesn't run in parallel with our fake. )
1959          */
1960         if (action->flags & IRQF_SHARED) {
1961                 local_irq_save(flags);
1962                 action->handler(irq, dev_id);
1963                 local_irq_restore(flags);
1964         }
1965 #endif
1966
1967         /*
1968          * The action has already been removed above, but the thread writes
1969          * its oneshot mask bit when it completes. Though request_mutex is
1970          * held across this which prevents __setup_irq() from handing out
1971          * the same bit to a newly requested action.
1972          */
1973         if (action->thread) {
1974                 kthread_stop(action->thread);
1975                 put_task_struct(action->thread);
1976                 if (action->secondary && action->secondary->thread) {
1977                         kthread_stop(action->secondary->thread);
1978                         put_task_struct(action->secondary->thread);
1979                 }
1980         }
1981
1982         /* Last action releases resources */
1983         if (!desc->action) {
1984                 /*
1985                  * Reacquire bus lock as irq_release_resources() might
1986                  * require it to deallocate resources over the slow bus.
1987                  */
1988                 chip_bus_lock(desc);
1989                 /*
1990                  * There is no interrupt on the fly anymore. Deactivate it
1991                  * completely.
1992                  */
1993                 raw_spin_lock_irqsave(&desc->lock, flags);
1994                 irq_domain_deactivate_irq(&desc->irq_data);
1995                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1996
1997                 irq_release_resources(desc);
1998                 chip_bus_sync_unlock(desc);
1999                 irq_remove_timings(desc);
2000         }
2001
2002         mutex_unlock(&desc->request_mutex);
2003
2004         irq_chip_pm_put(&desc->irq_data);
2005         module_put(desc->owner);
2006         kfree(action->secondary);
2007         return action;
2008 }
2009
2010 /**
2011  *      free_irq - free an interrupt allocated with request_irq
2012  *      @irq: Interrupt line to free
2013  *      @dev_id: Device identity to free
2014  *
2015  *      Remove an interrupt handler. The handler is removed and if the
2016  *      interrupt line is no longer in use by any driver it is disabled.
2017  *      On a shared IRQ the caller must ensure the interrupt is disabled
2018  *      on the card it drives before calling this function. The function
2019  *      does not return until any executing interrupts for this IRQ
2020  *      have completed.
2021  *
2022  *      This function must not be called from interrupt context.
2023  *
2024  *      Returns the devname argument passed to request_irq.
2025  */
2026 const void *free_irq(unsigned int irq, void *dev_id)
2027 {
2028         struct irq_desc *desc = irq_to_desc(irq);
2029         struct irqaction *action;
2030         const char *devname;
2031
2032         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2033                 return NULL;
2034
2035 #ifdef CONFIG_SMP
2036         if (WARN_ON(desc->affinity_notify))
2037                 desc->affinity_notify = NULL;
2038 #endif
2039
2040         action = __free_irq(desc, dev_id);
2041
2042         if (!action)
2043                 return NULL;
2044
2045         devname = action->name;
2046         kfree(action);
2047         return devname;
2048 }
2049 EXPORT_SYMBOL(free_irq);
2050
2051 /* This function must be called with desc->lock held */
2052 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2053 {
2054         const char *devname = NULL;
2055
2056         desc->istate &= ~IRQS_NMI;
2057
2058         if (!WARN_ON(desc->action == NULL)) {
2059                 irq_pm_remove_action(desc, desc->action);
2060                 devname = desc->action->name;
2061                 unregister_handler_proc(irq, desc->action);
2062
2063                 kfree(desc->action);
2064                 desc->action = NULL;
2065         }
2066
2067         irq_settings_clr_disable_unlazy(desc);
2068         irq_shutdown_and_deactivate(desc);
2069
2070         irq_release_resources(desc);
2071
2072         irq_chip_pm_put(&desc->irq_data);
2073         module_put(desc->owner);
2074
2075         return devname;
2076 }
2077
2078 const void *free_nmi(unsigned int irq, void *dev_id)
2079 {
2080         struct irq_desc *desc = irq_to_desc(irq);
2081         unsigned long flags;
2082         const void *devname;
2083
2084         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2085                 return NULL;
2086
2087         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2088                 return NULL;
2089
2090         /* NMI still enabled */
2091         if (WARN_ON(desc->depth == 0))
2092                 disable_nmi_nosync(irq);
2093
2094         raw_spin_lock_irqsave(&desc->lock, flags);
2095
2096         irq_nmi_teardown(desc);
2097         devname = __cleanup_nmi(irq, desc);
2098
2099         raw_spin_unlock_irqrestore(&desc->lock, flags);
2100
2101         return devname;
2102 }
2103
2104 /**
2105  *      request_threaded_irq - allocate an interrupt line
2106  *      @irq: Interrupt line to allocate
2107  *      @handler: Function to be called when the IRQ occurs.
2108  *                Primary handler for threaded interrupts.
2109  *                If handler is NULL and thread_fn != NULL
2110  *                the default primary handler is installed.
2111  *      @thread_fn: Function called from the irq handler thread
2112  *                  If NULL, no irq thread is created
2113  *      @irqflags: Interrupt type flags
2114  *      @devname: An ascii name for the claiming device
2115  *      @dev_id: A cookie passed back to the handler function
2116  *
2117  *      This call allocates interrupt resources and enables the
2118  *      interrupt line and IRQ handling. From the point this
2119  *      call is made your handler function may be invoked. Since
2120  *      your handler function must clear any interrupt the board
2121  *      raises, you must take care both to initialise your hardware
2122  *      and to set up the interrupt handler in the right order.
2123  *
2124  *      If you want to set up a threaded irq handler for your device
2125  *      then you need to supply @handler and @thread_fn. @handler is
2126  *      still called in hard interrupt context and has to check
2127  *      whether the interrupt originates from the device. If yes it
2128  *      needs to disable the interrupt on the device and return
2129  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2130  *      @thread_fn. This split handler design is necessary to support
2131  *      shared interrupts.
2132  *
2133  *      Dev_id must be globally unique. Normally the address of the
2134  *      device data structure is used as the cookie. Since the handler
2135  *      receives this value it makes sense to use it.
2136  *
2137  *      If your interrupt is shared you must pass a non NULL dev_id
2138  *      as this is required when freeing the interrupt.
2139  *
2140  *      Flags:
2141  *
2142  *      IRQF_SHARED             Interrupt is shared
2143  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2144  *      IRQF_ONESHOT            Run thread_fn with interrupt line masked
2145  */
2146 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2147                          irq_handler_t thread_fn, unsigned long irqflags,
2148                          const char *devname, void *dev_id)
2149 {
2150         struct irqaction *action;
2151         struct irq_desc *desc;
2152         int retval;
2153
2154         if (irq == IRQ_NOTCONNECTED)
2155                 return -ENOTCONN;
2156
2157         /*
2158          * Sanity-check: shared interrupts must pass in a real dev-ID,
2159          * otherwise we'll have trouble later trying to figure out
2160          * which interrupt is which (messes up the interrupt freeing
2161          * logic etc).
2162          *
2163          * Also shared interrupts do not go well with disabling auto enable.
2164          * The sharing interrupt might request it while it's still disabled
2165          * and then wait for interrupts forever.
2166          *
2167          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2168          * it cannot be set along with IRQF_NO_SUSPEND.
2169          */
2170         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2171             ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2172             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2173             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2174                 return -EINVAL;
2175
2176         desc = irq_to_desc(irq);
2177         if (!desc)
2178                 return -EINVAL;
2179
2180         if (!irq_settings_can_request(desc) ||
2181             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2182                 return -EINVAL;
2183
2184         if (!handler) {
2185                 if (!thread_fn)
2186                         return -EINVAL;
2187                 handler = irq_default_primary_handler;
2188         }
2189
2190         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2191         if (!action)
2192                 return -ENOMEM;
2193
2194         action->handler = handler;
2195         action->thread_fn = thread_fn;
2196         action->flags = irqflags;
2197         action->name = devname;
2198         action->dev_id = dev_id;
2199
2200         retval = irq_chip_pm_get(&desc->irq_data);
2201         if (retval < 0) {
2202                 kfree(action);
2203                 return retval;
2204         }
2205
2206         retval = __setup_irq(irq, desc, action);
2207
2208         if (retval) {
2209                 irq_chip_pm_put(&desc->irq_data);
2210                 kfree(action->secondary);
2211                 kfree(action);
2212         }
2213
2214 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2215         if (!retval && (irqflags & IRQF_SHARED)) {
2216                 /*
2217                  * It's a shared IRQ -- the driver ought to be prepared for it
2218                  * to happen immediately, so let's make sure....
2219                  * We disable the irq to make sure that a 'real' IRQ doesn't
2220                  * run in parallel with our fake.
2221                  */
2222                 unsigned long flags;
2223
2224                 disable_irq(irq);
2225                 local_irq_save(flags);
2226
2227                 handler(irq, dev_id);
2228
2229                 local_irq_restore(flags);
2230                 enable_irq(irq);
2231         }
2232 #endif
2233         return retval;
2234 }
2235 EXPORT_SYMBOL(request_threaded_irq);
2236
2237 /**
2238  *      request_any_context_irq - allocate an interrupt line
2239  *      @irq: Interrupt line to allocate
2240  *      @handler: Function to be called when the IRQ occurs.
2241  *                Threaded handler for threaded interrupts.
2242  *      @flags: Interrupt type flags
2243  *      @name: An ascii name for the claiming device
2244  *      @dev_id: A cookie passed back to the handler function
2245  *
2246  *      This call allocates interrupt resources and enables the
2247  *      interrupt line and IRQ handling. It selects either a
2248  *      hardirq or threaded handling method depending on the
2249  *      context.
2250  *
2251  *      On failure, it returns a negative value. On success,
2252  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2253  */
2254 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2255                             unsigned long flags, const char *name, void *dev_id)
2256 {
2257         struct irq_desc *desc;
2258         int ret;
2259
2260         if (irq == IRQ_NOTCONNECTED)
2261                 return -ENOTCONN;
2262
2263         desc = irq_to_desc(irq);
2264         if (!desc)
2265                 return -EINVAL;
2266
2267         if (irq_settings_is_nested_thread(desc)) {
2268                 ret = request_threaded_irq(irq, NULL, handler,
2269                                            flags, name, dev_id);
2270                 return !ret ? IRQC_IS_NESTED : ret;
2271         }
2272
2273         ret = request_irq(irq, handler, flags, name, dev_id);
2274         return !ret ? IRQC_IS_HARDIRQ : ret;
2275 }
2276 EXPORT_SYMBOL_GPL(request_any_context_irq);
2277
2278 /**
2279  *      request_nmi - allocate an interrupt line for NMI delivery
2280  *      @irq: Interrupt line to allocate
2281  *      @handler: Function to be called when the IRQ occurs.
2282  *                Threaded handler for threaded interrupts.
2283  *      @irqflags: Interrupt type flags
2284  *      @name: An ascii name for the claiming device
2285  *      @dev_id: A cookie passed back to the handler function
2286  *
2287  *      This call allocates interrupt resources and enables the
2288  *      interrupt line and IRQ handling. It sets up the IRQ line
2289  *      to be handled as an NMI.
2290  *
2291  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2292  *      cannot be threaded.
2293  *
2294  *      Interrupt lines requested for NMI delivering must produce per cpu
2295  *      interrupts and have auto enabling setting disabled.
2296  *
2297  *      Dev_id must be globally unique. Normally the address of the
2298  *      device data structure is used as the cookie. Since the handler
2299  *      receives this value it makes sense to use it.
2300  *
2301  *      If the interrupt line cannot be used to deliver NMIs, function
2302  *      will fail and return a negative value.
2303  */
2304 int request_nmi(unsigned int irq, irq_handler_t handler,
2305                 unsigned long irqflags, const char *name, void *dev_id)
2306 {
2307         struct irqaction *action;
2308         struct irq_desc *desc;
2309         unsigned long flags;
2310         int retval;
2311
2312         if (irq == IRQ_NOTCONNECTED)
2313                 return -ENOTCONN;
2314
2315         /* NMI cannot be shared, used for Polling */
2316         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2317                 return -EINVAL;
2318
2319         if (!(irqflags & IRQF_PERCPU))
2320                 return -EINVAL;
2321
2322         if (!handler)
2323                 return -EINVAL;
2324
2325         desc = irq_to_desc(irq);
2326
2327         if (!desc || (irq_settings_can_autoenable(desc) &&
2328             !(irqflags & IRQF_NO_AUTOEN)) ||
2329             !irq_settings_can_request(desc) ||
2330             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2331             !irq_supports_nmi(desc))
2332                 return -EINVAL;
2333
2334         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2335         if (!action)
2336                 return -ENOMEM;
2337
2338         action->handler = handler;
2339         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2340         action->name = name;
2341         action->dev_id = dev_id;
2342
2343         retval = irq_chip_pm_get(&desc->irq_data);
2344         if (retval < 0)
2345                 goto err_out;
2346
2347         retval = __setup_irq(irq, desc, action);
2348         if (retval)
2349                 goto err_irq_setup;
2350
2351         raw_spin_lock_irqsave(&desc->lock, flags);
2352
2353         /* Setup NMI state */
2354         desc->istate |= IRQS_NMI;
2355         retval = irq_nmi_setup(desc);
2356         if (retval) {
2357                 __cleanup_nmi(irq, desc);
2358                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2359                 return -EINVAL;
2360         }
2361
2362         raw_spin_unlock_irqrestore(&desc->lock, flags);
2363
2364         return 0;
2365
2366 err_irq_setup:
2367         irq_chip_pm_put(&desc->irq_data);
2368 err_out:
2369         kfree(action);
2370
2371         return retval;
2372 }
2373
2374 void enable_percpu_irq(unsigned int irq, unsigned int type)
2375 {
2376         unsigned int cpu = smp_processor_id();
2377         unsigned long flags;
2378         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2379
2380         if (!desc)
2381                 return;
2382
2383         /*
2384          * If the trigger type is not specified by the caller, then
2385          * use the default for this interrupt.
2386          */
2387         type &= IRQ_TYPE_SENSE_MASK;
2388         if (type == IRQ_TYPE_NONE)
2389                 type = irqd_get_trigger_type(&desc->irq_data);
2390
2391         if (type != IRQ_TYPE_NONE) {
2392                 int ret;
2393
2394                 ret = __irq_set_trigger(desc, type);
2395
2396                 if (ret) {
2397                         WARN(1, "failed to set type for IRQ%d\n", irq);
2398                         goto out;
2399                 }
2400         }
2401
2402         irq_percpu_enable(desc, cpu);
2403 out:
2404         irq_put_desc_unlock(desc, flags);
2405 }
2406 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2407
2408 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2409 {
2410         enable_percpu_irq(irq, type);
2411 }
2412
2413 /**
2414  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2415  * @irq:        Linux irq number to check for
2416  *
2417  * Must be called from a non migratable context. Returns the enable
2418  * state of a per cpu interrupt on the current cpu.
2419  */
2420 bool irq_percpu_is_enabled(unsigned int irq)
2421 {
2422         unsigned int cpu = smp_processor_id();
2423         struct irq_desc *desc;
2424         unsigned long flags;
2425         bool is_enabled;
2426
2427         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2428         if (!desc)
2429                 return false;
2430
2431         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2432         irq_put_desc_unlock(desc, flags);
2433
2434         return is_enabled;
2435 }
2436 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2437
2438 void disable_percpu_irq(unsigned int irq)
2439 {
2440         unsigned int cpu = smp_processor_id();
2441         unsigned long flags;
2442         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2443
2444         if (!desc)
2445                 return;
2446
2447         irq_percpu_disable(desc, cpu);
2448         irq_put_desc_unlock(desc, flags);
2449 }
2450 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2451
2452 void disable_percpu_nmi(unsigned int irq)
2453 {
2454         disable_percpu_irq(irq);
2455 }
2456
2457 /*
2458  * Internal function to unregister a percpu irqaction.
2459  */
2460 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2461 {
2462         struct irq_desc *desc = irq_to_desc(irq);
2463         struct irqaction *action;
2464         unsigned long flags;
2465
2466         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2467
2468         if (!desc)
2469                 return NULL;
2470
2471         raw_spin_lock_irqsave(&desc->lock, flags);
2472
2473         action = desc->action;
2474         if (!action || action->percpu_dev_id != dev_id) {
2475                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2476                 goto bad;
2477         }
2478
2479         if (!cpumask_empty(desc->percpu_enabled)) {
2480                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2481                      irq, cpumask_first(desc->percpu_enabled));
2482                 goto bad;
2483         }
2484
2485         /* Found it - now remove it from the list of entries: */
2486         desc->action = NULL;
2487
2488         desc->istate &= ~IRQS_NMI;
2489
2490         raw_spin_unlock_irqrestore(&desc->lock, flags);
2491
2492         unregister_handler_proc(irq, action);
2493
2494         irq_chip_pm_put(&desc->irq_data);
2495         module_put(desc->owner);
2496         return action;
2497
2498 bad:
2499         raw_spin_unlock_irqrestore(&desc->lock, flags);
2500         return NULL;
2501 }
2502
2503 /**
2504  *      remove_percpu_irq - free a per-cpu interrupt
2505  *      @irq: Interrupt line to free
2506  *      @act: irqaction for the interrupt
2507  *
2508  * Used to remove interrupts statically setup by the early boot process.
2509  */
2510 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2511 {
2512         struct irq_desc *desc = irq_to_desc(irq);
2513
2514         if (desc && irq_settings_is_per_cpu_devid(desc))
2515             __free_percpu_irq(irq, act->percpu_dev_id);
2516 }
2517
2518 /**
2519  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2520  *      @irq: Interrupt line to free
2521  *      @dev_id: Device identity to free
2522  *
2523  *      Remove a percpu interrupt handler. The handler is removed, but
2524  *      the interrupt line is not disabled. This must be done on each
2525  *      CPU before calling this function. The function does not return
2526  *      until any executing interrupts for this IRQ have completed.
2527  *
2528  *      This function must not be called from interrupt context.
2529  */
2530 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2531 {
2532         struct irq_desc *desc = irq_to_desc(irq);
2533
2534         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2535                 return;
2536
2537         chip_bus_lock(desc);
2538         kfree(__free_percpu_irq(irq, dev_id));
2539         chip_bus_sync_unlock(desc);
2540 }
2541 EXPORT_SYMBOL_GPL(free_percpu_irq);
2542
2543 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2544 {
2545         struct irq_desc *desc = irq_to_desc(irq);
2546
2547         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2548                 return;
2549
2550         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2551                 return;
2552
2553         kfree(__free_percpu_irq(irq, dev_id));
2554 }
2555
2556 /**
2557  *      setup_percpu_irq - setup a per-cpu interrupt
2558  *      @irq: Interrupt line to setup
2559  *      @act: irqaction for the interrupt
2560  *
2561  * Used to statically setup per-cpu interrupts in the early boot process.
2562  */
2563 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2564 {
2565         struct irq_desc *desc = irq_to_desc(irq);
2566         int retval;
2567
2568         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2569                 return -EINVAL;
2570
2571         retval = irq_chip_pm_get(&desc->irq_data);
2572         if (retval < 0)
2573                 return retval;
2574
2575         retval = __setup_irq(irq, desc, act);
2576
2577         if (retval)
2578                 irq_chip_pm_put(&desc->irq_data);
2579
2580         return retval;
2581 }
2582
2583 /**
2584  *      __request_percpu_irq - allocate a percpu interrupt line
2585  *      @irq: Interrupt line to allocate
2586  *      @handler: Function to be called when the IRQ occurs.
2587  *      @flags: Interrupt type flags (IRQF_TIMER only)
2588  *      @devname: An ascii name for the claiming device
2589  *      @dev_id: A percpu cookie passed back to the handler function
2590  *
2591  *      This call allocates interrupt resources and enables the
2592  *      interrupt on the local CPU. If the interrupt is supposed to be
2593  *      enabled on other CPUs, it has to be done on each CPU using
2594  *      enable_percpu_irq().
2595  *
2596  *      Dev_id must be globally unique. It is a per-cpu variable, and
2597  *      the handler gets called with the interrupted CPU's instance of
2598  *      that variable.
2599  */
2600 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2601                          unsigned long flags, const char *devname,
2602                          void __percpu *dev_id)
2603 {
2604         struct irqaction *action;
2605         struct irq_desc *desc;
2606         int retval;
2607
2608         if (!dev_id)
2609                 return -EINVAL;
2610
2611         desc = irq_to_desc(irq);
2612         if (!desc || !irq_settings_can_request(desc) ||
2613             !irq_settings_is_per_cpu_devid(desc))
2614                 return -EINVAL;
2615
2616         if (flags && flags != IRQF_TIMER)
2617                 return -EINVAL;
2618
2619         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2620         if (!action)
2621                 return -ENOMEM;
2622
2623         action->handler = handler;
2624         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2625         action->name = devname;
2626         action->percpu_dev_id = dev_id;
2627
2628         retval = irq_chip_pm_get(&desc->irq_data);
2629         if (retval < 0) {
2630                 kfree(action);
2631                 return retval;
2632         }
2633
2634         retval = __setup_irq(irq, desc, action);
2635
2636         if (retval) {
2637                 irq_chip_pm_put(&desc->irq_data);
2638                 kfree(action);
2639         }
2640
2641         return retval;
2642 }
2643 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2644
2645 /**
2646  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2647  *      @irq: Interrupt line to allocate
2648  *      @handler: Function to be called when the IRQ occurs.
2649  *      @name: An ascii name for the claiming device
2650  *      @dev_id: A percpu cookie passed back to the handler function
2651  *
2652  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2653  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2654  *      being enabled on the same CPU by using enable_percpu_nmi().
2655  *
2656  *      Dev_id must be globally unique. It is a per-cpu variable, and
2657  *      the handler gets called with the interrupted CPU's instance of
2658  *      that variable.
2659  *
2660  *      Interrupt lines requested for NMI delivering should have auto enabling
2661  *      setting disabled.
2662  *
2663  *      If the interrupt line cannot be used to deliver NMIs, function
2664  *      will fail returning a negative value.
2665  */
2666 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2667                        const char *name, void __percpu *dev_id)
2668 {
2669         struct irqaction *action;
2670         struct irq_desc *desc;
2671         unsigned long flags;
2672         int retval;
2673
2674         if (!handler)
2675                 return -EINVAL;
2676
2677         desc = irq_to_desc(irq);
2678
2679         if (!desc || !irq_settings_can_request(desc) ||
2680             !irq_settings_is_per_cpu_devid(desc) ||
2681             irq_settings_can_autoenable(desc) ||
2682             !irq_supports_nmi(desc))
2683                 return -EINVAL;
2684
2685         /* The line cannot already be NMI */
2686         if (desc->istate & IRQS_NMI)
2687                 return -EINVAL;
2688
2689         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2690         if (!action)
2691                 return -ENOMEM;
2692
2693         action->handler = handler;
2694         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2695                 | IRQF_NOBALANCING;
2696         action->name = name;
2697         action->percpu_dev_id = dev_id;
2698
2699         retval = irq_chip_pm_get(&desc->irq_data);
2700         if (retval < 0)
2701                 goto err_out;
2702
2703         retval = __setup_irq(irq, desc, action);
2704         if (retval)
2705                 goto err_irq_setup;
2706
2707         raw_spin_lock_irqsave(&desc->lock, flags);
2708         desc->istate |= IRQS_NMI;
2709         raw_spin_unlock_irqrestore(&desc->lock, flags);
2710
2711         return 0;
2712
2713 err_irq_setup:
2714         irq_chip_pm_put(&desc->irq_data);
2715 err_out:
2716         kfree(action);
2717
2718         return retval;
2719 }
2720
2721 /**
2722  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2723  *      @irq: Interrupt line to prepare for NMI delivery
2724  *
2725  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2726  *      before that interrupt line gets enabled with enable_percpu_nmi().
2727  *
2728  *      As a CPU local operation, this should be called from non-preemptible
2729  *      context.
2730  *
2731  *      If the interrupt line cannot be used to deliver NMIs, function
2732  *      will fail returning a negative value.
2733  */
2734 int prepare_percpu_nmi(unsigned int irq)
2735 {
2736         unsigned long flags;
2737         struct irq_desc *desc;
2738         int ret = 0;
2739
2740         WARN_ON(preemptible());
2741
2742         desc = irq_get_desc_lock(irq, &flags,
2743                                  IRQ_GET_DESC_CHECK_PERCPU);
2744         if (!desc)
2745                 return -EINVAL;
2746
2747         if (WARN(!(desc->istate & IRQS_NMI),
2748                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2749                  irq)) {
2750                 ret = -EINVAL;
2751                 goto out;
2752         }
2753
2754         ret = irq_nmi_setup(desc);
2755         if (ret) {
2756                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2757                 goto out;
2758         }
2759
2760 out:
2761         irq_put_desc_unlock(desc, flags);
2762         return ret;
2763 }
2764
2765 /**
2766  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2767  *      @irq: Interrupt line from which CPU local NMI configuration should be
2768  *            removed
2769  *
2770  *      This call undoes the setup done by prepare_percpu_nmi().
2771  *
2772  *      IRQ line should not be enabled for the current CPU.
2773  *
2774  *      As a CPU local operation, this should be called from non-preemptible
2775  *      context.
2776  */
2777 void teardown_percpu_nmi(unsigned int irq)
2778 {
2779         unsigned long flags;
2780         struct irq_desc *desc;
2781
2782         WARN_ON(preemptible());
2783
2784         desc = irq_get_desc_lock(irq, &flags,
2785                                  IRQ_GET_DESC_CHECK_PERCPU);
2786         if (!desc)
2787                 return;
2788
2789         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2790                 goto out;
2791
2792         irq_nmi_teardown(desc);
2793 out:
2794         irq_put_desc_unlock(desc, flags);
2795 }
2796
2797 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2798                             bool *state)
2799 {
2800         struct irq_chip *chip;
2801         int err = -EINVAL;
2802
2803         do {
2804                 chip = irq_data_get_irq_chip(data);
2805                 if (WARN_ON_ONCE(!chip))
2806                         return -ENODEV;
2807                 if (chip->irq_get_irqchip_state)
2808                         break;
2809 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2810                 data = data->parent_data;
2811 #else
2812                 data = NULL;
2813 #endif
2814         } while (data);
2815
2816         if (data)
2817                 err = chip->irq_get_irqchip_state(data, which, state);
2818         return err;
2819 }
2820
2821 /**
2822  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2823  *      @irq: Interrupt line that is forwarded to a VM
2824  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2825  *      @state: a pointer to a boolean where the state is to be stored
2826  *
2827  *      This call snapshots the internal irqchip state of an
2828  *      interrupt, returning into @state the bit corresponding to
2829  *      stage @which
2830  *
2831  *      This function should be called with preemption disabled if the
2832  *      interrupt controller has per-cpu registers.
2833  */
2834 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2835                           bool *state)
2836 {
2837         struct irq_desc *desc;
2838         struct irq_data *data;
2839         unsigned long flags;
2840         int err = -EINVAL;
2841
2842         desc = irq_get_desc_buslock(irq, &flags, 0);
2843         if (!desc)
2844                 return err;
2845
2846         data = irq_desc_get_irq_data(desc);
2847
2848         err = __irq_get_irqchip_state(data, which, state);
2849
2850         irq_put_desc_busunlock(desc, flags);
2851         return err;
2852 }
2853 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2854
2855 /**
2856  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2857  *      @irq: Interrupt line that is forwarded to a VM
2858  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2859  *      @val: Value corresponding to @which
2860  *
2861  *      This call sets the internal irqchip state of an interrupt,
2862  *      depending on the value of @which.
2863  *
2864  *      This function should be called with migration disabled if the
2865  *      interrupt controller has per-cpu registers.
2866  */
2867 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2868                           bool val)
2869 {
2870         struct irq_desc *desc;
2871         struct irq_data *data;
2872         struct irq_chip *chip;
2873         unsigned long flags;
2874         int err = -EINVAL;
2875
2876         desc = irq_get_desc_buslock(irq, &flags, 0);
2877         if (!desc)
2878                 return err;
2879
2880         data = irq_desc_get_irq_data(desc);
2881
2882         do {
2883                 chip = irq_data_get_irq_chip(data);
2884                 if (WARN_ON_ONCE(!chip)) {
2885                         err = -ENODEV;
2886                         goto out_unlock;
2887                 }
2888                 if (chip->irq_set_irqchip_state)
2889                         break;
2890 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2891                 data = data->parent_data;
2892 #else
2893                 data = NULL;
2894 #endif
2895         } while (data);
2896
2897         if (data)
2898                 err = chip->irq_set_irqchip_state(data, which, val);
2899
2900 out_unlock:
2901         irq_put_desc_busunlock(desc, flags);
2902         return err;
2903 }
2904 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2905
2906 /**
2907  * irq_has_action - Check whether an interrupt is requested
2908  * @irq:        The linux irq number
2909  *
2910  * Returns: A snapshot of the current state
2911  */
2912 bool irq_has_action(unsigned int irq)
2913 {
2914         bool res;
2915
2916         rcu_read_lock();
2917         res = irq_desc_has_action(irq_to_desc(irq));
2918         rcu_read_unlock();
2919         return res;
2920 }
2921 EXPORT_SYMBOL_GPL(irq_has_action);
2922
2923 /**
2924  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2925  * @irq:        The linux irq number
2926  * @bitmask:    The bitmask to evaluate
2927  *
2928  * Returns: True if one of the bits in @bitmask is set
2929  */
2930 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2931 {
2932         struct irq_desc *desc;
2933         bool res = false;
2934
2935         rcu_read_lock();
2936         desc = irq_to_desc(irq);
2937         if (desc)
2938                 res = !!(desc->status_use_accessors & bitmask);
2939         rcu_read_unlock();
2940         return res;
2941 }
2942 EXPORT_SYMBOL_GPL(irq_check_status_bit);