2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
54 * Note: If we want to add new timer bases, we have to skip the two
55 * clock ids captured by the cpu-timers. We do this by holding empty
56 * entries rather than doing math adjustment of the clock ids.
57 * This ensures that we capture erroneous accesses to these clock ids
58 * rather than moving them into the range of valid clock id's.
60 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
66 .index = CLOCK_REALTIME,
67 .get_time = &ktime_get_real,
68 .resolution = KTIME_LOW_RES,
71 .index = CLOCK_MONOTONIC,
72 .get_time = &ktime_get,
73 .resolution = KTIME_LOW_RES,
79 * Get the coarse grained time at the softirq based on xtime and
82 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 struct timespec xts, tom;
89 seq = read_seqbegin(&xtime_lock);
90 xts = current_kernel_time();
91 tom = wall_to_monotonic;
92 } while (read_seqretry(&xtime_lock, seq));
94 xtim = timespec_to_ktime(xts);
95 tomono = timespec_to_ktime(tom);
96 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
97 base->clock_base[CLOCK_MONOTONIC].softirq_time =
98 ktime_add(xtim, tomono);
102 * Functions and macros which are different for UP/SMP systems are kept in a
108 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
109 * means that all timers which are tied to this base via timer->base are
110 * locked, and the base itself is locked too.
112 * So __run_timers/migrate_timers can safely modify all timers which could
113 * be found on the lists/queues.
115 * When the timer's base is locked, and the timer removed from list, it is
116 * possible to set timer->base = NULL and drop the lock: the timer remains
120 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
121 unsigned long *flags)
123 struct hrtimer_clock_base *base;
127 if (likely(base != NULL)) {
128 spin_lock_irqsave(&base->cpu_base->lock, *flags);
129 if (likely(base == timer->base))
131 /* The timer has migrated to another CPU: */
132 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
140 * Get the preferred target CPU for NOHZ
142 static int hrtimer_get_target(int this_cpu, int pinned)
145 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
146 int preferred_cpu = get_nohz_load_balancer();
148 if (preferred_cpu >= 0)
149 return preferred_cpu;
156 * With HIGHRES=y we do not migrate the timer when it is expiring
157 * before the next event on the target cpu because we cannot reprogram
158 * the target cpu hardware and we would cause it to fire late.
160 * Called with cpu_base->lock of target cpu held.
163 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
165 #ifdef CONFIG_HIGH_RES_TIMERS
168 if (!new_base->cpu_base->hres_active)
171 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
179 * Switch the timer base to the current CPU when possible.
181 static inline struct hrtimer_clock_base *
182 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 struct hrtimer_clock_base *new_base;
186 struct hrtimer_cpu_base *new_cpu_base;
187 int this_cpu = smp_processor_id();
188 int cpu = hrtimer_get_target(this_cpu, pinned);
191 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
192 new_base = &new_cpu_base->clock_base[base->index];
194 if (base != new_base) {
196 * We are trying to move timer to new_base.
197 * However we can't change timer's base while it is running,
198 * so we keep it on the same CPU. No hassle vs. reprogramming
199 * the event source in the high resolution case. The softirq
200 * code will take care of this when the timer function has
201 * completed. There is no conflict as we hold the lock until
202 * the timer is enqueued.
204 if (unlikely(hrtimer_callback_running(timer)))
207 /* See the comment in lock_timer_base() */
209 spin_unlock(&base->cpu_base->lock);
210 spin_lock(&new_base->cpu_base->lock);
212 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
214 spin_unlock(&new_base->cpu_base->lock);
215 spin_lock(&base->cpu_base->lock);
219 timer->base = new_base;
224 #else /* CONFIG_SMP */
226 static inline struct hrtimer_clock_base *
227 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
229 struct hrtimer_clock_base *base = timer->base;
231 spin_lock_irqsave(&base->cpu_base->lock, *flags);
236 # define switch_hrtimer_base(t, b, p) (b)
238 #endif /* !CONFIG_SMP */
241 * Functions for the union type storage format of ktime_t which are
242 * too large for inlining:
244 #if BITS_PER_LONG < 64
245 # ifndef CONFIG_KTIME_SCALAR
247 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
249 * @nsec: the scalar nsec value to add
251 * Returns the sum of kt and nsec in ktime_t format
253 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257 if (likely(nsec < NSEC_PER_SEC)) {
260 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
262 tmp = ktime_set((long)nsec, rem);
265 return ktime_add(kt, tmp);
268 EXPORT_SYMBOL_GPL(ktime_add_ns);
271 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
273 * @nsec: the scalar nsec value to subtract
275 * Returns the subtraction of @nsec from @kt in ktime_t format
277 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281 if (likely(nsec < NSEC_PER_SEC)) {
284 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
286 tmp = ktime_set((long)nsec, rem);
289 return ktime_sub(kt, tmp);
292 EXPORT_SYMBOL_GPL(ktime_sub_ns);
293 # endif /* !CONFIG_KTIME_SCALAR */
296 * Divide a ktime value by a nanosecond value
298 u64 ktime_divns(const ktime_t kt, s64 div)
303 dclc = ktime_to_ns(kt);
304 /* Make sure the divisor is less than 2^32: */
310 do_div(dclc, (unsigned long) div);
314 #endif /* BITS_PER_LONG >= 64 */
317 * Add two ktime values and do a safety check for overflow:
319 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
321 ktime_t res = ktime_add(lhs, rhs);
324 * We use KTIME_SEC_MAX here, the maximum timeout which we can
325 * return to user space in a timespec:
327 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
328 res = ktime_set(KTIME_SEC_MAX, 0);
333 EXPORT_SYMBOL_GPL(ktime_add_safe);
335 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337 static struct debug_obj_descr hrtimer_debug_descr;
340 * fixup_init is called when:
341 * - an active object is initialized
343 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345 struct hrtimer *timer = addr;
348 case ODEBUG_STATE_ACTIVE:
349 hrtimer_cancel(timer);
350 debug_object_init(timer, &hrtimer_debug_descr);
358 * fixup_activate is called when:
359 * - an active object is activated
360 * - an unknown object is activated (might be a statically initialized object)
362 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
366 case ODEBUG_STATE_NOTAVAILABLE:
370 case ODEBUG_STATE_ACTIVE:
379 * fixup_free is called when:
380 * - an active object is freed
382 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384 struct hrtimer *timer = addr;
387 case ODEBUG_STATE_ACTIVE:
388 hrtimer_cancel(timer);
389 debug_object_free(timer, &hrtimer_debug_descr);
396 static struct debug_obj_descr hrtimer_debug_descr = {
398 .fixup_init = hrtimer_fixup_init,
399 .fixup_activate = hrtimer_fixup_activate,
400 .fixup_free = hrtimer_fixup_free,
403 static inline void debug_hrtimer_init(struct hrtimer *timer)
405 debug_object_init(timer, &hrtimer_debug_descr);
408 static inline void debug_hrtimer_activate(struct hrtimer *timer)
410 debug_object_activate(timer, &hrtimer_debug_descr);
413 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415 debug_object_deactivate(timer, &hrtimer_debug_descr);
418 static inline void debug_hrtimer_free(struct hrtimer *timer)
420 debug_object_free(timer, &hrtimer_debug_descr);
423 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode);
426 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 enum hrtimer_mode mode)
429 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 __hrtimer_init(timer, clock_id, mode);
433 void destroy_hrtimer_on_stack(struct hrtimer *timer)
435 debug_object_free(timer, &hrtimer_debug_descr);
439 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
444 /* High resolution timer related functions */
445 #ifdef CONFIG_HIGH_RES_TIMERS
448 * High resolution timer enabled ?
450 static int hrtimer_hres_enabled __read_mostly = 1;
453 * Enable / Disable high resolution mode
455 static int __init setup_hrtimer_hres(char *str)
457 if (!strcmp(str, "off"))
458 hrtimer_hres_enabled = 0;
459 else if (!strcmp(str, "on"))
460 hrtimer_hres_enabled = 1;
466 __setup("highres=", setup_hrtimer_hres);
469 * hrtimer_high_res_enabled - query, if the highres mode is enabled
471 static inline int hrtimer_is_hres_enabled(void)
473 return hrtimer_hres_enabled;
477 * Is the high resolution mode active ?
479 static inline int hrtimer_hres_active(void)
481 return __get_cpu_var(hrtimer_bases).hres_active;
485 * Reprogram the event source with checking both queues for the
487 * Called with interrupts disabled and base->lock held
489 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
492 struct hrtimer_clock_base *base = cpu_base->clock_base;
495 cpu_base->expires_next.tv64 = KTIME_MAX;
497 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
498 struct hrtimer *timer;
502 timer = rb_entry(base->first, struct hrtimer, node);
503 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 * clock_was_set() has changed base->offset so the
506 * result might be negative. Fix it up to prevent a
507 * false positive in clockevents_program_event()
509 if (expires.tv64 < 0)
511 if (expires.tv64 < cpu_base->expires_next.tv64)
512 cpu_base->expires_next = expires;
515 if (cpu_base->expires_next.tv64 != KTIME_MAX)
516 tick_program_event(cpu_base->expires_next, 1);
520 * Shared reprogramming for clock_realtime and clock_monotonic
522 * When a timer is enqueued and expires earlier than the already enqueued
523 * timers, we have to check, whether it expires earlier than the timer for
524 * which the clock event device was armed.
526 * Called with interrupts disabled and base->cpu_base.lock held
528 static int hrtimer_reprogram(struct hrtimer *timer,
529 struct hrtimer_clock_base *base)
531 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
532 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
535 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
538 * When the callback is running, we do not reprogram the clock event
539 * device. The timer callback is either running on a different CPU or
540 * the callback is executed in the hrtimer_interrupt context. The
541 * reprogramming is handled either by the softirq, which called the
542 * callback or at the end of the hrtimer_interrupt.
544 if (hrtimer_callback_running(timer))
548 * CLOCK_REALTIME timer might be requested with an absolute
549 * expiry time which is less than base->offset. Nothing wrong
550 * about that, just avoid to call into the tick code, which
551 * has now objections against negative expiry values.
553 if (expires.tv64 < 0)
556 if (expires.tv64 >= expires_next->tv64)
560 * Clockevents returns -ETIME, when the event was in the past.
562 res = tick_program_event(expires, 0);
563 if (!IS_ERR_VALUE(res))
564 *expires_next = expires;
570 * Retrigger next event is called after clock was set
572 * Called with interrupts disabled via on_each_cpu()
574 static void retrigger_next_event(void *arg)
576 struct hrtimer_cpu_base *base;
577 struct timespec realtime_offset;
580 if (!hrtimer_hres_active())
584 seq = read_seqbegin(&xtime_lock);
585 set_normalized_timespec(&realtime_offset,
586 -wall_to_monotonic.tv_sec,
587 -wall_to_monotonic.tv_nsec);
588 } while (read_seqretry(&xtime_lock, seq));
590 base = &__get_cpu_var(hrtimer_bases);
592 /* Adjust CLOCK_REALTIME offset */
593 spin_lock(&base->lock);
594 base->clock_base[CLOCK_REALTIME].offset =
595 timespec_to_ktime(realtime_offset);
597 hrtimer_force_reprogram(base);
598 spin_unlock(&base->lock);
602 * Clock realtime was set
604 * Change the offset of the realtime clock vs. the monotonic
607 * We might have to reprogram the high resolution timer interrupt. On
608 * SMP we call the architecture specific code to retrigger _all_ high
609 * resolution timer interrupts. On UP we just disable interrupts and
610 * call the high resolution interrupt code.
612 void clock_was_set(void)
614 /* Retrigger the CPU local events everywhere */
615 on_each_cpu(retrigger_next_event, NULL, 1);
619 * During resume we might have to reprogram the high resolution timer
620 * interrupt (on the local CPU):
622 void hres_timers_resume(void)
624 WARN_ONCE(!irqs_disabled(),
625 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
627 retrigger_next_event(NULL);
631 * Initialize the high resolution related parts of cpu_base
633 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
635 base->expires_next.tv64 = KTIME_MAX;
636 base->hres_active = 0;
640 * Initialize the high resolution related parts of a hrtimer
642 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
648 * When High resolution timers are active, try to reprogram. Note, that in case
649 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
650 * check happens. The timer gets enqueued into the rbtree. The reprogramming
651 * and expiry check is done in the hrtimer_interrupt or in the softirq.
653 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
654 struct hrtimer_clock_base *base,
657 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
659 spin_unlock(&base->cpu_base->lock);
660 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
661 spin_lock(&base->cpu_base->lock);
663 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
672 * Switch to high resolution mode
674 static int hrtimer_switch_to_hres(void)
676 int cpu = smp_processor_id();
677 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
680 if (base->hres_active)
683 local_irq_save(flags);
685 if (tick_init_highres()) {
686 local_irq_restore(flags);
687 printk(KERN_WARNING "Could not switch to high resolution "
688 "mode on CPU %d\n", cpu);
691 base->hres_active = 1;
692 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
693 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
695 tick_setup_sched_timer();
697 /* "Retrigger" the interrupt to get things going */
698 retrigger_next_event(NULL);
699 local_irq_restore(flags);
700 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
707 static inline int hrtimer_hres_active(void) { return 0; }
708 static inline int hrtimer_is_hres_enabled(void) { return 0; }
709 static inline int hrtimer_switch_to_hres(void) { return 0; }
710 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
711 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
712 struct hrtimer_clock_base *base,
717 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
718 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
720 #endif /* CONFIG_HIGH_RES_TIMERS */
722 #ifdef CONFIG_TIMER_STATS
723 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
725 if (timer->start_site)
728 timer->start_site = addr;
729 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
730 timer->start_pid = current->pid;
735 * Counterpart to lock_hrtimer_base above:
738 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
740 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
744 * hrtimer_forward - forward the timer expiry
745 * @timer: hrtimer to forward
746 * @now: forward past this time
747 * @interval: the interval to forward
749 * Forward the timer expiry so it will expire in the future.
750 * Returns the number of overruns.
752 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
757 delta = ktime_sub(now, hrtimer_get_expires(timer));
762 if (interval.tv64 < timer->base->resolution.tv64)
763 interval.tv64 = timer->base->resolution.tv64;
765 if (unlikely(delta.tv64 >= interval.tv64)) {
766 s64 incr = ktime_to_ns(interval);
768 orun = ktime_divns(delta, incr);
769 hrtimer_add_expires_ns(timer, incr * orun);
770 if (hrtimer_get_expires_tv64(timer) > now.tv64)
773 * This (and the ktime_add() below) is the
774 * correction for exact:
778 hrtimer_add_expires(timer, interval);
782 EXPORT_SYMBOL_GPL(hrtimer_forward);
785 * enqueue_hrtimer - internal function to (re)start a timer
787 * The timer is inserted in expiry order. Insertion into the
788 * red black tree is O(log(n)). Must hold the base lock.
790 * Returns 1 when the new timer is the leftmost timer in the tree.
792 static int enqueue_hrtimer(struct hrtimer *timer,
793 struct hrtimer_clock_base *base)
795 struct rb_node **link = &base->active.rb_node;
796 struct rb_node *parent = NULL;
797 struct hrtimer *entry;
800 debug_hrtimer_activate(timer);
803 * Find the right place in the rbtree:
807 entry = rb_entry(parent, struct hrtimer, node);
809 * We dont care about collisions. Nodes with
810 * the same expiry time stay together.
812 if (hrtimer_get_expires_tv64(timer) <
813 hrtimer_get_expires_tv64(entry)) {
814 link = &(*link)->rb_left;
816 link = &(*link)->rb_right;
822 * Insert the timer to the rbtree and check whether it
823 * replaces the first pending timer
826 base->first = &timer->node;
828 rb_link_node(&timer->node, parent, link);
829 rb_insert_color(&timer->node, &base->active);
831 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
832 * state of a possibly running callback.
834 timer->state |= HRTIMER_STATE_ENQUEUED;
840 * __remove_hrtimer - internal function to remove a timer
842 * Caller must hold the base lock.
844 * High resolution timer mode reprograms the clock event device when the
845 * timer is the one which expires next. The caller can disable this by setting
846 * reprogram to zero. This is useful, when the context does a reprogramming
847 * anyway (e.g. timer interrupt)
849 static void __remove_hrtimer(struct hrtimer *timer,
850 struct hrtimer_clock_base *base,
851 unsigned long newstate, int reprogram)
853 if (timer->state & HRTIMER_STATE_ENQUEUED) {
855 * Remove the timer from the rbtree and replace the
856 * first entry pointer if necessary.
858 if (base->first == &timer->node) {
859 base->first = rb_next(&timer->node);
860 /* Reprogram the clock event device. if enabled */
861 if (reprogram && hrtimer_hres_active())
862 hrtimer_force_reprogram(base->cpu_base);
864 rb_erase(&timer->node, &base->active);
866 timer->state = newstate;
870 * remove hrtimer, called with base lock held
873 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
875 if (hrtimer_is_queued(timer)) {
879 * Remove the timer and force reprogramming when high
880 * resolution mode is active and the timer is on the current
881 * CPU. If we remove a timer on another CPU, reprogramming is
882 * skipped. The interrupt event on this CPU is fired and
883 * reprogramming happens in the interrupt handler. This is a
884 * rare case and less expensive than a smp call.
886 debug_hrtimer_deactivate(timer);
887 timer_stats_hrtimer_clear_start_info(timer);
888 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
889 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
896 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
897 unsigned long delta_ns, const enum hrtimer_mode mode,
900 struct hrtimer_clock_base *base, *new_base;
904 base = lock_hrtimer_base(timer, &flags);
906 /* Remove an active timer from the queue: */
907 ret = remove_hrtimer(timer, base);
909 /* Switch the timer base, if necessary: */
910 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
912 if (mode & HRTIMER_MODE_REL) {
913 tim = ktime_add_safe(tim, new_base->get_time());
915 * CONFIG_TIME_LOW_RES is a temporary way for architectures
916 * to signal that they simply return xtime in
917 * do_gettimeoffset(). In this case we want to round up by
918 * resolution when starting a relative timer, to avoid short
919 * timeouts. This will go away with the GTOD framework.
921 #ifdef CONFIG_TIME_LOW_RES
922 tim = ktime_add_safe(tim, base->resolution);
926 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
928 timer_stats_hrtimer_set_start_info(timer);
930 leftmost = enqueue_hrtimer(timer, new_base);
933 * Only allow reprogramming if the new base is on this CPU.
934 * (it might still be on another CPU if the timer was pending)
936 * XXX send_remote_softirq() ?
938 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
939 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
941 unlock_hrtimer_base(timer, &flags);
947 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
948 * @timer: the timer to be added
950 * @delta_ns: "slack" range for the timer
951 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
955 * 1 when the timer was active
957 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
958 unsigned long delta_ns, const enum hrtimer_mode mode)
960 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
962 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
965 * hrtimer_start - (re)start an hrtimer on the current CPU
966 * @timer: the timer to be added
968 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
972 * 1 when the timer was active
975 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
977 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
979 EXPORT_SYMBOL_GPL(hrtimer_start);
983 * hrtimer_try_to_cancel - try to deactivate a timer
984 * @timer: hrtimer to stop
987 * 0 when the timer was not active
988 * 1 when the timer was active
989 * -1 when the timer is currently excuting the callback function and
992 int hrtimer_try_to_cancel(struct hrtimer *timer)
994 struct hrtimer_clock_base *base;
998 base = lock_hrtimer_base(timer, &flags);
1000 if (!hrtimer_callback_running(timer))
1001 ret = remove_hrtimer(timer, base);
1003 unlock_hrtimer_base(timer, &flags);
1008 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1011 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1012 * @timer: the timer to be cancelled
1015 * 0 when the timer was not active
1016 * 1 when the timer was active
1018 int hrtimer_cancel(struct hrtimer *timer)
1021 int ret = hrtimer_try_to_cancel(timer);
1028 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1031 * hrtimer_get_remaining - get remaining time for the timer
1032 * @timer: the timer to read
1034 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1036 struct hrtimer_clock_base *base;
1037 unsigned long flags;
1040 base = lock_hrtimer_base(timer, &flags);
1041 rem = hrtimer_expires_remaining(timer);
1042 unlock_hrtimer_base(timer, &flags);
1046 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1050 * hrtimer_get_next_event - get the time until next expiry event
1052 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1055 ktime_t hrtimer_get_next_event(void)
1057 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1058 struct hrtimer_clock_base *base = cpu_base->clock_base;
1059 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1060 unsigned long flags;
1063 spin_lock_irqsave(&cpu_base->lock, flags);
1065 if (!hrtimer_hres_active()) {
1066 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1067 struct hrtimer *timer;
1072 timer = rb_entry(base->first, struct hrtimer, node);
1073 delta.tv64 = hrtimer_get_expires_tv64(timer);
1074 delta = ktime_sub(delta, base->get_time());
1075 if (delta.tv64 < mindelta.tv64)
1076 mindelta.tv64 = delta.tv64;
1080 spin_unlock_irqrestore(&cpu_base->lock, flags);
1082 if (mindelta.tv64 < 0)
1088 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1089 enum hrtimer_mode mode)
1091 struct hrtimer_cpu_base *cpu_base;
1093 memset(timer, 0, sizeof(struct hrtimer));
1095 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1097 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1098 clock_id = CLOCK_MONOTONIC;
1100 timer->base = &cpu_base->clock_base[clock_id];
1101 hrtimer_init_timer_hres(timer);
1103 #ifdef CONFIG_TIMER_STATS
1104 timer->start_site = NULL;
1105 timer->start_pid = -1;
1106 memset(timer->start_comm, 0, TASK_COMM_LEN);
1111 * hrtimer_init - initialize a timer to the given clock
1112 * @timer: the timer to be initialized
1113 * @clock_id: the clock to be used
1114 * @mode: timer mode abs/rel
1116 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1117 enum hrtimer_mode mode)
1119 debug_hrtimer_init(timer);
1120 __hrtimer_init(timer, clock_id, mode);
1122 EXPORT_SYMBOL_GPL(hrtimer_init);
1125 * hrtimer_get_res - get the timer resolution for a clock
1126 * @which_clock: which clock to query
1127 * @tp: pointer to timespec variable to store the resolution
1129 * Store the resolution of the clock selected by @which_clock in the
1130 * variable pointed to by @tp.
1132 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1134 struct hrtimer_cpu_base *cpu_base;
1136 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1137 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1141 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1143 static void __run_hrtimer(struct hrtimer *timer)
1145 struct hrtimer_clock_base *base = timer->base;
1146 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1147 enum hrtimer_restart (*fn)(struct hrtimer *);
1150 WARN_ON(!irqs_disabled());
1152 debug_hrtimer_deactivate(timer);
1153 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1154 timer_stats_account_hrtimer(timer);
1155 fn = timer->function;
1158 * Because we run timers from hardirq context, there is no chance
1159 * they get migrated to another cpu, therefore its safe to unlock
1162 spin_unlock(&cpu_base->lock);
1163 restart = fn(timer);
1164 spin_lock(&cpu_base->lock);
1167 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1168 * we do not reprogramm the event hardware. Happens either in
1169 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1171 if (restart != HRTIMER_NORESTART) {
1172 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1173 enqueue_hrtimer(timer, base);
1175 timer->state &= ~HRTIMER_STATE_CALLBACK;
1178 #ifdef CONFIG_HIGH_RES_TIMERS
1180 static int force_clock_reprogram;
1183 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1184 * is hanging, which could happen with something that slows the interrupt
1185 * such as the tracing. Then we force the clock reprogramming for each future
1186 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1187 * threshold that we will overwrite.
1188 * The next tick event will be scheduled to 3 times we currently spend on
1189 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1190 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1191 * let it running without serious starvation.
1195 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1198 force_clock_reprogram = 1;
1199 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1200 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1201 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1204 * High resolution timer interrupt
1205 * Called with interrupts disabled
1207 void hrtimer_interrupt(struct clock_event_device *dev)
1209 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1210 struct hrtimer_clock_base *base;
1211 ktime_t expires_next, now;
1215 BUG_ON(!cpu_base->hres_active);
1216 cpu_base->nr_events++;
1217 dev->next_event.tv64 = KTIME_MAX;
1220 /* 5 retries is enough to notice a hang */
1221 if (!(++nr_retries % 5))
1222 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1226 expires_next.tv64 = KTIME_MAX;
1228 spin_lock(&cpu_base->lock);
1230 * We set expires_next to KTIME_MAX here with cpu_base->lock
1231 * held to prevent that a timer is enqueued in our queue via
1232 * the migration code. This does not affect enqueueing of
1233 * timers which run their callback and need to be requeued on
1236 cpu_base->expires_next.tv64 = KTIME_MAX;
1238 base = cpu_base->clock_base;
1240 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1242 struct rb_node *node;
1244 basenow = ktime_add(now, base->offset);
1246 while ((node = base->first)) {
1247 struct hrtimer *timer;
1249 timer = rb_entry(node, struct hrtimer, node);
1252 * The immediate goal for using the softexpires is
1253 * minimizing wakeups, not running timers at the
1254 * earliest interrupt after their soft expiration.
1255 * This allows us to avoid using a Priority Search
1256 * Tree, which can answer a stabbing querry for
1257 * overlapping intervals and instead use the simple
1258 * BST we already have.
1259 * We don't add extra wakeups by delaying timers that
1260 * are right-of a not yet expired timer, because that
1261 * timer will have to trigger a wakeup anyway.
1264 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1267 expires = ktime_sub(hrtimer_get_expires(timer),
1269 if (expires.tv64 < expires_next.tv64)
1270 expires_next = expires;
1274 __run_hrtimer(timer);
1280 * Store the new expiry value so the migration code can verify
1283 cpu_base->expires_next = expires_next;
1284 spin_unlock(&cpu_base->lock);
1286 /* Reprogramming necessary ? */
1287 if (expires_next.tv64 != KTIME_MAX) {
1288 if (tick_program_event(expires_next, force_clock_reprogram))
1294 * local version of hrtimer_peek_ahead_timers() called with interrupts
1297 static void __hrtimer_peek_ahead_timers(void)
1299 struct tick_device *td;
1301 if (!hrtimer_hres_active())
1304 td = &__get_cpu_var(tick_cpu_device);
1305 if (td && td->evtdev)
1306 hrtimer_interrupt(td->evtdev);
1310 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1312 * hrtimer_peek_ahead_timers will peek at the timer queue of
1313 * the current cpu and check if there are any timers for which
1314 * the soft expires time has passed. If any such timers exist,
1315 * they are run immediately and then removed from the timer queue.
1318 void hrtimer_peek_ahead_timers(void)
1320 unsigned long flags;
1322 local_irq_save(flags);
1323 __hrtimer_peek_ahead_timers();
1324 local_irq_restore(flags);
1327 static void run_hrtimer_softirq(struct softirq_action *h)
1329 hrtimer_peek_ahead_timers();
1332 #else /* CONFIG_HIGH_RES_TIMERS */
1334 static inline void __hrtimer_peek_ahead_timers(void) { }
1336 #endif /* !CONFIG_HIGH_RES_TIMERS */
1339 * Called from timer softirq every jiffy, expire hrtimers:
1341 * For HRT its the fall back code to run the softirq in the timer
1342 * softirq context in case the hrtimer initialization failed or has
1343 * not been done yet.
1345 void hrtimer_run_pending(void)
1347 if (hrtimer_hres_active())
1351 * This _is_ ugly: We have to check in the softirq context,
1352 * whether we can switch to highres and / or nohz mode. The
1353 * clocksource switch happens in the timer interrupt with
1354 * xtime_lock held. Notification from there only sets the
1355 * check bit in the tick_oneshot code, otherwise we might
1356 * deadlock vs. xtime_lock.
1358 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1359 hrtimer_switch_to_hres();
1363 * Called from hardirq context every jiffy
1365 void hrtimer_run_queues(void)
1367 struct rb_node *node;
1368 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1369 struct hrtimer_clock_base *base;
1370 int index, gettime = 1;
1372 if (hrtimer_hres_active())
1375 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1376 base = &cpu_base->clock_base[index];
1382 hrtimer_get_softirq_time(cpu_base);
1386 spin_lock(&cpu_base->lock);
1388 while ((node = base->first)) {
1389 struct hrtimer *timer;
1391 timer = rb_entry(node, struct hrtimer, node);
1392 if (base->softirq_time.tv64 <=
1393 hrtimer_get_expires_tv64(timer))
1396 __run_hrtimer(timer);
1398 spin_unlock(&cpu_base->lock);
1403 * Sleep related functions:
1405 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1407 struct hrtimer_sleeper *t =
1408 container_of(timer, struct hrtimer_sleeper, timer);
1409 struct task_struct *task = t->task;
1413 wake_up_process(task);
1415 return HRTIMER_NORESTART;
1418 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1420 sl->timer.function = hrtimer_wakeup;
1424 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1426 hrtimer_init_sleeper(t, current);
1429 set_current_state(TASK_INTERRUPTIBLE);
1430 hrtimer_start_expires(&t->timer, mode);
1431 if (!hrtimer_active(&t->timer))
1434 if (likely(t->task))
1437 hrtimer_cancel(&t->timer);
1438 mode = HRTIMER_MODE_ABS;
1440 } while (t->task && !signal_pending(current));
1442 __set_current_state(TASK_RUNNING);
1444 return t->task == NULL;
1447 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1449 struct timespec rmt;
1452 rem = hrtimer_expires_remaining(timer);
1455 rmt = ktime_to_timespec(rem);
1457 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1463 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1465 struct hrtimer_sleeper t;
1466 struct timespec __user *rmtp;
1469 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1471 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1473 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1476 rmtp = restart->nanosleep.rmtp;
1478 ret = update_rmtp(&t.timer, rmtp);
1483 /* The other values in restart are already filled in */
1484 ret = -ERESTART_RESTARTBLOCK;
1486 destroy_hrtimer_on_stack(&t.timer);
1490 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1491 const enum hrtimer_mode mode, const clockid_t clockid)
1493 struct restart_block *restart;
1494 struct hrtimer_sleeper t;
1496 unsigned long slack;
1498 slack = current->timer_slack_ns;
1499 if (rt_task(current))
1502 hrtimer_init_on_stack(&t.timer, clockid, mode);
1503 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1504 if (do_nanosleep(&t, mode))
1507 /* Absolute timers do not update the rmtp value and restart: */
1508 if (mode == HRTIMER_MODE_ABS) {
1509 ret = -ERESTARTNOHAND;
1514 ret = update_rmtp(&t.timer, rmtp);
1519 restart = ¤t_thread_info()->restart_block;
1520 restart->fn = hrtimer_nanosleep_restart;
1521 restart->nanosleep.index = t.timer.base->index;
1522 restart->nanosleep.rmtp = rmtp;
1523 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1525 ret = -ERESTART_RESTARTBLOCK;
1527 destroy_hrtimer_on_stack(&t.timer);
1531 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1532 struct timespec __user *, rmtp)
1536 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1539 if (!timespec_valid(&tu))
1542 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1546 * Functions related to boot-time initialization:
1548 static void __cpuinit init_hrtimers_cpu(int cpu)
1550 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1553 spin_lock_init(&cpu_base->lock);
1555 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1556 cpu_base->clock_base[i].cpu_base = cpu_base;
1558 hrtimer_init_hres(cpu_base);
1561 #ifdef CONFIG_HOTPLUG_CPU
1563 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1564 struct hrtimer_clock_base *new_base)
1566 struct hrtimer *timer;
1567 struct rb_node *node;
1569 while ((node = rb_first(&old_base->active))) {
1570 timer = rb_entry(node, struct hrtimer, node);
1571 BUG_ON(hrtimer_callback_running(timer));
1572 debug_hrtimer_deactivate(timer);
1575 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1576 * timer could be seen as !active and just vanish away
1577 * under us on another CPU
1579 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1580 timer->base = new_base;
1582 * Enqueue the timers on the new cpu. This does not
1583 * reprogram the event device in case the timer
1584 * expires before the earliest on this CPU, but we run
1585 * hrtimer_interrupt after we migrated everything to
1586 * sort out already expired timers and reprogram the
1589 enqueue_hrtimer(timer, new_base);
1591 /* Clear the migration state bit */
1592 timer->state &= ~HRTIMER_STATE_MIGRATE;
1596 static void migrate_hrtimers(int scpu)
1598 struct hrtimer_cpu_base *old_base, *new_base;
1601 BUG_ON(cpu_online(scpu));
1602 tick_cancel_sched_timer(scpu);
1604 local_irq_disable();
1605 old_base = &per_cpu(hrtimer_bases, scpu);
1606 new_base = &__get_cpu_var(hrtimer_bases);
1608 * The caller is globally serialized and nobody else
1609 * takes two locks at once, deadlock is not possible.
1611 spin_lock(&new_base->lock);
1612 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1614 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1615 migrate_hrtimer_list(&old_base->clock_base[i],
1616 &new_base->clock_base[i]);
1619 spin_unlock(&old_base->lock);
1620 spin_unlock(&new_base->lock);
1622 /* Check, if we got expired work to do */
1623 __hrtimer_peek_ahead_timers();
1627 #endif /* CONFIG_HOTPLUG_CPU */
1629 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1630 unsigned long action, void *hcpu)
1632 int scpu = (long)hcpu;
1636 case CPU_UP_PREPARE:
1637 case CPU_UP_PREPARE_FROZEN:
1638 init_hrtimers_cpu(scpu);
1641 #ifdef CONFIG_HOTPLUG_CPU
1643 case CPU_DYING_FROZEN:
1644 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1647 case CPU_DEAD_FROZEN:
1649 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1650 migrate_hrtimers(scpu);
1662 static struct notifier_block __cpuinitdata hrtimers_nb = {
1663 .notifier_call = hrtimer_cpu_notify,
1666 void __init hrtimers_init(void)
1668 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1669 (void *)(long)smp_processor_id());
1670 register_cpu_notifier(&hrtimers_nb);
1671 #ifdef CONFIG_HIGH_RES_TIMERS
1672 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1677 * schedule_hrtimeout_range - sleep until timeout
1678 * @expires: timeout value (ktime_t)
1679 * @delta: slack in expires timeout (ktime_t)
1680 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1682 * Make the current task sleep until the given expiry time has
1683 * elapsed. The routine will return immediately unless
1684 * the current task state has been set (see set_current_state()).
1686 * The @delta argument gives the kernel the freedom to schedule the
1687 * actual wakeup to a time that is both power and performance friendly.
1688 * The kernel give the normal best effort behavior for "@expires+@delta",
1689 * but may decide to fire the timer earlier, but no earlier than @expires.
1691 * You can set the task state as follows -
1693 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1694 * pass before the routine returns.
1696 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1697 * delivered to the current task.
1699 * The current task state is guaranteed to be TASK_RUNNING when this
1702 * Returns 0 when the timer has expired otherwise -EINTR
1704 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1705 const enum hrtimer_mode mode)
1707 struct hrtimer_sleeper t;
1710 * Optimize when a zero timeout value is given. It does not
1711 * matter whether this is an absolute or a relative time.
1713 if (expires && !expires->tv64) {
1714 __set_current_state(TASK_RUNNING);
1719 * A NULL parameter means "inifinte"
1723 __set_current_state(TASK_RUNNING);
1727 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1728 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1730 hrtimer_init_sleeper(&t, current);
1732 hrtimer_start_expires(&t.timer, mode);
1733 if (!hrtimer_active(&t.timer))
1739 hrtimer_cancel(&t.timer);
1740 destroy_hrtimer_on_stack(&t.timer);
1742 __set_current_state(TASK_RUNNING);
1744 return !t.task ? 0 : -EINTR;
1746 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1749 * schedule_hrtimeout - sleep until timeout
1750 * @expires: timeout value (ktime_t)
1751 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1753 * Make the current task sleep until the given expiry time has
1754 * elapsed. The routine will return immediately unless
1755 * the current task state has been set (see set_current_state()).
1757 * You can set the task state as follows -
1759 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1760 * pass before the routine returns.
1762 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1763 * delivered to the current task.
1765 * The current task state is guaranteed to be TASK_RUNNING when this
1768 * Returns 0 when the timer has expired otherwise -EINTR
1770 int __sched schedule_hrtimeout(ktime_t *expires,
1771 const enum hrtimer_mode mode)
1773 return schedule_hrtimeout_range(expires, 0, mode);
1775 EXPORT_SYMBOL_GPL(schedule_hrtimeout);