genirq: Synchronize interrupt thread startup
[platform/kernel/linux-rpi.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         static_branch_enable(&force_irqthreads_key);
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *      @irq: interrupt number to wait for
114  *
115  *      This function waits for any pending IRQ handlers for this interrupt
116  *      to complete before returning. If you use this function while
117  *      holding a resource the IRQ handler may need you will deadlock.
118  *
119  *      Can only be called from preemptible code as it might sleep when
120  *      an interrupt thread is associated to @irq.
121  *
122  *      It optionally makes sure (when the irq chip supports that method)
123  *      that the interrupt is not pending in any CPU and waiting for
124  *      service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128         struct irq_desc *desc = irq_to_desc(irq);
129
130         if (desc) {
131                 __synchronize_hardirq(desc, true);
132                 /*
133                  * We made sure that no hardirq handler is
134                  * running. Now verify that no threaded handlers are
135                  * active.
136                  */
137                 wait_event(desc->wait_for_threads,
138                            !atomic_read(&desc->threads_active));
139         }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148         if (!desc || !irqd_can_balance(&desc->irq_data) ||
149             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150                 return false;
151         return true;
152 }
153
154 /**
155  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *      @irq:           Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161         return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:        Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173         struct irq_desc *desc = irq_to_desc(irq);
174
175         return __irq_can_set_affinity(desc) &&
176                 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *      @desc:          irq descriptor which has affinity changed
182  *
183  *      We just set IRQTF_AFFINITY and delegate the affinity setting
184  *      to the interrupt thread itself. We can not call
185  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *      code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190         struct irqaction *action;
191
192         for_each_action_of_desc(desc, action)
193                 if (action->thread)
194                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201         struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203         if (!cpumask_empty(m))
204                 return;
205         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206                      chip->name, data->irq);
207 }
208
209 static inline void irq_init_effective_affinity(struct irq_data *data,
210                                                const struct cpumask *mask)
211 {
212         cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
213 }
214 #else
215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
216 static inline void irq_init_effective_affinity(struct irq_data *data,
217                                                const struct cpumask *mask) { }
218 #endif
219
220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221                         bool force)
222 {
223         struct irq_desc *desc = irq_data_to_desc(data);
224         struct irq_chip *chip = irq_data_get_irq_chip(data);
225         int ret;
226
227         if (!chip || !chip->irq_set_affinity)
228                 return -EINVAL;
229
230         /*
231          * If this is a managed interrupt and housekeeping is enabled on
232          * it check whether the requested affinity mask intersects with
233          * a housekeeping CPU. If so, then remove the isolated CPUs from
234          * the mask and just keep the housekeeping CPU(s). This prevents
235          * the affinity setter from routing the interrupt to an isolated
236          * CPU to avoid that I/O submitted from a housekeeping CPU causes
237          * interrupts on an isolated one.
238          *
239          * If the masks do not intersect or include online CPU(s) then
240          * keep the requested mask. The isolated target CPUs are only
241          * receiving interrupts when the I/O operation was submitted
242          * directly from them.
243          *
244          * If all housekeeping CPUs in the affinity mask are offline, the
245          * interrupt will be migrated by the CPU hotplug code once a
246          * housekeeping CPU which belongs to the affinity mask comes
247          * online.
248          */
249         if (irqd_affinity_is_managed(data) &&
250             housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
251                 const struct cpumask *hk_mask, *prog_mask;
252
253                 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
254                 static struct cpumask tmp_mask;
255
256                 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
257
258                 raw_spin_lock(&tmp_mask_lock);
259                 cpumask_and(&tmp_mask, mask, hk_mask);
260                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
261                         prog_mask = mask;
262                 else
263                         prog_mask = &tmp_mask;
264                 ret = chip->irq_set_affinity(data, prog_mask, force);
265                 raw_spin_unlock(&tmp_mask_lock);
266         } else {
267                 ret = chip->irq_set_affinity(data, mask, force);
268         }
269         switch (ret) {
270         case IRQ_SET_MASK_OK:
271         case IRQ_SET_MASK_OK_DONE:
272                 cpumask_copy(desc->irq_common_data.affinity, mask);
273                 fallthrough;
274         case IRQ_SET_MASK_OK_NOCOPY:
275                 irq_validate_effective_affinity(data);
276                 irq_set_thread_affinity(desc);
277                 ret = 0;
278         }
279
280         return ret;
281 }
282
283 #ifdef CONFIG_GENERIC_PENDING_IRQ
284 static inline int irq_set_affinity_pending(struct irq_data *data,
285                                            const struct cpumask *dest)
286 {
287         struct irq_desc *desc = irq_data_to_desc(data);
288
289         irqd_set_move_pending(data);
290         irq_copy_pending(desc, dest);
291         return 0;
292 }
293 #else
294 static inline int irq_set_affinity_pending(struct irq_data *data,
295                                            const struct cpumask *dest)
296 {
297         return -EBUSY;
298 }
299 #endif
300
301 static int irq_try_set_affinity(struct irq_data *data,
302                                 const struct cpumask *dest, bool force)
303 {
304         int ret = irq_do_set_affinity(data, dest, force);
305
306         /*
307          * In case that the underlying vector management is busy and the
308          * architecture supports the generic pending mechanism then utilize
309          * this to avoid returning an error to user space.
310          */
311         if (ret == -EBUSY && !force)
312                 ret = irq_set_affinity_pending(data, dest);
313         return ret;
314 }
315
316 static bool irq_set_affinity_deactivated(struct irq_data *data,
317                                          const struct cpumask *mask, bool force)
318 {
319         struct irq_desc *desc = irq_data_to_desc(data);
320
321         /*
322          * Handle irq chips which can handle affinity only in activated
323          * state correctly
324          *
325          * If the interrupt is not yet activated, just store the affinity
326          * mask and do not call the chip driver at all. On activation the
327          * driver has to make sure anyway that the interrupt is in a
328          * usable state so startup works.
329          */
330         if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
331             irqd_is_activated(data) || !irqd_affinity_on_activate(data))
332                 return false;
333
334         cpumask_copy(desc->irq_common_data.affinity, mask);
335         irq_init_effective_affinity(data, mask);
336         irqd_set(data, IRQD_AFFINITY_SET);
337         return true;
338 }
339
340 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
341                             bool force)
342 {
343         struct irq_chip *chip = irq_data_get_irq_chip(data);
344         struct irq_desc *desc = irq_data_to_desc(data);
345         int ret = 0;
346
347         if (!chip || !chip->irq_set_affinity)
348                 return -EINVAL;
349
350         if (irq_set_affinity_deactivated(data, mask, force))
351                 return 0;
352
353         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
354                 ret = irq_try_set_affinity(data, mask, force);
355         } else {
356                 irqd_set_move_pending(data);
357                 irq_copy_pending(desc, mask);
358         }
359
360         if (desc->affinity_notify) {
361                 kref_get(&desc->affinity_notify->kref);
362                 if (!schedule_work(&desc->affinity_notify->work)) {
363                         /* Work was already scheduled, drop our extra ref */
364                         kref_put(&desc->affinity_notify->kref,
365                                  desc->affinity_notify->release);
366                 }
367         }
368         irqd_set(data, IRQD_AFFINITY_SET);
369
370         return ret;
371 }
372
373 /**
374  * irq_update_affinity_desc - Update affinity management for an interrupt
375  * @irq:        The interrupt number to update
376  * @affinity:   Pointer to the affinity descriptor
377  *
378  * This interface can be used to configure the affinity management of
379  * interrupts which have been allocated already.
380  *
381  * There are certain limitations on when it may be used - attempts to use it
382  * for when the kernel is configured for generic IRQ reservation mode (in
383  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
384  * managed/non-managed interrupt accounting. In addition, attempts to use it on
385  * an interrupt which is already started or which has already been configured
386  * as managed will also fail, as these mean invalid init state or double init.
387  */
388 int irq_update_affinity_desc(unsigned int irq,
389                              struct irq_affinity_desc *affinity)
390 {
391         struct irq_desc *desc;
392         unsigned long flags;
393         bool activated;
394         int ret = 0;
395
396         /*
397          * Supporting this with the reservation scheme used by x86 needs
398          * some more thought. Fail it for now.
399          */
400         if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
401                 return -EOPNOTSUPP;
402
403         desc = irq_get_desc_buslock(irq, &flags, 0);
404         if (!desc)
405                 return -EINVAL;
406
407         /* Requires the interrupt to be shut down */
408         if (irqd_is_started(&desc->irq_data)) {
409                 ret = -EBUSY;
410                 goto out_unlock;
411         }
412
413         /* Interrupts which are already managed cannot be modified */
414         if (irqd_affinity_is_managed(&desc->irq_data)) {
415                 ret = -EBUSY;
416                 goto out_unlock;
417         }
418
419         /*
420          * Deactivate the interrupt. That's required to undo
421          * anything an earlier activation has established.
422          */
423         activated = irqd_is_activated(&desc->irq_data);
424         if (activated)
425                 irq_domain_deactivate_irq(&desc->irq_data);
426
427         if (affinity->is_managed) {
428                 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
429                 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
430         }
431
432         cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
433
434         /* Restore the activation state */
435         if (activated)
436                 irq_domain_activate_irq(&desc->irq_data, false);
437
438 out_unlock:
439         irq_put_desc_busunlock(desc, flags);
440         return ret;
441 }
442
443 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
444                               bool force)
445 {
446         struct irq_desc *desc = irq_to_desc(irq);
447         unsigned long flags;
448         int ret;
449
450         if (!desc)
451                 return -EINVAL;
452
453         raw_spin_lock_irqsave(&desc->lock, flags);
454         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
455         raw_spin_unlock_irqrestore(&desc->lock, flags);
456         return ret;
457 }
458
459 /**
460  * irq_set_affinity - Set the irq affinity of a given irq
461  * @irq:        Interrupt to set affinity
462  * @cpumask:    cpumask
463  *
464  * Fails if cpumask does not contain an online CPU
465  */
466 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
467 {
468         return __irq_set_affinity(irq, cpumask, false);
469 }
470 EXPORT_SYMBOL_GPL(irq_set_affinity);
471
472 /**
473  * irq_force_affinity - Force the irq affinity of a given irq
474  * @irq:        Interrupt to set affinity
475  * @cpumask:    cpumask
476  *
477  * Same as irq_set_affinity, but without checking the mask against
478  * online cpus.
479  *
480  * Solely for low level cpu hotplug code, where we need to make per
481  * cpu interrupts affine before the cpu becomes online.
482  */
483 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
484 {
485         return __irq_set_affinity(irq, cpumask, true);
486 }
487 EXPORT_SYMBOL_GPL(irq_force_affinity);
488
489 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
490 {
491         unsigned long flags;
492         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
493
494         if (!desc)
495                 return -EINVAL;
496         desc->affinity_hint = m;
497         irq_put_desc_unlock(desc, flags);
498         /* set the initial affinity to prevent every interrupt being on CPU0 */
499         if (m)
500                 __irq_set_affinity(irq, m, false);
501         return 0;
502 }
503 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
504
505 static void irq_affinity_notify(struct work_struct *work)
506 {
507         struct irq_affinity_notify *notify =
508                 container_of(work, struct irq_affinity_notify, work);
509         struct irq_desc *desc = irq_to_desc(notify->irq);
510         cpumask_var_t cpumask;
511         unsigned long flags;
512
513         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
514                 goto out;
515
516         raw_spin_lock_irqsave(&desc->lock, flags);
517         if (irq_move_pending(&desc->irq_data))
518                 irq_get_pending(cpumask, desc);
519         else
520                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
521         raw_spin_unlock_irqrestore(&desc->lock, flags);
522
523         notify->notify(notify, cpumask);
524
525         free_cpumask_var(cpumask);
526 out:
527         kref_put(&notify->kref, notify->release);
528 }
529
530 /**
531  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
532  *      @irq:           Interrupt for which to enable/disable notification
533  *      @notify:        Context for notification, or %NULL to disable
534  *                      notification.  Function pointers must be initialised;
535  *                      the other fields will be initialised by this function.
536  *
537  *      Must be called in process context.  Notification may only be enabled
538  *      after the IRQ is allocated and must be disabled before the IRQ is
539  *      freed using free_irq().
540  */
541 int
542 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
543 {
544         struct irq_desc *desc = irq_to_desc(irq);
545         struct irq_affinity_notify *old_notify;
546         unsigned long flags;
547
548         /* The release function is promised process context */
549         might_sleep();
550
551         if (!desc || desc->istate & IRQS_NMI)
552                 return -EINVAL;
553
554         /* Complete initialisation of *notify */
555         if (notify) {
556                 notify->irq = irq;
557                 kref_init(&notify->kref);
558                 INIT_WORK(&notify->work, irq_affinity_notify);
559         }
560
561         raw_spin_lock_irqsave(&desc->lock, flags);
562         old_notify = desc->affinity_notify;
563         desc->affinity_notify = notify;
564         raw_spin_unlock_irqrestore(&desc->lock, flags);
565
566         if (old_notify) {
567                 if (cancel_work_sync(&old_notify->work)) {
568                         /* Pending work had a ref, put that one too */
569                         kref_put(&old_notify->kref, old_notify->release);
570                 }
571                 kref_put(&old_notify->kref, old_notify->release);
572         }
573
574         return 0;
575 }
576 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
577
578 #ifndef CONFIG_AUTO_IRQ_AFFINITY
579 /*
580  * Generic version of the affinity autoselector.
581  */
582 int irq_setup_affinity(struct irq_desc *desc)
583 {
584         struct cpumask *set = irq_default_affinity;
585         int ret, node = irq_desc_get_node(desc);
586         static DEFINE_RAW_SPINLOCK(mask_lock);
587         static struct cpumask mask;
588
589         /* Excludes PER_CPU and NO_BALANCE interrupts */
590         if (!__irq_can_set_affinity(desc))
591                 return 0;
592
593         raw_spin_lock(&mask_lock);
594         /*
595          * Preserve the managed affinity setting and a userspace affinity
596          * setup, but make sure that one of the targets is online.
597          */
598         if (irqd_affinity_is_managed(&desc->irq_data) ||
599             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
600                 if (cpumask_intersects(desc->irq_common_data.affinity,
601                                        cpu_online_mask))
602                         set = desc->irq_common_data.affinity;
603                 else
604                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
605         }
606
607         cpumask_and(&mask, cpu_online_mask, set);
608         if (cpumask_empty(&mask))
609                 cpumask_copy(&mask, cpu_online_mask);
610
611         if (node != NUMA_NO_NODE) {
612                 const struct cpumask *nodemask = cpumask_of_node(node);
613
614                 /* make sure at least one of the cpus in nodemask is online */
615                 if (cpumask_intersects(&mask, nodemask))
616                         cpumask_and(&mask, &mask, nodemask);
617         }
618         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
619         raw_spin_unlock(&mask_lock);
620         return ret;
621 }
622 #else
623 /* Wrapper for ALPHA specific affinity selector magic */
624 int irq_setup_affinity(struct irq_desc *desc)
625 {
626         return irq_select_affinity(irq_desc_get_irq(desc));
627 }
628 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
629 #endif /* CONFIG_SMP */
630
631
632 /**
633  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
634  *      @irq: interrupt number to set affinity
635  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
636  *                  specific data for percpu_devid interrupts
637  *
638  *      This function uses the vCPU specific data to set the vCPU
639  *      affinity for an irq. The vCPU specific data is passed from
640  *      outside, such as KVM. One example code path is as below:
641  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
642  */
643 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
644 {
645         unsigned long flags;
646         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
647         struct irq_data *data;
648         struct irq_chip *chip;
649         int ret = -ENOSYS;
650
651         if (!desc)
652                 return -EINVAL;
653
654         data = irq_desc_get_irq_data(desc);
655         do {
656                 chip = irq_data_get_irq_chip(data);
657                 if (chip && chip->irq_set_vcpu_affinity)
658                         break;
659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
660                 data = data->parent_data;
661 #else
662                 data = NULL;
663 #endif
664         } while (data);
665
666         if (data)
667                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
668         irq_put_desc_unlock(desc, flags);
669
670         return ret;
671 }
672 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
673
674 void __disable_irq(struct irq_desc *desc)
675 {
676         if (!desc->depth++)
677                 irq_disable(desc);
678 }
679
680 static int __disable_irq_nosync(unsigned int irq)
681 {
682         unsigned long flags;
683         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
684
685         if (!desc)
686                 return -EINVAL;
687         __disable_irq(desc);
688         irq_put_desc_busunlock(desc, flags);
689         return 0;
690 }
691
692 /**
693  *      disable_irq_nosync - disable an irq without waiting
694  *      @irq: Interrupt to disable
695  *
696  *      Disable the selected interrupt line.  Disables and Enables are
697  *      nested.
698  *      Unlike disable_irq(), this function does not ensure existing
699  *      instances of the IRQ handler have completed before returning.
700  *
701  *      This function may be called from IRQ context.
702  */
703 void disable_irq_nosync(unsigned int irq)
704 {
705         __disable_irq_nosync(irq);
706 }
707 EXPORT_SYMBOL(disable_irq_nosync);
708
709 /**
710  *      disable_irq - disable an irq and wait for completion
711  *      @irq: Interrupt to disable
712  *
713  *      Disable the selected interrupt line.  Enables and Disables are
714  *      nested.
715  *      This function waits for any pending IRQ handlers for this interrupt
716  *      to complete before returning. If you use this function while
717  *      holding a resource the IRQ handler may need you will deadlock.
718  *
719  *      This function may be called - with care - from IRQ context.
720  */
721 void disable_irq(unsigned int irq)
722 {
723         if (!__disable_irq_nosync(irq))
724                 synchronize_irq(irq);
725 }
726 EXPORT_SYMBOL(disable_irq);
727
728 /**
729  *      disable_hardirq - disables an irq and waits for hardirq completion
730  *      @irq: Interrupt to disable
731  *
732  *      Disable the selected interrupt line.  Enables and Disables are
733  *      nested.
734  *      This function waits for any pending hard IRQ handlers for this
735  *      interrupt to complete before returning. If you use this function while
736  *      holding a resource the hard IRQ handler may need you will deadlock.
737  *
738  *      When used to optimistically disable an interrupt from atomic context
739  *      the return value must be checked.
740  *
741  *      Returns: false if a threaded handler is active.
742  *
743  *      This function may be called - with care - from IRQ context.
744  */
745 bool disable_hardirq(unsigned int irq)
746 {
747         if (!__disable_irq_nosync(irq))
748                 return synchronize_hardirq(irq);
749
750         return false;
751 }
752 EXPORT_SYMBOL_GPL(disable_hardirq);
753
754 /**
755  *      disable_nmi_nosync - disable an nmi without waiting
756  *      @irq: Interrupt to disable
757  *
758  *      Disable the selected interrupt line. Disables and enables are
759  *      nested.
760  *      The interrupt to disable must have been requested through request_nmi.
761  *      Unlike disable_nmi(), this function does not ensure existing
762  *      instances of the IRQ handler have completed before returning.
763  */
764 void disable_nmi_nosync(unsigned int irq)
765 {
766         disable_irq_nosync(irq);
767 }
768
769 void __enable_irq(struct irq_desc *desc)
770 {
771         switch (desc->depth) {
772         case 0:
773  err_out:
774                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
775                      irq_desc_get_irq(desc));
776                 break;
777         case 1: {
778                 if (desc->istate & IRQS_SUSPENDED)
779                         goto err_out;
780                 /* Prevent probing on this irq: */
781                 irq_settings_set_noprobe(desc);
782                 /*
783                  * Call irq_startup() not irq_enable() here because the
784                  * interrupt might be marked NOAUTOEN. So irq_startup()
785                  * needs to be invoked when it gets enabled the first
786                  * time. If it was already started up, then irq_startup()
787                  * will invoke irq_enable() under the hood.
788                  */
789                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
790                 break;
791         }
792         default:
793                 desc->depth--;
794         }
795 }
796
797 /**
798  *      enable_irq - enable handling of an irq
799  *      @irq: Interrupt to enable
800  *
801  *      Undoes the effect of one call to disable_irq().  If this
802  *      matches the last disable, processing of interrupts on this
803  *      IRQ line is re-enabled.
804  *
805  *      This function may be called from IRQ context only when
806  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
807  */
808 void enable_irq(unsigned int irq)
809 {
810         unsigned long flags;
811         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
812
813         if (!desc)
814                 return;
815         if (WARN(!desc->irq_data.chip,
816                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
817                 goto out;
818
819         __enable_irq(desc);
820 out:
821         irq_put_desc_busunlock(desc, flags);
822 }
823 EXPORT_SYMBOL(enable_irq);
824
825 /**
826  *      enable_nmi - enable handling of an nmi
827  *      @irq: Interrupt to enable
828  *
829  *      The interrupt to enable must have been requested through request_nmi.
830  *      Undoes the effect of one call to disable_nmi(). If this
831  *      matches the last disable, processing of interrupts on this
832  *      IRQ line is re-enabled.
833  */
834 void enable_nmi(unsigned int irq)
835 {
836         enable_irq(irq);
837 }
838
839 static int set_irq_wake_real(unsigned int irq, unsigned int on)
840 {
841         struct irq_desc *desc = irq_to_desc(irq);
842         int ret = -ENXIO;
843
844         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
845                 return 0;
846
847         if (desc->irq_data.chip->irq_set_wake)
848                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
849
850         return ret;
851 }
852
853 /**
854  *      irq_set_irq_wake - control irq power management wakeup
855  *      @irq:   interrupt to control
856  *      @on:    enable/disable power management wakeup
857  *
858  *      Enable/disable power management wakeup mode, which is
859  *      disabled by default.  Enables and disables must match,
860  *      just as they match for non-wakeup mode support.
861  *
862  *      Wakeup mode lets this IRQ wake the system from sleep
863  *      states like "suspend to RAM".
864  *
865  *      Note: irq enable/disable state is completely orthogonal
866  *      to the enable/disable state of irq wake. An irq can be
867  *      disabled with disable_irq() and still wake the system as
868  *      long as the irq has wake enabled. If this does not hold,
869  *      then the underlying irq chip and the related driver need
870  *      to be investigated.
871  */
872 int irq_set_irq_wake(unsigned int irq, unsigned int on)
873 {
874         unsigned long flags;
875         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
876         int ret = 0;
877
878         if (!desc)
879                 return -EINVAL;
880
881         /* Don't use NMIs as wake up interrupts please */
882         if (desc->istate & IRQS_NMI) {
883                 ret = -EINVAL;
884                 goto out_unlock;
885         }
886
887         /* wakeup-capable irqs can be shared between drivers that
888          * don't need to have the same sleep mode behaviors.
889          */
890         if (on) {
891                 if (desc->wake_depth++ == 0) {
892                         ret = set_irq_wake_real(irq, on);
893                         if (ret)
894                                 desc->wake_depth = 0;
895                         else
896                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
897                 }
898         } else {
899                 if (desc->wake_depth == 0) {
900                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
901                 } else if (--desc->wake_depth == 0) {
902                         ret = set_irq_wake_real(irq, on);
903                         if (ret)
904                                 desc->wake_depth = 1;
905                         else
906                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
907                 }
908         }
909
910 out_unlock:
911         irq_put_desc_busunlock(desc, flags);
912         return ret;
913 }
914 EXPORT_SYMBOL(irq_set_irq_wake);
915
916 /*
917  * Internal function that tells the architecture code whether a
918  * particular irq has been exclusively allocated or is available
919  * for driver use.
920  */
921 int can_request_irq(unsigned int irq, unsigned long irqflags)
922 {
923         unsigned long flags;
924         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
925         int canrequest = 0;
926
927         if (!desc)
928                 return 0;
929
930         if (irq_settings_can_request(desc)) {
931                 if (!desc->action ||
932                     irqflags & desc->action->flags & IRQF_SHARED)
933                         canrequest = 1;
934         }
935         irq_put_desc_unlock(desc, flags);
936         return canrequest;
937 }
938
939 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
940 {
941         struct irq_chip *chip = desc->irq_data.chip;
942         int ret, unmask = 0;
943
944         if (!chip || !chip->irq_set_type) {
945                 /*
946                  * IRQF_TRIGGER_* but the PIC does not support multiple
947                  * flow-types?
948                  */
949                 pr_debug("No set_type function for IRQ %d (%s)\n",
950                          irq_desc_get_irq(desc),
951                          chip ? (chip->name ? : "unknown") : "unknown");
952                 return 0;
953         }
954
955         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
956                 if (!irqd_irq_masked(&desc->irq_data))
957                         mask_irq(desc);
958                 if (!irqd_irq_disabled(&desc->irq_data))
959                         unmask = 1;
960         }
961
962         /* Mask all flags except trigger mode */
963         flags &= IRQ_TYPE_SENSE_MASK;
964         ret = chip->irq_set_type(&desc->irq_data, flags);
965
966         switch (ret) {
967         case IRQ_SET_MASK_OK:
968         case IRQ_SET_MASK_OK_DONE:
969                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
970                 irqd_set(&desc->irq_data, flags);
971                 fallthrough;
972
973         case IRQ_SET_MASK_OK_NOCOPY:
974                 flags = irqd_get_trigger_type(&desc->irq_data);
975                 irq_settings_set_trigger_mask(desc, flags);
976                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
977                 irq_settings_clr_level(desc);
978                 if (flags & IRQ_TYPE_LEVEL_MASK) {
979                         irq_settings_set_level(desc);
980                         irqd_set(&desc->irq_data, IRQD_LEVEL);
981                 }
982
983                 ret = 0;
984                 break;
985         default:
986                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
987                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
988         }
989         if (unmask)
990                 unmask_irq(desc);
991         return ret;
992 }
993
994 #ifdef CONFIG_HARDIRQS_SW_RESEND
995 int irq_set_parent(int irq, int parent_irq)
996 {
997         unsigned long flags;
998         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
999
1000         if (!desc)
1001                 return -EINVAL;
1002
1003         desc->parent_irq = parent_irq;
1004
1005         irq_put_desc_unlock(desc, flags);
1006         return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(irq_set_parent);
1009 #endif
1010
1011 /*
1012  * Default primary interrupt handler for threaded interrupts. Is
1013  * assigned as primary handler when request_threaded_irq is called
1014  * with handler == NULL. Useful for oneshot interrupts.
1015  */
1016 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1017 {
1018         return IRQ_WAKE_THREAD;
1019 }
1020
1021 /*
1022  * Primary handler for nested threaded interrupts. Should never be
1023  * called.
1024  */
1025 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1026 {
1027         WARN(1, "Primary handler called for nested irq %d\n", irq);
1028         return IRQ_NONE;
1029 }
1030
1031 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1032 {
1033         WARN(1, "Secondary action handler called for irq %d\n", irq);
1034         return IRQ_NONE;
1035 }
1036
1037 static int irq_wait_for_interrupt(struct irqaction *action)
1038 {
1039         for (;;) {
1040                 set_current_state(TASK_INTERRUPTIBLE);
1041
1042                 if (kthread_should_stop()) {
1043                         /* may need to run one last time */
1044                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
1045                                                &action->thread_flags)) {
1046                                 __set_current_state(TASK_RUNNING);
1047                                 return 0;
1048                         }
1049                         __set_current_state(TASK_RUNNING);
1050                         return -1;
1051                 }
1052
1053                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1054                                        &action->thread_flags)) {
1055                         __set_current_state(TASK_RUNNING);
1056                         return 0;
1057                 }
1058                 schedule();
1059         }
1060 }
1061
1062 /*
1063  * Oneshot interrupts keep the irq line masked until the threaded
1064  * handler finished. unmask if the interrupt has not been disabled and
1065  * is marked MASKED.
1066  */
1067 static void irq_finalize_oneshot(struct irq_desc *desc,
1068                                  struct irqaction *action)
1069 {
1070         if (!(desc->istate & IRQS_ONESHOT) ||
1071             action->handler == irq_forced_secondary_handler)
1072                 return;
1073 again:
1074         chip_bus_lock(desc);
1075         raw_spin_lock_irq(&desc->lock);
1076
1077         /*
1078          * Implausible though it may be we need to protect us against
1079          * the following scenario:
1080          *
1081          * The thread is faster done than the hard interrupt handler
1082          * on the other CPU. If we unmask the irq line then the
1083          * interrupt can come in again and masks the line, leaves due
1084          * to IRQS_INPROGRESS and the irq line is masked forever.
1085          *
1086          * This also serializes the state of shared oneshot handlers
1087          * versus "desc->threads_oneshot |= action->thread_mask;" in
1088          * irq_wake_thread(). See the comment there which explains the
1089          * serialization.
1090          */
1091         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1092                 raw_spin_unlock_irq(&desc->lock);
1093                 chip_bus_sync_unlock(desc);
1094                 cpu_relax();
1095                 goto again;
1096         }
1097
1098         /*
1099          * Now check again, whether the thread should run. Otherwise
1100          * we would clear the threads_oneshot bit of this thread which
1101          * was just set.
1102          */
1103         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1104                 goto out_unlock;
1105
1106         desc->threads_oneshot &= ~action->thread_mask;
1107
1108         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1109             irqd_irq_masked(&desc->irq_data))
1110                 unmask_threaded_irq(desc);
1111
1112 out_unlock:
1113         raw_spin_unlock_irq(&desc->lock);
1114         chip_bus_sync_unlock(desc);
1115 }
1116
1117 #ifdef CONFIG_SMP
1118 /*
1119  * Check whether we need to change the affinity of the interrupt thread.
1120  */
1121 static void
1122 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1123 {
1124         cpumask_var_t mask;
1125         bool valid = true;
1126
1127         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1128                 return;
1129
1130         /*
1131          * In case we are out of memory we set IRQTF_AFFINITY again and
1132          * try again next time
1133          */
1134         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1135                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1136                 return;
1137         }
1138
1139         raw_spin_lock_irq(&desc->lock);
1140         /*
1141          * This code is triggered unconditionally. Check the affinity
1142          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1143          */
1144         if (cpumask_available(desc->irq_common_data.affinity)) {
1145                 const struct cpumask *m;
1146
1147                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1148                 cpumask_copy(mask, m);
1149         } else {
1150                 valid = false;
1151         }
1152         raw_spin_unlock_irq(&desc->lock);
1153
1154         if (valid)
1155                 set_cpus_allowed_ptr(current, mask);
1156         free_cpumask_var(mask);
1157 }
1158 #else
1159 static inline void
1160 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1161 #endif
1162
1163 /*
1164  * Interrupts which are not explicitly requested as threaded
1165  * interrupts rely on the implicit bh/preempt disable of the hard irq
1166  * context. So we need to disable bh here to avoid deadlocks and other
1167  * side effects.
1168  */
1169 static irqreturn_t
1170 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1171 {
1172         irqreturn_t ret;
1173
1174         local_bh_disable();
1175         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1176                 local_irq_disable();
1177         ret = action->thread_fn(action->irq, action->dev_id);
1178         if (ret == IRQ_HANDLED)
1179                 atomic_inc(&desc->threads_handled);
1180
1181         irq_finalize_oneshot(desc, action);
1182         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1183                 local_irq_enable();
1184         local_bh_enable();
1185         return ret;
1186 }
1187
1188 /*
1189  * Interrupts explicitly requested as threaded interrupts want to be
1190  * preemptible - many of them need to sleep and wait for slow busses to
1191  * complete.
1192  */
1193 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1194                 struct irqaction *action)
1195 {
1196         irqreturn_t ret;
1197
1198         ret = action->thread_fn(action->irq, action->dev_id);
1199         if (ret == IRQ_HANDLED)
1200                 atomic_inc(&desc->threads_handled);
1201
1202         irq_finalize_oneshot(desc, action);
1203         return ret;
1204 }
1205
1206 static void wake_threads_waitq(struct irq_desc *desc)
1207 {
1208         if (atomic_dec_and_test(&desc->threads_active))
1209                 wake_up(&desc->wait_for_threads);
1210 }
1211
1212 static void irq_thread_dtor(struct callback_head *unused)
1213 {
1214         struct task_struct *tsk = current;
1215         struct irq_desc *desc;
1216         struct irqaction *action;
1217
1218         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1219                 return;
1220
1221         action = kthread_data(tsk);
1222
1223         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1224                tsk->comm, tsk->pid, action->irq);
1225
1226
1227         desc = irq_to_desc(action->irq);
1228         /*
1229          * If IRQTF_RUNTHREAD is set, we need to decrement
1230          * desc->threads_active and wake possible waiters.
1231          */
1232         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1233                 wake_threads_waitq(desc);
1234
1235         /* Prevent a stale desc->threads_oneshot */
1236         irq_finalize_oneshot(desc, action);
1237 }
1238
1239 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1240 {
1241         struct irqaction *secondary = action->secondary;
1242
1243         if (WARN_ON_ONCE(!secondary))
1244                 return;
1245
1246         raw_spin_lock_irq(&desc->lock);
1247         __irq_wake_thread(desc, secondary);
1248         raw_spin_unlock_irq(&desc->lock);
1249 }
1250
1251 /*
1252  * Internal function to notify that a interrupt thread is ready.
1253  */
1254 static void irq_thread_set_ready(struct irq_desc *desc,
1255                                  struct irqaction *action)
1256 {
1257         set_bit(IRQTF_READY, &action->thread_flags);
1258         wake_up(&desc->wait_for_threads);
1259 }
1260
1261 /*
1262  * Internal function to wake up a interrupt thread and wait until it is
1263  * ready.
1264  */
1265 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1266                                                   struct irqaction *action)
1267 {
1268         if (!action || !action->thread)
1269                 return;
1270
1271         wake_up_process(action->thread);
1272         wait_event(desc->wait_for_threads,
1273                    test_bit(IRQTF_READY, &action->thread_flags));
1274 }
1275
1276 /*
1277  * Interrupt handler thread
1278  */
1279 static int irq_thread(void *data)
1280 {
1281         struct callback_head on_exit_work;
1282         struct irqaction *action = data;
1283         struct irq_desc *desc = irq_to_desc(action->irq);
1284         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1285                         struct irqaction *action);
1286
1287         irq_thread_set_ready(desc, action);
1288
1289         if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1290                                            &action->thread_flags))
1291                 handler_fn = irq_forced_thread_fn;
1292         else
1293                 handler_fn = irq_thread_fn;
1294
1295         init_task_work(&on_exit_work, irq_thread_dtor);
1296         task_work_add(current, &on_exit_work, TWA_NONE);
1297
1298         irq_thread_check_affinity(desc, action);
1299
1300         while (!irq_wait_for_interrupt(action)) {
1301                 irqreturn_t action_ret;
1302
1303                 irq_thread_check_affinity(desc, action);
1304
1305                 action_ret = handler_fn(desc, action);
1306                 if (action_ret == IRQ_WAKE_THREAD)
1307                         irq_wake_secondary(desc, action);
1308
1309                 wake_threads_waitq(desc);
1310         }
1311
1312         /*
1313          * This is the regular exit path. __free_irq() is stopping the
1314          * thread via kthread_stop() after calling
1315          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1316          * oneshot mask bit can be set.
1317          */
1318         task_work_cancel(current, irq_thread_dtor);
1319         return 0;
1320 }
1321
1322 /**
1323  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1324  *      @irq:           Interrupt line
1325  *      @dev_id:        Device identity for which the thread should be woken
1326  *
1327  */
1328 void irq_wake_thread(unsigned int irq, void *dev_id)
1329 {
1330         struct irq_desc *desc = irq_to_desc(irq);
1331         struct irqaction *action;
1332         unsigned long flags;
1333
1334         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1335                 return;
1336
1337         raw_spin_lock_irqsave(&desc->lock, flags);
1338         for_each_action_of_desc(desc, action) {
1339                 if (action->dev_id == dev_id) {
1340                         if (action->thread)
1341                                 __irq_wake_thread(desc, action);
1342                         break;
1343                 }
1344         }
1345         raw_spin_unlock_irqrestore(&desc->lock, flags);
1346 }
1347 EXPORT_SYMBOL_GPL(irq_wake_thread);
1348
1349 static int irq_setup_forced_threading(struct irqaction *new)
1350 {
1351         if (!force_irqthreads())
1352                 return 0;
1353         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1354                 return 0;
1355
1356         /*
1357          * No further action required for interrupts which are requested as
1358          * threaded interrupts already
1359          */
1360         if (new->handler == irq_default_primary_handler)
1361                 return 0;
1362
1363         new->flags |= IRQF_ONESHOT;
1364
1365         /*
1366          * Handle the case where we have a real primary handler and a
1367          * thread handler. We force thread them as well by creating a
1368          * secondary action.
1369          */
1370         if (new->handler && new->thread_fn) {
1371                 /* Allocate the secondary action */
1372                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1373                 if (!new->secondary)
1374                         return -ENOMEM;
1375                 new->secondary->handler = irq_forced_secondary_handler;
1376                 new->secondary->thread_fn = new->thread_fn;
1377                 new->secondary->dev_id = new->dev_id;
1378                 new->secondary->irq = new->irq;
1379                 new->secondary->name = new->name;
1380         }
1381         /* Deal with the primary handler */
1382         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1383         new->thread_fn = new->handler;
1384         new->handler = irq_default_primary_handler;
1385         return 0;
1386 }
1387
1388 static int irq_request_resources(struct irq_desc *desc)
1389 {
1390         struct irq_data *d = &desc->irq_data;
1391         struct irq_chip *c = d->chip;
1392
1393         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1394 }
1395
1396 static void irq_release_resources(struct irq_desc *desc)
1397 {
1398         struct irq_data *d = &desc->irq_data;
1399         struct irq_chip *c = d->chip;
1400
1401         if (c->irq_release_resources)
1402                 c->irq_release_resources(d);
1403 }
1404
1405 static bool irq_supports_nmi(struct irq_desc *desc)
1406 {
1407         struct irq_data *d = irq_desc_get_irq_data(desc);
1408
1409 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1410         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1411         if (d->parent_data)
1412                 return false;
1413 #endif
1414         /* Don't support NMIs for chips behind a slow bus */
1415         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1416                 return false;
1417
1418         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1419 }
1420
1421 static int irq_nmi_setup(struct irq_desc *desc)
1422 {
1423         struct irq_data *d = irq_desc_get_irq_data(desc);
1424         struct irq_chip *c = d->chip;
1425
1426         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1427 }
1428
1429 static void irq_nmi_teardown(struct irq_desc *desc)
1430 {
1431         struct irq_data *d = irq_desc_get_irq_data(desc);
1432         struct irq_chip *c = d->chip;
1433
1434         if (c->irq_nmi_teardown)
1435                 c->irq_nmi_teardown(d);
1436 }
1437
1438 static int
1439 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1440 {
1441         struct task_struct *t;
1442
1443         if (!secondary) {
1444                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1445                                    new->name);
1446         } else {
1447                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1448                                    new->name);
1449         }
1450
1451         if (IS_ERR(t))
1452                 return PTR_ERR(t);
1453
1454         sched_set_fifo(t);
1455
1456         /*
1457          * We keep the reference to the task struct even if
1458          * the thread dies to avoid that the interrupt code
1459          * references an already freed task_struct.
1460          */
1461         new->thread = get_task_struct(t);
1462         /*
1463          * Tell the thread to set its affinity. This is
1464          * important for shared interrupt handlers as we do
1465          * not invoke setup_affinity() for the secondary
1466          * handlers as everything is already set up. Even for
1467          * interrupts marked with IRQF_NO_BALANCE this is
1468          * correct as we want the thread to move to the cpu(s)
1469          * on which the requesting code placed the interrupt.
1470          */
1471         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1472         return 0;
1473 }
1474
1475 /*
1476  * Internal function to register an irqaction - typically used to
1477  * allocate special interrupts that are part of the architecture.
1478  *
1479  * Locking rules:
1480  *
1481  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1482  *   chip_bus_lock      Provides serialization for slow bus operations
1483  *     desc->lock       Provides serialization against hard interrupts
1484  *
1485  * chip_bus_lock and desc->lock are sufficient for all other management and
1486  * interrupt related functions. desc->request_mutex solely serializes
1487  * request/free_irq().
1488  */
1489 static int
1490 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1491 {
1492         struct irqaction *old, **old_ptr;
1493         unsigned long flags, thread_mask = 0;
1494         int ret, nested, shared = 0;
1495
1496         if (!desc)
1497                 return -EINVAL;
1498
1499         if (desc->irq_data.chip == &no_irq_chip)
1500                 return -ENOSYS;
1501         if (!try_module_get(desc->owner))
1502                 return -ENODEV;
1503
1504         new->irq = irq;
1505
1506         /*
1507          * If the trigger type is not specified by the caller,
1508          * then use the default for this interrupt.
1509          */
1510         if (!(new->flags & IRQF_TRIGGER_MASK))
1511                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1512
1513         /*
1514          * Check whether the interrupt nests into another interrupt
1515          * thread.
1516          */
1517         nested = irq_settings_is_nested_thread(desc);
1518         if (nested) {
1519                 if (!new->thread_fn) {
1520                         ret = -EINVAL;
1521                         goto out_mput;
1522                 }
1523                 /*
1524                  * Replace the primary handler which was provided from
1525                  * the driver for non nested interrupt handling by the
1526                  * dummy function which warns when called.
1527                  */
1528                 new->handler = irq_nested_primary_handler;
1529         } else {
1530                 if (irq_settings_can_thread(desc)) {
1531                         ret = irq_setup_forced_threading(new);
1532                         if (ret)
1533                                 goto out_mput;
1534                 }
1535         }
1536
1537         /*
1538          * Create a handler thread when a thread function is supplied
1539          * and the interrupt does not nest into another interrupt
1540          * thread.
1541          */
1542         if (new->thread_fn && !nested) {
1543                 ret = setup_irq_thread(new, irq, false);
1544                 if (ret)
1545                         goto out_mput;
1546                 if (new->secondary) {
1547                         ret = setup_irq_thread(new->secondary, irq, true);
1548                         if (ret)
1549                                 goto out_thread;
1550                 }
1551         }
1552
1553         /*
1554          * Drivers are often written to work w/o knowledge about the
1555          * underlying irq chip implementation, so a request for a
1556          * threaded irq without a primary hard irq context handler
1557          * requires the ONESHOT flag to be set. Some irq chips like
1558          * MSI based interrupts are per se one shot safe. Check the
1559          * chip flags, so we can avoid the unmask dance at the end of
1560          * the threaded handler for those.
1561          */
1562         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1563                 new->flags &= ~IRQF_ONESHOT;
1564
1565         /*
1566          * Protects against a concurrent __free_irq() call which might wait
1567          * for synchronize_hardirq() to complete without holding the optional
1568          * chip bus lock and desc->lock. Also protects against handing out
1569          * a recycled oneshot thread_mask bit while it's still in use by
1570          * its previous owner.
1571          */
1572         mutex_lock(&desc->request_mutex);
1573
1574         /*
1575          * Acquire bus lock as the irq_request_resources() callback below
1576          * might rely on the serialization or the magic power management
1577          * functions which are abusing the irq_bus_lock() callback,
1578          */
1579         chip_bus_lock(desc);
1580
1581         /* First installed action requests resources. */
1582         if (!desc->action) {
1583                 ret = irq_request_resources(desc);
1584                 if (ret) {
1585                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1586                                new->name, irq, desc->irq_data.chip->name);
1587                         goto out_bus_unlock;
1588                 }
1589         }
1590
1591         /*
1592          * The following block of code has to be executed atomically
1593          * protected against a concurrent interrupt and any of the other
1594          * management calls which are not serialized via
1595          * desc->request_mutex or the optional bus lock.
1596          */
1597         raw_spin_lock_irqsave(&desc->lock, flags);
1598         old_ptr = &desc->action;
1599         old = *old_ptr;
1600         if (old) {
1601                 /*
1602                  * Can't share interrupts unless both agree to and are
1603                  * the same type (level, edge, polarity). So both flag
1604                  * fields must have IRQF_SHARED set and the bits which
1605                  * set the trigger type must match. Also all must
1606                  * agree on ONESHOT.
1607                  * Interrupt lines used for NMIs cannot be shared.
1608                  */
1609                 unsigned int oldtype;
1610
1611                 if (desc->istate & IRQS_NMI) {
1612                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1613                                 new->name, irq, desc->irq_data.chip->name);
1614                         ret = -EINVAL;
1615                         goto out_unlock;
1616                 }
1617
1618                 /*
1619                  * If nobody did set the configuration before, inherit
1620                  * the one provided by the requester.
1621                  */
1622                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1623                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1624                 } else {
1625                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1626                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1627                 }
1628
1629                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1630                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1631                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1632                         goto mismatch;
1633
1634                 /* All handlers must agree on per-cpuness */
1635                 if ((old->flags & IRQF_PERCPU) !=
1636                     (new->flags & IRQF_PERCPU))
1637                         goto mismatch;
1638
1639                 /* add new interrupt at end of irq queue */
1640                 do {
1641                         /*
1642                          * Or all existing action->thread_mask bits,
1643                          * so we can find the next zero bit for this
1644                          * new action.
1645                          */
1646                         thread_mask |= old->thread_mask;
1647                         old_ptr = &old->next;
1648                         old = *old_ptr;
1649                 } while (old);
1650                 shared = 1;
1651         }
1652
1653         /*
1654          * Setup the thread mask for this irqaction for ONESHOT. For
1655          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1656          * conditional in irq_wake_thread().
1657          */
1658         if (new->flags & IRQF_ONESHOT) {
1659                 /*
1660                  * Unlikely to have 32 resp 64 irqs sharing one line,
1661                  * but who knows.
1662                  */
1663                 if (thread_mask == ~0UL) {
1664                         ret = -EBUSY;
1665                         goto out_unlock;
1666                 }
1667                 /*
1668                  * The thread_mask for the action is or'ed to
1669                  * desc->thread_active to indicate that the
1670                  * IRQF_ONESHOT thread handler has been woken, but not
1671                  * yet finished. The bit is cleared when a thread
1672                  * completes. When all threads of a shared interrupt
1673                  * line have completed desc->threads_active becomes
1674                  * zero and the interrupt line is unmasked. See
1675                  * handle.c:irq_wake_thread() for further information.
1676                  *
1677                  * If no thread is woken by primary (hard irq context)
1678                  * interrupt handlers, then desc->threads_active is
1679                  * also checked for zero to unmask the irq line in the
1680                  * affected hard irq flow handlers
1681                  * (handle_[fasteoi|level]_irq).
1682                  *
1683                  * The new action gets the first zero bit of
1684                  * thread_mask assigned. See the loop above which or's
1685                  * all existing action->thread_mask bits.
1686                  */
1687                 new->thread_mask = 1UL << ffz(thread_mask);
1688
1689         } else if (new->handler == irq_default_primary_handler &&
1690                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1691                 /*
1692                  * The interrupt was requested with handler = NULL, so
1693                  * we use the default primary handler for it. But it
1694                  * does not have the oneshot flag set. In combination
1695                  * with level interrupts this is deadly, because the
1696                  * default primary handler just wakes the thread, then
1697                  * the irq lines is reenabled, but the device still
1698                  * has the level irq asserted. Rinse and repeat....
1699                  *
1700                  * While this works for edge type interrupts, we play
1701                  * it safe and reject unconditionally because we can't
1702                  * say for sure which type this interrupt really
1703                  * has. The type flags are unreliable as the
1704                  * underlying chip implementation can override them.
1705                  */
1706                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1707                        new->name, irq);
1708                 ret = -EINVAL;
1709                 goto out_unlock;
1710         }
1711
1712         if (!shared) {
1713                 /* Setup the type (level, edge polarity) if configured: */
1714                 if (new->flags & IRQF_TRIGGER_MASK) {
1715                         ret = __irq_set_trigger(desc,
1716                                                 new->flags & IRQF_TRIGGER_MASK);
1717
1718                         if (ret)
1719                                 goto out_unlock;
1720                 }
1721
1722                 /*
1723                  * Activate the interrupt. That activation must happen
1724                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1725                  * and the callers are supposed to handle
1726                  * that. enable_irq() of an interrupt requested with
1727                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1728                  * keeps it in shutdown mode, it merily associates
1729                  * resources if necessary and if that's not possible it
1730                  * fails. Interrupts which are in managed shutdown mode
1731                  * will simply ignore that activation request.
1732                  */
1733                 ret = irq_activate(desc);
1734                 if (ret)
1735                         goto out_unlock;
1736
1737                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1738                                   IRQS_ONESHOT | IRQS_WAITING);
1739                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1740
1741                 if (new->flags & IRQF_PERCPU) {
1742                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1743                         irq_settings_set_per_cpu(desc);
1744                         if (new->flags & IRQF_NO_DEBUG)
1745                                 irq_settings_set_no_debug(desc);
1746                 }
1747
1748                 if (noirqdebug)
1749                         irq_settings_set_no_debug(desc);
1750
1751                 if (new->flags & IRQF_ONESHOT)
1752                         desc->istate |= IRQS_ONESHOT;
1753
1754                 /* Exclude IRQ from balancing if requested */
1755                 if (new->flags & IRQF_NOBALANCING) {
1756                         irq_settings_set_no_balancing(desc);
1757                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1758                 }
1759
1760                 if (!(new->flags & IRQF_NO_AUTOEN) &&
1761                     irq_settings_can_autoenable(desc)) {
1762                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1763                 } else {
1764                         /*
1765                          * Shared interrupts do not go well with disabling
1766                          * auto enable. The sharing interrupt might request
1767                          * it while it's still disabled and then wait for
1768                          * interrupts forever.
1769                          */
1770                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1771                         /* Undo nested disables: */
1772                         desc->depth = 1;
1773                 }
1774
1775         } else if (new->flags & IRQF_TRIGGER_MASK) {
1776                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1777                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1778
1779                 if (nmsk != omsk)
1780                         /* hope the handler works with current  trigger mode */
1781                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1782                                 irq, omsk, nmsk);
1783         }
1784
1785         *old_ptr = new;
1786
1787         irq_pm_install_action(desc, new);
1788
1789         /* Reset broken irq detection when installing new handler */
1790         desc->irq_count = 0;
1791         desc->irqs_unhandled = 0;
1792
1793         /*
1794          * Check whether we disabled the irq via the spurious handler
1795          * before. Reenable it and give it another chance.
1796          */
1797         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1798                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1799                 __enable_irq(desc);
1800         }
1801
1802         raw_spin_unlock_irqrestore(&desc->lock, flags);
1803         chip_bus_sync_unlock(desc);
1804         mutex_unlock(&desc->request_mutex);
1805
1806         irq_setup_timings(desc, new);
1807
1808         wake_up_and_wait_for_irq_thread_ready(desc, new);
1809         wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1810
1811         register_irq_proc(irq, desc);
1812         new->dir = NULL;
1813         register_handler_proc(irq, new);
1814         return 0;
1815
1816 mismatch:
1817         if (!(new->flags & IRQF_PROBE_SHARED)) {
1818                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1819                        irq, new->flags, new->name, old->flags, old->name);
1820 #ifdef CONFIG_DEBUG_SHIRQ
1821                 dump_stack();
1822 #endif
1823         }
1824         ret = -EBUSY;
1825
1826 out_unlock:
1827         raw_spin_unlock_irqrestore(&desc->lock, flags);
1828
1829         if (!desc->action)
1830                 irq_release_resources(desc);
1831 out_bus_unlock:
1832         chip_bus_sync_unlock(desc);
1833         mutex_unlock(&desc->request_mutex);
1834
1835 out_thread:
1836         if (new->thread) {
1837                 struct task_struct *t = new->thread;
1838
1839                 new->thread = NULL;
1840                 kthread_stop(t);
1841                 put_task_struct(t);
1842         }
1843         if (new->secondary && new->secondary->thread) {
1844                 struct task_struct *t = new->secondary->thread;
1845
1846                 new->secondary->thread = NULL;
1847                 kthread_stop(t);
1848                 put_task_struct(t);
1849         }
1850 out_mput:
1851         module_put(desc->owner);
1852         return ret;
1853 }
1854
1855 /*
1856  * Internal function to unregister an irqaction - used to free
1857  * regular and special interrupts that are part of the architecture.
1858  */
1859 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1860 {
1861         unsigned irq = desc->irq_data.irq;
1862         struct irqaction *action, **action_ptr;
1863         unsigned long flags;
1864
1865         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1866
1867         mutex_lock(&desc->request_mutex);
1868         chip_bus_lock(desc);
1869         raw_spin_lock_irqsave(&desc->lock, flags);
1870
1871         /*
1872          * There can be multiple actions per IRQ descriptor, find the right
1873          * one based on the dev_id:
1874          */
1875         action_ptr = &desc->action;
1876         for (;;) {
1877                 action = *action_ptr;
1878
1879                 if (!action) {
1880                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1881                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1882                         chip_bus_sync_unlock(desc);
1883                         mutex_unlock(&desc->request_mutex);
1884                         return NULL;
1885                 }
1886
1887                 if (action->dev_id == dev_id)
1888                         break;
1889                 action_ptr = &action->next;
1890         }
1891
1892         /* Found it - now remove it from the list of entries: */
1893         *action_ptr = action->next;
1894
1895         irq_pm_remove_action(desc, action);
1896
1897         /* If this was the last handler, shut down the IRQ line: */
1898         if (!desc->action) {
1899                 irq_settings_clr_disable_unlazy(desc);
1900                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1901                 irq_shutdown(desc);
1902         }
1903
1904 #ifdef CONFIG_SMP
1905         /* make sure affinity_hint is cleaned up */
1906         if (WARN_ON_ONCE(desc->affinity_hint))
1907                 desc->affinity_hint = NULL;
1908 #endif
1909
1910         raw_spin_unlock_irqrestore(&desc->lock, flags);
1911         /*
1912          * Drop bus_lock here so the changes which were done in the chip
1913          * callbacks above are synced out to the irq chips which hang
1914          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1915          *
1916          * Aside of that the bus_lock can also be taken from the threaded
1917          * handler in irq_finalize_oneshot() which results in a deadlock
1918          * because kthread_stop() would wait forever for the thread to
1919          * complete, which is blocked on the bus lock.
1920          *
1921          * The still held desc->request_mutex() protects against a
1922          * concurrent request_irq() of this irq so the release of resources
1923          * and timing data is properly serialized.
1924          */
1925         chip_bus_sync_unlock(desc);
1926
1927         unregister_handler_proc(irq, action);
1928
1929         /*
1930          * Make sure it's not being used on another CPU and if the chip
1931          * supports it also make sure that there is no (not yet serviced)
1932          * interrupt in flight at the hardware level.
1933          */
1934         __synchronize_hardirq(desc, true);
1935
1936 #ifdef CONFIG_DEBUG_SHIRQ
1937         /*
1938          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1939          * event to happen even now it's being freed, so let's make sure that
1940          * is so by doing an extra call to the handler ....
1941          *
1942          * ( We do this after actually deregistering it, to make sure that a
1943          *   'real' IRQ doesn't run in parallel with our fake. )
1944          */
1945         if (action->flags & IRQF_SHARED) {
1946                 local_irq_save(flags);
1947                 action->handler(irq, dev_id);
1948                 local_irq_restore(flags);
1949         }
1950 #endif
1951
1952         /*
1953          * The action has already been removed above, but the thread writes
1954          * its oneshot mask bit when it completes. Though request_mutex is
1955          * held across this which prevents __setup_irq() from handing out
1956          * the same bit to a newly requested action.
1957          */
1958         if (action->thread) {
1959                 kthread_stop(action->thread);
1960                 put_task_struct(action->thread);
1961                 if (action->secondary && action->secondary->thread) {
1962                         kthread_stop(action->secondary->thread);
1963                         put_task_struct(action->secondary->thread);
1964                 }
1965         }
1966
1967         /* Last action releases resources */
1968         if (!desc->action) {
1969                 /*
1970                  * Reacquire bus lock as irq_release_resources() might
1971                  * require it to deallocate resources over the slow bus.
1972                  */
1973                 chip_bus_lock(desc);
1974                 /*
1975                  * There is no interrupt on the fly anymore. Deactivate it
1976                  * completely.
1977                  */
1978                 raw_spin_lock_irqsave(&desc->lock, flags);
1979                 irq_domain_deactivate_irq(&desc->irq_data);
1980                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1981
1982                 irq_release_resources(desc);
1983                 chip_bus_sync_unlock(desc);
1984                 irq_remove_timings(desc);
1985         }
1986
1987         mutex_unlock(&desc->request_mutex);
1988
1989         irq_chip_pm_put(&desc->irq_data);
1990         module_put(desc->owner);
1991         kfree(action->secondary);
1992         return action;
1993 }
1994
1995 /**
1996  *      free_irq - free an interrupt allocated with request_irq
1997  *      @irq: Interrupt line to free
1998  *      @dev_id: Device identity to free
1999  *
2000  *      Remove an interrupt handler. The handler is removed and if the
2001  *      interrupt line is no longer in use by any driver it is disabled.
2002  *      On a shared IRQ the caller must ensure the interrupt is disabled
2003  *      on the card it drives before calling this function. The function
2004  *      does not return until any executing interrupts for this IRQ
2005  *      have completed.
2006  *
2007  *      This function must not be called from interrupt context.
2008  *
2009  *      Returns the devname argument passed to request_irq.
2010  */
2011 const void *free_irq(unsigned int irq, void *dev_id)
2012 {
2013         struct irq_desc *desc = irq_to_desc(irq);
2014         struct irqaction *action;
2015         const char *devname;
2016
2017         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2018                 return NULL;
2019
2020 #ifdef CONFIG_SMP
2021         if (WARN_ON(desc->affinity_notify))
2022                 desc->affinity_notify = NULL;
2023 #endif
2024
2025         action = __free_irq(desc, dev_id);
2026
2027         if (!action)
2028                 return NULL;
2029
2030         devname = action->name;
2031         kfree(action);
2032         return devname;
2033 }
2034 EXPORT_SYMBOL(free_irq);
2035
2036 /* This function must be called with desc->lock held */
2037 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2038 {
2039         const char *devname = NULL;
2040
2041         desc->istate &= ~IRQS_NMI;
2042
2043         if (!WARN_ON(desc->action == NULL)) {
2044                 irq_pm_remove_action(desc, desc->action);
2045                 devname = desc->action->name;
2046                 unregister_handler_proc(irq, desc->action);
2047
2048                 kfree(desc->action);
2049                 desc->action = NULL;
2050         }
2051
2052         irq_settings_clr_disable_unlazy(desc);
2053         irq_shutdown_and_deactivate(desc);
2054
2055         irq_release_resources(desc);
2056
2057         irq_chip_pm_put(&desc->irq_data);
2058         module_put(desc->owner);
2059
2060         return devname;
2061 }
2062
2063 const void *free_nmi(unsigned int irq, void *dev_id)
2064 {
2065         struct irq_desc *desc = irq_to_desc(irq);
2066         unsigned long flags;
2067         const void *devname;
2068
2069         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2070                 return NULL;
2071
2072         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2073                 return NULL;
2074
2075         /* NMI still enabled */
2076         if (WARN_ON(desc->depth == 0))
2077                 disable_nmi_nosync(irq);
2078
2079         raw_spin_lock_irqsave(&desc->lock, flags);
2080
2081         irq_nmi_teardown(desc);
2082         devname = __cleanup_nmi(irq, desc);
2083
2084         raw_spin_unlock_irqrestore(&desc->lock, flags);
2085
2086         return devname;
2087 }
2088
2089 /**
2090  *      request_threaded_irq - allocate an interrupt line
2091  *      @irq: Interrupt line to allocate
2092  *      @handler: Function to be called when the IRQ occurs.
2093  *                Primary handler for threaded interrupts.
2094  *                If handler is NULL and thread_fn != NULL
2095  *                the default primary handler is installed.
2096  *      @thread_fn: Function called from the irq handler thread
2097  *                  If NULL, no irq thread is created
2098  *      @irqflags: Interrupt type flags
2099  *      @devname: An ascii name for the claiming device
2100  *      @dev_id: A cookie passed back to the handler function
2101  *
2102  *      This call allocates interrupt resources and enables the
2103  *      interrupt line and IRQ handling. From the point this
2104  *      call is made your handler function may be invoked. Since
2105  *      your handler function must clear any interrupt the board
2106  *      raises, you must take care both to initialise your hardware
2107  *      and to set up the interrupt handler in the right order.
2108  *
2109  *      If you want to set up a threaded irq handler for your device
2110  *      then you need to supply @handler and @thread_fn. @handler is
2111  *      still called in hard interrupt context and has to check
2112  *      whether the interrupt originates from the device. If yes it
2113  *      needs to disable the interrupt on the device and return
2114  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2115  *      @thread_fn. This split handler design is necessary to support
2116  *      shared interrupts.
2117  *
2118  *      Dev_id must be globally unique. Normally the address of the
2119  *      device data structure is used as the cookie. Since the handler
2120  *      receives this value it makes sense to use it.
2121  *
2122  *      If your interrupt is shared you must pass a non NULL dev_id
2123  *      as this is required when freeing the interrupt.
2124  *
2125  *      Flags:
2126  *
2127  *      IRQF_SHARED             Interrupt is shared
2128  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2129  *      IRQF_ONESHOT            Run thread_fn with interrupt line masked
2130  */
2131 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2132                          irq_handler_t thread_fn, unsigned long irqflags,
2133                          const char *devname, void *dev_id)
2134 {
2135         struct irqaction *action;
2136         struct irq_desc *desc;
2137         int retval;
2138
2139         if (irq == IRQ_NOTCONNECTED)
2140                 return -ENOTCONN;
2141
2142         /*
2143          * Sanity-check: shared interrupts must pass in a real dev-ID,
2144          * otherwise we'll have trouble later trying to figure out
2145          * which interrupt is which (messes up the interrupt freeing
2146          * logic etc).
2147          *
2148          * Also shared interrupts do not go well with disabling auto enable.
2149          * The sharing interrupt might request it while it's still disabled
2150          * and then wait for interrupts forever.
2151          *
2152          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2153          * it cannot be set along with IRQF_NO_SUSPEND.
2154          */
2155         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2156             ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2157             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2158             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2159                 return -EINVAL;
2160
2161         desc = irq_to_desc(irq);
2162         if (!desc)
2163                 return -EINVAL;
2164
2165         if (!irq_settings_can_request(desc) ||
2166             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2167                 return -EINVAL;
2168
2169         if (!handler) {
2170                 if (!thread_fn)
2171                         return -EINVAL;
2172                 handler = irq_default_primary_handler;
2173         }
2174
2175         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2176         if (!action)
2177                 return -ENOMEM;
2178
2179         action->handler = handler;
2180         action->thread_fn = thread_fn;
2181         action->flags = irqflags;
2182         action->name = devname;
2183         action->dev_id = dev_id;
2184
2185         retval = irq_chip_pm_get(&desc->irq_data);
2186         if (retval < 0) {
2187                 kfree(action);
2188                 return retval;
2189         }
2190
2191         retval = __setup_irq(irq, desc, action);
2192
2193         if (retval) {
2194                 irq_chip_pm_put(&desc->irq_data);
2195                 kfree(action->secondary);
2196                 kfree(action);
2197         }
2198
2199 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2200         if (!retval && (irqflags & IRQF_SHARED)) {
2201                 /*
2202                  * It's a shared IRQ -- the driver ought to be prepared for it
2203                  * to happen immediately, so let's make sure....
2204                  * We disable the irq to make sure that a 'real' IRQ doesn't
2205                  * run in parallel with our fake.
2206                  */
2207                 unsigned long flags;
2208
2209                 disable_irq(irq);
2210                 local_irq_save(flags);
2211
2212                 handler(irq, dev_id);
2213
2214                 local_irq_restore(flags);
2215                 enable_irq(irq);
2216         }
2217 #endif
2218         return retval;
2219 }
2220 EXPORT_SYMBOL(request_threaded_irq);
2221
2222 /**
2223  *      request_any_context_irq - allocate an interrupt line
2224  *      @irq: Interrupt line to allocate
2225  *      @handler: Function to be called when the IRQ occurs.
2226  *                Threaded handler for threaded interrupts.
2227  *      @flags: Interrupt type flags
2228  *      @name: An ascii name for the claiming device
2229  *      @dev_id: A cookie passed back to the handler function
2230  *
2231  *      This call allocates interrupt resources and enables the
2232  *      interrupt line and IRQ handling. It selects either a
2233  *      hardirq or threaded handling method depending on the
2234  *      context.
2235  *
2236  *      On failure, it returns a negative value. On success,
2237  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2238  */
2239 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2240                             unsigned long flags, const char *name, void *dev_id)
2241 {
2242         struct irq_desc *desc;
2243         int ret;
2244
2245         if (irq == IRQ_NOTCONNECTED)
2246                 return -ENOTCONN;
2247
2248         desc = irq_to_desc(irq);
2249         if (!desc)
2250                 return -EINVAL;
2251
2252         if (irq_settings_is_nested_thread(desc)) {
2253                 ret = request_threaded_irq(irq, NULL, handler,
2254                                            flags, name, dev_id);
2255                 return !ret ? IRQC_IS_NESTED : ret;
2256         }
2257
2258         ret = request_irq(irq, handler, flags, name, dev_id);
2259         return !ret ? IRQC_IS_HARDIRQ : ret;
2260 }
2261 EXPORT_SYMBOL_GPL(request_any_context_irq);
2262
2263 /**
2264  *      request_nmi - allocate an interrupt line for NMI delivery
2265  *      @irq: Interrupt line to allocate
2266  *      @handler: Function to be called when the IRQ occurs.
2267  *                Threaded handler for threaded interrupts.
2268  *      @irqflags: Interrupt type flags
2269  *      @name: An ascii name for the claiming device
2270  *      @dev_id: A cookie passed back to the handler function
2271  *
2272  *      This call allocates interrupt resources and enables the
2273  *      interrupt line and IRQ handling. It sets up the IRQ line
2274  *      to be handled as an NMI.
2275  *
2276  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2277  *      cannot be threaded.
2278  *
2279  *      Interrupt lines requested for NMI delivering must produce per cpu
2280  *      interrupts and have auto enabling setting disabled.
2281  *
2282  *      Dev_id must be globally unique. Normally the address of the
2283  *      device data structure is used as the cookie. Since the handler
2284  *      receives this value it makes sense to use it.
2285  *
2286  *      If the interrupt line cannot be used to deliver NMIs, function
2287  *      will fail and return a negative value.
2288  */
2289 int request_nmi(unsigned int irq, irq_handler_t handler,
2290                 unsigned long irqflags, const char *name, void *dev_id)
2291 {
2292         struct irqaction *action;
2293         struct irq_desc *desc;
2294         unsigned long flags;
2295         int retval;
2296
2297         if (irq == IRQ_NOTCONNECTED)
2298                 return -ENOTCONN;
2299
2300         /* NMI cannot be shared, used for Polling */
2301         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2302                 return -EINVAL;
2303
2304         if (!(irqflags & IRQF_PERCPU))
2305                 return -EINVAL;
2306
2307         if (!handler)
2308                 return -EINVAL;
2309
2310         desc = irq_to_desc(irq);
2311
2312         if (!desc || (irq_settings_can_autoenable(desc) &&
2313             !(irqflags & IRQF_NO_AUTOEN)) ||
2314             !irq_settings_can_request(desc) ||
2315             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2316             !irq_supports_nmi(desc))
2317                 return -EINVAL;
2318
2319         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2320         if (!action)
2321                 return -ENOMEM;
2322
2323         action->handler = handler;
2324         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2325         action->name = name;
2326         action->dev_id = dev_id;
2327
2328         retval = irq_chip_pm_get(&desc->irq_data);
2329         if (retval < 0)
2330                 goto err_out;
2331
2332         retval = __setup_irq(irq, desc, action);
2333         if (retval)
2334                 goto err_irq_setup;
2335
2336         raw_spin_lock_irqsave(&desc->lock, flags);
2337
2338         /* Setup NMI state */
2339         desc->istate |= IRQS_NMI;
2340         retval = irq_nmi_setup(desc);
2341         if (retval) {
2342                 __cleanup_nmi(irq, desc);
2343                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2344                 return -EINVAL;
2345         }
2346
2347         raw_spin_unlock_irqrestore(&desc->lock, flags);
2348
2349         return 0;
2350
2351 err_irq_setup:
2352         irq_chip_pm_put(&desc->irq_data);
2353 err_out:
2354         kfree(action);
2355
2356         return retval;
2357 }
2358
2359 void enable_percpu_irq(unsigned int irq, unsigned int type)
2360 {
2361         unsigned int cpu = smp_processor_id();
2362         unsigned long flags;
2363         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2364
2365         if (!desc)
2366                 return;
2367
2368         /*
2369          * If the trigger type is not specified by the caller, then
2370          * use the default for this interrupt.
2371          */
2372         type &= IRQ_TYPE_SENSE_MASK;
2373         if (type == IRQ_TYPE_NONE)
2374                 type = irqd_get_trigger_type(&desc->irq_data);
2375
2376         if (type != IRQ_TYPE_NONE) {
2377                 int ret;
2378
2379                 ret = __irq_set_trigger(desc, type);
2380
2381                 if (ret) {
2382                         WARN(1, "failed to set type for IRQ%d\n", irq);
2383                         goto out;
2384                 }
2385         }
2386
2387         irq_percpu_enable(desc, cpu);
2388 out:
2389         irq_put_desc_unlock(desc, flags);
2390 }
2391 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2392
2393 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2394 {
2395         enable_percpu_irq(irq, type);
2396 }
2397
2398 /**
2399  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2400  * @irq:        Linux irq number to check for
2401  *
2402  * Must be called from a non migratable context. Returns the enable
2403  * state of a per cpu interrupt on the current cpu.
2404  */
2405 bool irq_percpu_is_enabled(unsigned int irq)
2406 {
2407         unsigned int cpu = smp_processor_id();
2408         struct irq_desc *desc;
2409         unsigned long flags;
2410         bool is_enabled;
2411
2412         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2413         if (!desc)
2414                 return false;
2415
2416         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2417         irq_put_desc_unlock(desc, flags);
2418
2419         return is_enabled;
2420 }
2421 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2422
2423 void disable_percpu_irq(unsigned int irq)
2424 {
2425         unsigned int cpu = smp_processor_id();
2426         unsigned long flags;
2427         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2428
2429         if (!desc)
2430                 return;
2431
2432         irq_percpu_disable(desc, cpu);
2433         irq_put_desc_unlock(desc, flags);
2434 }
2435 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2436
2437 void disable_percpu_nmi(unsigned int irq)
2438 {
2439         disable_percpu_irq(irq);
2440 }
2441
2442 /*
2443  * Internal function to unregister a percpu irqaction.
2444  */
2445 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2446 {
2447         struct irq_desc *desc = irq_to_desc(irq);
2448         struct irqaction *action;
2449         unsigned long flags;
2450
2451         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2452
2453         if (!desc)
2454                 return NULL;
2455
2456         raw_spin_lock_irqsave(&desc->lock, flags);
2457
2458         action = desc->action;
2459         if (!action || action->percpu_dev_id != dev_id) {
2460                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2461                 goto bad;
2462         }
2463
2464         if (!cpumask_empty(desc->percpu_enabled)) {
2465                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2466                      irq, cpumask_first(desc->percpu_enabled));
2467                 goto bad;
2468         }
2469
2470         /* Found it - now remove it from the list of entries: */
2471         desc->action = NULL;
2472
2473         desc->istate &= ~IRQS_NMI;
2474
2475         raw_spin_unlock_irqrestore(&desc->lock, flags);
2476
2477         unregister_handler_proc(irq, action);
2478
2479         irq_chip_pm_put(&desc->irq_data);
2480         module_put(desc->owner);
2481         return action;
2482
2483 bad:
2484         raw_spin_unlock_irqrestore(&desc->lock, flags);
2485         return NULL;
2486 }
2487
2488 /**
2489  *      remove_percpu_irq - free a per-cpu interrupt
2490  *      @irq: Interrupt line to free
2491  *      @act: irqaction for the interrupt
2492  *
2493  * Used to remove interrupts statically setup by the early boot process.
2494  */
2495 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2496 {
2497         struct irq_desc *desc = irq_to_desc(irq);
2498
2499         if (desc && irq_settings_is_per_cpu_devid(desc))
2500             __free_percpu_irq(irq, act->percpu_dev_id);
2501 }
2502
2503 /**
2504  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2505  *      @irq: Interrupt line to free
2506  *      @dev_id: Device identity to free
2507  *
2508  *      Remove a percpu interrupt handler. The handler is removed, but
2509  *      the interrupt line is not disabled. This must be done on each
2510  *      CPU before calling this function. The function does not return
2511  *      until any executing interrupts for this IRQ have completed.
2512  *
2513  *      This function must not be called from interrupt context.
2514  */
2515 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2516 {
2517         struct irq_desc *desc = irq_to_desc(irq);
2518
2519         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2520                 return;
2521
2522         chip_bus_lock(desc);
2523         kfree(__free_percpu_irq(irq, dev_id));
2524         chip_bus_sync_unlock(desc);
2525 }
2526 EXPORT_SYMBOL_GPL(free_percpu_irq);
2527
2528 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2529 {
2530         struct irq_desc *desc = irq_to_desc(irq);
2531
2532         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2533                 return;
2534
2535         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2536                 return;
2537
2538         kfree(__free_percpu_irq(irq, dev_id));
2539 }
2540
2541 /**
2542  *      setup_percpu_irq - setup a per-cpu interrupt
2543  *      @irq: Interrupt line to setup
2544  *      @act: irqaction for the interrupt
2545  *
2546  * Used to statically setup per-cpu interrupts in the early boot process.
2547  */
2548 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2549 {
2550         struct irq_desc *desc = irq_to_desc(irq);
2551         int retval;
2552
2553         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2554                 return -EINVAL;
2555
2556         retval = irq_chip_pm_get(&desc->irq_data);
2557         if (retval < 0)
2558                 return retval;
2559
2560         retval = __setup_irq(irq, desc, act);
2561
2562         if (retval)
2563                 irq_chip_pm_put(&desc->irq_data);
2564
2565         return retval;
2566 }
2567
2568 /**
2569  *      __request_percpu_irq - allocate a percpu interrupt line
2570  *      @irq: Interrupt line to allocate
2571  *      @handler: Function to be called when the IRQ occurs.
2572  *      @flags: Interrupt type flags (IRQF_TIMER only)
2573  *      @devname: An ascii name for the claiming device
2574  *      @dev_id: A percpu cookie passed back to the handler function
2575  *
2576  *      This call allocates interrupt resources and enables the
2577  *      interrupt on the local CPU. If the interrupt is supposed to be
2578  *      enabled on other CPUs, it has to be done on each CPU using
2579  *      enable_percpu_irq().
2580  *
2581  *      Dev_id must be globally unique. It is a per-cpu variable, and
2582  *      the handler gets called with the interrupted CPU's instance of
2583  *      that variable.
2584  */
2585 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2586                          unsigned long flags, const char *devname,
2587                          void __percpu *dev_id)
2588 {
2589         struct irqaction *action;
2590         struct irq_desc *desc;
2591         int retval;
2592
2593         if (!dev_id)
2594                 return -EINVAL;
2595
2596         desc = irq_to_desc(irq);
2597         if (!desc || !irq_settings_can_request(desc) ||
2598             !irq_settings_is_per_cpu_devid(desc))
2599                 return -EINVAL;
2600
2601         if (flags && flags != IRQF_TIMER)
2602                 return -EINVAL;
2603
2604         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2605         if (!action)
2606                 return -ENOMEM;
2607
2608         action->handler = handler;
2609         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2610         action->name = devname;
2611         action->percpu_dev_id = dev_id;
2612
2613         retval = irq_chip_pm_get(&desc->irq_data);
2614         if (retval < 0) {
2615                 kfree(action);
2616                 return retval;
2617         }
2618
2619         retval = __setup_irq(irq, desc, action);
2620
2621         if (retval) {
2622                 irq_chip_pm_put(&desc->irq_data);
2623                 kfree(action);
2624         }
2625
2626         return retval;
2627 }
2628 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2629
2630 /**
2631  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2632  *      @irq: Interrupt line to allocate
2633  *      @handler: Function to be called when the IRQ occurs.
2634  *      @name: An ascii name for the claiming device
2635  *      @dev_id: A percpu cookie passed back to the handler function
2636  *
2637  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2638  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2639  *      being enabled on the same CPU by using enable_percpu_nmi().
2640  *
2641  *      Dev_id must be globally unique. It is a per-cpu variable, and
2642  *      the handler gets called with the interrupted CPU's instance of
2643  *      that variable.
2644  *
2645  *      Interrupt lines requested for NMI delivering should have auto enabling
2646  *      setting disabled.
2647  *
2648  *      If the interrupt line cannot be used to deliver NMIs, function
2649  *      will fail returning a negative value.
2650  */
2651 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2652                        const char *name, void __percpu *dev_id)
2653 {
2654         struct irqaction *action;
2655         struct irq_desc *desc;
2656         unsigned long flags;
2657         int retval;
2658
2659         if (!handler)
2660                 return -EINVAL;
2661
2662         desc = irq_to_desc(irq);
2663
2664         if (!desc || !irq_settings_can_request(desc) ||
2665             !irq_settings_is_per_cpu_devid(desc) ||
2666             irq_settings_can_autoenable(desc) ||
2667             !irq_supports_nmi(desc))
2668                 return -EINVAL;
2669
2670         /* The line cannot already be NMI */
2671         if (desc->istate & IRQS_NMI)
2672                 return -EINVAL;
2673
2674         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2675         if (!action)
2676                 return -ENOMEM;
2677
2678         action->handler = handler;
2679         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2680                 | IRQF_NOBALANCING;
2681         action->name = name;
2682         action->percpu_dev_id = dev_id;
2683
2684         retval = irq_chip_pm_get(&desc->irq_data);
2685         if (retval < 0)
2686                 goto err_out;
2687
2688         retval = __setup_irq(irq, desc, action);
2689         if (retval)
2690                 goto err_irq_setup;
2691
2692         raw_spin_lock_irqsave(&desc->lock, flags);
2693         desc->istate |= IRQS_NMI;
2694         raw_spin_unlock_irqrestore(&desc->lock, flags);
2695
2696         return 0;
2697
2698 err_irq_setup:
2699         irq_chip_pm_put(&desc->irq_data);
2700 err_out:
2701         kfree(action);
2702
2703         return retval;
2704 }
2705
2706 /**
2707  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2708  *      @irq: Interrupt line to prepare for NMI delivery
2709  *
2710  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2711  *      before that interrupt line gets enabled with enable_percpu_nmi().
2712  *
2713  *      As a CPU local operation, this should be called from non-preemptible
2714  *      context.
2715  *
2716  *      If the interrupt line cannot be used to deliver NMIs, function
2717  *      will fail returning a negative value.
2718  */
2719 int prepare_percpu_nmi(unsigned int irq)
2720 {
2721         unsigned long flags;
2722         struct irq_desc *desc;
2723         int ret = 0;
2724
2725         WARN_ON(preemptible());
2726
2727         desc = irq_get_desc_lock(irq, &flags,
2728                                  IRQ_GET_DESC_CHECK_PERCPU);
2729         if (!desc)
2730                 return -EINVAL;
2731
2732         if (WARN(!(desc->istate & IRQS_NMI),
2733                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2734                  irq)) {
2735                 ret = -EINVAL;
2736                 goto out;
2737         }
2738
2739         ret = irq_nmi_setup(desc);
2740         if (ret) {
2741                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2742                 goto out;
2743         }
2744
2745 out:
2746         irq_put_desc_unlock(desc, flags);
2747         return ret;
2748 }
2749
2750 /**
2751  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2752  *      @irq: Interrupt line from which CPU local NMI configuration should be
2753  *            removed
2754  *
2755  *      This call undoes the setup done by prepare_percpu_nmi().
2756  *
2757  *      IRQ line should not be enabled for the current CPU.
2758  *
2759  *      As a CPU local operation, this should be called from non-preemptible
2760  *      context.
2761  */
2762 void teardown_percpu_nmi(unsigned int irq)
2763 {
2764         unsigned long flags;
2765         struct irq_desc *desc;
2766
2767         WARN_ON(preemptible());
2768
2769         desc = irq_get_desc_lock(irq, &flags,
2770                                  IRQ_GET_DESC_CHECK_PERCPU);
2771         if (!desc)
2772                 return;
2773
2774         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2775                 goto out;
2776
2777         irq_nmi_teardown(desc);
2778 out:
2779         irq_put_desc_unlock(desc, flags);
2780 }
2781
2782 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2783                             bool *state)
2784 {
2785         struct irq_chip *chip;
2786         int err = -EINVAL;
2787
2788         do {
2789                 chip = irq_data_get_irq_chip(data);
2790                 if (WARN_ON_ONCE(!chip))
2791                         return -ENODEV;
2792                 if (chip->irq_get_irqchip_state)
2793                         break;
2794 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2795                 data = data->parent_data;
2796 #else
2797                 data = NULL;
2798 #endif
2799         } while (data);
2800
2801         if (data)
2802                 err = chip->irq_get_irqchip_state(data, which, state);
2803         return err;
2804 }
2805
2806 /**
2807  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2808  *      @irq: Interrupt line that is forwarded to a VM
2809  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2810  *      @state: a pointer to a boolean where the state is to be stored
2811  *
2812  *      This call snapshots the internal irqchip state of an
2813  *      interrupt, returning into @state the bit corresponding to
2814  *      stage @which
2815  *
2816  *      This function should be called with preemption disabled if the
2817  *      interrupt controller has per-cpu registers.
2818  */
2819 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2820                           bool *state)
2821 {
2822         struct irq_desc *desc;
2823         struct irq_data *data;
2824         unsigned long flags;
2825         int err = -EINVAL;
2826
2827         desc = irq_get_desc_buslock(irq, &flags, 0);
2828         if (!desc)
2829                 return err;
2830
2831         data = irq_desc_get_irq_data(desc);
2832
2833         err = __irq_get_irqchip_state(data, which, state);
2834
2835         irq_put_desc_busunlock(desc, flags);
2836         return err;
2837 }
2838 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2839
2840 /**
2841  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2842  *      @irq: Interrupt line that is forwarded to a VM
2843  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2844  *      @val: Value corresponding to @which
2845  *
2846  *      This call sets the internal irqchip state of an interrupt,
2847  *      depending on the value of @which.
2848  *
2849  *      This function should be called with preemption disabled if the
2850  *      interrupt controller has per-cpu registers.
2851  */
2852 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2853                           bool val)
2854 {
2855         struct irq_desc *desc;
2856         struct irq_data *data;
2857         struct irq_chip *chip;
2858         unsigned long flags;
2859         int err = -EINVAL;
2860
2861         desc = irq_get_desc_buslock(irq, &flags, 0);
2862         if (!desc)
2863                 return err;
2864
2865         data = irq_desc_get_irq_data(desc);
2866
2867         do {
2868                 chip = irq_data_get_irq_chip(data);
2869                 if (WARN_ON_ONCE(!chip)) {
2870                         err = -ENODEV;
2871                         goto out_unlock;
2872                 }
2873                 if (chip->irq_set_irqchip_state)
2874                         break;
2875 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2876                 data = data->parent_data;
2877 #else
2878                 data = NULL;
2879 #endif
2880         } while (data);
2881
2882         if (data)
2883                 err = chip->irq_set_irqchip_state(data, which, val);
2884
2885 out_unlock:
2886         irq_put_desc_busunlock(desc, flags);
2887         return err;
2888 }
2889 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2890
2891 /**
2892  * irq_has_action - Check whether an interrupt is requested
2893  * @irq:        The linux irq number
2894  *
2895  * Returns: A snapshot of the current state
2896  */
2897 bool irq_has_action(unsigned int irq)
2898 {
2899         bool res;
2900
2901         rcu_read_lock();
2902         res = irq_desc_has_action(irq_to_desc(irq));
2903         rcu_read_unlock();
2904         return res;
2905 }
2906 EXPORT_SYMBOL_GPL(irq_has_action);
2907
2908 /**
2909  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2910  * @irq:        The linux irq number
2911  * @bitmask:    The bitmask to evaluate
2912  *
2913  * Returns: True if one of the bits in @bitmask is set
2914  */
2915 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2916 {
2917         struct irq_desc *desc;
2918         bool res = false;
2919
2920         rcu_read_lock();
2921         desc = irq_to_desc(irq);
2922         if (desc)
2923                 res = !!(desc->status_use_accessors & bitmask);
2924         rcu_read_unlock();
2925         return res;
2926 }
2927 EXPORT_SYMBOL_GPL(irq_check_status_bit);