d0b8f7e72790e357a5219bd4549fdb6132f2c5e2
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / irq / handle.c
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20 #include <linux/bootmem.h>
21
22 #include "internals.h"
23
24 /*
25  * lockdep: we want to handle all irq_desc locks as a single lock-class:
26  */
27 struct lock_class_key irq_desc_lock_class;
28
29 /**
30  * handle_bad_irq - handle spurious and unhandled irqs
31  * @irq:       the interrupt number
32  * @desc:      description of the interrupt
33  *
34  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35  */
36 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
37 {
38         print_irq_desc(irq, desc);
39         kstat_incr_irqs_this_cpu(irq, desc);
40         ack_bad_irq(irq);
41 }
42
43 /*
44  * Linux has a controller-independent interrupt architecture.
45  * Every controller has a 'controller-template', that is used
46  * by the main code to do the right thing. Each driver-visible
47  * interrupt source is transparently wired to the appropriate
48  * controller. Thus drivers need not be aware of the
49  * interrupt-controller.
50  *
51  * The code is designed to be easily extended with new/different
52  * interrupt controllers, without having to do assembly magic or
53  * having to touch the generic code.
54  *
55  * Controller mappings for all interrupt sources:
56  */
57 int nr_irqs = NR_IRQS;
58 EXPORT_SYMBOL_GPL(nr_irqs);
59
60 #ifdef CONFIG_SPARSE_IRQ
61 static struct irq_desc irq_desc_init = {
62         .irq        = -1,
63         .status     = IRQ_DISABLED,
64         .chip       = &no_irq_chip,
65         .handle_irq = handle_bad_irq,
66         .depth      = 1,
67         .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
68 };
69
70 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
71 {
72         unsigned long bytes;
73         char *ptr;
74         int node;
75
76         /* Compute how many bytes we need per irq and allocate them */
77         bytes = nr * sizeof(unsigned int);
78
79         node = cpu_to_node(cpu);
80         ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
81         printk(KERN_DEBUG "  alloc kstat_irqs on cpu %d node %d\n", cpu, node);
82
83         if (ptr)
84                 desc->kstat_irqs = (unsigned int *)ptr;
85 }
86
87 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
88 {
89         memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
90
91         spin_lock_init(&desc->lock);
92         desc->irq = irq;
93 #ifdef CONFIG_SMP
94         desc->cpu = cpu;
95 #endif
96         lockdep_set_class(&desc->lock, &irq_desc_lock_class);
97         init_kstat_irqs(desc, cpu, nr_cpu_ids);
98         if (!desc->kstat_irqs) {
99                 printk(KERN_ERR "can not alloc kstat_irqs\n");
100                 BUG_ON(1);
101         }
102         if (!init_alloc_desc_masks(desc, cpu, false)) {
103                 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
104                 BUG_ON(1);
105         }
106         arch_init_chip_data(desc, cpu);
107 }
108
109 /*
110  * Protect the sparse_irqs:
111  */
112 DEFINE_SPINLOCK(sparse_irq_lock);
113
114 struct irq_desc **irq_desc_ptrs __read_mostly;
115
116 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
117         [0 ... NR_IRQS_LEGACY-1] = {
118                 .irq        = -1,
119                 .status     = IRQ_DISABLED,
120                 .chip       = &no_irq_chip,
121                 .handle_irq = handle_bad_irq,
122                 .depth      = 1,
123                 .lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
124         }
125 };
126
127 /* FIXME: use bootmem alloc ...*/
128 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
129
130 int __init early_irq_init(void)
131 {
132         struct irq_desc *desc;
133         int legacy_count;
134         int i;
135
136         printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
137
138         desc = irq_desc_legacy;
139         legacy_count = ARRAY_SIZE(irq_desc_legacy);
140
141         /* allocate irq_desc_ptrs array based on nr_irqs */
142         irq_desc_ptrs = alloc_bootmem(nr_irqs * sizeof(void *));
143
144         for (i = 0; i < legacy_count; i++) {
145                 desc[i].irq = i;
146                 desc[i].kstat_irqs = kstat_irqs_legacy[i];
147                 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
148                 init_alloc_desc_masks(&desc[i], 0, true);
149                 irq_desc_ptrs[i] = desc + i;
150         }
151
152         for (i = legacy_count; i < nr_irqs; i++)
153                 irq_desc_ptrs[i] = NULL;
154
155         return arch_early_irq_init();
156 }
157
158 struct irq_desc *irq_to_desc(unsigned int irq)
159 {
160         if (irq_desc_ptrs && irq < nr_irqs)
161                 return irq_desc_ptrs[irq];
162
163         return NULL;
164 }
165
166 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
167 {
168         struct irq_desc *desc;
169         unsigned long flags;
170         int node;
171
172         if (irq >= nr_irqs) {
173                 WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
174                         irq, nr_irqs);
175                 return NULL;
176         }
177
178         desc = irq_desc_ptrs[irq];
179         if (desc)
180                 return desc;
181
182         spin_lock_irqsave(&sparse_irq_lock, flags);
183
184         /* We have to check it to avoid races with another CPU */
185         desc = irq_desc_ptrs[irq];
186         if (desc)
187                 goto out_unlock;
188
189         node = cpu_to_node(cpu);
190         desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
191         printk(KERN_DEBUG "  alloc irq_desc for %d on cpu %d node %d\n",
192                  irq, cpu, node);
193         if (!desc) {
194                 printk(KERN_ERR "can not alloc irq_desc\n");
195                 BUG_ON(1);
196         }
197         init_one_irq_desc(irq, desc, cpu);
198
199         irq_desc_ptrs[irq] = desc;
200
201 out_unlock:
202         spin_unlock_irqrestore(&sparse_irq_lock, flags);
203
204         return desc;
205 }
206
207 #else /* !CONFIG_SPARSE_IRQ */
208
209 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
210         [0 ... NR_IRQS-1] = {
211                 .status = IRQ_DISABLED,
212                 .chip = &no_irq_chip,
213                 .handle_irq = handle_bad_irq,
214                 .depth = 1,
215                 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
216         }
217 };
218
219 int __init early_irq_init(void)
220 {
221         struct irq_desc *desc;
222         int count;
223         int i;
224
225         printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
226
227         desc = irq_desc;
228         count = ARRAY_SIZE(irq_desc);
229
230         for (i = 0; i < count; i++) {
231                 desc[i].irq = i;
232                 init_alloc_desc_masks(&desc[i], 0, true);
233         }
234         return arch_early_irq_init();
235 }
236
237 struct irq_desc *irq_to_desc(unsigned int irq)
238 {
239         return (irq < NR_IRQS) ? irq_desc + irq : NULL;
240 }
241
242 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
243 {
244         return irq_to_desc(irq);
245 }
246 #endif /* !CONFIG_SPARSE_IRQ */
247
248 /*
249  * What should we do if we get a hw irq event on an illegal vector?
250  * Each architecture has to answer this themself.
251  */
252 static void ack_bad(unsigned int irq)
253 {
254         struct irq_desc *desc = irq_to_desc(irq);
255
256         print_irq_desc(irq, desc);
257         ack_bad_irq(irq);
258 }
259
260 /*
261  * NOP functions
262  */
263 static void noop(unsigned int irq)
264 {
265 }
266
267 static unsigned int noop_ret(unsigned int irq)
268 {
269         return 0;
270 }
271
272 /*
273  * Generic no controller implementation
274  */
275 struct irq_chip no_irq_chip = {
276         .name           = "none",
277         .startup        = noop_ret,
278         .shutdown       = noop,
279         .enable         = noop,
280         .disable        = noop,
281         .ack            = ack_bad,
282         .end            = noop,
283 };
284
285 /*
286  * Generic dummy implementation which can be used for
287  * real dumb interrupt sources
288  */
289 struct irq_chip dummy_irq_chip = {
290         .name           = "dummy",
291         .startup        = noop_ret,
292         .shutdown       = noop,
293         .enable         = noop,
294         .disable        = noop,
295         .ack            = noop,
296         .mask           = noop,
297         .unmask         = noop,
298         .end            = noop,
299 };
300
301 /*
302  * Special, empty irq handler:
303  */
304 irqreturn_t no_action(int cpl, void *dev_id)
305 {
306         return IRQ_NONE;
307 }
308
309 /**
310  * handle_IRQ_event - irq action chain handler
311  * @irq:        the interrupt number
312  * @action:     the interrupt action chain for this irq
313  *
314  * Handles the action chain of an irq event
315  */
316 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
317 {
318         irqreturn_t ret, retval = IRQ_NONE;
319         unsigned int status = 0;
320
321         if (!(action->flags & IRQF_DISABLED))
322                 local_irq_enable_in_hardirq();
323
324         do {
325                 ret = action->handler(irq, action->dev_id);
326                 if (ret == IRQ_HANDLED)
327                         status |= action->flags;
328                 retval |= ret;
329                 action = action->next;
330         } while (action);
331
332         if (status & IRQF_SAMPLE_RANDOM)
333                 add_interrupt_randomness(irq);
334         local_irq_disable();
335
336         return retval;
337 }
338
339 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
340 /**
341  * __do_IRQ - original all in one highlevel IRQ handler
342  * @irq:        the interrupt number
343  *
344  * __do_IRQ handles all normal device IRQ's (the special
345  * SMP cross-CPU interrupts have their own specific
346  * handlers).
347  *
348  * This is the original x86 implementation which is used for every
349  * interrupt type.
350  */
351 unsigned int __do_IRQ(unsigned int irq)
352 {
353         struct irq_desc *desc = irq_to_desc(irq);
354         struct irqaction *action;
355         unsigned int status;
356
357         kstat_incr_irqs_this_cpu(irq, desc);
358
359         if (CHECK_IRQ_PER_CPU(desc->status)) {
360                 irqreturn_t action_ret;
361
362                 /*
363                  * No locking required for CPU-local interrupts:
364                  */
365                 if (desc->chip->ack) {
366                         desc->chip->ack(irq);
367                         /* get new one */
368                         desc = irq_remap_to_desc(irq, desc);
369                 }
370                 if (likely(!(desc->status & IRQ_DISABLED))) {
371                         action_ret = handle_IRQ_event(irq, desc->action);
372                         if (!noirqdebug)
373                                 note_interrupt(irq, desc, action_ret);
374                 }
375                 desc->chip->end(irq);
376                 return 1;
377         }
378
379         spin_lock(&desc->lock);
380         if (desc->chip->ack) {
381                 desc->chip->ack(irq);
382                 desc = irq_remap_to_desc(irq, desc);
383         }
384         /*
385          * REPLAY is when Linux resends an IRQ that was dropped earlier
386          * WAITING is used by probe to mark irqs that are being tested
387          */
388         status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
389         status |= IRQ_PENDING; /* we _want_ to handle it */
390
391         /*
392          * If the IRQ is disabled for whatever reason, we cannot
393          * use the action we have.
394          */
395         action = NULL;
396         if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
397                 action = desc->action;
398                 status &= ~IRQ_PENDING; /* we commit to handling */
399                 status |= IRQ_INPROGRESS; /* we are handling it */
400         }
401         desc->status = status;
402
403         /*
404          * If there is no IRQ handler or it was disabled, exit early.
405          * Since we set PENDING, if another processor is handling
406          * a different instance of this same irq, the other processor
407          * will take care of it.
408          */
409         if (unlikely(!action))
410                 goto out;
411
412         /*
413          * Edge triggered interrupts need to remember
414          * pending events.
415          * This applies to any hw interrupts that allow a second
416          * instance of the same irq to arrive while we are in do_IRQ
417          * or in the handler. But the code here only handles the _second_
418          * instance of the irq, not the third or fourth. So it is mostly
419          * useful for irq hardware that does not mask cleanly in an
420          * SMP environment.
421          */
422         for (;;) {
423                 irqreturn_t action_ret;
424
425                 spin_unlock(&desc->lock);
426
427                 action_ret = handle_IRQ_event(irq, action);
428                 if (!noirqdebug)
429                         note_interrupt(irq, desc, action_ret);
430
431                 spin_lock(&desc->lock);
432                 if (likely(!(desc->status & IRQ_PENDING)))
433                         break;
434                 desc->status &= ~IRQ_PENDING;
435         }
436         desc->status &= ~IRQ_INPROGRESS;
437
438 out:
439         /*
440          * The ->end() handler has to deal with interrupts which got
441          * disabled while the handler was running.
442          */
443         desc->chip->end(irq);
444         spin_unlock(&desc->lock);
445
446         return 1;
447 }
448 #endif
449
450 void early_init_irq_lock_class(void)
451 {
452         struct irq_desc *desc;
453         int i;
454
455         for_each_irq_desc(i, desc) {
456                 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
457         }
458 }
459
460 #ifdef CONFIG_SPARSE_IRQ
461 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
462 {
463         struct irq_desc *desc = irq_to_desc(irq);
464         return desc ? desc->kstat_irqs[cpu] : 0;
465 }
466 #endif
467 EXPORT_SYMBOL(kstat_irqs_cpu);
468